Sample records for remote temperature monitoring

  1. The design of remote temperature monitoring system

    Li, Biqing; Li, Zhao; Wei, Liuren


    This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.

  2. Remote temperature monitoring and electronic identification in food animals

    Seawright, G.L.; Holm, D.M.; Sanders, W.M.


    Two radiotelemetric systems were developed for remote monitoring of body temperature in livestock. A battery-powered transmitter system was developed as a laboratory tool for remote continuous monitoring of ear-canal temperatures in animals used in vaccine trials and in studies of livestock diseases. An automated data-recording and processing system was also developed. Pilot studies in cattle indicate that the system will be a valuable quantitative tool for vaccine testing and animal experiments. A second telemetry system was developed for widescale use in the livestock industry. It relies on an implantable passive (no batteries) transponder that is energized by an external source of microwaves to transmit temperature and decimal digit identification to a remote receiver. The animal identification feature, coupled with computers, offers the livestock producer unprecedented capabilities for efficient management of his operation. The temperature feature of transponders can aid in disease detection and control, disease diagnosis, and stress and ovulation detection. Its use for identifying temperature markers in disease and stress-tolerent breeding stock may be valuable in selective breeding programs.

  3. A GSM-Based Remote Temperature and Humidity Monitoring System for Granary

    Zheng Xiao Xi


    Full Text Available A remote temperature and humidity monitoring system is designed based on the GSM technology and MSP430. With the digital sensor DSB1820 and SHT11, the temperature and humidity of the granary are detected, and these parameters can be adjusted with the controlling system to adapt various working conditions. Through the GSM system, the detected data could be sent to various monitoring devices, such as cellphones and laptops. These data can be used for data display, inquiry, controlling and storage at the remote terminals. The experimental results show that the system is convenient and concise, which meets the remote monitoring demand for the modern granary.

  4. A Remote Temperature Monitoring System Based on GSM


    <正>This paper has discussed the home and abroad’s current situation of temperature monitoring system and compared the advantages and disadvantages of several common methods.According to cold storage,container, medicines library and greenhouse’s requirements on temperature,this thesis has analyzed the advantages and significance of the system and elaborated each module’s function and implementation based on hardware and software’s introduction and demonstrated the pictures of its practical application and the alarm information saved in the SD card which extracted from the database.

  5. Ethernet Based Remote Monitoring And Control Of Temperature By Using Rabbit Processor



    Full Text Available Networking is a major component of the processes and control instrumentation systems as the network’s architecture solves many of the Industrial automation problems. There is a great deal of benefits in the process of industrial parameters to adopt the Ethernet control system. Hence an attempt has been made to develop an Ethernet based remote monitoring and control of temperature. In the present work the experimental result shows that remote monitoring and control system (RMACS over the Ethernet.

  6. Remote Maintenance Monitoring System -

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...


    Sharmili Minu.DH


    Full Text Available Health is an important factor of every human being. Remote health monitoring messenger is needed for the people to reduce their inconvenience in travel to hospitals due to ailing health. Ill-patientrequires accurate decision to be taken immediately in critical situations, so that life-protecting and lifesaving therapy can be properly applied. In recent years, sensors are used in each and every fast developing application for designing the miniaturized system which is much easier for people use. A remote health monitoring messenger informs the doctor about the patient condition through wireless media such as Global System for Mobile communication. The system specifically deals with the signal conditioning and data acquisition of heart beat, temperature, and blood pressure of human body. The Heart beat sensor is used to read the patient’s beats per minute (bpm and temperature sensor to measure the body temperature of patient externally and pressure sensor to measure the level of pressure in blood. Signals obtained from sensors are fed into the microcontroller for processing and medicine is prescribed as first aid for patient to control the parameters through visual basic. A message is then sent to the doctor for further actions to be taken for treatment of patient after first aid. The system has a very good response time and it is cost effective.

