WorldWideScience

Sample records for remotely piloted vehicles

  1. Remotely Piloted Vehicles for Experimental Flight Control Testing

    Science.gov (United States)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  2. Wind-tunnel investigation of an armed mini remotely piloted vehicle. [conducted in Langley V/STOL tunnel

    Science.gov (United States)

    Phelps, A. E., III

    1979-01-01

    A wind tunnel investigation of a full scale remotely piloted vehicle (RPV) armed with rocket launchers was conducted. The model had unacceptable longitudinal stability characteristics at negative angles of attack in the original design configuration. The addition of a pair of fins mounted in a V arrangement on the propeller shroud resulted in a configuration with acceptable longitudinal stability characteristics. The addition of wing mounted external stores to the modified configuration resulted in a slight reduction in the longitudinal stability. The lateral directional characteristics of the model were generally good, but the model had low directional stability at low angles of attack. Aerodynamic control power was very strong around all three axes.

  3. Civil mini-RPA's for the 1980's: Avionics design considerations. [remotely piloted vehicles

    Science.gov (United States)

    Karmarkar, J. S.

    1975-01-01

    A number of remote sensing or surveillance tasks (e.g., fire fighting, crop monitoring) in the civilian sector of our society may be performed in a cost effective manner by use of small remotely piloted aircraft (RPA). This study was conducted to determine equipment (and the associated technology) that is available, and that could be applied to the mini-RPA and to examine the potential applications of the mini-RPA with special emphasis on the wild fire surveillance mission. The operational considerations of using the mini-RPA as affected by government regulatory agencies were investigated. These led to equipment requirements (e.g., infra-red sensors) over and above those for the performance of the mission. A computer technology survey and forecast was performed. Key subsystems were identified, and a distributed microcomputer configuration, that was functionally modular, was recommended. Areas for further NASA research and development activity were also identified.

  4. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  5. Synthetic vision to augment sensor based vision for remotely piloted vehicles

    NARCIS (Netherlands)

    Tadema, J.; Koeners, J.; Theunissen, E.

    2006-01-01

    In the past fifteen years, several research programs have demonstrated potential advantages of synthetic vision technology for manned aviation. More recently, some research programs have focused on integrating synthetic vision technology into control stations for remotely controlled aircraft. The

  6. Aquila Remotely Piloted Vehicle System Technology Demonstration (RPV-STD) Program. Volume 3. Field Test Program

    Science.gov (United States)

    1979-04-01

    FLIGHT TESTS Tis 8ootion sumarizes ech of the Crows Landln Flight Tests, hrm I to It Deoemiber 1975. 23 2.4.1 Flight 1 Aquila RPV 001 took off at 09.42...RC pilot In the stablied RC mode. To facilitate theme attempts, an automobile , with Its headlights on high beam, was positioned on each side of the...the vans. At approxi- mately 2 to 3 km, the actual automobile headlights would become visible. Then, the operator would attempt to reposition the RPV

  7. Maintenance of remote reconnaissance vehicle

    International Nuclear Information System (INIS)

    Schein, D.C.

    1985-01-01

    A description is provided of the maintenance program developed for remote reconnaissance vehicles, such as RRV-1, in use at the Three Mile Island Unit 2. The described approach, which is simple, effective, and flexible, helped to make the effort successful. It will be applied to future projects

  8. The Central Intelligence Agency’s Armed Remotely Piloted Vehicle-Supported Counter-Insurgency Campaign In Pakistan – A Mission Undermined By Unintended Consequences?

    Directory of Open Access Journals (Sweden)

    Simon Bennett

    2014-09-01

    Full Text Available This paper views America's 'drones-first' counter-insurgency effort in Pakistan through the lens of Merton's theory of the unintended consequences of purposive action. It also references Beck’s Risk Society thesis, America’s Revolution in Military Affairs doctrine, Toft’s theory of isomorphic learning, Langer’s theory of mindfulness, Highly Reliable Organisations theory and the social construction of technology (SCOT argument. With reference to Merton’s theory, the CIA-directed armed Remotely Piloted Vehicle (RPV campaign has manifest functions, latent functions and latent dysfunctions. Measured against numbers of suspected insurgents killed, the campaign can be judged a success. Measured against the level of collateral damage or the state of US-Pakistan relations, the campaign can be judged a failure. Values determine the choice of metrics. Because RPV operations eliminate risk to American service personnel, and because this is popular with both US citizens and politicians, collateral damage (the killing of civilians is not considered a policy-changing dysfunction. However, the latent dysfunctions of America's drones-first policy may be so great as to undermine that policy's intended manifest function – to make a net contribution to the War on Terror. In Vietnam the latent dysfunctions of Westmoreland’s attritional war undermined America’s policy of containment. Vietnam holds a lesson for the Obama administration.

  9. A Study to Identify Data Voids in the Application of Hi-Glide Canopies to Remotely Piloted Vehicles (RPV)

    Science.gov (United States)

    1976-01-01

    Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst) N66-29712*# NASA-TM-X-57693 33. Clemmons , Dewey L. Some Analysis of Parawing Behavior... Maurice P. Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System 79. Glauert, H. Heavy Flexible Cable for Towing a Heavy Body below an

  10. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  11. Wind-tunnel investigation of longitudinal and lateral-directional stability and control characteristics of a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    Science.gov (United States)

    Byrdsong, T. A.; Brooks, C. W., Jr.

    1980-01-01

    A 0.237-scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing was tested in the Langley 8-foot transonic tunnel to provide experimental data for a prediction of the static stability and control characteristics of the research vehicle as well as to provide an estimate of vehicle flight characteristics for a computer simulation program used in the planning and execution of specific flight-research mission. Data were obtained at a Reynolds number of 16.5 x 10 to the 6th power per meter for Mach numbers up to 0.92. The results indicate regions of longitudinal instability; however, an adequate margin of longitudinal stability exists at a selected cruise condition. Satisfactory effectiveness of pitch, roll, and yaw control was also demonstrated.

  12. Adaptable imaging package for remote vehicles

    Directory of Open Access Journals (Sweden)

    Jean-Luc Liardon

    2017-10-01

    Full Text Available An easy-to-customize, low-cost solution for remote imagery is described. The system, denoted ImPROV (Imaging Package for Remote Vehicles, supports multiple cameras, live streaming, long-range encrypted communication using mobile networks, positioning and time-stamped imagery, etc. The adaptability of the system is demonstrated by its deployment on different remotely operated or autonomous vehicles, which include model aircraft, drones, balloon, kite and a submarine.

  13. Remote surface testing and inspection vehicle

    International Nuclear Information System (INIS)

    Hyde, E.A.; Goldsmith, H.A.; Proudlove, M.J.

    1981-01-01

    A remotely controlled vehicle capable of roving over the outer surface of a nuclear reactor primary vessel carrying inspection instrumentation. The vehicle comprises an elongate bridge having a pair of suction support pads. Each pad carries gas thrusters for acting in opposition to the suction effort thereby to reduce adherence of the pads and enable displacement of the vehicle over the surface. The vehicle is supported by a services conducting umbilical. (author)

  14. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  15. Connected vehicle pilot deployment program.

    Science.gov (United States)

    2014-01-01

    The U.S. Department of Transportations (USDOTs) connected vehicle research : program is a multimodal initiative to enable safe, interoperable, networked wireless : communications among vehicles, infrastructure, and personal communications : dev...

  16. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  17. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  18. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.

    Science.gov (United States)

    Abrahamsen, Håkon B

    2015-06-10

    Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre

  19. Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments

    Directory of Open Access Journals (Sweden)

    Tanmay K. Mandal

    2016-11-01

    Full Text Available This paper reports the results of a Pilot-Induced Oscillation (PIO and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing Category 1 and Category 2 PIO criteria developed for manned aircraft are first surveyed and their effectiveness for predicting the PIO susceptibility for the R/C unmanned aircraft is evaluated using several flight experiments. It was found that the Bandwidth/Pitch rate overshoot and open loop onset point (OLOP criteria prediction results matched flight test observations. However, other criteria failed to provide accurate prediction results. To further characterize the human pilot control behavior during these experiments, a quasi-linear pilot model is used. The parameters of the pilot model estimated using data obtained from flight tests are then used to obtain information about the stability of the Pilot Vehicle System (PVS for Category 1 PIOs occurred during straight and level flights. The batch estimation technique used to estimate the parameters of the quasi-linear pilot model failed to completely capture the compatibility nature of the human pilot. The estimation results however provided valuable insights into the frequency characteristics of the human pilot commands. Additionally, stability analysis of the Category 2 PIOs for elevator actuator rate limiting is carried out using simulations and the results are compared with actual flight results.

  20. Reduced bandwidth video for remote vehicle operations

    Energy Technology Data Exchange (ETDEWEB)

    Noell, T.E.; DePiero, F.W.

    1993-08-01

    Oak Ridge National Laboratory staff have developed a video compression system for low-bandwidth remote operations. The objective is to provide real-time video at data rates comparable to available tactical radio links, typically 16 to 64 thousand bits per second (kbps), while maintaining sufficient quality to achieve mission objectives. The system supports both continuous lossy transmission of black and white (gray scale) video for remote driving and progressive lossless transmission of black and white images for remote automatic target acquisition. The average data rate of the resulting bit stream is 64 kbps. This system has been demonstrated to provide video of sufficient quality to allow remote driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds up to 15 mph (24.1 kph) on a moguled dirt track. The nominal driving configuration provides a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approximately}1s. This paper reviews the system approach and implementation, and further describes some of our experiences when using the system to support remote driving.

  1. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  2. Capabilities of a remote work vehicle

    International Nuclear Information System (INIS)

    Whittaker, W.L.; Champeny, L.

    1987-01-01

    The remote work vehicle (RWV) is a mobile work system for recovery operations in radiological environments. A teleoperated, electrohydraulically powered system, the RWV features omnidirectional locomotion, a telescoping boom with a seven meter reach, a master/slave manipulator, ten cameras, a tether for sustained power, and an offboard console where three operators control vehicle functions. (The RWV is more fully described elsewhere see bibliography; capability is emphasized here). Capabilities of the base vehicle and specialized tooling allow the RWV to perform accident recovery tasks, including demolishing concrete and steel structures, decontaminating and sealing surfaces, removing water and sediment from flooded areas, emplacing shields, packaging and transporting materials, and performing general inspections. Aspirations for reliability have made the RWV an order of magnitude more complex than its predecessor recovery robots, and ambitions for task performance have made it two orders of magnitude more capable. In addition to nuclear recovery work, the RWV is a viable candidate for other remote work applications, including nuclear facility maintenance and decommissioning

  3. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  4. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  5. Remotely Accessed Vehicle Traffic Management System

    Science.gov (United States)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  6. An advanced unmanned vehicle for remote applications

    International Nuclear Information System (INIS)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  7. An advanced unmanned vehicle for remote applications

    Energy Technology Data Exchange (ETDEWEB)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  8. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  9. Remote Infrared Audible Signage (RIAS) Pilot Program : evaluation report

    Science.gov (United States)

    2009-09-01

    This report presents evaluation findings on the Remote Infrared Audible Signage (RIAS) Pilot Program in the Puget Sound Region of Washington. The installation, demonstration and evaluation of RIAS were required by a provision in the Safe, Accountable...

  10. Connected Vehicle Pilot Deployment Program, Comprehensive Installation Plan - WYDOT CV Pilot

    Science.gov (United States)

    2018-02-16

    The Wyoming Department of Transportation's (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  11. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  12. Connected Vehicle Pilot Deployment Program Phase 2, Data Management Plan

    Science.gov (United States)

    2017-10-17

    This document represents a data management plan that delineates all of the data types and data treatment throughout the New York City Connected Vehicle Pilot Deployment (NYC CVPD). This plan includes an identification of the New York City connected v...

  13. Guidelines for Vehicle Robbery Prevention using Remote Blocking Signals

    Directory of Open Access Journals (Sweden)

    Narong Sangwaranatee

    2016-01-01

    Full Text Available In this paper, the radio signal remote sensing device was used to control the vehicle door switching control, which was the field trials experiment. The switching "On" and "Off" of the switching signals were used to control the vehicle door and investigated. In application, the blocking signal from the commit the remote vehicle crime in the venerable place can be protected. The results obtained have shown that the signal blocking by using another remote control over 5 meters, 10 meters and 15 meters could be achieved. The proposed models and tested results have shown that the Vehicle Brand A Model No. 1 could be blocked by 83.33 percent, while Brand A Model No.2 by 83.33 percent, Brand B Model No.1 by 40 percent, Brand B Model No.2 by 60 percent, Brand C Model No. 1 by 83.33 percent, Brand C Model No. 2 by 83.33 percent, meanwhile, the remote control for general vehicle are used radio waves with frequency 315 and 433 MHz, where the criminal will use the interference signals to form the blocking (jamming signals, the vehicle can be robbed.

  14. Physiological Indicators of Workload in a Remotely Piloted Aircraft Simulation

    Science.gov (United States)

    2015-10-01

    cognitive workload. That is, both cognitive underload and overload can negatively impact performance (Young & Stanton, 2002). One solution to...Report contains color. 14. ABSTRACT Toward preventing performance decrements associated with mental overload in remotely piloted aircraft (RPA...operations, the current research investigated the feasibility of using physiological measures to assess cognitive workload. Two RPA operators were

  15. Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.

    Science.gov (United States)

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  16. Connected vehicle pilot deployment program phase I : security management operational concept, Tampa Hillsborough Expressway Authority (THEA).

    Science.gov (United States)

    2016-05-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...

  17. Connected vehicle pilot deployment program phase 2, data management plan - Wyoming

    Science.gov (United States)

    2017-04-10

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  18. Design of Omni Directional Remotely Operated Vehicle (ROV)

    Science.gov (United States)

    Rahimuddin; Hasan, Hasnawiya; Rivai, Haryanti A.; Iskandar, Yanu; Claudio, P.

    2018-02-01

    Nowadays, underwater activities are increased with the increase of oil resources finding. The gap between demand and supply of oil and gas cause engineers to find oil and gas resources in deep water. In other side, high risk of working in deep underwater environment can cause a dangerous situation for human. Therefore, many research activities are developing an underwater vehicle to replace the human’s work such as ROV or Remotely Operated Vehicles. The vehicle operated using tether to transport the signals and electric power from the surface vehicle. Arrangements of weight, buoyancy, and the propeller placements are significant aspect in designing the vehicle’s performance. This paper presents design concept of ROV for survey and observation the underwater objects with interaction vectored propellers used for vehicle’s motions.

  19. Development of wireless vehicle remote control for fuel lid operation

    Science.gov (United States)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  20. Connected vehicle pilot deployment program phase 1, safety management plan - Tampa (THEA).

    Science.gov (United States)

    2016-04-01

    This document presents the Safety Management Plan for the THEA Connected Vehicle (CV) Pilot Deployment. The THEA CV Pilot : Deployment goal is to advance and enable safe, interoperable, networked wireless communications among vehicles, the : infrastr...

  1. The MEDEA/JASON remotely operated vehicle system

    Science.gov (United States)

    Ballard, Robert D.

    1993-08-01

    The remotely operated vehicle (ROV) system MEDEA/JASON has been under development for the last decade. Adter a number of engineering test cruises, including the discovery of the R.M.S. Titanic and the German Battleship Bismarck, this ROV system is now being implemented in oceanographic investigations. This paper explains its development history and its unique ability to carry out a broad range of scientific research.

  2. The Morality of Employing Remotely Piloted Weapon Systems in Combat

    Science.gov (United States)

    2013-03-01

    ethics of remotely piloted weapon systems involve utilitarianism and Just War Theory. Although the other two perspectives, pacifism and realism, do...perspectives of utilitarianism , Just War Theory, pacifism, and realism are evaluated to justify the claim. With the exception of pacifism, each of these...of utilitarianism , Just War Theory, pacifism, and realism are evaluated to justify the claim. With the exception of pacifism, each of these

  3. Lunar Landing Training vehicle piloted by Neil Armstrong during training

    Science.gov (United States)

    1969-01-01

    A Lunar Landing Training Vehicle, piloted by Astronaut Neil Armstrong, goes through a checkout flight at Ellington Air Force Base on June 16, 1969. The total duration of the lunar simulation flight was five minutes and 59 seconds. Maximum altitude attained was about 300 feet.

  4. H∞ control of a remotely operated underwater vehicle

    International Nuclear Information System (INIS)

    Conte, G.; Serrani, A.

    1994-01-01

    The paper discusses the application of H∞ control techniques to the design of a control system for a remotely operated underwater vehicle. As the main problem in defining a control strategy for such vehicles is the nonlinear and uncertain nature of the modeled dynamics, the robustness properties of H∞ controllers can in principle be used to provide stability and nominal performances for the closed loop system. Therefore, a control strategy based on a scheduling of such controllers has been proposed, and the overall performance of the closed loop system have been evaluated by means of nonlinear simulation in a broad range of working conditions, with particular attention to the effects of the underwater current that acts on the vehicle

  5. Remotely Piloted Aircraft Systems and a Wireless Sensors Network for Radiological Accidents

    Directory of Open Access Journals (Sweden)

    A. Reyes-Muñoz

    2016-01-01

    Full Text Available In critical radiological situations, the real time information that we could get from the disaster area becomes of great importance. However, communication systems could be affected after a radiological accident. The proposed network in this research consists of distributed sensors in charge of collecting radiological data and ground vehicles that are sent to the nuclear plant at the moment of the accident to sense environmental and radiological information. Afterwards, data would be analyzed in the control center. Collected data by sensors and ground vehicles would be delivered to a control center using Remotely Piloted Aircraft Systems (RPAS as a message carrier. We analyze the pairwise contacts, as well as visiting times, data collection, capacity of the links, size of the transmission window of the sensors, and so forth. All this calculus was made analytically and compared via network simulations.

  6. Remote Video Monitor of Vehicles in Cooperative Information Platform

    Science.gov (United States)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  7. General concept of a remote multipurpose vehicle for nuclear applications

    International Nuclear Information System (INIS)

    Devresse, M.; Costa, L.; DeBuck, F.

    1984-01-01

    A remotely operated autonomous system is presently developed for inspection and intervention inside the reactor building of nuclear power plants. The vehicle is also suitable for other nuclear and non-nuclear energy related task areas where inspection and intervention operations are taking place in hazardous environment. The goal of this remote robot is to significantly reduce personnel exposure to radiation or other risks. The system consists of five major items: an autonomous motorized carrier, two slave manipulators mounted on an interface structure, optical and environmental sensors, the digital electronic control and communication module, the man-machine interface. Main design and performance characteristics of the system are described as well as a description of the evaluation and test program

  8. Working underwater: new Remotely Operated Vehicles (ROVs) tackle subsea economics

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    Modular construction is helping to cut remotely operated vehicle (ROV) costs, while work performance is improved by techniques for holding the vehicles onstation. The upper power house contains the propulsion units and electronics, with work modules slung beneath. The solution of a long standing problem of how to hold the maintenance unit steady against a jacket or similar tubular structure has led to two methods currently undergoing testing. The first employs suction and uses a hydraulic clamp; the second fits the ROV with massive mechanical grabs. The new technology saves diving time as well as costs. Other advances are self-propelled ROVs,the use of miniature low-light color TV cameras, and a free-swimming ROV for use where ice may be a problem. 5 figures.

  9. Development of a Remotely Operated Vehicle Test-bed

    Directory of Open Access Journals (Sweden)

    Biao WANG

    2013-06-01

    Full Text Available This paper presents the development of a remotely operated vehicle (ROV, designed to serve as a convenient, cost-effective platform for research and experimental validation of hardware, sensors and control algorithms. Both of the mechanical and control system design are introduced. The vehicle with a dimension 0.65 m long, 0.45 m wide has been designed to have a frame structure for modification of mounted devices and thruster allocation. For control system, STM32 based MCU boards specially designed for this project, are used as core processing boards. And an open source, modular, flexible software is developed. Experiment results demonstrate the effectiveness of the test-bed.

  10. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  11. USE OF REMOTELY PILOTED AIRCRAFT SYSTEMS TO EVALUATE THE EFFECTS OF TRANSPORT COLLISION

    Directory of Open Access Journals (Sweden)

    Honorata ROMAŃSKA

    2017-03-01

    Full Text Available The evaluation of the effects of transport collision often takes the form of ground reconnaissance. Undoubtedly, remotely piloted aircraft systems (RPAS can support and help the police, firefighters, security agents and paramedics in the event of a transport collision. Although there is a scarce amount of literature concerning the use of RPAS in crisis management, it is important to pay more attention to the benefits of this technology. The article describes the danger of collisions, as well as discusses the possibility of using RPAS, their functionality and potential utility. Sensors installed on RPAS can rapidly identify the place of the accident, the number of casualties, the type of damaged vehicles or the type of contamination.

  12. Personality Test Scores that Distinguish U.S. Air Force Remotely Piloted Aircraft Drone Pilot Training Candidates

    Science.gov (United States)

    2014-02-18

    advancement of aviation drone technology has led to significant developments and improvements in the capabilities of military remotely piloted aircraft...stress; less excitement seeking and action oriented; less assertive; more socially introverted and withdrawn; more socially compliant and...to age and educational differences. Fifth, evaluations that involve selection and assessment of pilot applicants should include collateral sources of

  13. Remotely Operated Vehicles (ROVs) Provide a "Big Data Progression"

    Science.gov (United States)

    Oostra, D.; Sanghera, S. S.; Mangosing, D. C., Jr.; Lewis, P. M., Jr.; Chambers, L. H.

    2015-12-01

    This year, science and technology teams at the NASA Langley Science Directorate were challenged with creating an API-based web application using RockBlock Mobile sensors mounted on a zero pressure high-altitude balloon. The system tracks and collects meteorological data parameters and visualizes this data in near real time, using a MEAN development stack to create an HTML5 based tool that can send commands to the vehicle, parse incoming data, and perform other functions to store and serve data to other devices. NASA developers and science educators working on this project saw an opportunity to use this emerging technology to address a gap identified in science education between middle and high school curricula. As students learn about data analysis in elementary and middle school, they are taught to collect data from in situ sources. In high school, students are then asked to work with remotely sensed data, without always having the experience or understanding of how that data is collected. We believe that using ROVs to create a "big data progression" for students will not only enhance their ability to understand how remote satellite data is collected, but will also provide the outlet for younger students to expand their interest in science and data prior to entering high school. In this presentation, we will share and discuss our experiences with ROVs, APIs and data viz applications, with a focus on the next steps for developing this emerging capability.

  14. Connected vehicle pilot deployment program phase 2 : data management plan - Tampa (THEA).

    Science.gov (United States)

    2017-10-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  15. Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Luis Govinda García-Valdovinos

    2014-01-01

    Full Text Available Underwater remotely operated vehicles (ROVs play an important role in a number of shallow and deep-water missions for marine science, oil and gas extraction, exploration and salvage. In these applications, the motions of the ROV are guided either by a human pilot on a surface support vessel through an umbilical cord providing power and telemetry, or by an automatic pilot. In the case of automatic control, ROV state feedback is provided by acoustic and inertial sensors and this state information, along with a controller strategy, is used to perform several tasks such as station-keeping and auto-immersion/heading, among others. In this paper, the modelling, design and control of the Kaxan ROV is presented: i The complete six degrees of freedom, non linear hydrodynamic model with its parameters, ii the Kaxan hardware/software architecture, iii numerical simulations in Matlab/Simulink platform of a model-free second order sliding mode control along with ocean currents as disturbances and thruster dynamics, iv a virtual environment to visualize the motion of the Kaxan ROV and v experimental results of a one degree of freedom underwater system.

  16. Pilot Critical Incident Reports as a Means to Identify Human Factors of Remotely Piloted Aircraft

    Science.gov (United States)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    It has been estimated that aviation accidents are typically preceded by numerous minor incidents arising from the same causal factors that ultimately produced the accident. Accident databases provide in-depth information on a relatively small number of occurrences, however incident databases have the potential to provide insights into the human factors of Remotely Piloted Aircraft System (RPAS) operations based on a larger volume of less-detailed reports. Currently, there is a lack of incident data dealing with the human factors of unmanned aircraft systems. An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from RPAS pilots. Twenty-three experienced RPAS pilots volunteered to participate in focus groups in which they described critical incidents from their own experience. Participants were asked to recall (1) incidents that revealed a system flaw, or (2) highlighted a case where the human operator contributed to system resilience or mission success. Participants were asked to only report incidents that could be included in a public document. During each focus group session, a note taker produced a de-identified written record of the incident narratives. At the end of the session, participants reviewed each written incident report, and made edits and corrections as necessary. The incidents were later analyzed to identify contributing factors, with a focus on design issues that either hindered or assisted the pilot during the events. A total of 90 incidents were reported. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Pilots participated willingly and enthusiastically in the study

  17. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  18. Preliminary Correlations for Remotely Piloted Aircraft Systems Sizing

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Rodríguez

    2018-01-01

    Full Text Available The field of Remotely Piloted Aircraft Systems (RPAS is currently undergoing a noteworthy expansion. The diverse types of missions that these aircraft can accomplish, both in military and civil environments, have motivated an increase of interest in their study and applications. The methods chosen to develop this study are based on the statistical analysis of a database including numerous models of RPAS and the estimation of different correlations in order to develop a design method for rapid sizing of H-tail RPAS. Organizing the information of the database according to relevant characteristics, information relative to the state-of-the-art design tendencies can be extracted, which can serve to take decisions relative to the aerodynamic configuration or the power plant in the first phases of the design project. Furthermore, employing statistical correlations estimated from the database, a design method for rapid-sizing of H-tail RPAS has been conducted, which will be focused on the sizing of the wing and tail surfaces. The resulting method has been tested by applying it to an example case so as to validate the proposed procedure.

  19. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    Science.gov (United States)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  20. Human systems integration in remotely piloted aircraft operations.

    Science.gov (United States)

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  1. Possible roles of remotely operated underwater vehicles (ROV and robotics in mariculture of the future

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1991-10-01

    Full Text Available The paper surveys some possible future trends in mariculture technology emphasizing new principles for controlling animal motion. Against this background possible applications of remotely operated underwater vehicles and robotics are reviewed.

  2. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, A.M. [Oceaneering International, Inc., Upper Marlboro, MD (United States)

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  3. Research prototype of remote controlled engineering vehicle system for CBRN threat. Phase 2

    International Nuclear Information System (INIS)

    Uemura, Keisuke; Naruse, Masahiro; Shigematsu, Kosuke; Morishita, Masahiro

    2015-01-01

    This research was triggered by the nuclear accident that successively happened after the Great East Japan Earthquake. The project focuses on the Remote Controlled Engineering Vehicle System that can be used for multi purposes such as debris/obstacle clearing operation, various reconnaissance operation, under CBRN threat. In this report, we describe research prototype of remote controlled engineering vehicle system for CBRN threat (phase 2). (author)

  4. Remotely detected vehicle mass from engine torque-induced frame twisting

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  5. Development of "Remotely Operated Vehicles for Education and Research" (ROVERs)

    Science.gov (United States)

    Gaines, J. E.; Bland, G.; Bydlowski, D.