  8. Design of a boiler temperature remote monitoring system%炉温远程监控系统的设计

    马正华; 王顺先; 周炯如


      In order to realize the remote monitoring of boiler temperature, we propose the use of Linux OS and ARM (S3C6410) processor to build the hardware and software platform for the system. To complete the measurement of temperature for the controlled objects, the system employs a thermocouple and DS18B20 to collect temperature signals and uses the A/D converter integrated by a microprocessor to carry out A/D conversion. The system adopts a temperature control algorithm based on fuzzy PID to achieve an ideal temperature control, combines the Wi-Fi and TCP/IPprotocol embedded in Linux OS to realize the network connection, and employs the Wi-Fi function of Android mobile phone to monitor the temperature of the boiler at the remote terminal. Through the test and analysis of keymodules,thesystemisproventobestableandreliable, andcanrealizetheremotemonitoringofboilertemperature.%  为了实现对温度远程监控,提出用Linux操作系统和ARM(S3C6410)处理器搭建系统的软硬件平台。采用热电偶和DS18B20数字温度传感器采集温度信号,由处理器集成的A/D转换器进行模数转化,完成被控对象的温度测量。采用基于模糊PID温控算法进行温度控制,结合Wi-Fi技术和Linux自带的TCP/IP协议实现网络连接,在远程端使用Android手机的Wi-Fi功能对温度进行监控。通过对各关键模块测试与分析表明,系统运行稳定可靠,实现了对锅炉温度的远程监控

  9. Remote Monitoring of Soil Water Content, Temperature, and Heat Flow Using Low-Cost Cellular (3G) IoT Technology

    Ham, J. M.


    New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller ( This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak ( The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.

  10. Maine River Temperature Monitoring

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  11. Passive electronic identification with temperature monitoring. [Temperature monitor for cattle

    Holm, D.M.; Bobbett, R.E.; Koelle, A.R.; Landt, J.A.; Sanders, W.M.; Depp, S.W.; Seawright, G.L.


    The United States Department of Agriculture (USDA) and the Energy Research and Development Administration (ERDA) have been supporting an electronic identification and temperature monitoring project at the Los Alamos Scientific Laboratory (LASL) since early 1973. The development, so far, indicates that a subdermally-implanted, electronic transponder (having no batteries) can be remotely activated and transmit temperature and identification information back to a receiver in a few tenths of a second. If this electronic identification and temperature monitoring system is developed into a commercially available product line, and is widely accepted by the cattle industry, it will enable them to carry out more extensive management practices. Better management can result in greater efficiency and productivity. The system will also enable regulatory agencies to trace the movements of diseased animals through commerce, and thus assist in disease control measures. Work so far has been concentrated primarily on determining the technical feasibility of the electronic concepts. (auth)

  12. High Temperature ESP Monitoring

    Jack Booker; Brindesh Dhruva


    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  13. Nitinol Temperature Monitoring Devices



  14. Wireless Remote Monitoring System for Cultural Heritage

    Allan HUYNH


    Full Text Available Existing systems to collect temperature and relative humidity data at cultural heritage buildings require technical knowledge by people who are working with it, which is very seldom that they do have. The systems available today also require manual downloading of the collected data from the sensor to a computer for central storage and for further analysis. In this paper a wireless remote sensor network based on the ZigBee technology together with a simplified data collection system is presented. The system does not require any knowledge by the building administrator after the network is deployed. The wireless sensor device will automatically join available network when the user wants to expand the network. The collected data will be automatically and periodically synchronized to a remote main server via an Internet connection. The data can be used for centralized monitoring and other purpose. The power consumption of the sensor module is also minimized and the battery lifetime is estimated up to 10 years.

  15. Remote monitoring in patients with spondylitis

    Akulova A.l.