    2017-12-01

    The University of South Florida is a team member for the AREN project which develops educational technologies for data acquisition. "Remotely Operated Vehicles for Education and Research" (ROVERs) are floatable data acquisition systems used for Earth science measurements. The USF partnership was productive in the first year, resulting in new autonomous ROVER platforms being developed and used during a 5 week STEM summer camp by middle school youth. ROVERs were outfitted with GPS and temperature sensors and programmed to move forward, backwards, and to turn autonomously using the National Instruments myRIO embedded system. GLOBE protocols were used to collect data. The outreach program's structure lended itself to accomplishing an essential development effort for the AREN project towards the use of the ROVER platform in informal educational settings. A primary objective of the partnership is curriculum development to integrate GLOBE protocols and NASA technology and hardware/ROVER development wher new ROVER platforms are explored. The USF partnership resulted in two design prototypes for ROVERs, both of which can be created from recyclable materials for flotation and either 3D printed or laser cut components. In addition, both use the National Instruments myRIO for autonomous control. We will present two prototypes designed for use during the USF outreach program, the structure of the program, and details on the fabrication of prototype Z during the program by middle school students. Considering the 5-year objective of the AREN project is to "develop approaches, learning plans, and specific tools that can be affordably implemented nationwide (globally)", the USF partnership is key as it contributes to each part of the objective in a unique and impactful way.

  6. Remote maintenance demonstration tests at a pilot plant for high level waste vitrification

    International Nuclear Information System (INIS)

    Selig, M.

    1984-01-01

    The remote maintenance and replacement technique designed for a radioactive vitrification plant have been developed and tested in a full scale handling mockup and in an inactive pilot plants by the Central Engineering Department of the Karlsruhe Nuclear Research Center. As a result of the development work and the tests it has been proved that the remote maintenance technique and remote handling equipment can be used without any technical problems and are suited for application in a radioactive waste vitrification plant

  7. Remotely Operated Vehicle for Surveilance Applications On and Under Water Surface

    Directory of Open Access Journals (Sweden)

    Mahfuzh Shah Mustari

    2017-03-01

    Full Text Available This paper presents the low cost hardware prototype of a Remotely Operated Vehicle (ROV for surveilance applications. The vehicle is designed to make maneuvers under water and on surface of water, where its movement is guided remotely via a GHz-scale wireless communication system. The main electronic control unit (ECU of the vehicle is an 8-bit microcontroller, which is used to control 6 motor actuators. Two motors are embedded in a ballast tank used for pumping and draining in and out of the ballast tank. While, the other four motors are used for vehicle movements on water surface. One wireless transceiver is embedded in a joystick and the other is separately placed in the waterproof box mounted on the vehicle. The performance tests present that, in general, the ROV can be controlled well with limited performance. The total weight of the vehicle is 10.35kg with weight density of 0.89kg/ltr

  8. Remote infrared audible signage (RIAS) pilot program report.

    Science.gov (United States)

    2011-07-01

    The Remote Infrared Audible Sign Model Accessibility Program (RIAS MAP) is a program funded by the Federal Transit Administration (FTA) to evaluate the effectiveness of remote infrared audible sign systems in enabling persons with visual and cognitiv...

  9. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    Science.gov (United States)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of

  10. Connected vehicle pilot deployment program phase 1, concept of operations (ConOps) - New York City.

    Science.gov (United States)

    2016-04-08

    This document describes the Concept of Operations (ConOps) for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This ConOps describes the current state of operations, establishes the reasons for ...

  11. Connected Vehicle Pilot Deployment Program phase 1 : security management operating concept : New York City : final report.

    Science.gov (United States)

    2016-05-18

    This document describes the Security Management Operating Concept (SMOC) for the New York City Department of Transportation (NYCDOT) Connected Vehicle Pilot Deployment (CVPD) Project. This SMOC outlines the security mechanisms that will be used to pr...

  12. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  13. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    Science.gov (United States)

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello

    2016-04-01

    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics

  14. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.

    Science.gov (United States)

    Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya

    2018-04-04

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.

  15. Building and Deploying Remotely Operated Vehicles in the First-Year Experience

    Science.gov (United States)

    O'Brien-Gayes, A.; Fuss, K.; Gayes, P.

    2007-12-01

    Coastal Carolina University has committed to improving student retention and success in Mathematics and Science through a pilot program to engage first-year students in an applied and investigative project as part of the University's First-Year Experience (FYE). During the fall 2007 semester, five pilot sections of FYE classes, consisting of students from the College of Natural and Applied Sciences are building and deploying Remotely Operated Vehicles (ROVs). These ROV-based classes are designed to: accelerate exploration of the broad fields of science and mathematics; enlist interest in technology by engaging students in a multi-stepped, interdisciplinary problem solving experience; explore science and mathematical concepts; institute experiential learning; and build a culture of active learners to benefit student success across traditional departmental boundaries. Teams of three students (forty teams total) will build, based on the MIT Sea Perch design, and test ROVs in addition to collecting data with their ROVs. Various accessories attached to the vehicles for data collection will include temperature and light sensors, plankton nets and underwater cameras. The first-year students will then analyze the data, and the results will be documented as part of their capstone projects. Additionally, two launch days will take place on two campus ponds. Local middle and high school teachers and their students will be invited to observe this event. The teams of students with the most capable and successful ROVs will participate in a workshop held in November 2007 for regional elementary, middle and high school teachers. These students will give a presentation on the building of the ROVs and also provide a hands-on demonstration for the workshop participants. These activities will ensure an incorporation of service learning into the first semester of the freshmen experience. The desired outcomes of the ROV-based FYE classes are: increased retention at the postsecondary

  16. Vehicle Remote Health Monitoring and Prognostic Maintenance System

    Directory of Open Access Journals (Sweden)

    Uferah Shafi

    2018-01-01

    Full Text Available In many industries inclusive of automotive vehicle industry, predictive maintenance has become more important. It is hard to diagnose failure in advance in the vehicle industry because of the limited availability of sensors and some of the designing exertions. However with the great development in automotive industry, it looks feasible today to analyze sensor’s data along with machine learning techniques for failure prediction. In this article, an approach is presented for fault prediction of four main subsystems of vehicle, fuel system, ignition system, exhaust system, and cooling system. Sensor is collected when vehicle is on the move, both in faulty condition (when any failure in specific system has occurred and in normal condition. The data is transmitted to the server which analyzes the data. Interesting patterns are learned using four classifiers, Decision Tree, Support Vector Machine, K Nearest Neighbor, and Random Forest. These patterns are later used to detect future failures in other vehicles which show the similar behavior. The approach is produced with the end goal of expanding vehicle up-time and was demonstrated on 70 vehicles of Toyota Corolla type. Accuracy comparison of all classifiers is performed on the basis of Receiver Operating Characteristics (ROC curves.

  17. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong

    Science.gov (United States)

    Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing

    2018-06-01

    Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.

  18. Scarab III Remote Vehicle Deployment for Waste Retrieval and Tank Inspection

    International Nuclear Information System (INIS)

    Burks, B.L.; Falter, D.D.; Noakes, M.; Vesco, D.

    1999-01-01

    The Robotics Technology Development Program now known as the Robotics Crosscut Program, funded the development and deployment of a small remotely operated vehicle for inspection and cleanout of small horizontal waste storage tanks that have limited access. Besides the advantage of access through tank risers as small as 18-in. diameter, the small robotic system is also significantly less expensive to procure and to operate than larger remotely operated vehicle (ROV) systems. The vehicle specified to support this activity was the ROV Technologies, Inc., Scarab. The Scarab is a tracked vehicle with an independently actuated front and rear ''toe'' degree-of-freedom which allows the stand-off and angle of the vehicle platform with respect to the floor to be changed. The Scarab is a flexible remote tool that can be used for a variety of tasks with its primary uses targeted for inspection and small scale waste retrieval. The vehicle and any necessary process equipment are mounted in a deployment and containment enclosure to simplify deployment and movement of the system from tank to tank. This paper outlines the technical issues related to the Scarab vehicle and its deployment for use in tank inspection and waste retrieval operation

  19. General Aviation Citizen Science Pilot Study to Help Tackle Remote Sensing of Harmful Algal Blooms (HABs)

    Science.gov (United States)

    Ansari, R.

    2017-12-01

    Aerial remote sensing conducted by volunteer pilots acting as citizen scientists is providing high-quality data to help understand reasons behind outbreaks of toxic algal blooms in nation's waterways and coastlines. The toxic water can be detrimental to national economy, human health, clean drinking water, fishing industry, and water sports. We will show how general aviation pilots around the country are contributing to this NASA citizen science initiative.

  20. Mesh Network Design for Smart Charging Infrastructure and Electric Vehicle Remote Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, Aleksey; Chung, Ching-Yen; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-14

    Plug-In Electric Vehicle (PEV) charging today happens with little knowledge of the state of the vehicle being charged. In order to implement smart charging algorithms and other capabilities of the future smart grid, provisions for remote PEV monitoring will have to be developed and tested. The UCLA Smart-grid Energy Research Center (SMERC) is working on a smart charging research platform that includes data acquired in real time from PEVs being charged in order to investigate smart charging algorithms and demand response (DR) strategies for PEVs in large parking garage settings. The system outlined in this work allows PEVs to be remotely monitored throughout the charging process by a smart-charging controller communicating through a mesh network of charging stations and in-vehicle monitoring devices. The approach may be used for Vehicle to Grid (V2G) communication as well as PEV monitoring.

  1. An automotive vehicle dynamics prototyping platform based on a remote control model car

    OpenAIRE

    SOLMAZ, Selim; COŞKUN, Türker

    2013-01-01

    The use of a modified remote control (RC) model car as a vehicle dynamics testing and development platform is detailed. Vehicle dynamics testing is an important aspect of automotive engineering and it plays a key role during the design and tuning of active safety control systems. Considering the fact that such tests are conductedi at great expense, scaled model cars can potentially be used to help with the process to reduce the costs. With this view, we instrument and develop a stand...

  2. Evaluation and use of remotely piloted aircraft systems for operations and research - RxCADRE 2012

    Science.gov (United States)

    Thomas J. Zajkowski; Matthew B. Dickinson; J. Kevin Hiers; William Holley; Brett W. Williams; Alexander Paxton; Otto Martinez; Gregory W. Walker

    2016-01-01

    Small remotely piloted aircraft systems (RPAS), also known as unmanned aircraft systems (UAS), are expected to provide important contributions to wildland fire operations and research, but their evaluation and use have been limited. Our objectives were to leverage US Air Force-controlled airspace to (1) deploy RPAS in support of the 2012 Prescribed Fire...

  3. Evaluation of EDAR vehicle emissions remote sensing technology.

    Science.gov (United States)

    Ropkins, Karl; DeFries, Timothy H; Pope, Francis; Green, David C; Kemper, Jim; Kishan, Sandeep; Fuller, Gary W; Li, Hu; Sidebottom, Jim; Crilley, Leigh R; Kramer, Louisa; Bloss, William J; Stewart Hager, J

    2017-12-31

    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH 4 and C 3 H 8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R 2 0.996 for CO, 0.998 for NO; 0.983 for CH 4 ; and 0.976 for C 3 H 8 ) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH 4 , and, depending on vehicle speed, 100 to 400ppmC 3 for C 3 H 8 . The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R 2 0.92 for CO/CO 2 ; 0.97 for NO/CO 2 ; ca. 0.82 for NO 2 /CO 2 ; and, 0.94 for PM/CO 2 ) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions. Copyright

  4. Environmental education and technology: using a remotely operated vehicle to connect with nature

    Science.gov (United States)

    Mark Gleason; Laurie Harmon; Kwame Boakye-Agyei

    2007-01-01

    One hundred seven young people (12-14 years old) and 183 adults (25-86 years old) used an underwater remotely operated vehicle (ROV) to explore shipwrecks and marine habitats in the Great Lakes and various inland lakes during the summer of 2005. Content analysis of responses regarding the types of impact the ROV had on their perception and experience with the natural...

  5. Remotely Piloted Aircraft (RPA) Performing the Airdrop Mission

    Science.gov (United States)

    2011-06-01

    appears to be true prima facie , but with improvements in sensor configuration and fidelity, as well as 29 human factors considerations for pilots...MQ-1B (United States Air Force, 2010a). While the Predator is well suited to robust ISR and limited CAS and AI duties , the MQ-9’s additional...utilizing the MQ-9 Reaper. Please note the following: 1. Survey responses are confidential. Your identity (name or duty title) will not be

  6. Human Factors in Accidents Involving Remotely Piloted Aircraft

    Science.gov (United States)

    Merlin, Peter William

    2013-01-01

    This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).

  7. Performance test of remote controlled engineering vehicle system for CBRN threat. Countermeasure performance for CBRN-environment

    International Nuclear Information System (INIS)

    Naruse, Masahiro; Uemura, Keisuke; Morishita, Masahiro

    2015-01-01

    A research of 'remote controlled engineering vehicle system for CBRN threat' was triggered by the nuclear accident that successively happened after the Great East Japan Earthquake. This project focuses on the remote controlled engineering system that can be used for multi purposes such as debris/obstacle clearing operation or various reconnaissance operation, under CBRN threat. For the remote-controlled engineering vehicle, we conducted a series of validation tests for countermeasure performance for CBRN-environment. As a result, it is proved that the vehicle possess required performances for CBRN threat. (author)

  8. Remote Monitoring of Hypertension Diseases in Pregnancy: A Pilot Study.

    Science.gov (United States)

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Molenberghs, Geert; Van Moerbeke, Anne; van den Hoogen, Anne; Robijns, Tiziana; Vonck, Sharona; Staelens, Anneleen; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2017-03-09

    Although remote monitoring (RM) has proven its added value in various health care domains, little is known about the remote follow-up of pregnant women diagnosed with a gestational hypertensive disorders (GHD). The aim of this study was to evaluate the added value of a remote follow-up program for pregnant women diagnosed with GHD. A 1-year retrospective study was performed in the outpatient clinic of a 2nd level prenatal center where pregnant women with GHD received RM or conventional care (CC). Primary study endpoints include number of prenatal visits and admissions to the prenatal observation ward. Secondary outcomes include gestational outcome, mode of delivery, neonatal outcome, and admission to neonatal intensive care (NIC). Differences in continuous and categorical variables in maternal demographics and characteristics were tested using Unpaired Student's two sampled t test or Mann-Whitney U test and the chi-square test. Both a univariate and multivariate analysis were performed for analyzing prenatal follow-up and gestational outcomes. All statistical analyses were done at nominal level, Cronbach alpha=.05. Of the 166 patients diagnosed with GHD, 53 received RM and 113 CC. After excluding 5 patients in the RM group and 15 in the CC group because of the missing data, 48 patients in RM group and 98 in CC group were taken into final analysis. The RM group had more women diagnosed with gestational hypertension, but less with preeclampsia when compared with CC (81.25% vs 42.86% and 14.58% vs 43.87%). Compared with CC, univariate analysis in RM showed less induction, more spontaneous labors, and less maternal and neonatal hospitalizations (48.98% vs 25.00%; 31.63% vs 60.42%; 74.49% vs 56.25%; and 27.55% vs 10.42%). This was also true in multivariate analysis, except for hospitalizations. An RM follow-up of women with GHD is a promising tool in the prenatal care. It opens the perspectives to reverse the current evolution of antenatal interventions leading to more

  9. Preoperational checkout of the remote-handled transuranic waste handling at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1987-09-01

    This plan describes the preoperational checkout for handling Remote-Handled Transuranic (RH-TRU) Wastes from their receipt at the Waste Isolation Pilot Plant (WIPP) to their emplacement underground. This plan identifies the handling operations to be performed, personnel groups responsible for executing these operations, and required equipment items. In addition, this plan describes the quality assurance that will be exercised throughout the checkout, and finally, it establishes criteria by which to measure the success of the checkout. 7 refs., 5 figs

  10. Pseudosatellite technologies based on the use of functionally stable complexes of remote-piloted aircrafts

    Science.gov (United States)

    Mashkov, O. A.; Samborskiy, I. I.

    2009-10-01

    A bundle of papers dealing with functionally stable systems requires the necessity of analyzing of obtained results and their understanding in a general context of cybernetic's development and applications. Description of this field of science, main results and perspectives of the new theory of functionally stability of dynamical systems concerning the problem of remote-piloted aircrafts engineering using pseudosatellite technologies are proposed in the paper.

  11. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  12. Closed-loop, pilot/vehicle analysis of the approach and landing task

    Science.gov (United States)

    Anderson, M. R.; Schmidt, D. K.

    1986-01-01

    In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.

  13. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  14. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    International Nuclear Information System (INIS)

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  15. Remote source document verification in two national clinical trials networks: a pilot study.

    Directory of Open Access Journals (Sweden)

    Meredith Mealer

    Full Text Available OBJECTIVE: Barriers to executing large-scale randomized controlled trials include costs, complexity, and regulatory requirements. We hypothesized that source document verification (SDV via remote electronic monitoring is feasible. METHODS: Five hospitals from two NIH sponsored networks provided remote electronic access to study monitors. We evaluated pre-visit remote SDV compared to traditional on-site SDV using a randomized convenience sample of all study subjects due for a monitoring visit. The number of data values verified and the time to perform remote and on-site SDV was collected. RESULTS: Thirty-two study subjects were randomized to either remote SDV (N=16 or traditional on-site SDV (N=16. Technical capabilities, remote access policies and regulatory requirements varied widely across sites. In the adult network, only 14 of 2965 data values (0.47% could not be located remotely. In the traditional on-site SDV arm, 3 of 2608 data values (0.12% required coordinator help. In the pediatric network, all 198 data values in the remote SDV arm and all 183 data values in the on-site SDV arm were located. Although not statistically significant there was a consistent trend for more time consumed per data value (minutes +/- SD: Adult 0.50 +/- 0.17 min vs. 0.39 +/- 0.10 min (two-tailed t-test p=0.11; Pediatric 0.99 +/- 1.07 min vs. 0.56 +/- 0.61 min (p=0.37 and time per case report form: Adult: 4.60 +/- 1.42 min vs. 3.60 +/- 0.96 min (p=0.10; Pediatric: 11.64 +/- 7.54 min vs. 6.07 +/- 3.18 min (p=0.10 using remote SDV. CONCLUSIONS: Because each site had different policies, requirements, and technologies, a common approach to assimilating monitors into the access management system could not be implemented. Despite substantial technology differences, more than 99% of data values were successfully monitored remotely. This pilot study demonstrates the feasibility of remote monitoring and the need to develop consistent access policies for remote study

  16. Impacts of safety on the design of light remotely-piloted helicopter flight control systems

    International Nuclear Information System (INIS)

    Di Rito, G.; Schettini, F.

    2016-01-01

    This paper deals with the architecture definition and the safety assessment of flight control systems for light remotely-piloted helicopters for civil applications. The methods and tools to be used for these activities are standardised for conventional piloted aircraft, while they are currently a matter of discussion in case of light remotely-piloted systems flying into unsegregated airspaces. Certification concerns are particularly problematic for aerial systems weighing from 20 to 150 kgf, since the airworthiness permission is granted by national authorities. The lack of specific requirements actually requires to analyse both the existing standards for military applications and the certification guidelines for civil systems, up to derive the adequate safety objectives. In this work, after a survey on applicable certification documents for the safety objectives definition, the most relevant functional failures of a light remotely-piloted helicopter are identified and analysed via Functional Hazard Assessment. Different architectures are then compared by means of Fault-Tree Analysis, highlighting the contributions to the safety level of the main elements of the flight control system (control computers, servoactuators, antenna) and providing basic guidelines on the required redundancy level. - Highlights: • A method for architecture definition and safety assessment of light RW‐UAS flight control systems is proposed. • Relevant UAS failures are identified and analysed via Functional Hazard Assessment and Fault‐Tree Analysis. • The key safety elements are control computers, servoactuators and TX/RX system. • Single‐simplex flight control systems have inadequate safety levels. • Dual‐duplex flight control systems demonstrate to be safety compliant, with safety budgets dominated by servoactuators.

  17. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    Science.gov (United States)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemistry is taking place, must have a round trip range exceeding 1000 km, carry a payload of about 500 lb to altitudes exceeding 80 kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of existing hardware. The only candidate that could emerge under these circumstances was a propeller driven aircraft powered by spark ignited (SI) gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some subtle physical advantages (arising from its near-stochiometric combustion) that may make it smaller and lighter than either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft includes the same people who built multi-stage turbocharged SI powerplants

  18. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  19. Remote software upload techniques in future vehicles and their performance analysis

    Science.gov (United States)

    Hossain, Irina

    Updating software in vehicle Electronic Control Units (ECUs) will become a mandatory requirement for a variety of reasons, for examples, to update/fix functionality of an existing system, add new functionality, remove software bugs and to cope up with ITS infrastructure. Software modules of advanced vehicles can be updated using Remote Software Upload (RSU) technique. The RSU employs infrastructure-based wireless communication technique where the software supplier sends the software to the targeted vehicle via a roadside Base Station (BS). However, security is critically important in RSU to avoid any disasters due to malfunctions of the vehicle or to protect the proprietary algorithms from hackers, competitors or people with malicious intent. In this thesis, a mechanism of secure software upload in advanced vehicles is presented which employs mutual authentication of the software provider and the vehicle using a pre-shared authentication key before sending the software. The software packets are sent encrypted with a secret key along with the Message Digest (MD). In order to increase the security level, it is proposed the vehicle to receive more than one copy of the software along with the MD in each copy. The vehicle will install the new software only when it receives more than one identical copies of the software. In order to validate the proposition, analytical expressions of average number of packet transmissions for successful software update is determined. Different cases are investigated depending on the vehicle's buffer size and verification methods. The analytical and simulation results show that it is sufficient to send two copies of the software to the vehicle to thwart any security attack while uploading the software. The above mentioned unicast method for RSU is suitable when software needs to be uploaded to a single vehicle. Since multicasting is the most efficient method of group communication, updating software in an ECU of a large number of vehicles

  20. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  1. Connected Vehicle Pilot Deployment Program Independent Evaluation: Mobility, Environmental, and Public Agency Efficiency Refined Evaluation Plan - New York City

    Science.gov (United States)

    2018-03-01

    The purpose of this report is to provide a refined evaluation plan detailing the approach to be used by the Texas A&M Transportation Institute Connected Vehicle Pilot Deployment Evaluation Team for evaluating the mobility, environmental, and public a...

  2. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  3. The CVSA pilot study of highway vehicle inspection procedures for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Holm, J.; Curtis, G.E.; Branch, K.M.; Coburn, N.L.; Hauth, J.T.

    1991-01-01

    To further the goal of enhancing the safe and efficient transportation of radioactive materials, the US DOE and the Commercial Vehicle Safety Alliance have entered into a cooperative agreement to conduct a pilot study to test draft procedures for state inspections of highway route controlled quantity radioactive shipments. To succeed, this five-year study requires close collaboration between federal and state agencies and non-government organizations. Significant institutional relationships have been established for this study

  4. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  5. The Analysis of the Design of the System of Pitch Adjusting for Remote Operated Vehicle

    Directory of Open Access Journals (Sweden)

    Peng Wu

    2014-06-01

    Full Text Available ROV (Remotely Operated Vehicle is applied widely currently which is an important tool for detecting in the water, salving on the ocean floor and resources surveying in the ocean. However it is common for ROV that is affected by surging and altering barycenter in the practice, and it is easy for pitching usually, and then ROV is low efficiency. Aiming at the problem, we designed a system of pitch adjusting for ROV including the design of mechanism and motion analysis, and use the AFSM control strategy. The simulation result shows that it has the good tracking feature and robustness.

  6. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  7. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  8. Remotely Piloted Aircraft Systems (RPAS) for high resolution topography and monitoring: civil protection purposes on hydrogeological contexts

    Science.gov (United States)

    Bertacchini, Eleonora; Castagnetti, Cristina; Corsini, Alessandro; De Cono, Stefano

    2014-10-01

    The proposed work concerns the analysis of Remotely Piloted Aircraft Systems (RPAS), also known as drones, UAV (Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System), on hydrogeological contexts for civil protection purposes, underlying the advantages of using a flexible and relatively low cost system. The capabilities of photogrammetric RPAS multi-sensors platform were examined in term of mapping, creation of orthophotos, 3D models generation, data integration into a 3D GIS (Geographic Information System) and validation through independent techniques such as GNSS (Global Navigation Satellite System). The RPAS used (multirotor OktoXL, of the Mikrokopter) was equipped with a GPS (Global Positioning System) receiver, digital cameras for photos and videos, an inertial navigation system, a radio device for communication and telemetry, etc. This innovative way of viewing and understanding the environment showed huge potentialities for the study of the territory, and due to its characteristics could be well integrated with aircraft surveys. However, such characteristics seem to give priority to local applications for rigorous and accurate analysis, while it remains a means of expeditious investigation for more extended areas. According to civil protection purposes, the experimentation was carried out by simulating operational protocols, for example for inspection, surveillance, monitoring, land mapping, georeferencing methods (with or without Ground Control Points - GCP) based on high resolution topography (2D and 3D information).

  9. Articulated vehicles of 25 meter and 60 ton in The Netherlands: the start of a pilot project

    NARCIS (Netherlands)

    Hoogvelt, R.B.J.; Huijbers, J.J.W.

    1998-01-01

    At this moment the total allowable length of an articulated vehicle in The Netherlands is 18.35 meter and its total weight is 50 ton. Several Dutch transportation organisations requested a pilot project with longer and heavier vehicles for heavy goods transpotation. Because of the environmental

  10. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    Science.gov (United States)

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P

    2018-03-01

    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote automated system in the apical 10 electrodes (standard 185.4 μV, SD 11.69 vs. CR

  11. Equitable resourcing of primary health care in remote communities in Australia's Northern Territory: a pilot study.

    Science.gov (United States)

    Wakerman, John; Sparrow, Lisa; Thomas, Susan L; Humphreys, John S; Jones, Mike

    2017-06-29

    Improved Primary Health Care (PHC) utilisation is central to reducing the unacceptable morbidity and mortality rates characterising populations living in remote communities. Despite poorer health, significant inequity characterises the funding of PHC services in Australia's most remote areas. This pilot study sought to ascertain what funding is required to ensure equitable access to sustainable, high quality primary health care irrespective of geographical remoteness of communities. High performing remote Primary Health Care (PHC) services were selected using improvement measures from the Australian Primary Care Collaboratives Program and validated by health experts. Eleven PHC services provided data relating to the types of services provided, level of service utilisation, human resources, operating and capital expenses. A further four services that provide visiting PHC to remote communities provided information on the level and cost of these services. Demographic data for service catchment areas (including estimated resident population, age, Indigenous status, English spoken at home and workforce participation) were obtained from the Australian Bureau of Statistics 2011 census. Formal statistical inference (p-values) were derived in the linear regression via the nonparametric bootstrap. A direct linear relationship was observed between the total cost of resident PHC services and population, while cost per capita decreased with increasing population. Services in smaller communities had a higher number of nursing staff per 1000 residents and provided more consultations per capita than those in larger communities. The number of days of visiting services received by a community each year also increased with population. A linear regression with bootstrapped statistical inference predicted a significant regression equation where the cost of resident services per annum is equal to $1,251,893.92 + ($1698.83 x population) and the cost of resident and visiting services is

  12. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  13. Pilot vehicle interface on the advanced fighter technology integration F-16

    Science.gov (United States)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  14. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  15. Design and construction of a remote piloted flying wing. B.S. Thesis

    Science.gov (United States)

    Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba

    1994-01-01

    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.

  16. Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management

    Science.gov (United States)

    Giordan, Daniele; Hayakawa, Yuichi; Nex, Francesco; Remondino, Fabio; Tarolli, Paolo

    2018-04-01

    The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.

  17. Innovative technology summary report: Houdini trademark I and II remotely operated vehicle

    International Nuclear Information System (INIS)

    1998-07-01

    The US Department of Energy (DOE) is responsible for cleaning up and closing 273 large, aging, underground tanks the department has used for storing approximately 1 million gal of high- and low-level radioactive and mixed waste. The waste's radioactivity precludes humans from working in the tanks. A remote-controlled retrieval method must be used. The Houdini robot addresses the need for vehicle-based, rugged, remote manipulation systems that can perform waste retrieval, characterization, and inspection tasks. Houdini-I was delivered to ORNL in September 1996, deployed in a cold test facility in November, and first deployed in the gunite tanks in June 1997. Since then, it has seen continuous (still on-going) service at ORNL, providing a critical role in the cleanup of two gunite tanks, W-3 and W-4, in the GAAT NTF. Houdini-I has proven rugged, capable of waste retrieval, and able to withstand high reaction force operations such as wall core sampling. It's even able to operate while hanging, which was the case when Houdini was used to cut and remove cables and steel pipes hanging below manways in Tank W-3. Based upon the lessons learned at ORNL, Houdini's design has been completely overhauled. A second generation system, Houdini-II, is now being built

  18. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    Science.gov (United States)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  19. DeepPIV: Particle image velocimetry measurements using deep-sea, remotely operated vehicles

    Science.gov (United States)

    Katija, Kakani; Sherman, Alana; Graves, Dale; Klimov, Denis; Kecy, Chad; Robison, Bruce

    2015-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Although significant advances in underwater vehicle technologies have improved access to midwater, small-scale, in situ fluid mechanics measurement methods that seek to quantify the interactions that midwater organisms have with their physical environment are lacking. Here we present DeepPIV, an instrumentation package affixed to remotely operated vehicles that quantifies fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient suspended particulate, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function. Funding is gratefully acknowledged from the Packard Foundation.

  20. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  1. Use of Remote Monitoring to Improve Outcomes in Patients with Heart Failure: A Pilot Trial

    Directory of Open Access Journals (Sweden)

    Ambar Kulshreshtha

    2010-01-01

    Full Text Available Remote monitoring (RM of homebound heart failure (HF patients has previously been shown to reduce hospital admissions. We conducted a pilot trial of ambulatory, non-homebound patients recently hospitalized for HF to determine whether RM could be successfully implemented in the ambulatory setting. Eligible patients from Massachusetts General Hospital (=150 were randomized to a control group (=68 or to a group that was offered RM (=82. The participants transmitted vital signs data to a nurse who coordinated care with the physician over the course of the 6-month study. Participants in the RM program had a lower all-cause per person readmission rate (mean=0.64, SD±0.87 compared to the usual care group (mean=0.73, SD±1.51; -value=.75 although the difference was not statistically significant. HF-related readmission rate was similarly reduced in participants. This pilot study demonstrates that RM can be successfully implemented in non-homebound HF patients and may reduce readmission rates.

  2. Atmospheric transport of contaminants to remote arctic wilderness areas: A pilot study

    International Nuclear Information System (INIS)

    Crayton, W.M.; Talbot, S.

    1993-01-01

    The Alaska Maritime National Wildlife Refuge includes the Tuxedni Wilderness Area (WA), which is required to meet the Class 1 air quality requirements of the Clean Air Act (42 CFT 7401 et seq.). The Act specifically protects such areas from significant deterioration; however, most Class 1 Wilderness monitoring focuses on visual impairment and traditional atmospheric pollutants such as NOx. This study was designed to assess the feasibility of also measuring atmospheric transport of potentially toxic elemental and organic contaminants to remote areas as a pilot for subsequent monitoring of Service lands to be undertaken through the Biomonitoring of Environmental Status and Trends (BEST) Program. Located on the western shore of Cook Inlet, the Tuxedni WA lies about 80 km downwind of a major petroleum complex that the City of Anchorage. Elemental contaminants emanating from the city will be studied in two species of widely distributed alpine vegetation (Cladina rangiferina, a lichen; and Hylocomium splendens, a moss) collected from elevated windward slopes on Chisik Island, a remote site in the WA. Vegetation samples will be analyzed for a suite of potentially toxic elements by inductively coupled plasma emission spectrometry and atomic absorption spectrophotometry. Polycyclic aromatic compounds originating from petroleum-related and urban sources will be studied through the deployment of lipid-containing passive accumulators and analysis by gas chromatography with photoionization detection. Reference areas will also be selected and monitored

  3. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    International Nuclear Information System (INIS)

    Soares, João; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  4. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter

    Directory of Open Access Journals (Sweden)

    Marius O. Jonassen

    2015-10-01

    Full Text Available The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO, a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO's high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice.

  5. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  6. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Guijun Yang

    2017-06-01

    Full Text Available Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI, chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  7. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    Science.gov (United States)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  8. Getting into the GROOVE: How Building Effective Education Partnerships and Promoting Authentic Student Research through the Girls' Remotely Operated Ocean Vehicle Exploration (GROOVE) Workshop.

    Science.gov (United States)

    Pelz, M.; Heesemann, M.; Hoeberechts, M.

    2017-12-01

    This presentation outlines the pilot year of Girls' Remotely Operated Ocean Vehicle Exploration or GROOVE, a hands-on learning program created collaboratively with education partners Ocean Networks Canada and St. Margaret's School (Victoria, BC, Canada). The program features student-led activities, authentic student experiences, clearly outlined learning outcomes, teacher and student self-assessment tools, and curriculum-aligned content. Presented through the lens of STEM, students build a modified Seaperch ROV and explore and research thematic scientific concepts such as buoyancy, electronic circuitry, and deep-sea exploration. Further, students learn engineering skills such as isotropic scaling, soldering, and assembly as they build their ROV. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories and the ever-expanding network of community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. GROOVE, Girls' Remotely Operated Ocean Vehicle Exploration, is ONC's newest educational program and is related to their foundational program K-12 Ocean Sense educational program. This presentation will share our experiences developing, refining, and assessing our efforts to implement GROOVE using a train-the-trainer model aimed at formal and informal K-12 educators. We will highlight lessons learned from multiple perspectives (students, participants, developers, and mentors) with the intent of informing future education and outreach initiatives.

  9. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    Science.gov (United States)

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  10. Measuring Water Quality in Hong Kong using an Underwater Remotely Operated Vehicle

    Science.gov (United States)

    Evans, J. W.

    2017-12-01

    Clean water is a vital necessity in our day to day lives, with all living organisms depending on it for survival and countless others relying on it as their habitat. The waters surrounding Hong Kong are home to a wide diversity of marine animals and organisms but are polluted for a variety of reasons. This pollution includes marine debris, industrial and construction waste, a high concentration of organic material, and other pollutants. This research project will focus on collecting water and soil samples from various locations around the Hong Kong ocean waters for analytical chemical sampling. A Remote Operated Vehicle (ROV) will be designed, built and used for collecting the water and soil samples. ROVs are used around the world in oceans and other deep water applications. ThisROV will be tethered with a control system and equipped with a camera, mechanical arms for collections water and soil samples and sensors for testing basic water parameters. Using a ROV will allow for long term sampling in the same location to occur as required. The collected samples will be tested in the lab to determine overall water and soil quality, allowing conclusions to be drawn about the conditions of the tested area.

  11. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  12. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    Directory of Open Access Journals (Sweden)

    Yaoyao Wang

    2014-01-01

    Full Text Available For the 4-DOF (degrees of freedom trajectory tracking control problem of underwater remotely operated vehicles (ROVs in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC technique is introduced in light of the equivalent output injection sliding mode observer (SMO and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.

  13. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    Science.gov (United States)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  14. Using remotely piloted aircraft and onboard processing to optimize and expand data collection

    Science.gov (United States)

    Fladeland, M. M.; Sullivan, D. V.; Chirayath, V.; Instrella, R.; Phelps, G. A.

    2016-12-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASA's Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  15. Personnel Selection Influences on Remotely Piloted Aircraft Human-System Integration.

    Science.gov (United States)

    Carretta, Thomas R; King, Raymond E

    2015-08-01

    Human-system integration (HSI) is a complex process used to design and develop systems that integrate human capabilities and limitations in an effective and affordable manner. Effective HSI incorporates several domains, including manpower, personnel and training, human factors, environment, safety, occupational health, habitability, survivability, logistics, intelligence, mobility, and command and control. To achieve effective HSI, the relationships among these domains must be considered. Although this integrated approach is well documented, there are many instances where it is not followed. Human factors engineers typically focus on system design with little attention to the skills, abilities, and other characteristics needed by human operators. When problems with fielded systems occur, additional training of personnel is developed and conducted. Personnel selection is seldom considered during the HSI process. Complex systems such as aviation require careful selection of the individuals who will interact with the system. Personnel selection is a two-stage process involving select-in and select-out procedures. Select-in procedures determine which candidates have the aptitude to profit from training and represent the best investment. Select-out procedures focus on medical qualification and determine who should not enter training for medical reasons. The current paper discusses the role of personnel selection in the HSI process in the context of remotely piloted aircraft systems.

  16. Remote site survey and characterization for the National ER ampersand WM Program using the SRIP [Solider Robot Interface Project] vehicle

    International Nuclear Information System (INIS)

    Richardson, B.S.; Killough, S.M.; Emery, M.D.; Herndon, J.N.; Hamel, W.R.; Burks, B.L.

    1990-01-01

    A significant number of Department of Energy (DOE) production and research sites will require remediation of buried waste sites during the coming years. An important first step in cleanup, restoration, and decontamination activities is burial site characterization. An early field demonstration of buried waste site survey and characterization will be conducted using a remotely operated vehicle equipped with sensors, a manipulator system, and a vision system. This demonstration will be conducted in July 1990. 4 refs., 4 figs

  17. Remotely operated vehicle (ROV) transects collected in 2014 (Polyline Shapefile) southwest and northeast of St. Croix, U.S. Virgin Islands (NODC Accession 0128255)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This polyline shapefile denotes the location of underwater photos and/or video that were collected by NOAA scientists using a Mohawk ROV (remotely operated vehicle)....

  18. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  19. The Application of a Free Swimming Remotely Operated Vehicle in Aquaculture

    Directory of Open Access Journals (Sweden)

    R. Klepaker

    1987-01-01

    Full Text Available In 1985, SINTEF and SIMRAD Subsea A/S started to develop an autonomous free swimming vehicle. The project was to develop a prototype of a small vehicle, in order to obtain knowledge and experience in designing, controlling and operating such vehicles. This was ready for testing at the end of 1985. The vehicle is controlled by an acoustic data telemetry system. The vehicle has a built-in television camera and containers for other sensors. It is suitable for inspection purposes. This paper describes the vehicle and some of the principles used.

  20. Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data

    Directory of Open Access Journals (Sweden)

    Shenghui Fang

    2016-05-01

    Full Text Available This study developed an approach for remote estimation of Vegetation Fraction (VF and Flower Fraction (FF in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. The results showed that the Visible Atmospherically Resistant Index (VARIgreen worked most accurately for estimating VF in flower-free samples with an Root Mean Square Error (RMSE of 3.56%, while the Enhanced Vegetation Index (EVI2 was the best in flower-containing samples with an RMSE of 5.65%. Based on reflectance in green and NIR bands, a technique was developed to identify whether a sample contained flowers and then to choose automatically the appropriate algorithm for its VF estimation. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate FF in oilseed rape. No significant correlation was observed between VI and FF when soil was visible in the sensor’s field of view. Reflectance at 550 nm worked well for FF estimation with coefficient of determination (R2 above 0.6. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with RMSE below 6%.

  1. Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV

    Directory of Open Access Journals (Sweden)

    M. Nicolaus

    2013-05-01

    Full Text Available Transmission of sunlight into and through sea ice is of critical importance for sea-ice associated organisms and photosynthesis because light is their primary energy source. The amount of visible light transferred through sea ice contributes to the energy budget of the sea ice and the uppermost ocean. However, our current knowledge on the amount and distribution of light under sea ice is still restricted to a few local observations, and our understanding of light-driven processes and interdisciplinary interactions is still sparse. The main reasons are that the under-ice environment is difficult to access and that measurements require large logistical and instrumental efforts. Hence, it has not been possible to map light conditions under sea ice over larger areas and to quantify spatial variability on different scales. Here we present a detailed methodological description for operating spectral radiometers on a remotely operated vehicle (ROV under sea ice. Recent advances in ROV and radiation-sensor technology have allowed us to map under-ice spectral radiance and irradiance on floe scales within a few hours of station time. The ROV was operated directly from the sea ice, allowing for direct relations of optical properties to other sea-ice and surface features. The ROV was flown close to the sea ice in order to capture small-scale variability. Results from the presented data set and similar future studies will allow for better quantification of light conditions under sea ice. The presented experiences will support further developments in order to gather large data sets of under-ice radiation for different ice conditions and during different seasons.

  2. Stability region of closed-loop pilot-vehicle system for fly-by-wire aircraft with limited actuator rate

    OpenAIRE

    Ying-hui, Li; Liang, Qu; Hao-jun, Xu; Qi-meng, Cao

    2017-01-01

    The category-II PIO (Pilot Induced Oscillations) caused by actuator rate limitation of fly-by-wire airplanes will badly threaten the flight safety. The stability regions of closed-loop pilot-vehicle (CLPV) system with rate limited actuator were studied in this paper to assess stability of such CLPV system. The augmented state  variables were introduced to segregate the rate limited element from the primary  system in order to build the saturation nonlinear model of CLPV system. To get the max...

  3. Deployment and Maintenance of Wave Energy Converters at the Lysekil Research Site: A Comparative Study on the Use of Divers and Remotely-Operated Vehicles

    Directory of Open Access Journals (Sweden)

    Flore Rémouit

    2018-04-01

    Full Text Available Ocean renewable technologies have been rapidly developing over the past years. However, current high installation, operation, maintenance, and decommissioning costs are hindering these offshore technologies to reach a commercialization stage. In this paper we focus on the use of divers and remotely-operated vehicles during the installation and monitoring phase of wave energy converters. Methods and results are based on the wave energy converter system developed by Uppsala University, and our experience in offshore deployments obtained during the past eleven years. The complexity of underwater operations, carried out by either divers or remotely-operated vehicles, is emphasized. Three methods for the deployment of wave energy converters are economically and technically analyzed and compared: one using divers alone, a fully-automated approach using remotely-operated vehicles, and an intermediate approach, involving both divers and underwater vehicles. The monitoring of wave energy converters by robots is also studied, both in terms of costs and technical challenges. The results show that choosing an autonomous deployment method is more advantageous than a diver-assisted method in terms of operational time, but that numerous factors prevent the wide application of robotized operations. Technical solutions are presented to enable the use of remotely-operated vehicles instead of divers in ocean renewable technology operations. Economically, it is more efficient to use divers than autonomous vehicles for the deployment of six or fewer wave energy converters. From seven devices, remotely-operated vehicles become advantageous.

  4. Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel

    2016-04-01

    The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research icebreaker RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context

  5. Application of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    Science.gov (United States)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40 m and a total weight of 5-8 kg, depending on battery- and payload. The standard meteorological payload consists of temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Since 2010 the system has been tested and improved intensively. In September 2012 first comparative tests could successfully be performed at the Lindenberg observatory of Germany's National Meteorological Service (DWD). In 2013, several campaigns were done with the system, including fundamental boundary layer research, wind energy meteorology and assistive measurements to aerosol investigations. The results of a series of morning transition experiments in summer 2013 will be presented to demonstrate the capabilities of the measurement system. On several convective days between May and September, vertical soundings were done to record the evolution of the ABL in the early morning, from about one hour after sunrise, until noon. In between the soundings, flight legs of up to 1 km length were performed to measure turbulent statistics and fluxes at a constant altitude. With the help of surface flux measurements of a sonic anemometer, methods of similarity theory could be applied to the RPA flux measurements to compare them to

  6. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa.

    Directory of Open Access Journals (Sweden)

    Margarita Mulero-Pázmány

    Full Text Available Over the last years there has been a massive increase in rhinoceros poaching incidents, with more than two individuals killed per day in South Africa in the first months of 2013. Immediate actions are needed to preserve current populations and the agents involved in their protection are demanding new technologies to increase their efficiency in the field. We assessed the use of remotely piloted aircraft systems (RPAS to monitor for poaching activities. We performed 20 flights with 3 types of cameras: visual photo, HD video and thermal video, to test the ability of the systems to detect (a rhinoceros, (b people acting as poachers and (c to do fence surveillance. The study area consisted of several large game farms in KwaZulu-Natal province, South Africa. The targets were better detected at the lowest altitudes, but to operate the plane safely and in a discreet way, altitudes between 100 and 180 m were the most convenient. Open areas facilitated target detection, while forest habitats complicated it. Detectability using visual cameras was higher at morning and midday, but the thermal camera provided the best images in the morning and at night. Considering not only the technical capabilities of the systems but also the poacherś modus operandi and the current control methods, we propose RPAS usage as a tool for surveillance of sensitive areas, for supporting field anti-poaching operations, as a deterrent tool for poachers and as a complementary method for rhinoceros ecology research. Here, we demonstrate that low cost RPAS can be useful for rhinoceros stakeholders for field control procedures. There are, however, important practical limitations that should be considered for their successful and realistic integration in the anti-poaching battle.

  7. High accuracy mapping with cartographic assessment for a fixed-wing remotely piloted aircraft system

    Science.gov (United States)

    Alves Júnior, Leomar Rufino; Ferreira, Manuel Eduardo; Côrtes, João Batista Ramos; de Castro Jorge, Lúcio André

    2018-01-01

    The lack of updated maps on large scale representations has encouraged the use of remotely piloted aircraft systems (RPAS) to generate maps for a wide range of professionals. However, some questions arise: do the orthomosaics generated by these systems have the cartographic precision required to use them? Which problems can be identified in stitching orthophotos to generate orthomosaics? To answer these questions, an aerophotogrammetric survey was conducted in an environmental conservation unit in the city of Goiânia. The flight plan was set up using the E-motion software, provided by Sensefly-a Swiss manufacturer of the RPAS Swinglet CAM used in this work. The camera installed in the RPAS was the Canon IXUS 220 HS, with the number of pixels in the sensor array of 12.1 megapixel, complementary metal oxide semiconductor 1 ∶ 2.3 ? (4000 × 3000 pixel), horizontal and vertical pixel sizes of 1.54 μm. Using the orthophotos, four orthomosaics were generated in the Pix4D mapper software. The first orthomosaic was generated without using the control points. The other three mosaics were generated using 4, 8, and 16 premarked ground control points. To check the precision and accuracy of the orthomosaics, 46 premarked targets were uniformly distributed in the block. The three-dimensional (3-D) coordinates of the premarked targets were read on the orthomosaic and compared with the coordinates obtained by the geodetic survey real-time kinematic positioning method using the global navigation satellite system receiver signals. The cartographic accuracy standard was evaluated by discrepancies between these coordinates. The bias was analyzed by the Student's t test and the accuracy by the chi-square probability considering the orthomosaic on a scale of 1 ∶ 250, in which 90% of the points tested must have a planimetric error of control points the scale was 10-fold smaller (1 ∶ 3000).

  8. A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G

    OpenAIRE

    Jyong Lin; Shih-Chang Chen; Yu-Tsen Shih; Shi-Huang Chen

    2009-01-01

    This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to trans...

  9. Connected Vehicle Pilot Deployment Program phase 1 : comprehensive deployment plan : New York City : volume 1 : technical application : part I : technical and management approach.

    Science.gov (United States)

    2016-08-01

    This document describes the Deployment Plan for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This plan describes the approach to complete Phase 2 Design/Build/Test, and Phase 3 Operate and Ma...

  10. Design and setting up of a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available Systems for remote monitoring and control of the proper operation, energy consumption, and efficiency of the controlled objects are very often used in different spheres of industry, in the electricity distribution network, etc. Various types of intelligent energy meters, PLCs and other control devices are involved in such systems. Proper operation of the auxiliary machines in electric vehicles is of great importance and implementation of a system for their remote monitoring and control is useful and ensures reliability and increased efficiency. A system has been designed and built using contemporary devices. An asynchronous motor is controlled by a soft starter and opportunities for remote monitoring (by an intelligent energy meter and control (by a PLC and Touch panel have been provided. Soft starters are widely used in industry for control on asynchronous drives when speed regulation is not a mandatory requirement. They are cheaper than inverters and frequency converters and allow for temporal reduction of the torque and current surge during start-up, as well as smooth deceleration. Therefore they can also be used in electric vehicles to control auxiliary machines (pumps, fans, air coolers, compressors, etc.. The present paper presents a methodology for their design and setting up.

  11. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Soares, João [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto, E-mail: avale@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto SuperiorTécnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo, E-mail: rodrigo.ventura@isr.tecnico.ulisboa.pt [Laboratório de Robótica e Sistemas em Engenharia eCiência, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  12. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  13. Multi-year remote-sensing measurements of gasoline light-duty vehicle emissions on a freeway ramp

    International Nuclear Information System (INIS)

    Sjoedin, A.; Andreasson, K.

    2000-01-01

    On-road optical remote-sensing measurements of gasoline light-duty vehicle (LDV) emissions - CO, HC, NO - were conducted on a freeway ramp in Gothenburg, Sweden, in 1991, 1995 and 1998. Based on almost 30,000 emission measurements, the results show that both catalyst cars and non-catalyst cars emissions deteriorate over time, but also that the emission performance of new TWC-cars has improved significantly in recent years. Furthermore, it was found that fleet age rather than model year determines the rate of emission deterioration for TWC-cars for both CO and NO. The study demonstrates that remote sensing may constitute a powerful tool to evaluate real-world LDV emissions; however, daily field calibration procedures need to be developed in order to assure that the evolution in fleet average emissions can be accurately measured. (author)

  14. A robust two-way switching control system for remote piloting and stabilization of low-cost quadrotor UAVs

    Science.gov (United States)

    Ripamonti, Francesco; Resta, Ferruccio; Vivani, Andrea

    2015-04-01

    The aim of this paper is to present two control logics and an attitude estimator for UAV stabilization and remote piloting, that are as robust as possible to physical parameters variation and to other external disturbances. Moreover, they need to be implemented on low-cost micro-controllers, in order to be attractive for commercial drones. As an example, possible applications of the two switching control logics could be area surveillance and facial recognition by means of a camera mounted on the drone: the high computational speed logic is used to reach the target, when the high-stability one is activated, in order to complete the recognition tasks.

  15. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kai-Hua Chen

    2013-01-01

    Full Text Available Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40 and Yanglingquan (GB34 points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side versus sham needling on the contralateral lower limb (control side in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P=0.03 in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P=0.036. Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle.

  16. Remote Effect of Lower Limb Acupuncture on Latent Myofascial Trigger Point of Upper Trapezius Muscle: A Pilot Study

    Science.gov (United States)

    Chen, Kai-Hua; Hsiao, Kuang-Yu; Lin, Chu-Hsu; Chang, Wen-Ming; Hsu, Hung-Chih; Hsieh, Wei-Chi

    2013-01-01

    Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs) of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40) and Yanglingquan (GB34) points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side) versus sham needling on the contralateral lower limb (control side) in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM) upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P = 0.03) in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P = 0.036). Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle. PMID:23710218

  17. Remote operated vehicle with CO2 blasting (ROVCO2): Volume 1. Final report, September 1993--July 1996

    International Nuclear Information System (INIS)

    1996-06-01

    This report documents the second phase of the Remote Operated Vehicle with CO 2 Blasting (ROVCO 2 ) Program. The ROVCO 2 Program's goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. The second phase integrated non-developmental subsystems on to the ROVCO 2 system and performed quantitative decontamination effectiveness, productivity, and reliability testings. The report documents these development activities and the analysis of cost and performance. The results show that the ROVCO 2 system is an efficient decontamination tool

  18. Looking Without Landing—Using Remote Piloted Aircraft to Monitor Fur Seal Populations Without Disturbance

    Directory of Open Access Journals (Sweden)

    Rebecca R. McIntosh

    2018-06-01

    Full Text Available Technical advances in monitoring devices, specifically drones, are allowing managers and scientists to obtain quality information on ecosystem health with minimal disturbance to ecosystems and the wildlife they support. Temporal and spatial indicators of ecosystem health, such as population size and/or abundance estimates of marine mammals are the basis for our understanding and prediction of ecosystem change. This is critical for the achievement of conservation goals and sustainable natural resources use. Performing surveys to obtain abundance estimates can be logistically demanding and expensive particularly in offshore marine environments, and can cause significant disturbance to wildlife. These constraints may lead to sub-optimal monitoring programs that reduce the frequency and/or precision of surveys at the cost of data quality and confidence in the resulting analyses. Using Remote Piloted Aircraft (RPA can be a solution to this challenge. With appropriate testing and ethical consideration; for many situations, RPAs can perform surveys with increased frequency, higher data resolution and less disturbance than typical methods that involve people being present on the ground, thereby enabling more robust programs for monitoring. We demonstrate the process of testing images from RPAs for estimating the abundance of Australian fur seals (Arctocephalus pusillus doriferus at one of their largest colonies on Seal Rocks, Australia. Two sizes of multirotor (1,400 and 350 mm with different imaging equipment were tested at 40, 60, and 80 m altitude above sea level. We assessed wildlife disturbance levels and optimized a methodology for effective and economical monitoring of this site. We employed commercially available and open-source software for programming survey flights (Drone Deploy, image processing (Agisoft Photoscan and Autopano Giga, data collation and analyses (R and Python. An online portal “SealSpotter” was developed to facilitate data

  19. Remote Sensing-based Models of Soil Vulnerability to Compaction and Erosion from Off-highway Vehicles

    Science.gov (United States)

    Villarreal, M. L.; Webb, R. H.; Norman, L.; Psillas, J.; Rosenberg, A.; Carmichael, S.; Petrakis, R.; Sparks, P.

    2014-12-01

    Intensive off-road vehicle use for immigration, smuggling, and security of the United States-Mexico border has prompted concerns about long-term human impacts on sensitive desert ecosystems. To help managers identify areas susceptible to soil erosion from vehicle disturbances, we developed a series of erosion potential models based on factors from the Revised Universal Soil Loss Equation (RUSLE), with particular focus on the management factor (P-factor) and vegetation cover (C-factor). To better express the vulnerability of soils to human disturbances, a soil compaction index (applied as the P-factor) was calculated as the difference in saturated hydrologic conductivity (Ks) between disturbed and undisturbed soils, which was then scaled up to remote sensing-based maps of vehicle tracks and digital soils maps. The C-factor was improved using a satellite-based vegetation index, which was better correlated with estimated ground cover (r2 = 0.77) than data derived from regional land cover maps (r2 = 0.06). RUSLE factors were normalized to give equal weight to all contributing factors, which provided more management-specific information on vulnerable areas where vehicle compaction of sensitive soils intersects with steep slopes and low vegetation cover. Resulting spatial data on vulnerability and erosion potential provide land managers with information to identify critically disturbed areas and potential restoration sites where off-road driving should be restricted to reduce further degradation.

  20. Nightfall and the Cloud: Examining the Future of Unmanned Combat Aerial Vehicles and Remotely Piloted Aircraft

    Science.gov (United States)

    2015-10-01

    perfection of a fundamentally unchanging phenomenon, to be modified only by superficial matters like the list of dramatis personae , technology, and...overseeing the armed forces, based on demonstrated loyalty to the state and trust in the integrity and leadership of the commissioned officer. This...control breaks down. 23. Alexander Moseley, “Just War Theory,” Internet Encyclopedia of Philosophy, accessed 21 January 2014, http://www.iep.utm.edu

  1. Remotely Piloted Vehicle (RPV) Two versus Three Level Maintenance Support Concept Study.

    Science.gov (United States)

    1988-01-15

    Abri:.ms ML-C, Technic:al Arid lysi!;&2jp7 f D~onnie Joyce Al ler Ad:va-.ncecd Sys.tems Coric epts oft ic.e, -,Je etaty Robo r t Bac-et RPV Pti...en ter, Al TN Conccept,-* & [h ct norii ’’ t Fort Lee, VA 2D501 ,c ient f ii: Advisor , ATIN: ATCI. SP(A, At my C eq 1 t mPFr [ pp Ft VA :27: C.1. Do

  2. Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: Performance review and identification of high-emitters.