    Full Text Available Objective: to evaluate the adherence to therapy and treatment outcomes in patients with spondylitis (SpA in which activity of the disease managed remotely. Material and Methods. 193 patients with axial SpA were randomized into 3 groups with the different ways of the disease activity monitoring: 96 patients were managed in free way, 26 patients visited rheumatologist every 12 weeks, 69 patients managed remotely — we called them every 4 weeks. After the first year of follow up we made 3-month break in the telephone monitoring. The data on the treatment and SpA activity (indexes BASDAI, PASS, ESR, CRP were collected. Results. In patients managed in a free way SpA activity was severe after a year. In groups managed remotely and once in 3 month the significant reduction in the disease activity was achieved with maximal decrease in remote monitoring group. Positive PASS group 3 was found in 15 patients (57.69%, n=26, in group 2 — in 4 patients (20%, n=20, in group 1 — no patients (0%. NSAIDs intake was arbitrarily changed by 5 (19.23%, n=26, 15(75%, n=20, and 93(96.87%, n=96 patients of groups 3, 2 and 1, respectively. After a 3- month break in remote monitoring in 13 patients with initial BASDAI>4 disease activity significantly increased, in 33 patients with BASDAK4 disease activity decreased. 17 (51.5% patients independently changed the drug intake regimen after the break in monitoring. Conclusion. Remote monitoring is associated with better adherence to therapy and the best results of treatment of patients with SpA than the other modes of observation. Remote monitoring frequency must be determined individually.

  16. Remote computer monitors corrosion protection system

    Kendrick, A.

    Effective corrosion protection with electrochemical methods requires some method of routine monitoring that provides reliable data that is free of human error. A test installation of a remote computer control monitoring system for electrochemical corrosion protection is described. The unit can handle up to six channel inputs. Each channel comprises 3 analog signals and 1 digital. The operation of the system is discussed.

  17. Remote quality monitoring in the banana chain.

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter


    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.

  18. Honey Bee Colonies Remote Monitoring System

    Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús


    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time. PMID:28036061

  19. Honey Bee Colonies Remote Monitoring System

    Sergio Gil-Lebrero


    Full Text Available Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD. The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  20. Hyperspectral remote sensing for light pollution monitoring

    P. Marcoionni


    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  1. Remote sensing monitoring of the global ozonosphere

    Genco, S.; Bortoli, D.; Ravegnani, F.


    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  2. Satellite Remote Sensing for Monitoring and Assessment

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  3. Satellite Remote Sensing for Monitoring and Assessment

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  4. Remote monitoring of pipeline operations

    Bost, R.C. [ERM-Southwest, Inc., Houston, TX (United States); White, D. [Glenrose Systems, Austin, TX (United States)


    The demands for monitoring of pipeline operations have recently increased greatly due to new regulatory requirements. Most companies rely upon conventional System Control and Data Acquisition (SCADA) system architecture to meet their needs. Current systems are often plagued by limited data conversion and processing capacity at the workstations. A state-of-the-art Data Acquisition Node (DAN) that relieves the workstation of much of its workload is described in this paper. Use of this DAN may eliminate the need for installing completely new systems. It facilitates marrying foreign devices to existing operation monitoring systems to satisfy new regulatory requirements. The DAN allows a system to utilize commercial communications satellites or other communication networks and real-time, object oriented programming and different devices and data requirements without the necessity of custom software development.

  5. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C


    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  6. Information security implementations for remote monitoring

    Nilsen, C.A.


    In September 1993, President Clinton stated the United States would ensure that its fissile material meet the {open_quotes}highest standards of safety, security, and international accountability.{close_quotes} Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. A successful implementation of a comprehensive remote monitoring system, however, requires significant attention to a variety of information security issues. In pursuing Project Straight-Line and the follow-on Storage Monitoring System, Sandia National Laboratories developed remote monitoring implementations that can satisfy a variety of information security requirements. Special emphasis was given to developing methods for using the Internet to disseminate the data securely. This paper describes the various information security implementations applied to the Project Straight-Line and the Storage Monitoring System. Also included is a discussion of the security provided by the Windows NT operating system.

  7. Monitoring water quality by remote sensing

    Brown, R. L. (Principal Investigator)


    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  8. Technology of remote monitoring for nuclear activity monitoring

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo


    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  9. Wireless remote monitoring of critical facilities

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.


    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatus includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.