    Science.gov (United States)

    Huang, Yuhan; Organ, Bruce; Zhou, John L; Surawski, Nic C; Hong, Guang; Chan, Edward F C; Yam, Yat Shing

    2018-06-01

    A two-year remote sensing measurement program was carried out in Hong Kong to obtain a large dataset of on-road diesel vehicle emissions. Analysis was performed to evaluate the effect of vehicle manufacture year (1949-2015) and engine size (0.4-20 L) on the emission rates and high-emitters. The results showed that CO emission rates of larger engine size vehicles were higher than those of small vehicles during the study period, while HC and NO were higher before manufacture year 2006 and then became similar levels between manufacture years 2006 and 2015. CO, HC and NO of all vehicles showed an unexpectedly increasing trend during 1998-2004, in particular ≥6001 cc vehicles. However, they all decreased steadily in the last decade (2005-2015), except for NO of ≥6001 cc vehicles during 2013-2015. The distributions of CO and HC emission rates were highly skewed as the dirtiest 10% vehicles emitted much higher emissions than all the other vehicles. Moreover, this skewness became more significant for larger engine size or newer vehicles. The results indicated that remote sensing technology would be very effective to screen the CO and HC high-emitters and thus control the on-road vehicle emissions, but less effective for controlling NO emissions. No clear correlation was observed between the manufacture year and percentage of high-emitters for ≤3000 cc vehicles. However, the percentage of high-emitters decreased with newer manufacture year for larger vehicles. In addition, high-emitters of different pollutants were relatively independent, in particular NO emissions, indicating that high-emitter screening criteria should be defined on a CO-or-HC-or-NO basis, rather than a CO-and-HC-and-NO basis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Monitoring intensity and patterns of off-highway vehicle (OHV) use in remote areas of the western USA

    Science.gov (United States)

    Ouren, Douglas S.; Coffin, Alisa W.

    2013-01-01

    The continued growth of off-highway vehicle (OHV) activities – demonstrated by the dramatic increase in OHV sales, number of users, and areas experiencing OHV use – has elevated concerns about their ecological effects, the impacts on wildlife, and the sustainability of OHV use on secondary and tertiary road networks. Conflicts between visitors and wildlife are raising concerns about system resiliency and sustainable management. In order to quantify the spatial and temporal impacts of OHV use it is imperative to know about the timing and patterns of vehicle use. This study tested and used multiple vehicle-counter types to study vehicular OHV use patterns and volume throughout a mountainous road network in western Colorado. OHV counts were analyzed by time of day, day of week, season, and year. While daily use peaked within a two to three hour range for all sites, the overall volume of use varied among sites on an annual basis. The data also showed that there are at least two distinct patterns of OHV use: one dominated by a majority of use on weekends, and the other with continuous use throughout the week. This project provided important, but rarely captured, metrics about patterns of OHV use in a remote, mountainous region of Colorado. The techniques described here can provide land managers with a quantitative evaluation of OHV use across the landscape, an essential foundation for travel management planning. They also provide researchers with robust tools to further investigate the impacts of OHV use.

  4. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  5. Characterization of in-use light-duty gasoline vehicle emissions by remote sensing in Beijing: impact of recent control measures.

    Science.gov (United States)

    Zhou, Yu; Fu, Lixin; Cheng, Linglin

    2007-09-01

    China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.

  6. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  7. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    Science.gov (United States)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  8. RCV-150 remotely operated vehicle and its operation in the hostile undersea environment

    International Nuclear Information System (INIS)

    Billet, A.B.

    1984-01-01

    The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These are used for inspection, debris removal and object retrieval. The RCV-150/sup chemical bond/ system is an example of these advanced technology vehicles. With the requirements of high maneuverability and unusual inspection a responsive, high performance, compact hydraulic system was developed. The hydraulic system is powered by an electric motor-driven pump which provides hydraulic power to the four thruster motors and to the five-function manipulator work arm

  9. The Feasibility and Validity of a Remote Pulse Oximetry System for Pulmonary Rehabilitation: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2012-01-01

    Full Text Available Pulmonary rehabilitation is an effective treatment for people with chronic obstructive pulmonary disease. However, access to these services is limited especially in rural and remote areas. Telerehabilitation has the potential to deliver pulmonary rehabilitation programs to these communities. The aim of this study was threefold: to establish the technical feasibility of transmitting real-time pulse oximetry data, determine the validity of remote measurements compared to conventional face-to-face measures, and evaluate the participants’ perception of the usability of the technology. Thirty-seven healthy individuals participated in a single remote pulmonary rehabilitation exercise session, conducted using the eHAB telerehabilitation system. Validity was assessed by comparing the participant's oxygen saturation and heart rate with the data set received at the therapist’s remote location. There was an 80% exact agreement between participant and therapist data sets. The mean absolute difference and Bland and Altman’s limits of agreement fell within the minimum clinically important difference for both oxygen saturation and heart rate values. Participants found the system easy to use and felt confident that they would be able to use it at home. Remote measurement of pulse oximetry data for a pulmonary rehabilitation exercise session was feasible and valid when compared to conventional face-to-face methods.

  10. Remediation of a uranium-contaminated quarry utilizing submersible, remotely operated vehicles

    International Nuclear Information System (INIS)

    Fleming, K.N.

    1992-01-01

    The Kerr Hollow Quarry (KHQ) Disposal Site on the Oak Ridge (Tennessee) Reservation was previously used to treat and dispose of pyrophoric and water-reactive wastes contaminated with small quantities of radioactive materials (almost exclusively uranium and uranium daughters) from processes at the Department of Energy-owned, Oak Ridge Y-12 Plant and Oak Ridge National Laboratory. This paper describes remediation techniques utilizing a small, remotely operated submarine with an attached camera to visually locate waste containers, determine whether containers have been breached, transport small containers, and direct a larger remotely operated grappling machine to move larger waste for shredding operations. Most of the solid waste is reduced under water by a metal shredder. Non-shreddable items (e. g. , gas cylinders and larger structures) are mechanically breached under water to allow the contents to fully react. The waste is then removed from the water, monitored, the material is segregated, and transported to a temporary waste storage area until disposal

  11. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment's capability to control contamination spread

  12. Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.M.; Moody, S.J.; Peterson, R. [and others

    1997-04-01

    Between 1952 and 1970, over two million cubic ft of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex. Commingled with this two million cubic ft of waste is up to 10 million cubic ft of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate a technology for transporting exhumed transuranic wastes at the Idaho National Engineering and Environmental Laboratory (INEEL) and at other hazardous or radioactive waste sites through the U.S. Department of Energy complex. The full-scale demonstration, conducted at the INEEL Robotics Center in the summer of 1995, evaluated equipment performance and techniques for remote transport of exhumed buried waste. The technology consisted of a Self-Guided Transport Vehicle designed to remotely convey retrieved waste from the retrieval digface and transport it to a receiving/processing area with minimal human intervention. Data were gathered and analyzed to evaluate performance parameters such as precision and accuracy of navigation and transportation rates.

  13. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kyle F. Flynn

    2014-12-01

    Full Text Available A passive method for remote sensing of the nuisance green algae Cladophora glomerata in rivers is presented using an unmanned aerial vehicle (UAV. Included are methods for UAV operation, lens distortion correction, image georeferencing, and spectral analysis to support algal cover mapping. Eighteen aerial photography missions were conducted over the summer of 2013 using an off-the-shelf UAV and three-band, wide-angle, red, green, and blue (RGB digital camera sensor. Images were post-processed, mosaicked, and georeferenced so automated classification and mapping could be completed. An adaptive cosine estimator (ACE and spectral angle mapper (SAM algorithm were used to complete the algal identification. Digital analysis of optical imagery correctly identified filamentous algae and background coverage 90% and 92% of the time, and tau coefficients were 0.82 and 0.84 for ACE and SAM, respectively. Thereafter, algal cover was characterized for a one-kilometer channel segment during each of the 18 UAV flights. Percent cover ranged from <5% to >50%, and increased immediately after vernal freshet, peaked in midsummer, and declined in the fall. Results indicate that optical remote sensing with UAV holds promise for completing spatially precise, and multi-temporal measurements of algae or submerged aquatic vegetation in shallow rivers with low turbidity and good optical transmission.

  14. Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste

    International Nuclear Information System (INIS)

    Rice, P.M.; Moody, S.J.; Peterson, R.

    1997-04-01

    Between 1952 and 1970, over two million cubic ft of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex. Commingled with this two million cubic ft of waste is up to 10 million cubic ft of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate a technology for transporting exhumed transuranic wastes at the Idaho National Engineering and Environmental Laboratory (INEEL) and at other hazardous or radioactive waste sites through the U.S. Department of Energy complex. The full-scale demonstration, conducted at the INEEL Robotics Center in the summer of 1995, evaluated equipment performance and techniques for remote transport of exhumed buried waste. The technology consisted of a Self-Guided Transport Vehicle designed to remotely convey retrieved waste from the retrieval digface and transport it to a receiving/processing area with minimal human intervention. Data were gathered and analyzed to evaluate performance parameters such as precision and accuracy of navigation and transportation rates

  15. Risk Assessment and Analysis of the M109 Family of Vehicles Fleet Management Pilot Program

    National Research Council Canada - National Science Library

    Hitz, Stephen

    1997-01-01

    ...) Fleet Management Pilot Program. The objective of this program is to reengineer the fleet's logistical support system by outsourcing those functions which make sense and that can be performed more efficiently by private industry...

  16. Prototype of Remote Controlled Robot Vehicle to Scan Radioactive Contaminated Areas

    International Nuclear Information System (INIS)

    Ratongasoandrazana, J.B.; Raoelina Andriambololona; Rambolamanana, G.; Andrianiaina, H.; Rajaobelison, J.

    2016-01-01

    The ionizing radiations are not directly audible by the organs of sense of the human being. Maintenance and handling of sources of such ionizing radiations present some risks of very serious and often irreversible accident for human organism. The works of experimentation and maintenance in such zone also present the risks requiring some minimum of precaution. Thus, the main objective of this work is to design and develop (hard- and software) a prototype of educational semi-autonomous Radio Frequency controlled robot-vehicle based on 8-bit AVR-RISC Flash microcontroller system (ATmega128L) able to detect, identify and map the radioactive contaminated area. An integrated video camera coupled with a UHF video transmitter module, placed in front of the robot, will be used as visual feedback control to well direct it toward a precise place to reach. The navigation information and the data collected are transmitted from the robot toward the Computer via 02 Radio Frequency Transceivers for peer-to-peer serial data transfer in half-duplex mode. A Joystick module which is connected to the Computer parallel port allows full motion control of the platform. Robot-vehicle user interface program for the PC has been designed to allow full control of all functions of the robot vehicles.

  17. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA

    Directory of Open Access Journals (Sweden)

    N. Wildmann

    2013-08-01

    Full Text Available Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  18. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA)

    Science.gov (United States)

    Wildmann, N.; Mauz, M.; Bange, J.

    2013-08-01

    Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least -10-50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  19. Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry - first results from a pilot study

    Science.gov (United States)

    Adams, Marc; Fromm, Reinhard; Bühler, Yves; Bösch, Ruedi; Ginzler, Christian

    2016-04-01

    Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data's availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height

  20. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy)

    Science.gov (United States)

    Salvini, Riccardo; Mastrorocco, Giovanni; Esposito, Giuseppe; Di Bartolo, Silvia; Coggan, John; Vanneschi, Claudio

    2018-01-01

    The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.

  1. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy

    Directory of Open Access Journals (Sweden)

    R. Salvini

    2018-01-01

    Full Text Available The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.

  2. Integration, Testing, and Validation of a Small Hybrid-Electric Remotely-Piloted Aircraft

    Science.gov (United States)

    2012-03-22

    unmanned aircraft offers the capability to unrelentingly pursue a target in a way the stamina of a human pilot simply cannot match. Unmanned systems can...electricity in these examples is provided by batteries, other hybrid-electric systems use generators, solar cells , or even hydrogen fuel cells ... cells , or solar panels. Throughout this paper, HE-RPA will refer specifically to the battery and fossil fuel combination. Usually, the secondary energy

  3. A Pilot Study of Pedestrians with Visual Impairments Detecting Traffic Gaps and Surges Containing Hybrid Vehicles.

    Science.gov (United States)

    Emerson, Robert Wall; Naghshineh, Koorosh; Hapeman, Julie; Wiener, William

    2011-03-01

    The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted.

  4. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  5. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  6. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA and on a medium selective for the genus Pseudomonas (KBC to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P = 0.027, suggesting an uneven distribution of Pseudomonas across the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P = 0.038, demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P = 0.707 and KBC (P = 0.641 across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720 of the colonies recovered across all four sampling missions were ice nucleation active (ice+ at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments.

  7. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    Science.gov (United States)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  8. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    Science.gov (United States)

    Litt, Jonathan S.; Liu, Yuan; Sowers, Thomas S.; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  9. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China

    Directory of Open Access Journals (Sweden)

    Quanlong Feng

    2015-03-01

    Full Text Available Flooding is a severe natural hazard, which poses a great threat to human life and property, especially in densely-populated urban areas. As one of the fastest developing fields in remote sensing applications, an unmanned aerial vehicle (UAV can provide high-resolution data with a great potential for fast and accurate detection of inundated areas under complex urban landscapes. In this research, optical imagery was acquired by a mini-UAV to monitor the serious urban waterlogging in Yuyao, China. Texture features derived from gray-level co-occurrence matrix were included to increase the separability of different ground objects. A Random Forest classifier, consisting of 200 decision trees, was used to extract flooded areas in the spectral-textural feature space. Confusion matrix was used to assess the accuracy of the proposed method. Results indicated the following: (1 Random Forest showed good performance in urban flood mapping with an overall accuracy of 87.3% and a Kappa coefficient of 0.746; (2 the inclusion of texture features improved classification accuracy significantly; (3 Random Forest outperformed maximum likelihood and artificial neural network, and showed a similar performance to support vector machine. The results demonstrate that UAV can provide an ideal platform for urban flood monitoring and the proposed method shows great capability for the accurate extraction of inundated areas.

  10. A Pilot Study of Pedestrians with Visual Impairments Detecting Traffic Gaps and Surges Containing Hybrid Vehicles

    Science.gov (United States)

    Emerson, Robert Wall; Naghshineh, Koorosh; Hapeman, Julie; Wiener, William

    2010-01-01

    The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted. PMID:21379367

  11. ROV: improving remotely operated vehicle (ROV) intervention capabilities for blowout preventer override systems

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Stephen [Christopher S. Mancini, Tomball, TX (United States)

    2012-07-01

    Events during 2010 have focused attention on increased ROV/BOP Intervention capabilities and standardization of BOP/ROV interfaces in the oil and gas offshore industry. Currently no enforced set standards for ROV intervention panels or manifold types for use on BOP Override systems are specified. The industry offers multiple configurations at present. This abstract will discuss the advantages and disadvantages of the various configurations in existence, trending toward suggested industry standards taking shape as requirements in the near term. Standards for the offshore industry or a set specification must be made to increase safety and functionality of BOP control systems. To date, ROV override capabilities have been added to existing engineered BOP systems. BOP designed closing times were not a critical consideration, only that the access was there to allow for ROV override. Increased ROV flow and pressure capabilities: no current minimum flow requirements for Emergency BOP Override pumps are established. Based on stack valving and configuration, a minimum, 7 gpm may be required to shift valving fully to allow BOP operator function. IADC/API minimum requirements may be proposed at 10 gpm at 3000psi. Based on shear pressures exceeding 3000psi, pressures of 5000psi should be considered. Current intervention skids/pump capabilities will be required if ROVs must achieve API 16D BOP minimum closing times. Remote or isolated accumulation for increased intervention capabilities offers possibilities when ANY ROV of opportunity can trigger a function (such as small inspection type ROVs). Increased volumes will be required. This is critical in functioning stack rams with an ROV of opportunity to achieve API 16D closing times. We now understand that higher flows and pressures are required along with standardization of stab types. Current recommendations: API 17H Hi-Flow manifolds should be added to essential ROV overrides. ROV skids will have a minimum requirement of 10gpm

  12. COMPACT HYPERSPECTRAL IMAGING SYSTEM (COSI FOR SMALL REMOTELY PILOTED AIRCRAFT SYSTEMS (RPAS – SYSTEM OVERVIEW AND FIRST PERFORMANCE EVALUATION RESULTS

    Directory of Open Access Journals (Sweden)

    A. A. Sima

    2016-06-01

    Full Text Available This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI system recently developed at the Flemish Institute for Technological Research (VITO, Belgium and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g, and captures 72 narrow (FWHM: 5nm to 10 nm bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry–Pérot interferometer.

  13. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  14. A pilot health information management system for public health midwives serving in a remote area of Sri Lanka.

    Science.gov (United States)

    Rodrigo, E Shan S; Wimalaratne, Samantha R U; Marasinghe, Rohana B; Edirippulige, Sisira

    2012-04-01

    We developed an electronic Health Information Management System (HIMS) for Public Health Midwives (PHMs) in Sri Lanka. We conducted a needs analysis amongst 16 PHMs, which found that they spent most of their time managing health records. The HIMS was designed so that it could accept data from the PHMs, and generate reports which could be used by the PHMs themselves as well as by their supervisors. The HIMS was trialled by a group of 16 PHMs in a remote area of the Ratnapura district of Sri Lanka. Mini-laptops with the software were distributed to the PHMs and they were given the necessary training. They started entering historical data from the registers into the system by themselves. Nearly 10,000 public health records were generated in the first three months. In a subsequent survey, the PHMs all gave positive answers indicating that they were happy with the pilot system, they would like to continue using it to enhance their service and they wanted to see it expanded across the whole of Ratnapura district. The system seems to be a practical solution for the field activities of PHMs in Sri Lanka.

  15. Application of auditory signals to the operation of an agricultural vehicle: results of pilot testing.

    Science.gov (United States)

    Karimi, D; Mondor, T A; Mann, D D

    2008-01-01

    The operation of agricultural vehicles is a multitask activity that requires proper distribution of attentional resources. Human factors theories suggest that proper utilization of the operator's sensory capacities under such conditions can improve the operator's performance and reduce the operator's workload. Using a tractor driving simulator, this study investigated whether auditory cues can be used to improve performance of the operator of an agricultural vehicle. Steering of a vehicle was simulated in visual mode (where driving error was shown to the subject using a lightbar) and in auditory mode (where a pair of speakers were used to convey the driving error direction and/or magnitude). A secondary task was also introduced in order to simulate the monitoring of an attached machine. This task included monitoring of two identical displays, which were placed behind the simulator, and responding to them, when needed, using a joystick. This task was also implemented in auditory mode (in which a beep signaled the subject to push the proper button when a response was needed) and in visual mode (in which there was no beep and visual, monitoring of the displays was necessary). Two levels of difficulty of the monitoring task were used. Deviation of the simulated vehicle from a desired straight line was used as the measure of performance in the steering task, and reaction time to the displays was used as the measure of performance in the monitoring task. Results of the experiments showed that steering performance was significantly better when steering was a visual task (driving errors were 40% to 60% of the driving errors in auditory mode), although subjective evaluations showed that auditory steering could be easier, depending on the implementation. Performance in the monitoring task was significantly better for auditory implementation (reaction time was approximately 6 times shorter), and this result was strongly supported by subjective ratings. The majority of the

  16. Colorado SIP: 5 CCR 1001-13, Reg 11, Motor Vehicle Emissions Inspection Program—Part A, General Provisions, Area of Applicability, Schedules for Obtaining Certification of Emissions Control, Definitions, Exemptions, and Clean Screening/Remote Sensing

    Science.gov (United States)

    Colorado SIP: 5 CCR 1001-13, Reg 11, Motor Vehicle Emissions Inspection Program—Part A, General Provisions, Area of Applicability, Schedules for Obtaining Certification of Emissions Control, Definitions, Exemptions, and Clean Screening/Remote Sensing

  17. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  18. TU-FG-201-06: Remote Dosimetric Auditing for Clinical Trials Using EPID Dosimetry: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Miri, N; Legge, K; Greer, P [Newcastle University, Newcastle, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); Vial, P [Liverpool Hospital, Sydney, NSW (Australia)

    2016-06-15

    Purpose: To perform a pilot study for remote dosimetric credentialing of intensity modulated radiation therapy (IMRT) based clinical trials. The study introduces a novel, time efficient and inexpensive dosimetry audit method for multi-center credentialing. The method employs electronic portal imaging device (EPID) to reconstruct delivered dose inside a virtual flat/cylindrical water phantom. Methods: Five centers, including different accelerator types and treatment planning systems (TPS), were asked to download two CT data sets of a Head and Neck (H&N) and Postprostatectomy (P-P) patients to produce benchmark plans. These were then transferred to virtual flat and cylindrical phantom data sets that were also provided. In-air EPID images of the plans were then acquired, and the data sent to the central site for analysis. At the central site, these were converted to DICOM format, all images were used to reconstruct 2D and 3D dose distributions inside respectively the flat and cylindrical phantoms using inhouse EPID to dose conversion software. 2D dose was calculated for individual fields and 3D dose for the combined fields. The results were compared to corresponding TPS doses. Three gamma criteria were used, 3%3mm-3%/2mm–2%/2mm with a 10% dose threshold, to compare the calculated and prescribed dose. Results: All centers had a high pass rate for the criteria of 3%/3 mm. For 2D dose, the average of centers mean pass rate was 99.6% (SD: 0.3%) and 99.8% (SD: 0.3%) for respectively H&N and PP patients. For 3D dose, 3D gamma was used to compare the model dose with TPS combined dose. The mean pass rate was 97.7% (SD: 2.8%) and 98.3% (SD: 1.6%). Conclusion: Successful performance of the method for the pilot centers establishes the method for dosimetric multi-center credentialing. The results are promising and show a high level of gamma agreement and, the procedure is efficient, consistent and inexpensive. Funding has been provided from Department of Radiation Oncology

  19. A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories.

    Science.gov (United States)

    Smit, Robin; Bluett, Jeff

    2011-06-01

    A new method is presented which is designed to investigate whether laboratory test data used in the development of vehicle emission models adequately reflects emission distributions, and in particular the influence of high-emitting vehicles. The method includes the computation of a 'high-emitter' or 'emission distribution' correction factor for use in emission inventories. In order to make a valid comparison we control for a number of factors such as vehicle technology, measurement technique and driving conditions and use a variable called 'Pollution Index' (g/kg). Our investigation into one vehicle class has shown that laboratory and remote sensing data are substantially different for CO, HC and NO(x) emissions, both in terms of their distributions as well as in their mean and 99-percentile values. Given that the remote sensing data has larger mean values for these pollutants, the analysis suggests that high-emitting vehicles may not be adequately captured in the laboratory test data. The paper presents two different methods for the computation of weighted correction factors for use in emission inventories based on laboratory test data: one using mean values for six 'power bins' and one using multivariate regression functions. The computed correction factors are substantial leading to an increase for laboratory-based emission factors with a factor of 1.7-1.9 for CO, 1.3-1.6 for HC and 1.4-1.7 for NO(x) (actual value depending on the method). However, it also clear that there are points that require further examination before these correction factors should be applied. One important step will be to include a comparison with other types of validation studies such as tunnel studies and near-road air quality assessments to examine if these correction factors are confirmed. If so, we would recommend using the correction factors in emission inventories for motor vehicles. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A pilot training manual for the terminal configured vehicle electronic horizontal situation indicator

    Science.gov (United States)

    Houck, J. A.

    1981-01-01

    The initial phase of a training program for the Terminal Configured Vehicle Electronic Situation indicator (EHSI) is presented. The EHSI and its symbology is introduced and interpretation of the symbols is explained. Basic symbols shown on the display at all times are first presented. Additional optional symbols to be used as appropriate during different portions of a flight are then introduced and various display configurations interpreted. The upper half of each page is a reproduction of the EHSI display or other pertinent instructional material and the bottom half contains explanatory text, simplifying production of an audiovisual package for use with large training classes. Two quizzes on the course material are included.

  1. A pilot training manual for the terminal configured vehicle electronic attitude director indicator

    Science.gov (United States)

    Gandelman, J.

    1980-01-01

    A hard copy version is presented of a 28-minute, 90 slide audiovisual program which provides the basic instructional format for introduction to the terminal configured vehicle electronic attitude director indicator (EADI) and the strategy for learning the symbols used on the EADI and their interpretation. The basic strategy is to start with known symbols and then introduce all new symbols with emphasis appropriate to their complexity and frequency of use. The upper half of each page of the manual contains a reproduction of the slide. The text associated with the slide is found on the lower half of each page and is recorded on audio tape.

  2. 3D MODELLING OF A HISTORICAL BUILDING USING CLOSE-RANGE PHOTOGRAMMETRY AND REMOTELY PILOTED AIRCRAFT SYSTEM (RPAS

    Directory of Open Access Journals (Sweden)

    M. Lo Brutto

    2018-05-01

    Full Text Available The photogrammetric survey of architectural Cultural Heritage is a very useful and standard process in order to obtain accurate 3D data for the documentation and visualization of historical buildings. In particular, the integration of terrestrial close-range photogrammetry and Remotely Piloted Aircraft Systems (RPASs photogrammetry allows to create accurate and reliable 3D models of buildings and to monitor their state of conservation. The use of RPASs has indeed become more popular in Cultural Heritage survey to measure and detect areas that cannot normally be covered using terrestrial photogrammetry or terrestrial laser scanner. The paper presents the results of a photogrammetric survey executed to document the monumental complex of Villa Lampedusa ai Colli in Palermo (Italy, one of the most important historical buildings of the town. An integrated survey by close-range photogrammetry and RPAS photogrammetry was planned and carried out to reconstruct the 3D digital model of the monumental complex. Different images configurations (terrestrial, aerial nadiral, aerial parallel and oblique to the façades have been acquired; data have been processed to verify the accuracy of the photogrammetric survey as regards the camera calibration parameters and the number of Ground Control Points (GCPs measured on building façades. A very detailed 3D digital model and high-resolution ortho-images of the façades were obtained in order to carry out further analysis for historical studies, conservation and restoration project. The final 3D model of Villa Lampedusa ai Colli has been compared with a laser scanner 3D model to evaluate the quality of the photogrammetric approach. Beyond a purely metric assessment, 3D textured model has employed to generate 2D representations, useful for documentation purpose and to highlight the most significant damaged areas. 3D digital models and 2D representations can effectively contribute to monitor the state of conservation

  3. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  4. D Modelling of a Historical Building Using Close-Range Photogrammetry and Remotely Piloted Aircraft System (rpas)

    Science.gov (United States)

    Lo Brutto, M.; Ebolese, D.; Dardanelli, G.

    2018-05-01

    The photogrammetric survey of architectural Cultural Heritage is a very useful and standard process in order to obtain accurate 3D data for the documentation and visualization of historical buildings. In particular, the integration of terrestrial close-range photogrammetry and Remotely Piloted Aircraft Systems (RPASs) photogrammetry allows to create accurate and reliable 3D models of buildings and to monitor their state of conservation. The use of RPASs has indeed become more popular in Cultural Heritage survey to measure and detect areas that cannot normally be covered using terrestrial photogrammetry or terrestrial laser scanner. The paper presents the results of a photogrammetric survey executed to document the monumental complex of Villa Lampedusa ai Colli in Palermo (Italy), one of the most important historical buildings of the town. An integrated survey by close-range photogrammetry and RPAS photogrammetry was planned and carried out to reconstruct the 3D digital model of the monumental complex. Different images configurations (terrestrial, aerial nadiral, aerial parallel and oblique to the façades) have been acquired; data have been processed to verify the accuracy of the photogrammetric survey as regards the camera calibration parameters and the number of Ground Control Points (GCPs) measured on building façades. A very detailed 3D digital model and high-resolution ortho-images of the façades were obtained in order to carry out further analysis for historical studies, conservation and restoration project. The final 3D model of Villa Lampedusa ai Colli has been compared with a laser scanner 3D model to evaluate the quality of the photogrammetric approach. Beyond a purely metric assessment, 3D textured model has employed to generate 2D representations, useful for documentation purpose and to highlight the most significant damaged areas. 3D digital models and 2D representations can effectively contribute to monitor the state of conservation of historical

  5. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs

  6. Unmanned aerial systems for photogrammetry and remote sensing: A review

    OpenAIRE

    Colomina, Ismael; Molina, Pere

    2014-01-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  7. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    Science.gov (United States)

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  8. Identifying Best Bet Entry-Level Selection Measures for US Air Force Remotely Piloted Aircraft (RPA) Pilot and Sensor Operator (SO) Occupations

    Science.gov (United States)

    2011-12-01

    occupations (pilots, combat system operators, air battle managers) (Carretta, 2008; Carretta & Ree, 2003; Olea & Ree, 1994). This body of knowledge...Ergonomics, 50(7), 1064-1091. O’Hare, D. (1997). Cognitive ability determinants of elite pilot performance. Human Factors, 39, 540-552. Olea

  9. Interinstrument comparison of remote-sensing devices and a new method for calculating on-road nitrogen oxides emissions and validation of vehicle-specific power.

    Science.gov (United States)

    Rushton, Christopher E; Tate, James E; Shepherd, Simon P; Carslaw, David C

    2018-02-01

    Emissions of nitrogen oxides (NOx) by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type of approval tests exposed in the dieselgate scandal. Remote-sensing devices offer investigators an opportunity to directly measure in situ real driving emissions of tens of thousands of vehicles. Remote-sensing NO 2 measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO 2 emissions and to improve the confidence of the total NOx results calculated from standard remote-sensing device (RSD) measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard global positioning system (GPS) tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off-carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for those at VSP ≥ 15 kW t -1 , which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean, compared to 15% observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84 ppm were observed but within the tolerance of the control gas. Interinstrument correlation was performed, with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an R 2 of 0.85, indicating good correlation. A new method to calculate NOx emissions using fractional NO 2 combined with NO

  10. Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    Directory of Open Access Journals (Sweden)

    David Robert M

    2009-05-01

    Full Text Available Abstract It is well established that the ingestion of the omega-3 (N3 fatty acids docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3 in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ containing MicroN3 (450–550 mg EPA/DHA during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P

  11. A novel approach to haptic tele-operation of aerial robot vehicles

    NARCIS (Netherlands)

    Stramigioli, Stefano; Mahony, Robert; Corke, Peter

    2010-01-01

    We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot's state and perceived local environment that will ensure simple and safe operation in cluttered 3D

  12. Customization of home closed-loop insulin delivery in adult patients with type 1 diabetes, assisted with structured remote monitoring: the pilot WP7 Diabeloop study.

    Science.gov (United States)

    Benhamou, Pierre Yves; Huneker, Erik; Franc, Sylvia; Doron, Maeva; Charpentier, Guillaume

    2018-06-01

    Improvement in closed-loop insulin delivery systems could result from customization of settings to individual needs and remote monitoring. This pilot home study evaluated the efficacy and relevance of this approach. A bicentric clinical trial was conducted for 3 weeks, using an MPC-based algorithm (Diabeloop Artificial Pancreas system) featuring five settings designed to modulate the reactivity of regulation. Remote monitoring was ensured by expert nurses with a web platform generating automatic Secured Information Messages (SIMs) and with a structured procedure. Endpoints were glucose metrics and description of impact of monitoring on regulation parameters. Eight patients with type 1 diabetes (six men, age 41.8 ± 11.4 years, HbA1c 7.7 ± 1.0%) were included. Time spent in the 70-180 mg/dl range was 70.2% [67.5; 76.9]. Time in hypoglycemia < 70 mg/dl was 2.9% [2.1; 3.4]. Eleven SIMs led to phone intervention. Original default settings were modified in all patients by the intervention of the nurses. This pilot trial suggests that the Diabeloop closed-loop system could be efficient regarding metabolic outcomes, whereas its telemedical monitoring feature could contribute to enhanced efficacy and safety. This study is registered at ClinicalTrials.gov with trial registration number NCT02987556.

  13. Reactions to a remote-controlled video-communication robot in seniors' homes: a pilot study of feasibility and acceptance.

    Science.gov (United States)

    Seelye, Adriana M; Wild, Katherine V; Larimer, Nicole; Maxwell, Shoshana; Kearns, Peter; Kaye, Jeffrey A

    2012-12-01

    Remote telepresence provided by tele-operated robotics represents a new means for obtaining important health information, improving older adults' social and daily functioning and providing peace of mind to family members and caregivers who live remotely. In this study we tested the feasibility of use and acceptance of a remotely controlled robot with video-communication capability in independently living, cognitively intact older adults. A mobile remotely controlled robot with video-communication ability was placed in the homes of eight seniors. The attitudes and preferences of these volunteers and those of family or friends who communicated with them remotely via the device were assessed through survey instruments. Overall experiences were consistently positive, with the exception of one user who subsequently progressed to a diagnosis of mild cognitive impairment. Responses from our participants indicated that in general they appreciated the potential of this technology to enhance their physical health and well-being, social connectedness, and ability to live independently at home. Remote users, who were friends or adult children of the participants, were more likely to test the mobility features and had several suggestions for additional useful applications. Results from the present study showed that a small sample of independently living, cognitively intact older adults and their remote collaterals responded positively to a remote controlled robot with video-communication capabilities. Research is needed to further explore the feasibility and acceptance of this type of technology with a variety of patients and their care contacts.

  14. Experience with a three-axis side-located controller during a static and centrifuge simulation of the piloted launch of a manned multistage vehicle

    Science.gov (United States)

    Andrews, William H.; Holleman, Euclid C.

    1960-01-01

    An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.

  15. Unmanned Aerial Vehicle/Remotely Piloted Aircraft Design Selection Based on Service-Stated Meteorological/Oceanographic Requirements

    National Research Council Canada - National Science Library

    Stanton, Robert

    1999-01-01

    ... (written in Structured Query Language) links RPA flight performance parameters to individualized METOC Elements of Measurement, a subset of a larger Joint Service METOC Requirements database table, presented elsewhere in the thesis in full...

  16. AQUILA Remotely Piloted Vehicle System Technology Demonstrator (RPV-STD) Program. Volume I. System Description and Capabilities

    Science.gov (United States)

    1979-04-01

    exhaust port. A steel flange is welded to the stack to provide an interface to the engine mat- ing bolt pattern. The exhaust end of the stack is shown...currently used by the automotive and light-aircraft industry, although of lighter weight and capacity. A solid state rectifier stack is integral to the...sensitive axis. Jput acceleration creates a force that tends to move the seismic mass. This movement, which upsets the servo’s balance, is detected by

  17. Well clear: General aviation and commercial pilots' perception of unmanned aerial vehicles in the national airspace system

    Science.gov (United States)

    Ott, Joseph T.

    The purpose of this research was to determine how different pilot types perceived the subjective concept of the Well Clear Boundary (WCB) and to observe if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS) as well as the effects of other variables. Pilots' perceptions of the WCB were collected objectively through simulator recordings and subjectively through questionnaires. Together, these metrics provided quantitative and qualitative data about pilot WCB perception. The objective results of this study showed significant differences in WCB perception between two different pilot types, as well as WCB significant differences when comparing two different intruder types (manned versus unmanned aircraft). These differences were dependent on other manipulated variables, including intruder approach angle, ownship speed, and background traffic levels. Subjectively, there were evident differences in WCB perception across pilot types; general aviation (GA) pilots appeared to trust UAS aircraft slightly more than did the more experienced Airline Transport Pilots (ATPs). Overall, it is concluded that pilots' mental models of the WCB are more easily perceived as time-based boundaries in front of ownship, while being more easily perceived as distance-based boundaries to the rear of ownship.

  18. Remote Operated Vehicle geophysical surveys on land (underground), air and submarine archaeology: General peculiarities of processing and interpretation

    Science.gov (United States)

    Eppelbaum, Lev

    2016-04-01

    The last Remote Operation Vehicles (ROV) generation - small and maneuvering vehicles with different geophysical sensors - can fly at levels of a few meters (and even tens of centimeters) over the earth's surface, to move on the earth's surface and in the inaccessible underground areas and to explore in underwater investigations (e.g., Mindel and Bingham, 2001; Rowlands and Sarris, 2006; Wilson et al., 2006; Rigaud, 2007; Eppelbaum, 2008; Patterson and Brescia, 2008; Sarris, 2008; Wang et al., 2009; Wu and Tian, 2010; Stall, 2011; Tezkan et al., 2011; Winn et al., 2012; El-Nahhas, 2013; Hadjimitsis et al., 2013; Hajiyev and Vural, 2013; Hugenholtz et al., 2013; Petzke et al., 2013; Pourier et al., 2013; Casana et al., 2014; Silverberg and Bieber, 2014). Such geophysical investigations should have an extremely low exploitation cost and can observe surface practically inaccessible archaeological sites (swampy areas, dense vegetation, rugged relief, over the areas of world recognized religious and cultural artifacts (Eppelbaum, 2010), etc.). Finally, measurements of geophysical fields at different observation levels could provide a new unique geological-geophysical information (Eppelbaum and Mishne, 2011). Let's consider ROV airborne magnetic measurements as example. The modern magnetometric equipment enables to carry out magnetic measurements with a frequency of 50 times per second (and more) that taking into account the low ROV flight speed provides a necessary density of observations. For instance, frequency of observation of 50 times per second by ROV velocity of 40 km/hour gives density of observation about 0.2 m. It is obvious that the calculated step between observation points is more than sufficient one. Such observations will allow not only reduce the influence of some small artificial sources of noise, but also to obtain some additional data necessary for quantitative analysis (some interpretation methodologies need to have observations at two levels; upward

  19. A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote Sensing

    CERN Document Server

    Gelin, Chrystel

    2013-01-01

    Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion method...

  20. Pilot-Vehicle Interface

    Science.gov (United States)

    2000-03-01

    consent response, a " Midas touch " date, subtle/slight eyebrow lifts and jaw clenches problem could occur, with commands activating have been...from the display. For flights where the outside scene is visible, it Problems such as this can result in misjudgments of remains to be determined...without degrading the probability of kill [28]. display. The subjects commented that the key problem was the ambiguity in depth judgement along Any

  1. Multidimensional Aptitude Battery-Second Edition Intelligence Testing of Remotely Piloted Aircraft Training Candidates Compared with Manned Airframe Training Candidates

    Science.gov (United States)

    2015-03-01

    assessing the general intelligence and neuropsychological aptitudes of USAF RPA pilot training candidates. Chappelle et al. obtained comprehensive...computer-based intelligence testing (Multidimensional Aptitude Battery-Second Edition [MAB-II]) and neuropsychological screening (MicroCog) on USAF MQ-1... schizophrenia , attention deficit hyperactivity disorder, and autism spectrum disorders) and not on very high functioning populations such as aviators

  2. The 2014 tanana inventory pilot: A USFS-NASA partnership to leverage advanced remote sensing technologies for forest inventory

    Science.gov (United States)

    Hans-Erik Andersen; Chad Babcock; Robert Pattison; Bruce Cook; Doug Morton; Andrew. Finley

    2015-01-01

    Interior Alaska (approx. 112 million forested acres in size) is the last remaining forested area within the United States where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate the utility of state-of-the-art...

  3. Baseline knowledge on vehicle safety and head restraints among Fleet Managers in British Columbia Canada: a pilot study.

    Science.gov (United States)

    Desapriya, Ediriweera; Hewapathirane, D Sesath; Peiris, Dinithi; Romilly, Doug; White, Marc

    2011-09-01

    Whiplash is the most common injury type arising from motor vehicle collisions, often leading to long-term suffering and disability. Prevention of such injuries is possible through the use of appropriate, correctly positioned, vehicular head restraints. To survey the awareness and knowledge level of vehicle fleet managers in the province of British Columbia, Canada, on the topics of vehicle safety, whiplash injury, and prevention; and to better understand whether these factors influence vehicle purchase/lease decisions. A survey was administered to municipal vehicle fleet managers at a professional meeting (n = 27). Although many respondents understood the effectiveness of vehicle head restraints in the prevention of whiplash injury, the majority rarely adjusted their own headrests. Fleet managers lacked knowledge about the seriousness of whiplash injuries, their associated costs for Canada's healthcare system, and appropriate head restraint positions to mitigate such injuries. The majority of respondents indicated that fleet vehicle purchase/lease decisions within their organization did not factor whiplash prevention as an explicit safety priority. There is relatively little awareness and enforcement of whiplash prevention strategies among municipal vehicle fleet managers.

  4. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    Science.gov (United States)

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  5. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study.

    Science.gov (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto

    2006-03-01

    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  6. Testing of an underwater remotely-operated vehicle in the basins of the Cattenom nuclear power generation center

    International Nuclear Information System (INIS)

    Delfour, D.; Khakanski, M.; Nepveu, C.; Schmitt, J.

    1993-05-01

    An underwater robot was tested in the basins of the Cattenom Nuclear Power Generation Center fed with raw water from the Moselle River. The purpose was to inspect wall biofouling without interrupting water circulation. The ROV is a light, compact device, remotely controlled by cable and equipped with video cameras. The video recordings made were used to compare conditions in a basin cleaned the previous month by divers with those in a basin which had not been cleaned for a year. Manual cleaning by divers is an effective method, leaving Zebra Mussels on less than 5% of the wall surfaces. On the other hand, the floor of the basin was observed to be covered with fine sediment, vegetal matters and shells washed in with the Moselle River water. In the basin which had not been cleaned, the entire wall surface was covered with very dense tufts of tubular organisms (Hydrozoa Cordylophora) and zebra mussels. The tests have provided elements for definition of an inspection procedure and have given rise to suggestions for complementary equipment. (authors). 5 figs., 9 photos

  7. ACEC: remote inspection, remote intervention, autonomous vehicle

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Early in 1979, the accident at the TMI-2 nuclear power station focused attention on the lack of inspection and intervention means in containments where high radiation levels do not allow the entrance of humans. Recent years have seen a trend towards significant developments in the application of robotic technology to maintenance and inspection in nuclear facilities. This paper presents the general development concept and the technical specifications of a mobile robot [fr

  8. Unmanned Aerial Vehicle (UAV-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex

    Directory of Open Access Journals (Sweden)

    Salvatore F. DI GENNARO

    2016-07-01

    Full Text Available Foliar symptoms of grapevine leaf stripe disease (GLSD, a disease within the esca complex are linked to drastic alteration of photosynthetic function and activation of defense responses in affected grapevines several days before the appearance of the first visible symptoms on leaves. The present study suggests a methodology to investigate the relationships between high-resolution multispectral images (0.05 m/pixel acquired using an Unmanned Aerial Vehicle (UAV, and GLSD foliar symptoms monitored by ground surveys. This approach showed high correlation between Normalized Differential Vegetation Index (NDVI acquired by the UAV and GLSD symptoms, and discrimination between symptomatic from asymptomatic plants. High-resolution multispectral images were acquired during June and July of 2012 and 2013, in an experimental vineyard heavily affected by GLSD, located in Tuscany (Italy, where vines had been surveyed and mapped since 2003. Each vine was located with a global positioning system, and classified for appearance of foliar symptoms and disease severity at weekly intervals from the beginning of each season. Remote sensing and ground observation data were analyzed to promptly identify the early stages of disease, even before visual detection. This work suggests an innovative methodology for quantitative and qualitative analysis of spatial distribution of symptomatic plants. The system may also be used for exploring the physiological bases of GLSD, and predicting the onset of this disease. 

  9. Remote sensing of deep hermatypic coral reefs in Puerto Rico and the U.S. Virgin Islands using the Seabed autonomous underwater vehicle

    Science.gov (United States)

    Armstrong, Roy A.; Singh, Hanumant

    2006-09-01

    Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.

  10. An inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA)

    Science.gov (United States)

    Wildmann, N.; Kaufmann, F.; Bange, J.

    2014-09-01

    The measurement of water vapour concentration in the atmosphere is an ongoing challenge in environmental research. Satisfactory solutions exist for ground-based meteorological stations and measurements of mean values. However, carrying out advanced research of thermodynamic processes aloft as well, above the surface layer and especially in the atmospheric boundary layer (ABL), requires the resolution of small-scale turbulence. Sophisticated optical instruments are used in airborne meteorology with manned aircraft to achieve the necessary fast-response measurements of the order of 10 Hz (e.g. LiCor 7500). Since these instruments are too large and heavy for the application on small remotely piloted aircraft (RPA), a method is presented in this study that enhances small capacitive humidity sensors to be able to resolve turbulent eddies of the order of 10 m. The sensor examined here is a polymer-based sensor of the type P14-Rapid, by the Swiss company Innovative Sensor Technologies (IST) AG, with a surface area of less than 10 mm2 and a negligible weight. A physical and dynamical model of this sensor is described and then inverted in order to restore original water vapour fluctuations from sensor measurements. Examples of flight measurements show how the method can be used to correct vertical profiles and resolve turbulence spectra up to about 3 Hz. At an airspeed of 25 m s-1 this corresponds to a spatial resolution of less than 10 m.

  11. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  12. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  13. The Support of Underwater Works with the Use of Remotely Operated Vehicles On the Example of Works Conducted On the Wreck of the Fishing Boat WŁA-127

    Directory of Open Access Journals (Sweden)

    Dawidziuk Marek

    2017-03-01

    Full Text Available The article demonstrates use of underwater remotely operated vehicles during an underwater visual inspection of a sunken vessel. The presented tasks were carried out in the course of underwater works performed from a Polish navy rescue vessel on the fishing boat WŁA-127. The discussed examples include a visual inspection of the sunken vessel and the support offered to Polish Navy rescue divers as they carried out underwater works.

  14. Tracked vehicles in hazardous environments

    International Nuclear Information System (INIS)

    Jones, S.; Walton, P.J.

    1993-01-01

    A programme of remote inspections has been conducted on the Magnox steel reactor pressure vessel at Trawsfynydd Power Station using climbing vehicles. Tracked remotely operated vehicles supported the inspection programme by assisting with the delivery and recovery of the climbing vehicles and facilitating the use of various accessory packages. This paper presents details of the support project, the tracked vehicles and of the uses made of them during the inspection programme. (author)

  15. Incidence and characteristics of low-speed vehicle run over events in rural and remote children aged 0-14 years in Queensland: an 11 year (1999-2009) retrospective analysis.

    Science.gov (United States)

    Griffin, Bronwyn R; Kimble, Roy M; Watt, Kerrianne; Shields, Linda

    2018-04-01

    The main objective of this study is to describe incidence rates of low-speed vehicle run-over (LSVRO) events among children aged 0-14 years residing in Queensland from 1999 to 2009. A second objective was to describe the associated patterns of injury, with respect to gender, age group, severity, characteristics (host, vehicle and environment), and trends over time in relation to geographical remoteness. Final results are hoped to inform prevention policies. In this statewide, retrospective, population-based study, data were collected on LSVRO events that occurred among children aged 0-14 years in Queensland from 1999 to 2009 from all relevant data sources across the continuum of care, and manually linked to obtain the most comprehensive estimate possible of the magnitude and nature of LSVRO events to date. Crude incidence rates were calculated separately for males and females, for fatal events, non-fatal events (hospital admissions and non-admissions, respectively), and for all LSVRO events, for each area of geographical remoteness (major cities, inner regional, outer regional, remote/very remote). Relative risks and 95% confidence interval were calculated, and trends over time were examined. Data on host, injury and event characteristics were also obtained to investigate whether these characteristics varied between areas of remoteness. Incidence rates were lowest among children (0-14 years) living in major cities (13.8/100 000/annum, with the highest recorded incidence in outer regional areas (incidence rate =42.5/100 000/annum). Incidence rates were higher for children residing outside major cities for both males and females, for every age group, for each of the 11 years of the study, and consequences of LSVRO events were worse. Young children aged 0-4 years were identified as those most at risk for these events, regardless of geographical location. Differences were observed as a function of remoteness category in relation to injury characteristics (eg injury

  16. Human-factors-based implementation of the remote characterization system high-level control station

    International Nuclear Information System (INIS)

    Noakes, M.W.; Richardson, B.S.; Rowe, J.C.; Draper, J.V.; Sandness, G.R.

    1993-01-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of the numerous US Department of Energy (DOE) and US Department of Defense waste disposal sites. DOE, through its Environmental Restoration and Waste Management Robotics and Technology Development Program, has developed the Remote Characterization System (RCS) to address the needs of remote subsurfacecharacterization. The RCS consists of a low-metal-content (low-metallic-signature) remotely piloted vehicle, a high-level control station (HLCS) where operators can remotely control the vehicle and analyze real-time data from sensors, and an array of sensors that can be chosen to meet the survey task at hand. Communication between the vehicle and the base station is handled by a radio link. Site mapping is made possible through the use of geopositioning satellite data. The primary mode of vehicle operation is teleoperation, but provision has been made for semiautonomous or supervisory control that allows for automated sitesurvey on simple sites. Data analysis and display is supported for both real-time observation and postprocessing of data. The particular emphasis of this paper documents the human-factors-based design influences on the HLCS and describes the design in detail

  17. Full-color wide field-of-view holographic helmet-mounted display for pilot/vehicle interface development and human factors studies

    Science.gov (United States)

    Burley, James R., II; LaRussa, Joseph A.

    1990-10-01

    A Helmet-Mounted Display (HMD) which utilizes highly efficient trichromatic holographic elements has been designed to support pilot vechicle interface development and human factors studies at the NASA-Langley Research Center. While the optics are fully color corrected, the miniature CRT's are monochromatic. This design provides an upgrade path to full-color when miniature display technology matures to color. The optical design conforms to the helmet shape and provides a 50 degree field-of-view (FOV) to each eye. Built-in adjustments allow each ocular to be independently moved so that the overall horizontal FOV may be varied from 50 degrees to 100 degrees with a corresponding change in the stereo overlap region. The helmet design and interpupillary adjustment allow for the 5th through 95th percentile male and female wearer. Total head-borne weight is approximately 4.2 pounds. The high-resolution monochromatic CRTs are driven by a set of multisync electronics with a maximum video bandwidth of 88 Mhz and supports bith raster and stroke modes. The electronics are designed to be compatiable with the Silicon Graphics IRIS 4D graphics workstations and the ADAGE 340 stroke graphics computer. A Polhemus magnetic tracking device is used to determine the helmet line-of-sight. The helmet will be used to develop innovative new display concepts for the F- 1 8 High-Alpha Research Vehicle (HARV) which make use of the unique display properties of the HMD. Pictorial displays, which convey the appropriate information intuitively, are envisioned. Human factors studies are also planned to evaluate the utility of stereopsis and determine the FOV requirements for different tasks. Concepts proven in the simulator will be carried to flight test in 1993 with a lighter weight, "hardened" version of this HMD design.

  18. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    Science.gov (United States)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry

  19. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  20. MODELLING OF DECISION MAKING OF UNMANNED AERIAL VEHICLE'S OPERATOR IN EMERGENCY SITUATIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: lack of recommendation action algorithm of UAV operator in emergency situations; decomposition of the process of decision making (DM by UAV’s Operator in emergency situations; development of the structure of distributed decision support system (DDSS for remotely piloted aircraft; development of a database of local decision support system (DSS operators Remotely Piloted Aircraft Systems (RPAS; working-out of models DM by UAV’s Operator. Methods: Algoritm of actions of UAV operator by Wald criterion, Laplace criterion, Hurwitz criterion. Results: The program "UAV_AS" that gives to UAV operator recommendations on how to act in case of emergency. Discussion: The article deals with the problem of Unmanned Aerial Vehicles (UAV flights for decision of different tasks in emergency situation. Based on statistical data it was analyzing the types of emergencies for unmanned aircraft. Defined sequence of actions UAV operator and in case of emergencies.

  1. Unmanned Aerial Vehicles unique cost estimating requirements

    Science.gov (United States)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  2. Teleoperación de un vehículo remoto en un medio de acceso inalámbrico mediante el uso de una interfaz háptica Remote vehicle teleoperation through a haptic interface

    Directory of Open Access Journals (Sweden)

    Arys Carrasquilla Batista

    2012-11-01

    Full Text Available La teleoperación permite que el ser humano pueda llevar a cabo ciertas tareas en lugares muy lejanos, de difícil acceso o de condiciones hostiles para la presencia de un operador. Con este proyecto se logró teleoperar un vehículo remoto por medio del protocolo de comunicación Bluetooth, para lo cual se adaptó una interfaz háptica (Novint Falcon. Desde la interfaz, el operador puede enviar la consigna de movimiento y, además, obtener sensaciones conforme a la información de los sensores incluidos al sistema. Como vehículo remoto se utilizó un Lego Mindstorms con capacidad de comunicación Bluetooth, al cual se incorporó un sensor de contacto y otro de ultrasonido con el fin de percibir en la interfaz háptica la retroalimentación de fuerzas. A una computadora estándar se le dio capacidad de comunicación Bluetooth por medio de un adaptador USB, desde la cual se ejecuta un programa creado en C++ para controlar las acciones de la interfaz háptica, enviar los comandos de movimiento al vehículo y recibir la información de los sensores, la cual reproduce sensaciones al operador.Teleoperation allows human beings to carry out certain tasks in places far away, inaccessible or with hostile conditions for the presence of an operator. In this project a remote vehicle is teleoperated using a bluetooth wireless connection, to accomplish this an haptic interface (Novint Falcon was used. The operator can give movement instructions to the vehicle and obtain sensations, according to the information received from the sensors connected to the system. The remote vehicle was a Lego Mindstorms with bluetooth communication capabilities, a touch sensor and ultrasonic sensor were included in order to perceive reflection of forces through the haptic interface. A USB adapter for bluetooth communication was added to a standard computer; a program in C++ is executed over this computer to control the haptic interface, send movement commands to the vehicle and

  3. Enlisted or Officer Drone Pilots

    Science.gov (United States)

    2010-04-01

    the property of the United States government. AU/ACSC/Rafnson, Gary B/AY10 3 Abstract This paper compares remotely piloted aircraft— drones ...operations in both the US Army and US Air Force. It argues that officers should continue to pilot Air Force drones because of the increased risks and

  4. Influence of Vehicle Speed on the Characteristics of Driver's Eye Movement at a Highway Tunnel Entrance during Day and Night Conditions: A Pilot Study.