  10. Final cook temperature monitoring

    Stewart, John; Matthews, Michael; Glasco, Marc


    Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.

  11. Testing integrated sensors for cooperative remote monitoring

    Filby, E.E.; Smith, T.E.; Albano, R.K.; Andersen, M.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Lucero, R.L.; Tolk, K.M.; Andrews, N.S. [Sandia National Lab., Albuquerque, NM (United States)


    The Modular Integrated Monitoring System (MIMS) program, with Sandia National Laboratory (SNL) as the lead lab, was devised to furnish sensors and integrated multi-sensor systems for cooperative remote monitoring. The Idaho National Engineering Laboratory (INEL), via the Center for Integrated Monitoring and Control (CIMC), provides realistic field tests of the sensors and sensor-integration approach for the MIMS, and for other similar programs. This has two important goals: it helps insure that these systems are truly read for use, and provides a platform so they can be demonstrated for potential users. A remote monitoring test/demonstration has been initiated at the Idaho Chemical Processing Plant (ICPP) to track the movement of spent nuclear fuel from one storage location to another, using a straddle carrier and shielded cask combination. Radiation monitors, motion sensors, videocameras, and other devices from several US Department of Energy (DOE) labs and commercial vendors were linked on the network. Currently, project personnel are collecting raw data from this large array of sensors, without trying to program any special network activities or other responses. These data will be used to determine which devices can actually provide useful information for a cooperative monitoring situation, versus those that may be redundant.

  12. Remote Working Level Monitor. Final report



    The Remote Working Level Monitor (RWLM) is an instrument used to remotely monitor the RN-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor based instrument which multiplexes two independent detector units to a single central processor unit (CPU). The CPU controls the actuation of the detector units and processes and outputs the data received from these remote detector units. The remote detector units are fully automated and require no manual operation once they are set up. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU for processing. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the program enables the RWLM to run and output a calibration procedure on command. The data resulting from this request can then be processed in a separate program on most computers capable of BASIC programming. The calibration program results in the derivation of coefficients and beta efficiencies which provides calibrated coefficients and beta efficiencies.

  13. Web based remote monitoring and controlling system for vulnerable environments

    Thomas, Aparna; George, Minu


    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  14. Several solutions of remote transmission for state monitoring of bridges

    LIANG Zong-bao; CHEN Wei-min; ZHU Yong; FU Yu-mei; XU Mou; YANG Hong


    The research for remote monitoring of bridges is expected to develop methodologies and tools for collecting state data, monitoring the real-time status of the bridge from distance, and more importantly seeking a best way for remote transmission of bridge monitoring system by comparing the characteristics of each scheme. This paper focuses on the solutions to remote transmission for state monitoring of bridges, which deals with the remote transmission system based on PSTN (Public Service Telephone Network), wireless sensor monitoring system and remote transmission using SDH (Synchronous Digital Hierarchy) network. As a result, a combination of wireless sensor monitoring system and the remote sensing system using SDH network is proposed to be the considered way for remote state monitoring of bridges.

  15. Wearable Sensors for Remote Health Monitoring.

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal


    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  16. Wearable Sensors for Remote Health Monitoring

    Sumit Majumder


    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  17. Wearable Sensors for Remote Health Monitoring

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal


    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  18. Design Scheme of Remote Monitoring System Based on Qt

    Xu Dawei


    Full Text Available This paper introduces a design scheme of remote monitoring system based on Qt, the scheme of remote monitoring system based on S3C2410 and Qt, with the aid of cross platform development tools Qt and powerful ARM platform design and implementation. The development of remote video surveillance system based on embedded terminal has practical significance and value.

  19. Wireless remote monitoring system for sleep apnea

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.