    Science.gov (United States)

    Qin, Li; Dong, Li-Li; Xu, Wen-Hai; Zhang, Li-Dong; Leon, Arturo S

    2018-04-02

    The aim of this study was to investigate how vehicle speed influences the characteristics of driver's eye movement at highway tunnel entrances during day and night. In this study, six drivers' eye movement data (from 200 m before tunnel entrance to 200 m inside tunnel entrance) under five predetermined vehicle speeds (40, 50, 60, 70 and 80 km/h) in the daytime and three predetermined vehicle speeds (40, 60 and 80 km/h) in the nighttime were recorded using the non-intrusive Dikablis Professional eye-tracking system. Pupil size, the average fixation duration time and the average number of fixation were analyzed and then the influence of the vehicle speed on these parameters was evaluated by means of IBM SPSS Statistics 20.0. The results for pupil size in daytime increased when approaching the tunnel entrance, while as for nighttime, pupil size decreased when approaching the tunnel entrance and then increased after entering the tunnel. The pupil size in daytime has a significant negative correlation with vehicle speed, while the pupil size in nighttime did not show a significant association with vehicle speed. Furthermore, the average fixation duration in daytime increased when entering the tunnel, and had a significant negative correlation with vehicle speed. Also, the average number of fixations in daytime decreased when entering the tunnel and has a significant negative correlation with vehicle speed. However, the average fixation duration and the average number of fixations in nighttime did not show any significant association with vehicle speed. Moreover, limitations and future directions of the study are discussed for the further investigation.

  5. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  6. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  7. Advanced technology mobile robotics vehicle fleet

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-03-01

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  8. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  9. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-07-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  10. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    Mc Govern, D.E.

    1987-01-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  11. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-06-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided. 4 refs., 1 fig., 1 tab

  12. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  13. Remote controlled mover for disposal canister transfer

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  14. Remote controlled mover for disposal canister transfer

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  15. Smart limbed vehicles for naval applications. Part I. Performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, A.; Wood, L.

    1976-09-30

    Research work in smart, unmanned limbed vehicles for naval warfare applications performed during the latter part of FY76 and FY76T by the Special Studies Group of the LLL Physics Department for the Office of Naval Research is reported. Smart water-traversing limbed remotely navigated vehicles are interesting because: they are the only viable small vehicle usable in high sea states; they are small and work on the ocean surface, they are much harder to detect than any other conventional craft; they have no human pilot, are capable of high-g evasion, and will continue to operate after direct hits that would have crippled a human crew; they have the prospect of providing surface platforms possessing unprecedented speed and maneuverability; unlike manned information-gathering craft, they impose almost no penalty for missions in excess of 10 hours (no need to rotate shifts of crewmen, no food/lavatory requirements, etc.) and, in their ''loitering mode'', waterbugs could perhaps perform their missions for days to weeks; they are cheap enough to use for one-way missions; they are mass-producible; they are inherently reliable--almost impossible to sink and, in the event of in-use failure, the vehicle will not be destroyed; they maximally exploit continuing technological asymmetries between the U.S. and its potential opponents; and they are economically highly cost-effective for a wide spectrum of Navy missions. (TFD)

  16. Satellite tagging, remote sensing, and autonomous vehicles reveal interactions between physiology and environment in a North Pacific top marine predator species

    Science.gov (United States)

    Pelland, N.; Sterling, J.; Springer, A.; Iverson, S.; Johnson, D.; Lea, M. A.; Bond, N. A.; Ream, R.; Lee, C.; Eriksen, C.

    2016-02-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. This work describes recent publications and ongoing studies of northern fur seal (NFS) foraging ecology during their 8-month migration. Satellite-tracked movement and dive behavior in the North Pacific ocean was compared to remotely sensed data, atmospheric reanalysis, autonomous in situ ocean sampling, and animal borne temperature and salinity data. Integration of these data demonstrates how reproductive fitness, physiology, and environment shape NFS migratory patterns. Seal mass correlates with dive ability and thus larger males exploit prey aggregating at the base of the winter mixed-layer depth in the Bering Sea and interior northern North Pacific Ocean. Smaller adult females migrate to the Gulf of Alaska and California Current ecosystems - where surface wind speeds decline, mixed-layer depths shoal, and coastal production is fueled by upwelling, coastal capes, and eddies - and less commonly to the Transitional Zone Chlorophyll Front, where fronts and eddies may concentrate prey. Surface wind speed and direction influence movement behavior of all age and size classes, though to a greater degree in the smaller pups and adult females than adult males. For naïve and physiologically less-capable pups, the timing and strength of autumn winds during migratory dispersal may play a role in shaping migratory routes and the environmental conditions faced by pups along these routes. In combination with other factors such as pup condition, this may play a role in interannual variations in overwinter survivorship.

  17. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  18. Remote Research

    CERN Document Server

    Tulathimutte, Tony

    2011-01-01

    Remote studies allow you to recruit subjects quickly, cheaply, and immediately, and give you the opportunity to observe users as they behave naturally in their own environment. In Remote Research, Nate Bolt and Tony Tulathimutte teach you how to design and conduct remote research studies, top to bottom, with little more than a phone and a laptop.

  19. Oceanids command and control (C2) data system - Marine autonomous systems data for vehicle piloting, scientific data users, operational data assimilation, and big data

    Science.gov (United States)

    Buck, J. J. H.; Phillips, A.; Lorenzo, A.; Kokkinaki, A.; Hearn, M.; Gardner, T.; Thorne, K.

    2017-12-01

    The National Oceanography Centre (NOC) operate a fleet of approximately 36 autonomous marine platforms including submarine gliders, autonomous underwater vehicles, and autonomous surface vehicles. Each platform effectivity has the capability to observe the ocean and collect data akin to a small research vessel. This is creating a growth in data volumes and complexity while the amount of resource available to manage data remains static. The OceanIds Command and Control (C2) project aims to solve these issues by fully automating the data archival, processing and dissemination. The data architecture being implemented jointly by NOC and the Scottish Association for Marine Science (SAMS) includes a single Application Programming Interface (API) gateway to handle authentication, forwarding and delivery of both metadata and data. Technicians and principle investigators will enter expedition data prior to deployment of vehicles enabling automated data processing when vehicles are deployed. The system will support automated metadata acquisition from platforms as this technology moves towards operational implementation. The metadata exposure to the web builds on a prototype developed by the European Commission supported SenseOCEAN project and is via open standards including World Wide Web Consortium (W3C) RDF/XML and the use of the Semantic Sensor Network ontology and Open Geospatial Consortium (OGC) SensorML standard. Data will be delivered in the marine domain Everyone's Glider Observatory (EGO) format and OGC Observations and Measurements. Additional formats will be served by implementation of endpoints such as the NOAA ERDDAP tool. This standardised data delivery via the API gateway enables timely near-real-time data to be served to Oceanids users, BODC users, operational users and big data systems. The use of open standards will also enable web interfaces to be rapidly built on the API gateway and delivery to European research infrastructures that include aligned

  20. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    Science.gov (United States)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  1. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  2. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; hide

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  3. Investigation of the stochastic nature of wave processes for renewable resources management: a pilot application in a remote island in the Aegean sea

    Science.gov (United States)

    Moschos, Evangelos; Manou, Georgia; Georganta, Xristina; Dimitriadis, Panayiotis; Iliopoulou, Theano; Tyralis, Hristos; Koutsoyiannis, Demetris; Tsoukala, Vicky

    2017-04-01

    The large energy potential of ocean dynamics is not yet being efficiently harvested mostly due to several technological and financial drawbacks. Nevertheless, modern renewable energy systems include wave and tidal energy in cases of nearshore locations. Although the variability of tidal waves can be adequately predictable, wind-generated waves entail a much larger uncertainty due to their dependence to the wind process. Recent research has shown, through estimation of the wave energy potential in coastal areas of the Aegean Sea, that installation of wave energy converters in nearshore locations could be an applicable scenario, assisting the electrical network of Greek islands. In this context, we analyze numerous of observations and we investigate the long-term behaviour of wave height and wave period processes. Additionally, we examine the case of a remote island in the Aegean sea, by estimating the local wave climate through past analysis data and numerical methods, and subsequently applying a parsimonious stochastic model to a theoretical scenario of wave energy production. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  4. Piloting the addition of contingency management to best practice counselling as an adjunct treatment for rural and remote disordered gamblers: study protocol

    Science.gov (United States)

    Christensen, Darren R; Witcher, Chad S G; Leighton, Trent; Hudson-Breen, Rebecca; Ofori-Dei, Samuel

    2018-01-01

    Introduction Problematic gambling is a significant Canadian public health concern that causes harm to the gambler, their families, and society. However, a significant minority of gambling treatment seekers drop out prior to the issue being resolved; those with higher impulsivity scores have the highest drop-out rates. Consequently, retention is a major concern for treatment providers. The aim of this study is to investigate the efficacy of internet-delivered cognitive behavioural therapy (CBT) and internet-delivered CBT and contingency management (CM+) as treatments for gambling disorder in rural Albertan populations. Contingency management (CM) is a successful treatment approach for substance dependence that uses small incentives to reinforce abstinence. This approach may be suitable for the treatment of gambling disorder. Furthermore, internet-delivered CM may hold particular promise in rural contexts, as these communities typically struggle to access traditional clinic-based counselling opportunities. Methods and analysis 54 adults with gambling disorder will be randomised into one of two conditions: CM and CBT (CM+) or CBT alone (CBT). Gambling will be assessed at intake, every treatment session, post-treatment, and follow-up. The primary outcome measures are treatment attendance, gambling abstinence, gambling, gambling symptomatology, and gambling urge. In addition, qualitative interviews assessing study experiences will be conducted with the supervising counsellor, graduate student counsellors, study affiliates, and a subset of treatment seekers. This is the first study to use CM as a treatment for gambling disorder in rural and remote populations. Ethics and dissemination This study was approved by the University of Lethbridge’s Human Subject Research Committee (#2016–080). The investigators plan to publish the results from this study in academic peer-reviewed journals. Summary information will be provided to the funder. Trial registration number NCT

  5. Piloting the addition of contingency management to best practice counselling as an adjunct treatment for rural and remote disordered gamblers: study protocol.

    Science.gov (United States)

    Christensen, Darren R; Witcher, Chad S G; Leighton, Trent; Hudson-Breen, Rebecca; Ofori-Dei, Samuel

    2018-04-03

    Problematic gambling is a significant Canadian public health concern that causes harm to the gambler, their families, and society. However, a significant minority of gambling treatment seekers drop out prior to the issue being resolved; those with higher impulsivity scores have the highest drop-out rates. Consequently, retention is a major concern for treatment providers. The aim of this study is to investigate the efficacy of internet-delivered cognitive behavioural therapy (CBT) and internet-delivered CBT and contingency management (CM+) as treatments for gambling disorder in rural Albertan populations. Contingency management (CM) is a successful treatment approach for substance dependence that uses small incentives to reinforce abstinence. This approach may be suitable for the treatment of gambling disorder. Furthermore, internet-delivered CM may hold particular promise in rural contexts, as these communities typically struggle to access traditional clinic-based counselling opportunities. 54 adults with gambling disorder will be randomised into one of two conditions: CM and CBT (CM+) or CBT alone (CBT). Gambling will be assessed at intake, every treatment session, post-treatment, and follow-up. The primary outcome measures are treatment attendance, gambling abstinence, gambling, gambling symptomatology, and gambling urge. In addition, qualitative interviews assessing study experiences will be conducted with the supervising counsellor, graduate student counsellors, study affiliates, and a subset of treatment seekers. This is the first study to use CM as a treatment for gambling disorder in rural and remote populations. This study was approved by the University of Lethbridge's Human Subject Research Committee (#2016-080). The investigators plan to publish the results from this study in academic peer-reviewed journals. Summary information will be provided to the funder. NCT02953899; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in

  6. Evolution of submarine eruptive activity during the 2011-2012 El Hierro event as documented by hydroacoustic images and remotely operated vehicle observations

    Science.gov (United States)

    Somoza, L.; González, F. J.; Barker, S. J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J. T.; Palomino, D.

    2017-08-01

    , especially during explosive phases. This work shows the results of a study carried out during the eruption of the submarine volcano occurred during 2011-2012 1 km offshore El Hierro Island, Canary Islands, Spain. The submarine volcano emitted periodically large bubbles of gas, ashes, and giant steamed lava balloons that floated in the sea surface before sinking. These products identified later after the eruption using a submersible vehicle forming huge accumulations of lava balloons on the seafloor. More quiet periods erupted toothpaste lava from secondary cones which formed stalactite-like formations. Massive accumulation of blocks on the summit evidence intermittent violent explosions occurred when the cooling of lava progressively close the vent accumulating gas that finally exploded. The final stage of this submarine eruption consisted in the formation of chimneys by liquid-like lavas mixed with hydrothermal fluids forming 5-10 m tall "hornitos" structures at the summit of the volcano at 89 m depth but without emerging as it was expected.

  7. Remote monitoring of inhaled bronchodilator use and weekly feedback about asthma management: an open-group, short-term pilot study of the impact on asthma control.

    Directory of Open Access Journals (Sweden)

    David Van Sickle

    preventive practices. CONCLUSIONS: Weekly email reports and access to online charts summarizing remote monitoring of inhaled bronchodilator frequency and location were associated with improved asthma control and a decline in day-to-day asthma symptoms.

  8. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  9. Robotic vehicle with multiple tracked mobility platforms

    Science.gov (United States)

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  10. Remote Decommissioning Experiences at Sellafield

    International Nuclear Information System (INIS)

    Brownridge, M.

    2006-01-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  11. A Framework for Diagnosis of Critical Faults in Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens; Adrian, Jens

    2014-01-01

    , and based on a large number of data logged during flights, diagnostic methods are employed to diagnose faults and the performance of these fault detectors are evaluated against light data. The paper demonstrates a significant potential for reducing the risk of unplanned loss of remotely piloted vehicles......Unmanned Aerial Vehicles (UAVs) need a large degree of tolerance towards faults. If not diagnosed and handled in time, many types of faults can have catastrophic consequences if they occur during flight. Prognosis of faults is also valuable and so is the ability to distinguish the severity...... of the different faults in terms of both consequences and the frequency with which they appear. In this paper flight data from a fleet of UAVs is analysed with respect to certain faults and their frequency of appearance. Data is taken from a group of UAV's of the same type but with small differences in weight...

  12. Wyoming CV Pilot Traveler Information Message Sample

    Data.gov (United States)

    Department of Transportation — This dataset contains a sample of the sanitized Traveler Information Messages (TIM) being generated by the Wyoming Connected Vehicle (CV) Pilot. The full set of TIMs...

  13. The TMI-2 remote technology program

    International Nuclear Information System (INIS)

    Bengel, P.R.

    1986-01-01

    Since the accident at Three Mile Island Unit 2 (TMI-2), an aggressive approach has been pursued in developing the tools needed for the recovery of the plant. The plant's owner has embarked on a systematic program to develop remote equipment. The program developed conceptual and then physical equipment. The remote reconnaissance vehicles (RRVs) and the remote working vehicle (RWV) span the requirements of the recovery program from the ability to perform radiological and video surveys to heavy-duty decontamination and demolition work. 4 figs

  14. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  15. The JASON Remotely Operated Vehicle System

    Science.gov (United States)

    1993-02-01

    University of Rhode Island , Mote Marine Laboratory, the Harbor Branch Foundation, the Great Lake Studies Group at the University of Wisconsin, and the... Clipperton Fracture Zone to 120 N., Geo-Marine Letters. v. 8, p. 131-138. I 38. Haymon, R., Fornari, D., Edwards, M., Carbotte, S., Wright, D. and Macdonald...Science Library FRANCE University of Rhode Island Narragansett Bay Campus3 Narragansett, RI 02882 I I0272-101 REPORT DOCUMENTATIO RM N HI-33 2. 3

  16. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    Science.gov (United States)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A

  17. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  18. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  19. Pilot Implementations

    DEFF Research Database (Denmark)

    Manikas, Maria Ie

    by conducting a literature review. The concept of pilot implementation, although commonly used in practice, is rather disregarded in research. In the literature, pilot implementations are mainly treated as secondary to the learning outcomes and are presented as merely a means to acquire knowledge about a given...... objective. The prevalent understanding is that pilot implementations are an ISD technique that extends prototyping from the lab and into test during real use. Another perception is that pilot implementations are a project multiple of co-existing enactments of the pilot implementation. From this perspective......This PhD dissertation engages in the study of pilot (system) implementation. In the field of information systems, pilot implementations are commissioned as a way to learn from real use of a pilot system with real data, by real users during an information systems development (ISD) project and before...

  20. Vehicle for surface decontamination by electropolishing

    International Nuclear Information System (INIS)

    Maury, A.

    1984-01-01

    The invention concerns a remote controlled, electric powered vehicle for continuous decontamination of several supports forming an angle for instance the bottom and the walls of nuclear swimming pools. The vehicle is provided with all the means required for electropolishing (electrolyte, pumps, effluent recovery etc...) and two electropolishing units, one under the vehicle for horizontal surface treatment the other adjustable in height on a bracket for vertical surface treatment [fr

  1. The Glass Ceiling for Remotely Piloted Aircraft

    Science.gov (United States)

    2013-08-01

    who by valorous ways become princes , like these men, acquire a prin- cipality with difficulty, but they keep it with ease. —Niccolò Machiavelli , 1513...Though written 500 years ago, Machiavelli’s The Prince remains a seminal treatise on the art of acquiring and maintaining politi-cal power. The book

  2. Remote Live Invigilation: A Pilot Study

    Science.gov (United States)

    Lilley, Mariana; Meere, Jonathan; Barker, Trevor

    2016-01-01

    There has been a growth in online distance learning programmes in Higher Education. This has led to an increased interest in different approaches to the assessment of online distance learners, including how to enhance student authentication and reduce the potential for cheating in online tests. One potential solution for this is the use of remote…

  3. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  4. Remote Inspection, Measurement and Handling for LHC

    CERN Document Server

    Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

    2007-01-01

    Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

  5. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  6. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  7. Pilot-model measurements of pilot responses in a lateral-directional control task

    Science.gov (United States)

    Adams, J. J.

    1976-01-01

    Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.

  8. Software Development for Remote Control and Firing Room Displays

    Science.gov (United States)

    Zambrano Pena, Jessica

    2014-01-01

    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  9. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  10. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  11. Green vehicle : slippery turn

    International Nuclear Information System (INIS)

    Rousseau, C.

    2002-01-01

    This presentation describes the many challenges facing the development and commercialization of environmentally friendly vehicles in Canada from scooters, to bicycles to motorcycles, as experienced by Zapworld, a leader in the design, manufacture and marketing of electric bicycles and power-assist kits. There are many environmental advantages to small electric vehicles, however, the distribution network for this new product is virtually non-existent. Zap-Quebec, a subsidiary of Zapworld, has made efforts to bring notoriety to the product by targeting aging cycle enthusiasts and promoting the electric bicycle as viable transportation means for short commutes, for camping, to get around factories, and for security guards. Since September 2000 independent dealers in Montreal have participated in a pilot project in which more than 15,000 electric bikes have been made available for rent as a pleasure vehicle for tourists. No accidents have ever been reported and the feedback has been positive. It was emphasized that legislators must understand the value behind small electric vehicles and draft legislation accordingly. tabs., figs

  12. Constraint Embedding for Vehicle Suspension Dynamics

    OpenAIRE

    Jain Abhinandan; Kuo Calvin; Jayakumar Paramsothy; Cameron Jonathan

    2016-01-01

    The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with ...

  13. Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV dengan Tiga Rotor

    Directory of Open Access Journals (Sweden)

    Darmawan Rasyid Hadi Saputra

    2013-03-01

    Full Text Available Unmanned Aerial Vehicle atau yang biasa dikenal dengan istilah UAV  merupakan sebuah sistem penerbangan/ pesawat tanpa pilot yang berada di dalam pesawat tersebut. UAV dapat dikendalikan dengan menggunakan remote dari jarak jauh, diprogram dengan perintah tertentu, atau bahkan dengan sistem pengendalian otomatis yang lebih kompleks. Aplikasi dari teknologi UAV pun beragam mulai dari tugas militer hingga pengamatan udara. Dalam penelitian ini, sebuah UAV akan dikembangkan dengan tiga buah rotor dan satu buah motor servo di bagian belakang UAV. Perancangan model menggunakan software CATIA dengan batasan dimensi (panjang × lebar maksimum 75 × 75 cm dan massa < 2 kg. Analisis struktur rangka dilakukan untuk menguji kekuatan rangka ketika terbang dan membawa beban, dengan menggunakan metode elemen hingga dan kriteria kegagalan Von-Misses. Dalam proses pengerjaan, rancangan dari CATIA dan analisis yang telah dilakukan dalam perancangan tersebut akan digunakan. Hasil yang didapat berupa UAV yang memiliki struktur rangka dengan defleksi maksimum 3,67 mm pada rangka tengah yang berbahan acrylic. Dalam pengujian di lapangan, UAV dapat melakukan gerak roll, pitch, dan yaw yang dikendalikan melalui remote control. Waktu operasi maksimum yang dapat dilakukan adalah selama 7 menit 43 detik.

  14. 10. International commercial vehicle congress; 10. Internationale Fachtagung Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the International Conference 'Commercial Vehicles' at 27th to 28th May, 2009 in Neu-Ulm (Federal Republic of Germany), the following lectures were held: (1) Innovation management and product development: 'Amway from the crisis' (U. Seiffert); (2) Where does the energy the diesel go? Or: How is the consumption-optimal truck arranged? (M. Hilgers); (3) Contribution of truck tires for future environmental challenges (C. Lerner); (4) Aerodynamics of commercial vehicles - often underestimated and the future nevertheless? (S. Kopp); (5) Fuel conservation by means of optimization of generation and processing of compressed air (C. Wilken, F. van Son); (6) In the pilot test - increased consumption by retarder? (U. Steininger et al.); (7) Driver information system and driver assistance system for an energy efficient planning and processing of transport of goods by means of trucks (D. Hillesheim et al.); (8) A systematic testing of vehicle functions from the view of the total vehicle (C. Hellberg); (9) Increase of the quality of diagnosis of complex, mechanotronic vehicle systems by means of model based diagnosis with on-board detection and off-board evaluation (M. Kokes et al.); (10) Utilization of a vehicle simulator for the evaluation of comfort of MKS simulations of heavy trucks (T. Ille et al.); (11) System simulation and testing in the trailer development (M. Wildhagen); (12) What types of challenges for the simulation are posed from the requirements for ESP in commercial vehicles, coming into effect from 2010? (H.-J. Witter, E. Schmidt); (13) A method for evaluating the fuel saving potential of different hybrid steering system configurations in heavy commercial vehicles (U. Wiesel et al.); (14) Benefits of a hybrid electric architecture on medium commercial vehicles (M. Aimo Boot, L. Consano); (15) Lithium ion batteries for hybrid busses and hybrid commercial vehicles - being ready for the broad mass? (P. Pichler, M. Kapaun); (16) Electric

  15. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  16. Vehicle regulations.

    NARCIS (Netherlands)

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  17. A teleoperated system for remote site characterization

    International Nuclear Information System (INIS)

    Sandness, G.A.; Richardson, B.S.; Pence, J.

    1993-08-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. To address the need to minimize the exposure of on-site personnel to the hazards associated with such sites, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by an radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS). The sensors are environmentally protected, internally cooled, and interchangeable based on mission requirements. To date, the RCS has been successfully tested at the Oak Ridge National Laboratory and the Idaho National Engineering Laboratory

  18. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    Science.gov (United States)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  19. Pilot implementation

    DEFF Research Database (Denmark)

    Hertzum, Morten; Bansler, Jørgen P.; Havn, Erling C.

    2012-01-01

    A recurrent problem in information-systems development (ISD) is that many design shortcomings are not detected during development, but first after the system has been delivered and implemented in its intended environment. Pilot implementations appear to promise a way to extend prototyping from...... the laboratory to the field, thereby allowing users to experience a system design under realistic conditions and developers to get feedback from realistic use while the design is still malleable. We characterize pilot implementation, contrast it with prototyping, propose a iveelement model of pilot...... implementation and provide three empirical illustrations of our model. We conclude that pilot implementation has much merit as an ISD technique when system performance is contingent on context. But we also warn developers that, despite their seductive conceptual simplicity, pilot implementations can be difficult...

  20. Annual Report - Remotely Operated NDE System for Inspection of Hanford's Waste Tank Knuckle Regions and Development of a Small Roving Annulus Inspection Vehicle T-SAFT Scanning Bridge for Savannah River Site Applications

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Crawford, Susan L.; Harris, Robert V.; Samuel, Todd J.; Roberts, Ron A.; Alzheimer, James M.; Gervais, Kevin L.; Maynard, Melody A.; Tucker, Joseph C.

    2002-01-01

    The design, development, and performance testing of a prototype system known as the Remotely Operated Nondestructive Examination (RONDE)system to examine the knuckle region of a Hanford DST have been completed. The design and fabrication of a scanning bridge to support the Savannah River Site utilizing similar technology was also completed

  1. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  2. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  3. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  4. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  5. Experiences with remote electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Parvin, Bahram

    2002-02-22

    With the advent of a rapidly proliferating international computer network, it became feasible to consider remote operation of instrumentation normally operated locally. For modern electron microscopes, the growing automation and computer control of many instrumental operations facilitated the task of providing remote operation. In order to provide use of NCEM TEMs by distant users, a project was instituted in 1995 to place a unique instrument, a Kratos EM-1500 operating at 1.5MeV, on-line for remote use. In 1996, the Materials Microcharacterization Collaboratory (MMC) was created as a pilot project within the US Department of Energy's DOE2000 program to establish national collaboratories to provide access via the Internet to unique or expensive DOE research facilities as well as to expertise for remote collaboration, experimentation, production, software development, modeling, and measurement. A major LBNL contribution to the MMC was construction of DeepView, a microscope-independent computer-control system that could be ported to other MMC members to provide a common graphical user-interface (GUI) for control of any MMC instrument over the wide area network.

  6. Vehicle Detection and Classification Using Passive Infrared Sensing

    KAUST Repository

    Odat, Enas M.; Mousa, Mustafa; Claudel, Christian

    2015-01-01

    or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed

  7. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  8. Dangerous intersections? A review of studies of fatigue and distraction in the automated vehicle.

    Science.gov (United States)

    Matthews, Gerald; Neubauer, Catherine; Saxby, Dyani J; Wohleber, Ryan W; Lin, Jinchao

    2018-04-10

    The impacts of fatigue on the vehicle driver may change with technological advancements including automation and the increasing prevalence of potentially distracting in-car systems. This article reviews the authors' simulation studies of how fatigue, automation, and distraction may intersect as threats to safety. Distinguishing between states of active and passive fatigue supports understanding of fatigue and the development of countermeasures. Active fatigue is a stress-like state driven by overload of cognitive capabilities. Passive fatigue is produced by underload and monotony, and is associated with loss of task engagement and alertness. Our studies show that automated driving reliably elicits subjective symptoms of passive fatigue and also loss of alertness that persists following manual takeover. Passive fatigue also impairs attention and automation use in operators of Remotely Piloted Vehicles (RPVs). Use of in-vehicle media has been proposed as a countermeasure to fatigue, but such media may also be distracting. Studies tested whether various forms of phone-based media interacted with automation-induced fatigue, but effects were complex and dependent on task configuration. Selection of fatigue countermeasures should be guided by an understanding of the form of fatigue confronting the operator. System design, regulation of level of automation, managing distraction, and selection of fatigue-resilient personnel are all possible interventions for passive fatigue, but careful evaluation of interventions is necessary prior to deployment. Copyright © 2018. Published by Elsevier Ltd.

  9. Development of nuclear power plant automated remote patrol system

    International Nuclear Information System (INIS)

    Nakayama, R.; Kubo, K.; Sato, K.; Taguchi, J.

    1984-01-01

    An Automated Remote Patrol System was developed for a remote inspection, observation and monitoring of nuclear power plant's components. This automated remote patrol system consists of; a vehicle moving along a monorail; three rails mounted in a monorail for data transmission and for power supply; an image fiber connected to a TV camera; an arm type mechanism (manipulator) for moving image fiber; a computer for control and data processing and operator's console. Special features of this Automated Remote Patrol System are as follows: The inspection vehicle runs along horizontal and vertical (up/down) monorails. The arm type mechanism (manipulator) on the vehicle is used to move image fiber. Slide type electric collectors are used for data transmission and power supply. Time-division multiplexing is adapted for data transmission. Voice communication is used for controlling mechanisms. Pattern recognition is used for data processing. The experience that has been obtained from a series of various tests is summarized. (author)

  10. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  11. STRIPE: Remote Driving Using Limited Image Data

    Science.gov (United States)

    Kay, Jennifer S.

    1997-01-01

    Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the

  12. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  13. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  14. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  15. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  16. Development of the heavy manipulator vehicle system

    International Nuclear Information System (INIS)

    Herbst, C.; Paustian, P.; Kruger, W.

    1993-01-01

    After the severe reactor accident of Tschernobyl in 1986 MaK System started to develop a Heavy Manipulator Vehicle System under contract from German nuclear technology assistance company ''KHG'' (Kerntechnische Hilfsdienst GmbH). The system comprises a remote controlled manipulator vehicle, a mobile mission control stand as well as a transport/service unit. In order to fulfill the high demands of this complex system a couple of new developments had to be started. The paper describes some of these developments and gives an overview about the main features of the Heavy Manipulator Vehicle System (HMV). (author)

  17. Remote assembly and maintenance of fusion reactors

    International Nuclear Information System (INIS)

    Becquet, M.C.; Farfaletti-Casali, F.

    1991-01-01

    This paper intend to present the state of the art in the field of remote assembly and maintenance, including system analysis design and operation for controlled fusion device such as JET, and the next NET and ITER reactors. The operational constraints of fusion reactors with respect to temperature, radiations dose rates and cumulated doses are considered with the resulting design requirements. Concepts like articulated boom, in-vessel vehicle and blanket handling device are presented. The close relations between computer simulations and experimental validation of those concepts are emphasized to ensure reliability of the operational behavior. Mockups and prototypes in reduced and full scale, as operating machines are described to illustrate the progress in remote operations for fusion reactors. The developments achieved at the Institute for System Engineering and Informatics of the Joint Research Center, in the field of remote blanket maintenance, reliability assessment of RH systems and remote cut and welding of lips joints are considered. (author)

  18. Development of blanket remote maintenance system

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou

    1998-01-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  19. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  20. Remote possibilities

    International Nuclear Information System (INIS)

    Fernandes, J.

    1995-01-01

    The impact that wireless communications has had for gas and oil producers was discussed. Wireless communication, which has been replacing the traditional formats of radio and telephone data networks, has proved to be cheaper, smaller, and faster than creating privately owned communication networks. With highly developed supervisory control and data acquisition systems - combined with cellular or satellite technology - information from drill sites can be online at the corporate headquarters instantaneously. Eighty percent of Canada's land mass is beyond reach of traditional wireline and wireless services. Research into advanced communications, including telecommunication and mobile applications, yielded lucrative results for service providers such as BCTel, SaskTel, Bell Mobility and AGT. The latest data transmission technology is the cellular digital packet data (CDPD) which will operate over existing cellular networks. However, unlike circuit-switched cellular, CDPD technology provides an airlink where data is secure. It will be available to the marketplace over the course of the coming year. Among other advantages, CDPD will allow producers to remotely monitor production information and downtime alarms from wells and compressor stations. It will also provide fleet operators with the means to monitor operating vital signs on rolling stock

  1. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  2. Passive detection of vehicle loading

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.

    2012-01-01

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  3. PASSIVE DETECTION OF VEHICLE LOADING

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  4. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  5. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  6. Pilot Greenhouse

    CERN Multimedia

    1983-01-01

    This pilot greenhouse was built in collaboration with the "Association des Maraichers" of Geneva in the frame of the study for making use of the heat rejected as warm water by CERN accelerators and experiments. Among other improvements, more automated and precise regulation systems for heating and ventilation were developed. See also 8305598X.

  7. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  8. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    International Nuclear Information System (INIS)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-01-01

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring

  9. Developing remote techniques for liquid metal reactors

    International Nuclear Information System (INIS)

    Fenemore, Peter

    1987-01-01

    Three devices have been designed in Britain to meet the need for special remote equipment and techniques required to inspect the reactor vessel and internals of liquid metal reactors. The ''Links Manipulator Under-Sodium Viewing System'' - a device to be used for the surveillance of reactor internals, which are submerged in sodium. An ''Automatic Guided Vehicle'' - a free roving vehicle to be used to survey the externals of the reactor vessel. The ''Snake Manipulator'' - an articulated arm used to gain access to restricted areas. (author)

  10. Pilot study

    International Nuclear Information System (INIS)

    Hofmeester, G.H.; Swart, A.; Dijk, E. van

    1984-01-01

    In May 1980 it was decided to organize an intercomparison of personal dosimeters for photon radiations. The Commission of the European Communities initiated the intercomparison by starting a pilot study in which three laboratories NPL (United Kingdom), PTB (Germany) and RIV (The Netherlands) were asked to irradiate a series of personal dosemeters from institutes, GSF (Muenchen), CEA (Fontenay-aux-Roses), CNEN (Bologna) and CEGB (Berkeley). The latter institutes are secondary standard laboratories and have a radiation protection service as well. A new aspect of this pilot study is the fact that the irradiations also take place in front of a phantom. Irradiations took place in July and August 1980. The results of 4 institutes show that the personal dosemeters are quite capable of measuring the backscattered photon components

  11. Supporting autonomous vehicles by creating HD maps

    Directory of Open Access Journals (Sweden)

    Arpad Barsi

    2017-10-01

    Full Text Available Maps are constantly developing, also, the newly defined High Definition (HD maps increase the map content remarkably. They are based on three-dimensional survey, like laser scanning, and then stored in a fully new structured way to be able to support modern-day vehicles. Beyond the traditional lane based map content, they contain information about the roads’ neighbourhood. The goal of these maps is twofold. Primarily, they store the connections where the vehicles can travel with the description of the road-environment. Secondly, they efficiently support the exact vehicle positioning. The paper demonstrates the first results of a pilot study in the creation of HD map of an urban and a rural environment. The applied data collection technology was the terrestrial laser scanning, where the obtained point cloud was evaluated. The data storage has been solved by an in-house developed information storage model with the ability to help in vehicle control processes.

  12. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    Science.gov (United States)

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  13. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  14. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  15. Integrated remotely sensed datasets for disaster management

    OpenAIRE

    McCarthy, Tim; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-01-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North...

  16. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  17. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  18. Remote Network Access (RNA)

    National Research Council Canada - National Science Library

    2002-01-01

    .... Remote Network Access (RNA) includes or is associated with all communication devices/software, firewalls, intrusion detection systems and virus protection applications to ensure security of the OIG, DoD, Network from remote...

  19. The Effects of Ambient Noise Field on the Behavior of Baleen Whales - Pilot Program

    National Research Council Canada - National Science Library

    Stokes, M

    2003-01-01

    .... The work was a Pilot Study for a Main Study in 2003 and 2004 concerning the setting to work of a system for passive acoustic and visual tracking of whales, as well as collecting acoustic and remotely...

  20. Cost and effectiveness analysis on unmanned aerial vehicle (UAV) use at border security

    Science.gov (United States)

    Yilmaz, Bahadır.

    2013-06-01

    Drones and Remotely Piloted Vehicles are types of Unmanned Aerial Vehicles. UAVs began to be used with the war of Vietnam, they had a great interest when Israel used them in Bekaa Valley Operations of 1982. UAVs have been used by different countries with different aims with the help of emerging technology and investments. In this article, in the context of areas of UAV usage in national security, benefits and disadvantages of UAVs are put forward. Particularly, it has been evaluated on the basis of cost-effectiveness by focusing the use of UAV in the border security. UAVs have been studied by taking cost analysis, procurement and operational costs into consideration. Analysis of effectiveness has been done with illegal passages of people and drugs from flight times of UAVs. Although the procurement cost of the medium-level UAVs is low, its operational costs are high. For this reason, the idea of less costly alternative systems have been revealed for the border security. As the costs are reduced to acceptable level involving national security and border security in future with high-technology products in their structure, it will continue to be used in an increasing proportion.

  1. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  2. Remote detection system

    International Nuclear Information System (INIS)

    Nixon, K.V.; France, S.W.; Garcia, C.; Hastings, R.D.

    1981-05-01

    A newly designed remote detection system has been developed at Los Alamos that allows the collection of high-resolution gamma-ray spectra and neutron data from a remote location. The system consists of the remote unit and a command unit. The remote unit collects data in a potentially hostile environment while the operator controls the unit by either radio or wire link from a safe position. Both units are battery powered and are housed in metal carrying cases

  3. Design of special purpose equipment - remote control dozer

    International Nuclear Information System (INIS)

    Aprameyan, K.

    1990-01-01

    Operation environment in handling hot slag, radio active material, clearing/dismantling buildings and loose rocky zones pose hazards with the operation of heavy duty vehicles. Under such hazardous environment conditions, elimination of operator becomes the prime criteria. Remote control of heavy vehicles is resorted to operate the equipment in various working conditions. Radio control systems coupled with penumatic/hydraulic actuators and proportional control logics aim total control of the equipment from a distance using hand pendants. Bharat Earth Moovers Limited has successfully developed remote control system for dozers of 200hp and 300hp. (author). 3 figs

  4. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  5. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  6. Theme issue ;State-of-the-art in photogrammetry, remote sensing and spatial information science;

    Science.gov (United States)

    Heipke, Christian; Madden, Marguerite; Li, Zhilin; Dowman, Ian

    2016-05-01

    Over the past few years, photogrammetry, remote sensing and spatial information science have witnessed great changes in virtually every stage of information from imagery. Indeed, we have seen, for example, a sharply increased interest in unmanned aerial vehicles,

  7. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  8. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  9. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  10. Remote Monitoring Transparency Program

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.

    1996-01-01

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries

  11. Pilot Dependence on Imperfect Diagnostic Automation in Simulated UAV Flights: An Attentional Visual Scanning Analysis

    National Research Council Canada - National Science Library

    Wickens, Christopher; Dixon, Stephen; Goh, Juliana; Hammer, Ben

    2005-01-01

    An unmanned air vehicle (UAV) simulation was designed to reveal the effects of imperfectly reliable diagnostic automation a monitor of system health parameters on pilot attention, as the latter was assessed via visual scanning...

  12. Feasibility of developing a pilot car training and certification program in Alabama.

    Science.gov (United States)

    2010-09-01

    The State of Alabama does not currently require certification for the pilot car drivers who escort : oversize/overweight vehicles. The Alabama Department of Transportation contracted with The University : Transportation Center for Alabama (UTCA) to i...

  13. Investigation of piloting aids for manual control of hypersonic maneuvers

    Science.gov (United States)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  14. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  15. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  16. The Marcoule pilot plant

    International Nuclear Information System (INIS)

    Faugeras, P.; Calame Longjean, A.; Le Bouhellec, J.; Revol, G.

    1986-06-01

    The Marcoule spent fuel reprocessing pilot facility was built in 1960-1961 for extended testing of the PUREX process with various types of fuel under conditions similar to those encountered in a production plant. Extensive modification work was undertaken on the facility in 1983 in the scope of the TOR project, designed with the following objectives: - increase the throughput capacity to at least 5 metric tons of PHENIX equivalent fuel per year, - extend equipment and process R and D capability, - improve job safety by maximum use of remote handling facilities, - maximize waste conditioning treatments to produce waste forms suitable for direct storage, - provide a true industrial process demonstration in continuous operation under centralized control using computerized procedures. The redesigned plant is scheduled to begin operation during the second half of 1986. The proximity of the Industrial Prototypes Service and the ATALANTE radiochemical research laboratory scheduled to begin operation in 1990, will provide a synergistic environment in which R and D program may be carried out under exceptional conditions

  17. Remote manipulation techniques in the maintenance and repair of nuclear power plants

    International Nuclear Information System (INIS)

    Rininsland, H.; Boehme, G.

    1986-01-01

    Remote manipulation means the application of multi-purpose devices featuring high mobility and universal applicability. The paper describes such a remote manipulation system (manipulation vehicle MF1 and MF2, master-slave manipulator, TFTR maintenance manipulator) which can be used flexibly in the NNP during maintenance and repair and in incident and accident situations. Connecting elements and tools can be redesigned for remote manipulation to meet the specific application environments. (DG) [de

  18. Current status of research and development on remote maintenance for fusion components

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2008-01-01

    There is a growing attention to remote maintenance of nuclear fusion reactors. Remote maintenance is planned in ITER tokamak to keep the health of in-vessel components like blankets and divertors. In this article, current status of the development in the remote maintenance equipments and methods, especially for ITER tokamak are reviewed. The newly developed vehicle type and boom type maintenance devices, manipulator, and transfer cask are illustrated. (J.P.N.)

  19. Seamless Mode Switching for Shared Control of Semiautonomous Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Whether it be a crew station, the Shuttle Remote Manipulator System (SRMS), an unmanned ground rover (UGV) or air vehicle (UAV), or teams thereof, the controllers...

  20. Remote experiment participation on Tore-Supra

    International Nuclear Information System (INIS)

    Theis, J.-M.; Larsen, J.-M.

    2004-01-01

    The DRFC has traditionally had a very large external collaboration involvement. In particular, 15% of the DRFC work is directed towards the JET programme. As a consequence substantial telecommunications facilities have been installed [F.E.D. 60/3 (2002) 449; F.E.D. 60/3 (2002) 459]. A specific station for remote communication has been set up in the Tore-Supra control room, closely coupled to a collaborating team at INRS Que., Canada. This paper describes our pilot experience with the Canadian participation, which gives details of the communication and data sharing tools used to fully work on Tore-Supra

  1. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  2. METHODOLOGY AND RESULTS OF THE MAIN TECHNICAL OF PARAMETERS OF THE MANEUVERABLE UNMANNED AERIAL VEHICLE JUSTIFICATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The recent experience of creating an unmanned combat aerial vehicle indicates that the main problems do not con- cern the development of an unmanned fighter as an aerial vehicle. The greatest challenge lies in creating the algorithms, data sensors, control hardware, communications hardware, etc. necessary for utilization of an unmanned aerial vehicle (UAV. In this context it is important to highlight the problem of replacing the pilot as a sensor and a flight operator on board of the UAV. This problem can be partially solved by introducing remote control, but there are some flight stages where it can only be executed under a fully independent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. These stages include combat deployment (surface attack or air attack which make the highest demands on the fighter's design, that is why the promising UAV are currently considered to be "as autonomous as possible". It is obvious that the efficiency of an autonomous UAV will be determined mostly by the effec- tiveness of its automated control algorithms, and this dependence will increase together with the level of UAV autonomy. On the other hand, the optimal control algorithms can only be synthesized based on the control object characteristics. It means the development of UAV external design and the synthesis of its control algorithms should occur simultaneously and interdependently. This article presents the content and gives an example of the use of the method of maneuverable UAV external design, the distinctive feature of which lies in the interdependent processes of UAV external design develop- ing and the synthesizing of its automated control algorithms.

  3. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  4. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  5. Remotely controlled working equipment and mobile systems for damage assessment

    International Nuclear Information System (INIS)

    Koehler, G.W.; Salaske, M.

    1975-01-01

    All functions of the MF3 vehicle with its variable geometry chassis were verified in accordance with specifications. Fixed price bids have now been submitted by industries on the action control system and the EMSM II manipulators. Tests of the EMSM I manipulator with supplements especially the remotely controlled application of tools, have been started. (orig.) [de

  6. UAV low-altitude remote sensing for precision weed management

    Science.gov (United States)

    Precision weed management, an application of precision agriculture, accounts for within-field variability of weed infestation and herbicide damage. Unmanned aerial vehicles (UAVs) provide a unique platform for remote sensing of field crops. They are more efficient and flexible than manned agricultur...

  7. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  8. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  9. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  10. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  11. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.

    1981-01-01

    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  12. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  13. A remotely operated robot for decontamination tasks

    International Nuclear Information System (INIS)

    Dudar, A.M.; Vandewalle, R.C.

    1994-01-01

    Engineers in the Robotics Development Group at the Westinghouse Savannah River Company (WSRC) have developed a robot which will be used to decontaminate a pipe gallery of a tank farm used for nuclear waste storage. Personnel access is required into this pipe gallery to inspect existing pipes and perform repairs to secondary containment walls around the tank farm. Presently, the pipe gallery is littered with debris of various sizes and its surface is contaminated with activity levels up to 2.5E6 DPM (disintegrations per minute) alpha and exposure levels as high as 20 Rad/hr. Cleaning up this pipe gallery win be the mission of an all-hydraulic robotic vehicle developed in-house at WSRC caged the ''Remote Decon'' robot. The Remote Decon is a tracked vehicle which utilizes skid steering and features a six-degree-of-freedom (DOF) manipulator arm, a five-DOF front end loader type bucket with a rotating brush for scrubbing and decontaminating surfaces, and a three-DOF pan/tilt mechanism with cameras and lights. The Remote Decon system is connected to a control console via a 200 foot tethered cable. The control console was designed with ergonomics and simplicity as the main design factors and features three joysticks, video monitors, LED panels, and audible alarms

  14. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  15. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  16. NET in-vessel vehicle system

    International Nuclear Information System (INIS)

    Jones, H.

    1991-02-01

    The CFFTP/Spar In-vessel Vehicle System concept for in-vessel remote maintenance of the NET/ITER machine is described. It comprises a curved deployable boom, a vehicle which can travel on the boom and an end effector or work unit mounted on the vehicle. The stowed boom, vehicle, and work unit are inserted via the equatorial access port of the torus. Following insertion the boom is deployed and locked in place. The vehicle may then travel along the boom to transport the work unit to any desired location. A novel feature of the concept is the deployable boom. When fully deployed, it closely resembles a conventional curved truss structure in configuration and characteristics. However, the joints of the truss structure are hinged so that it can fold into a compact package, of less than 20% of deployed volume for storage, transportation and insertion into the torus. A full-scale 2-metre long section of this boom was produced for demonstration purposes. As part of the concept definition the work unit for divertor handling was studied to demonstrate that large payloads could be manipulated within the confines of the torus using the in-vessel vehicle system. Principal advantages of the IVVS are its high load capacity and rigidity, low weight and stowed volume, simplicity of control and operation, and its relatively high speed of transportation

  17. Electronic Vehicle Identification Architecture and Proof of Concept

    NARCIS (Netherlands)

    Passchier, I.; Chevrollier, N.G.; Mulder,A.; Vliet,A.O.T.van

    2009-01-01

    An architecture and a proof of concept for Electronic Vehicle Identification have beendeveloped. The system has been successfully tested in a pilot with 23 participants over a period of three months and a total distance of 75.000 km travelled. The architecture consists of a functional definition, a

  18. Heavy vehicle simulator testing of trial sections for CALTRANS.

    CSIR Research Space (South Africa)

    Rust, FC

    1993-10-01

    Full Text Available ) commissioned the University of California at Berkely (UCB), Dynatest Consulting and the Council for Scientific and Industrial Research (CSIR) in South Africa to conduct a pilot study to evaluate the potential of the South African Heavy Vehicle Simulator (HVS...

  19. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  20. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  1. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management - pilot project.

    Science.gov (United States)

    2016-09-29

    This project piloted the findings from an initial research and development project pertaining to the detection, : quantification, and visualization of bridge deck distresses through the use of remote sensing techniques, specifically : combining optic...

  2. 75 FR 56857 - Pilot, Flight Instructor, and Pilot School Certification

    Science.gov (United States)

    2010-09-17

    ...-2006-26661; Amendment No., 141-14] RIN 2120-AI86 Pilot, Flight Instructor, and Pilot School..., certification, and operating requirements for pilots, flight instructors, ground instructors, and pilot schools...: Background On August 21, 2009, the FAA published the ``Pilot, Flight Instructor, and Pilot School...

  3. Pilot factory - a Condor-based system for scalable Pilot Job generation in the Panda WMS framework

    International Nuclear Information System (INIS)

    Chiu, Po-Hsiang; Potekhin, Maxim

    2010-01-01

    The Panda Workload Management System is designed around the concept of the Pilot Job - a 'smart wrapper' for the payload executable that can probe the environment on the remote worker node before pulling down the payload from the server and executing it. Such design allows for improved logging and monitoring capabilities as well as flexibility in Workload Management. In the Grid environment (such as the Open Science Grid), Panda Pilot Jobs are submitted to remote sites via mechanisms that ultimately rely on Condor-G. As our experience has shown, in cases where a large number of Panda jobs are simultaneously routed to a particular remote site, the increased load on the head node of the cluster, which is caused by the Pilot Job submission, may lead to overall lack of scalability. We have developed a Condor-inspired solution to this problem, which is using the schedd-based glidein, whose mission is to redirect pilots to the native batch system. Once a glidein schedd is installed and running, it can be utilized exactly the same way as local schedds and therefore, from the user's perspective, Pilots thus submitted are quite similar to jobs submitted to the local Condor pool.

  4. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  5. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    Science.gov (United States)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  6. Man-machine cooperation in remote handling for fusion plants

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-01-01

    Man-machine cooperation in remote handling for fusion plants comprises cooperation for design of equipment and planning of procedures using a CAD system, and cooperation during operation of the equipment with computer aided telemanipulation systems (CAT). This concept is presently being implemented for support of slave positioning, camera tracking, and camera alignment in the KfK manipulator test facility. The pilot implementation will be used to test various man-machine interface layouts, and to establish a set of basic buildings blocks for future implementations of advanced remote handling control systems. (author)

  7. Integrated remotely sensed datasets for disaster management

    Science.gov (United States)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  8. Avionics for Scaled Remotely Operated Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAVs has increased exponentially since 1995, and this growth is expected to continue. Many of these applications require extensive Research and...

  9. A small autonomous surface vehicle for ocean color remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Maurya, P.; Pereira, A.; Pascoal, A.M.; Desai, R.G.P.; Mascarenhas, A.A.M.Q.; Desa, E.; Madhan, R.; Matondkar, S.G.P.; Navelkar, G.S.; Prabhudesai, S.; Afzulpurkar, S.

    -assisted navigation and guidance using a conventional line-of-sight (LOS) strategy has been implemented on ROSS for different geometrical patterns of mission tracks. ROSS was then used at sea where it executed a square maneuver while measuring surface chlorophyll. A... described previously has been tested on the ASV using a VHF modem operating at 115 kb/s and has worked sat- isfactorily within a range of up to 5 km with both devices within line of sight (LOS). VI. ROSS MC PROGRAM ROSS can be controlled and programmed...

  10. Avionics for Scaled Remotely Operated Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAS's in the military and the commercial field has grown tremendously over the last few years and is set to explode over next several. An...

  11. Recent advances in navigation of underwater remotely operated vehicles

    Directory of Open Access Journals (Sweden)

    Blanca Viviana Martínez Carvajal

    2013-01-01

    Full Text Available Se presenta una revisión de las publicaciones técnicas más significativas sobre la navegación de vehículos submarinos operados remotamente, con especial interés en la navegación inercial asistida. Se definen los sensores que se utilizan para su implementación, los algoritmos de estimación y los modelos que describen los sistemas de navegación. Con esta revisión, se concluye que la implementación de un estimador basado en los modelos cinemático y dinámico del vehículo ayuda a limitar el crecimiento del error de estimación, incluso cuando sólo está disponible la información proporcionada por una unidad de medición inercial.

  12. Pilot Boarding Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot boarding areas are locations at sea where pilots familiar with local waters board incoming vessels to navigate their passage to a destination port. Pilotage is...

  13. 75 FR 31837 - Petition for Exemption From the Vehicle Theft Prevention Standard; Mercedes-Benz

    Science.gov (United States)

    2010-06-04

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Vehicle Theft Prevention Standard; Mercedes-Benz AGENCY: National Highway Traffic Safety... carried out by radio signal. The unlocking signal from the remote key sends a message to the vehicle's...

  14. The availability of unmanned air vehicles: a post-case study

    NARCIS (Netherlands)

    Smith, M.A.J.; Dekker, R.; Kos, J.; Hontelez, J.A.M.

    2001-01-01

    An Unmanned Air Vehicle (UAV) is an unmanned, remotely controlled, small air vehicle. It has an important role in antisurface warfare. This implies over-the-horizon detection, classification, targeting and battle damage assessment. To perform these tasks several UAVs are needed to assist or

  15. PV Charging System for Remote Area Operations

    Energy Technology Data Exchange (ETDEWEB)

    Ilsemann, Frederick [Coherent Systems International, Doylestown, PA (United States); Thompson, Roger [Coherent Systems International, Doylestown, PA (United States)

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  16. Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage

    Science.gov (United States)

    Fan, Jiankun

    An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. Its flight is controlled either autonomously by computers onboard the vehicle, or remotely by a pilot on the ground, or by another vehicle. In recent years, UAVs have been used more commonly than prior years. The example includes areo-camera where a high speed camera was attached to a UAV which can be used as an airborne camera to obtain aerial video. It also could be used for detecting events on ground for tasks such as surveillance and monitoring which is a common task during wars. Similarly UAVs can be used for relaying communication signal during scenarios when regular communication infrastructure is destroyed. The objective of this thesis is motivated from such civilian operations such as search and rescue or wildfire detection and monitoring. One scenario is that of search and rescue where UAV's objective is to geo-locate a person in a given area. The task is carried out with the help of a camera whose live feed is provided to search and rescue personnel. For this objective, the UAV needs to carry out scanning of the entire area in the shortest time. The aim of this thesis to develop algorithms to enable a UAV to scan an area in optimal time, a problem referred to as "Coverage Control" in literature. The thesis focuses on a special kind of UAVs called "quadrotor" that is propelled with the help of four rotors. The overall objective of this thesis is achieved via solving two problems. The first problem is to develop a dynamic control model of quadrtor. In this thesis, a proportional-integral-derivative controller (PID) based feedback control system is developed and implemented on MATLAB's Simulink. The PID controller helps track any given trajectory. The second problem is to design a trajectory that will fulfill the mission. The planed trajectory should make sure the quadrotor will scan the whole area without missing any part to make sure that the quadrotor will find the lost

  17. Strengthening Security during Sporting Events by Unmannde Aerial Vehicles

    NARCIS (Netherlands)

    Evers, L.

    2012-01-01

    This paper shows how Unmanned Aerial Vehicles (UAVs) can improve security in major sporting events. Given the increase in violence among sports fans it is important to timely monitor possible conflict locations. A UAV can patrol and remotely monitor the activity at these locations. Such a patrol

  18. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  19. Bridge vehicle impact assessment.

    Science.gov (United States)

    2011-12-01

    Bridges in New York State have been experiencing close to 200 bridge hits a year. These : accidents are attributed to numerous factors including: improperly stored equipment on trucks; : violation of vehicle posting signs; illegal commercial vehicles...