    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  20. Remote monitoring of ICDs and CRTs

    Niraj Varma


    Full Text Available Cardiac implantable electronic devices are increasing in prevalence and functionality. Post-implant follow-up is important for monitoring both device function and patient condition. However, practice is inconsistent. For example, ICD follow-up schedules vary from 3 months to yearly according to facility and physician preference and availability of resources. Recommended follow-up schedules impose significant burden. Importantly, no surveillance occurs between follow-up visits. In contrast, implantable devices with automatic remote monitoring capability provide a means for performing constant surveillance, with the ability to identify salient problems rapidly. Results from large randomized prospective trials of all types of CIEDs from different manufacturers, and conducted in different countries, consistently indicate superior performance to conventional care for achieving the current follow-up goals of patient retention and early problem discovery, improving patient safety and convenience, yet promoting clinic efficiencies. Thus, automatic remote home monitoring is a transforming technology in the evolution of CIEDs, and is poised for remarkable gains in disease management.

  1. Investigation of the 3D temperature distribution patterns above the Antarctic Peninsula using remote sensing data - A contribution for polar climate monitoring

    Wachter, Paul; Höppner, Kathrin; Jacobeit, Jucundus; Diedrich, Erhard


    West Antarctica and the Antarctic Peninsula are in the focus of current studies on a changing environment and climate of the polar regions. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surfaces and the atmosphere in order to characterize environmental changes in this highly sensitive region. One of the PhD projects focuses on the investigation of the 3D temperature distribution patterns above the Antarctic Peninsula. Temperature data sets ranging from MODIS land surface temperatures up to middle atmosphere data of AURA/MLS will be evaluated over the last approx. 12 years. This 3-dimensional view allows comprehensive investigations of the thermal structure and spatio-temporal characteristics of the southern polar atmosphere. Tropospheric data sets will be analyzed by multivariate statistical methods and will allow the identification of dominant atmospheric circulation patterns as well as their temporal variability. An overview of the data sets and first results will be presented.

  2. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung


    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  3. Remote personal health monitoring with radio waves

    Nguyen, Andrew


    We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.

  4. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis


    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  5. Levee Health Monitoring With Radar Remote Sensing

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.


    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  6. Application of WiFi Technology in the Remote Monitoring System for Temperature and Humidity%WiFi技术在温湿度远程监测系统中的应用



    针对当前温湿度远程监测布线复杂、采集速度慢等缺点,提出了一种新颖的分布式无线监测系统。系统由DHT11数字式温湿度传感器、单片机STM32F103和WiFi模块等组成。各采集节点利用STM32F103单片机采集温湿度,然后通过WiFi模块和无线路由器把各采集节点的温湿度参数发送到远程服务器上。试验表明,该系统布线简单、采集速度快、应用灵活,可实现范围分布广泛的温湿度集中可视化监控,具有一定的推广使用价值。%Aiming at the disadvantages of current remote monitoring system, e. g. , complex wiring and slow acquisition speed, etc. , a new distributed wireless monitoring system is proposed. The system is composed of DHT11 digital temperature humidity sensor, single chip machine STM32F103 and WiFi module. The temperature and humidity are collected by using STM32F103 single chip machine in each collection node, then, these parameters are transmitted to remote server through WiFi module and wireless router. The experiments show that the system is simple wiring, fast collecting and flexible applying; it can be used in centralized visual monitoring for widely distributed temperature and humidity parameters, and possesses certain values of promotion and application.

  7. Monitoring Frost Disaster of Cotton Based on Difference of Vegetation Index and Canopy Temperature by Remote Sensing%基于ETM植被指数和冠层温度差异遥感监测棉花冷害