  20. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  1. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  2. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  3. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  4. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  5. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  6. Piloting improved cookstoves in India.

    Science.gov (United States)

    Lewis, Jessica J; Bhojvaid, Vasundhara; Brooks, Nina; Das, Ipsita; Jeuland, Marc A; Patange, Omkar; Pattanayak, Subhrendu K

    2015-01-01

    Despite the potential of improved cookstoves to reduce the adverse environmental and health impacts of solid fuel use, their adoption and use remains low. Social marketing-with its focus on the marketing mix of promotion, product, price, and place-offers a useful way to understand household behaviors and design campaigns to change biomass fuel use. We report on a series of pilots across 3 Indian states that use different combinations of the marketing mix. We find sales varying from 0% to 60%. Behavior change promotion that combined door-to-door personalized demonstrations with information pamphlets was effective. When given a choice amongst products, households strongly preferred an electric stove over improved biomass-burning options. Among different stove attributes, reduced cooking time was considered most valuable by those adopting a new stove. Households clearly identified price as a significant barrier to adoption, while provision of discounts (e.g., rebates given if households used the stove) or payments in installments were related to higher purchase. Place-based factors such as remoteness and nongovernmental organization operations significantly affected the ability to supply and convince households to buy and use improved cookstoves. Collectively, these pilots point to the importance of continued and extensive testing of messages, pricing models, and different stove types before scale-up. Thus, we caution that a one-size-fits-all approach will not boost improved cookstove adoption.

  7. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  8. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  9. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    Science.gov (United States)

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  10. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  11. Remote handling equipment

    International Nuclear Information System (INIS)

    Clement, G.

    1984-01-01

    After a definition of intervention, problems encountered for working in an adverse environment are briefly analyzed for development of various remote handling equipments. Some examples of existing equipments are given [fr

  12. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  13. The remote control system

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.

    1988-01-01

    The remote-control system is applied in order to control various signals in the car of the spectrometer at distance. The construction (hardware and software) as well as the operation of the system is described. (author). 20 figs

  14. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    Science.gov (United States)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  15. The Sample Size Influence in the Accuracy of the Image Classification of the Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomaz C. e C. da Costa

    2004-12-01

    Full Text Available Landuse/landcover maps produced by classification of remote sensing images incorporate uncertainty. This uncertainty is measured by accuracy indices using reference samples. The size of the reference sample is defined by approximation by a binomial function without the use of a pilot sample. This way the accuracy are not estimated, but fixed a priori. In case of divergency between the estimated and a priori accuracy the error of the sampling will deviate from the expected error. The size using pilot sample (theorically correct procedure justify when haven´t estimate of accuracy for work area, referent the product remote sensing utility.

  16. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  17. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  18. Accessing Remote Knowledge

    DEFF Research Database (Denmark)

    Maskell, Peter

    2014-01-01

    young, single-site firms search for distant sources of complementary competences. The discussion is positioned within a comprehensive framework that allows a systematic investigation of the approaches available to firms engaged in globally extended learning. By utilizing the distinction between problem...... awareness (what remote knowledge is needed?) and source awareness (where does this knowledge reside?) the article explores the relative merits and inherent limitations of pipelines, listening posts, crowdsourcing and trade fairs to acquire knowledge and solutions from geographically and relationally remote...

  19. Remote maintenance development

    International Nuclear Information System (INIS)

    Zook, C.R.

    1979-01-01

    The concept of remote maintenance as it pertains to nuclear fuel fabrication facilities is quite unique. The future may require completely remote facilities where maintenance will be performed by hybrid manipulators/robots. These units will be capable of being preprogrammed for automatic operation or manually operated with the operator becoming a part of the closed loop control system. These robots will mesh television, computer control, and direct force feedback manual control in a usable new concept of robotics

  20. Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft

    Science.gov (United States)

    2017-06-09

    sacra doctrina) to preserve written and oral traditions, and infused Judeo-Christian theology with Greek philosophy to generate a mature moral ...Greek philosophy and Christian moral theology point to the same intrinsic moral quality of non-materially derived transcendent virtues and morality ...to cover area ranging from Administrative policy, Just War theory, moral philosophy , U.S. Army regulation and doctrine, and customary international

  1. Remotely Piloted Innovation: Terrorism, Drones and Supportive Technology

    Science.gov (United States)

    2016-10-01

    evolution. This report seeks to address this gap by providing a review of, and framework to situate, cases in which terrorist entities have either...the news have already flown drones over stadiums. Indeed, drones have been spotted over college and NFL football games, professional soccer matches...the future.372 Second, in the digital environment in which we live, groups may easily learn from one another and spot new ideas generated by others

  2. Incentive Pay for Remotely Piloted Aircraft Career Fields

    Science.gov (United States)

    2012-01-01

    industry : In 2005, a California firm made RPA helicopters available to a company that provides “airmobile cameras to the film industry and television...agencies. Commercial applications of RPA have been limited. One of the few commercial applications in the United States has been in the film

  3. Remotely Piloted Aircraft (RPA) Performing the Air Refueling Mission

    Science.gov (United States)

    2012-06-01

    point stating that it can also be applied to program planning and administration. Adler and Ziglio (1996) support Delbeq’s et al. (1975) assertion...experts in a group decision making setting; both qualitative and quantitative methods can be used (Skulmoski et al., 2007). According to Adler and...Results and Analysis “It requires a very unusual mind to undertake the analysis of the obvious.” - Alfred North Whitehead Expert Panel Composition

  4. Evaluation of Expedient Surfaces for Remote Piloted Aircraft

    Science.gov (United States)

    2017-12-01

    left half-panels. These are identical in dimensions and weight, but the ERDC/GSL TR-17-27 5 locations of the welded aluminum blocks are...to fit a double-arrow locking key that could be inserted once panels were placed next to each other on the ground. The connection along the long edge...surface of panels (b) Locking key (c) Stack of panels as delivered (d) End connector Table 2.3. Items delivered for installing the PSA-FT

  5. The design and manufacture of a remotely piloted aircraft

    Directory of Open Access Journals (Sweden)

    Cosmin PESCARUS

    2011-06-01

    Full Text Available The article is a compilation of data regarding the process of designing an UAV wing, generally speaking, and an iteration of the stress calculations made during the research. Therefore, we use the best materials and a design that fits the necessities and requirements of such an airplane. The purpose of the UAV is to have a precise goal, namely to be used by the authorities for the people. Example: flying at low height for the surveillance of a large forest fire or a highway, or even for collecting data regarding the air quality and the percentage of noxious particles in different urban and nonurban areas.

  6. Remotely Piloted Aircraft and War in the Public Relations Domain

    Science.gov (United States)

    2014-10-01

    the terms as they appear in quoted texts. 2. Peter Kreeft, Socratic Logic: A Logic Text Using Socratic Method , Platonic Questions, and Aristotelian...Ronald Brooks.22 This method of refuting an argu- ment reflects option C (above), demonstrating that the conclusion does not follow from the premises...and War in the Public Relations Domain Feature tional Security Assistance Force (ISAF) met to discuss methods of elim- inating civilian casualties in

  7. Remotely Piloted Innovation: Terrorism, Drones and Supportive Technology

    Science.gov (United States)

    2016-10-01

    Michael Jenkins , most of “today’s terrorists want a lot of people watching and a lot of people dead.”1 To accomplish these objectives, and to outbid...Michael Jenkins , The New Age of Terrorism (Santa Monica, CA: RAND Corporation, 2006), p. 119. 2 For example, see “Iraq Sees Worst Bombing Since...see Henry H. Willis et al., Estimating Terrorism Risk (Santa Monica, CA: RAND Corporation, 2005); and John A. Major, “Advanced Techniques for Modeling

  8. Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Science.gov (United States)

    2014-12-26

    collocation method to solve this problem and then analyzes these results for di↵erent collision avoidance scenarios. iv To my beautiful “ Proverbs 31” wife... le ( d e g ) Optimal Control JOCA Baseline 0 10 20 30 40 50 60 0.8 1 1.2 1.4 N z Control time (sec) N z Optimal Control JOCA Baseline (b...Optimal Control JOCA Baseline (a) Trajectory Deviation 0 10 20 30 40 50 60 70 −20 −10 0 10 20 µ Control time (sec) a n g le ( d e g

  9. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  10. Detail design of empennage of an unmanned aerial vehicle

    Science.gov (United States)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  11. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  12. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  13. Issues Relative to the Control of Large High Speed Unmanned Vehicles for Use in Crash Rescue Operations. A Technical Paper Presented to the American Nuclear Society, Ninth International Topical Meeting on Robotics and Remote Systems Held in Seattle, WA on March 4-8, 2001

    National Research Council Canada - National Science Library

    English, Ralph

    2000-01-01

    .... The control systems of small, slow moving machines common in research and development platforms have historically ignored vehicle dynamics beyond basic parameters such as acceleration, steering and braking...

  14. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  15. Track-to-track association for object matching in an inter-vehicle communication system

    Science.gov (United States)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  16. The importance of high vehicle power for passenger car emissions

    Science.gov (United States)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  17. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    Science.gov (United States)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  18. HOPE: An On-Line Piloted Handling Qualities Experiment Data Book

    Science.gov (United States)

    Jackson, E. B.; Proffitt, Melissa S.

    2010-01-01

    A novel on-line database for capturing most of the information obtained during piloted handling qualities experiments (either flight or simulated) is described. The Hyperlinked Overview of Piloted Evaluations (HOPE) web application is based on an open-source object-oriented Web-based front end (Ruby-on-Rails) that can be used with a variety of back-end relational database engines. The hyperlinked, on-line data book approach allows an easily-traversed way of looking at a variety of collected data, including pilot ratings, pilot information, vehicle and configuration characteristics, test maneuvers, and individual flight test cards and repeat runs. It allows for on-line retrieval of pilot comments, both audio and transcribed, as well as time history data retrieval and video playback. Pilot questionnaires are recorded as are pilot biographies. Simple statistics are calculated for each selected group of pilot ratings, allowing multiple ways to aggregate the data set (by pilot, by task, or by vehicle configuration, for example). Any number of per-run or per-task metrics can be captured in the database. The entire run metrics dataset can be downloaded in comma-separated text for further analysis off-line. It is expected that this tool will be made available upon request

  19. Remote handling in nuclear fusion research

    International Nuclear Information System (INIS)

    Removille, J.

    1989-01-01

    When the Joint European Torus (JET) commences operation in 1992, the neutron flux will increase by 2 or 3 orders of magnitude activating the components of the machine to such an extent as to prohibit the access of personnel into the machine hall to carry out maintenance tasks. This paper lists operations which will have to be carried out remotely either because they are essential to the routine running of the machine or in emergencies. Remotely operated equipment which has been developed to perform these tasks is described. It is based on a system of conveyors which carry manipulators and tools to their point of operation. The principal conveyors are: a telescopic articulated mast carried on a bridge over the machine enabling tasks around and above the torus to be performed; conveyors running on rails which can reach otherwise inaccessible regions beneath the machine; an articulated arm which can position a manipulator within the torus; and a radio controlled support vehicle running on caterpillar tracks carrying a camera and tools for connecting cables to other conveyors. The main features of the control room from which the conveyors, manipulators, tools and cameras are remotely operated is also described. (UK)

  20. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  1. THE IDEA IS TO USEMODIS IN CONJUNCTION WITH THE CURRENT LIMITED LANDSAT CAPABILITY, COMMERCIAL SATELLITES, ANDUNMANNED AERIAL VEHICLES (UAV), IN A MULTI-STAGE APPROACH TO MEET EPA INFORMATION NEEDS.REMOTE SENSING OVERVIEW: EPA CAPABILITIES, PRIORITY AGENCY APPLICATIONS, SENSOR/AIRCRAFT CAPABILITIES, COST CONSIDERATIONS, SPECTRAL AND SPATIAL RESOLUTIONS, AND TEMPORAL CONSIDERATIONS

    Science.gov (United States)

    EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...

  2. Remote connector development study

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-05-01

    Plutonium-uranium extraction (PUREX) connectors, the most common connectors used at the Hanford site, offer a certain level of flexibility in pipe routing, process system configuration, and remote equipment/instrument replacement. However, these desirable features have inherent shortcomings like leakage, high pressure drop through the right angle bends, and a limited range of available pipe diameters that can be connect by them. Costs for construction, maintenance, and operation of PUREX connectors seem to be very high. The PUREX connector designs include a 90 degree bend in each connector. This increases the pressure drop and erosion effects. Thus, each jumper requires at least two 90 degree bends. PUREX connectors have not been practically used beyond 100 (4 in.) inner diameter. This study represents the results of a survey on the use of remote pipe-connection systems in US and foreign plants. This study also describes the interdependence between connectors, remote handling equipment, and the necessary skills of the operators

  3. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C

    1977-01-01

    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  4. Gaze-Based Controlling a Vehicle

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    ) as an example of a complex gaze-based task in environment. This paper discusses the possibilities and limitations of how gaze interaction can be performed for controlling vehicles not only using a remote gaze tracker but also in general challenging situations where the user and robot are mobile...... modality if gaze trackers are embedded into the head- mounted devices. The domain of gaze-based interactive applications increases dramatically as interaction is no longer constrained to 2D displays. This paper proposes a general framework for gaze-based controlling a non- stationary robot (vehicle...... and the movements may be governed by several degrees of freedom (e.g. flying). A case study is also introduced where the mobile gaze tracker is used for controlling a Roomba vacuum cleaner....

  5. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  6. Trust in vehicle technology

    OpenAIRE

    Walker, Guy, H.; Stanton, Neville, A.; Salmon, Paul

    2016-01-01

    Driver trust has potentially important implications for how vehicle technology is used and interacted with. In this paper it will be seen how driver trust functions and how it can be understood and manipulated by insightful vehicle design. It will review the theoretical literature to define steps that can be taken establish trust in vehicle technology in the first place, maintain trust in the long term, and even re-establish trust that has been lost along the way. The implication throughout i...

  7. On Autonomous Articulated Vehicles

    OpenAIRE

    Nayl, Thaker

    2015-01-01

    The objective of this thesis is to address the problems of modeling, path planning and path following for an articulated vehicle in a realistic environment and in the presence of multiple obstacles.In greater detail, the problem of the kinematic modeling of an articulated vehicle is revisited through the proposal of a proper model in which the dimensions and properties of the vehicle can be fully described, rather than considering it as a unit point. Based on this approach, nonlinear and line...

  8. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  9. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  10. A Perspective on Equipment Design for Fusion Remote Handling

    International Nuclear Information System (INIS)

    Mills, S.; Haist, B.; Hamilton, D.

    2006-01-01

    For 8 years, JET remote operations have become more capable and confident. Many tasks have been successfully completed, even those never intended to be remote maintenance activities. The general approach to the provision of remote handling equipment at JET has been the preferred use of commercially-off-the-shelf equipment. In the areas of electrical, electronic, software and control this approach has been generally achievable. However, in the area of mechanical equipment it has been more difficult. In particular the RH tooling has been almost entirely bespoke as its requirements are highly sensitive to the design of the JET component being handled and there are many design variations. Hence, JET has required the design and manufacture of over 700 types of bespoke RH equipment. This paper will discuss the experience of introducing and developing remote handling mechanical equipment for JET. The paper will cover the relationship between the remote handling equipment and the JET component design and the potential for improving the design function. A major lesson from the introduction of remote handling to JET has been demonstration of the very close interdependency of the design of JET components with design of remote handling tooling. The JET remote handling manual was originally introduced as the vehicle to ensure remote handling compatibility by the introduction of standards. Experience has shown that in general the remote handling manual approach has been insufficient. Future fusion machines will be much more complex than JET and will demand even greater remote handling compatibility. This paper will discuss possible methods for improving this process. Equipment operating in a high radiation environment must be dependable It may spend part of its time in areas that would be extremely difficult to recover from in the case of failure. The equipment may also have a high duty cycle to minimise shutdown times and probably cannot be manually inspected on a frequent

  11. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  12. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  13. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  14. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  15. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  16. Human Factors Issues When Operating Underwater Remotely Operated Vehicles and Autonomous Underwater Vehicles

    Science.gov (United States)

    2011-03-01

    etiquette (Parasuraman & Miller, 2004). Through natural and intuitive communication, Johnson et al., (2007) hope that this interface will instill greater...and etiquette in high criticality automated systems. Communications of the ACM, 47(4), 51-55. Parasuraman, R., & Riley, V. (1997). Humans and... protocols for underwater wireless communications. IEEE Communications Magazine, pp. 97-102. Quazi, A. H., & Konrad, W. L. (1982, March 1982). Underwater

  17. Impacts of Vehicle (In)Security

    Energy Technology Data Exchange (ETDEWEB)

    Chugg, J.; Rohde, K.

    2015-05-01

    discussion of how a vehicle can be used as a new threat vector to penetrate secure facilities will be presented. This includes how a modern automobile can be used as the exploitation mechanism for nearby devices such as laptops, cell phones, and wireless access points. Additional discussion will highlight how vehicle security might impact transportation of nuclear material through remote exploitation of a moving vehicle. The final discussion will include what possible implications might be relative to the physical protection systems at nuclear facilities. The audience will also be given details regarding the complexity of attack, thus implying the likelihood of successful exploitation, and information on how such attacks may be mitigated. Emerging security products for automobiles will be discussed and other mitigation methods will be detailed (e.g. disabling vehicle cellular modems). As a result, the audience will have a greater understanding of how to add vehicle security as a part of a comprehensive nuclear security policy.Finally, this paper will highlight the similarities between CAN Bus and other broadcast serial bus networks such as Profibus or DeviceNet, helping educate the reader on how susceptible this type of networking is to nefarious attacks and how it might affect components connected to many different nuclear systems, including control systems, safety systems, emergency systems, and support systems.

  18. Cognitive engineering in aerospace application: Pilot interaction with cockpit automation

    Science.gov (United States)

    Sarter, Nadine R.; Woods, David D.

    1993-01-01

    Because of recent incidents involving glass-cockpit aircraft, there is growing concern with cockpit automation and its potential effects on pilot performance. However, little is known about the nature and causes of problems that arise in pilot-automation interaction. The results of two studies that provide converging, complementary data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS) is reported. A survey asking pilots to describe specific incidents with the FMS and observations of pilots undergoing transition training to a glass cockpit aircraft served as vehicles to gather a corpus on the nature and variety of FMS-related problems. The results of both studies indicate that pilots become proficient in standard FMS operations through ground training and subsequent line experience. But even with considerable line experience, they still have difficulties tracking FMS status and behavior in certain flight contexts, and they show gaps in their understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties which can affect pilots' situation awareness. The results of this research are relevant for both the design of cockpit automation and the development of training curricula specifically tailored to the needs of glass cockpits.

  19. Labview Application For A Vehicle Control

    Directory of Open Access Journals (Sweden)

    Douglas Paladine Vieira

    2002-01-01

    Full Text Available This article deals with the construction of a vehicle driven by electric motors and that is automated, that is, that can move anywhere without human intervention. The control was done using the software Labview, with data acquisition and generation of control signs. The vehicle has an infrared sensors system that indicates the existence of an obstacle ahead the vehicle, informing it that it should stop and bypass the obstacle. The program is the responsible for the engine control, making it possible for the prototype to run and bypass the objects that block its way. The possibility of remote-controlling a vehicle is very important is risky situations for human beings, for example in radioactive places. The main advantage of this system is the total flexibility for making alterations in the control software, without being necessary to touch the physical part of the prototype. The conclusion of this work is that the system is efficient and able to move in a room with objects without touching them.

  20. ITER L 7 duct remote handling equipment design report

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The operation, design and interfaces of the 'Duct Vehicle' and it's associated remote handling equipment are briefly described in this document. This equipment is being designed by Spar Aerospace Ltd. for the Divertor Test Platform as part of ITER Research and Development Project L-7. Canadian Fusion Fuels Technology Project funds this work as part of the Canadian Contribution to ITER. This document describes the equipment design status at the September 1996 design review. 23 figs

  1. Pilot Peter Hoag and HL-10

    Science.gov (United States)

    1969-01-01

    Air Force Major Peter Hoag stands in front of the HL-10 Lifting Body. Maj. Hoag joined the HL-10 program in 1969 and made his first glide flight on June 6, 1969. He made a total of 8 flights in the HL-10. They included the fastest lifting-body flight, which reached Mach 1.861 on Feb. 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2

  2. Criteria development of remotely controlled mobile devices for TMI-2 [Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Fillnow, R.; Bengel, P.; Giefer, D.

    1988-01-01

    Since 1982, GPU Nuclear Corporation has used a series of remote mobile devices for data collection and cleanup of highly contaminated areas in the Three Mile Island Unit 2 (TMI-2) nuclear facilities. This paper describes these devices and the general criteria established for their design. Until 1984, the remote equipment used at TMI was obtained from industry sources. This included devices called SISI, FRED, and later LOUIE-1. Following 1984, the direction was to obtain custom-made devices to assure a design that would be more appropriate for the TMI-2 environment. Along with this approach came more detailed criteria and a need for a thorough understanding of the task to be accomplished by the devices. The following families of equipment resulted: (1) remote reconnaissance vehicles (RRVs), (2) the LOUIE family, and (3) remote working vehicle (RWV) family

  3. Use of UAVs for Remote Measurement of Vegetation Canopy Variables

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.

    2006-12-01

    Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two

  4. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  5. Power control apparatus and methods for electric vehicles

    Science.gov (United States)

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  6. Sustainability of Self-Driving Mobility: An Analysis of Carbon Emissions Between Autonomous Vehicles and Conventional Modes of Transportation

    OpenAIRE

    Mccarthy, John Francis

    2017-01-01

    The primary contribution of this paper is to identify the potential variables through which vehicle automation may affect carbon emissions in the transportation sector, and compare modal shifts between conventional vehicles, public transportation, and pilot autonomous vehicles (AVs). AV programs that are rapidly emerging in cities, states, and nations across the globe mark the early stages of the next transportation revolution akin to the steam engine and assembly line. By safely allowing hum...

  7. PresenceRemote

    DEFF Research Database (Denmark)

    Sokoler, Tomas; Svensson, Marcus Sanchez

    2008-01-01

    how these technologies can accommodate the specific challenges related to the everyday life of elderly people. In particular, using an example concept – the PresenceRemote – we will discuss how the stigma associated with being lonely, an inherent part of senior living, can be addressed by leaving room...

  8. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  9. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  10. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  11. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  12. Remote Voice Detection System

    National Research Council Canada - National Science Library

    Blackmon, Fletcher A

    2007-01-01

    A device and system to remotely detect vocalizations of speech. The skin located on the throat region of a speaking person or a reflective layer on the skin on the throat region vibrates in response to vocalizations of speech by the person...

  13. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  14. Integration of Centrifuge Testing in Undergraduate Geotechnical Engineering Education at Remote Campuses

    Science.gov (United States)

    El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.

    2013-01-01

    We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…

  15. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  16. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  17. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  18. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  19. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  20. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  1. Optimal vehicle control

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to

  2. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  3. Preparing Pilots for Takeoff

    Science.gov (United States)

    Ravage, Barbara

    2012-01-01

    Why would schools consider partnering with a vendor to operate a pilot? Why not just wait until the final product is released? For starters, pilots provide schools with a golden opportunity to get an early look at the software, take it for a test flight, and ask for changes tailored to their operating environment and business needs. In some cases,…

  4. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  5. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  6. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  7. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  8. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-04

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag at the vehicle-water interface. This reduction in drag corresponds to an increase in speed and/or greater fuel efficiency. The mechanical energy of the rolling cylindrical drums is also transformed into electrical energy using an electricity producing device, such as a dynamo or an alternator. Thus, the efficiency of the vehicle is enhanced in two parallel modes: from the reduction in drag at the vehicle-water interface, and from capturing power from the rotational motion of the drums.

  9. Mars 2020 Model Based Systems Engineering Pilot

    Science.gov (United States)

    Dukes, Alexandra Marie

    2017-01-01

    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  10. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  11. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  12. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site.

    Science.gov (United States)

    1990-05-01

    Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...

  13. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site : final report.

    Science.gov (United States)

    1991-07-01

    Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...

  14. Knowledge, Skills, Abilities, and Other Characteristics for Remotely Piloted Aircraft Pilots and Operators

    Science.gov (United States)

    2011-10-19

    Editor Dr. Gregory Manley HQ AFPC/DSYX, Dr. Lisa Mills AF/A1PF, Dr. Paul DiTullio HQ Af/A1PFA, Kenneth Schwartz HQ AFPC/DSYX, Johnny Weissmuller HQ...B ru s k ie w ic z e t a l. , 2 0 0 7 : A V O , M P O C h a p p e ll e e t a l. , 2 0 1 0 : M P O C h a p p e ll e e t a l. , 2 0 1 1

  15. Vehicle for transporting instruments for testing against a wall

    International Nuclear Information System (INIS)

    Hyde, E.A.; Goldsmith, H.A.; Proudlove, M.J.

    1981-01-01

    This invention relates to a non-destructive testing apparatus and, in particular, to a vehicle that can be moved at will, for transporting instruments for testing against a surface remote from the operator. Under this invention a vehicle is intended, for instance, for testing the vessel of an installation containing a liquid metal cooled nuclear reactor of the pond type. Such an installation includes a nuclear reactor comprising an assembly containing a nuclear fuel immersed in a pond of liquid metal coolant, located in a vessel which is itself placed in a concrete containment vessel [fr

  16. Wireless Control of Miniaturized Mobile Vehicle for Indoor Surveillance

    International Nuclear Information System (INIS)

    Saquib, Syed M Taha; Hameed, Sarmad; Jafri, Raza; Usman Ali, Syed M; Amin, Imran

    2013-01-01

    This work is based upon electronic automation and Smart Control techniques, which constitute the basis of Control Area Network (CAN) and Personal Area Network (PAN). Bluetooth technology has been interfaced with a programmable controller to provide multi-dimensional vehicle control. A network is proposed which contains a remote, mobile host controller and an android operating system based mobile set (Client). The client communicates with a host controller through a Bluetooth device. The system incorporates duplex communication after successful confirmation between the host and the client; the android based mobile unit controls the vehicle through the Bluetooth module

  17. Manipulator system for remote maintenance of fusion experimental reactor

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Munakata, Tadashi; Murakami, Shin; Kondoh, Mitsunori.

    1991-01-01

    We have completed the conceptual design for a rail-mounted vehicle type remote maintenance system for the fusion experimental reactor (FER), which will be the first D-T burning reactor in Japan. We have fabricated a 1/5-scale model and confirmed the feasibility of the design. In this system, a rail is deployed into the vessel and supported at four horizontal ports. A vehicle then moves along the rail and handles in-vessel components with manipulators. The advantages of this concept are the high stiffness and high reliability of the rail, and the high mobility of the vehicle for efficient maintenance operations. In the FER, this concept is considered to be the first option for in-vessel maintenance. This paper describes the conceptual design of the system and the feasibility study using the 1/5-scale model. (author)

  18. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  19. Vehicle Speed Determination in Case of Road Accident by Software Method and Comparing of Results with the Mathematical Model

    OpenAIRE

    Hoxha Gezim; Shala Ahmet; Likaj Rame

    2017-01-01

    The paper addresses the problem to vehicle speed calculation at road accidents. To determine the speed are used the PC Crash software and Virtual Crash. With both methods are analysed concrete cases of road accidents. Calculation methods and comparing results are present for analyse. These methods consider several factors such are: the front part of the vehicle, the technical feature of the vehicle, car angle, remote relocation after the crash, road conditions etc. Expected results with PC Cr...

  20. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)