    林海荣; 李章成; 周清波; 吕新


    大范围地、及时地遥感监测棉花的冻害状况及损失对安排救灾、灾后评估有着现实的意义.利用2001年6月7日、8月10日和2000年8月7日ETM影像,结合农业灾害和农作物生长发育统计数据,通过植被指数变化和冠层温度差异对新疆沙湾2001年8月初棉花结桃时发生的冷害进行遥感监测.结果表明:与往年未遭受冷害的同期棉花植被指数相比,棉花植被指数NDVI绝对差值降低区域占67.8%,其中下降0~0.2占51%,下降大于0.2占17%,降低百分比处于0~20%.植被指数和温度图像散点图呈现显著负相关,相关系数-0.63.其中未受冷害影响,植被指数增加,长势较好的棉花冠层温度平均为26.4℃,植被指数未变化区域为27.6℃,植被指数降低较多,冷害程度较重区域冠层温度约为29.3℃,冠层温度差异显著.基于ETM遥感影像植被指数变化幅度和冠层温度差异可用于冷害程度区域划分.%Frostbite occurrence lies mainly on condition of weather and vegetation.Frostbite can be monitored by remote sensing according to the difference of vegetation index,which has higher spatial and temporal resolution, and to the canopy temperature,which has higher precision of temperature retrieval.In addition,considering the aerosol and humidity effect on the temperature retrieval and the quality of the remote sensing image,monitoring the frostbite by remote sensing is rather complicated and difficult.North Xinjiang is the main production zone of cotton in China,where cotton is influenced seriously by later spring frost or early autumn low-temperature injury.Remote sensing is proved feasible in monitoring crop growth,especially after stresses.But monitoring frostbite of cotton with remote sensing has been rarely studied so far.So combining with the statistical data of agriculture disaster and crop development,according to the difference of NDVI and canopy temperature (CT), the remote sensing was applied to three


    Frank C. Lin


    Full Text Available The present study describes a prototype we built and named REMOTE for detecting and monitoring in real time tsunami events, based on changes in infrared radiation emitted from the sea when up thrust crustal movements from a major or a great tsunamigenic earthquake disturb the ocean floor and change the thermal properties of the water column in the source region. Specifically, we describe the hardware and software components of this system and present its performance results from recent tsunamis. Declouding of satellite images is often required and this is accomplished by the application of wavelet analysis. Also, in the present study we address the problem of signal delay due to the satellite scanning cycle and discuss possible solutions. Finally, we enumerate the relative benefits of our system. Our proposed system is available to all the countries with access to a geostationary weather satellite.

  9. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H;


    BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  10. Implementation of remote monitoring and managing switches

    Leng, Junmin; Fu, Guo


    In order to strengthen the safety performance of the network and provide the big convenience and efficiency for the operator and the manager, the system of remote monitoring and managing switches has been designed and achieved using the advanced network technology and present network resources. The fast speed Internet Protocol Cameras (FS IP Camera) is selected, which has 32-bit RSIC embedded processor and can support a number of protocols. An Optimal image compress algorithm Motion-JPEG is adopted so that high resolution images can be transmitted by narrow network bandwidth. The architecture of the whole monitoring and managing system is designed and implemented according to the current infrastructure of the network and switches. The control and administrative software is projected. The dynamical webpage Java Server Pages (JSP) development platform is utilized in the system. SQL (Structured Query Language) Server database is applied to save and access images information, network messages and users' data. The reliability and security of the system is further strengthened by the access control. The software in the system is made to be cross-platform so that multiple operating systems (UNIX, Linux and Windows operating systems) are supported. The application of the system can greatly reduce manpower cost, and can quickly find and solve problems.

  11. Remote monitoring of heart failure patients.

    Bhimaraj, Arvind


    "The Teledactyl (Tele, far; Dactyl, finger--from the Greek) is a future instrument by which it will be possible for us to 'feel at a distance.' This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance...The doctor manipulates his controls, which are then manipulated at the patient's room in exactly the same manner. The doctor sees what is going on in the patient's room by means of a television screen." -Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor.

  12. Remote Monitoring of Heart Failure Patients

    Bhimaraj, Arvind


    “The Teledactyl (Tele, far; Dactyl, finger — from the Greek) is a future instrument by which it will be possible for us to ‘feel at a distance.’ This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance…The doctor manipulates his controls, which are then manipulated at the patient’s room in exactly the same manner. The doctor sees what is going on in the patient’s room by means of a television screen.” —Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor. PMID:23519115

  13. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Valerie A J Block

    Full Text Available To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps.Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures, energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined.137 studies met inclusion criteria in multiple sclerosis (MS (61 studies; stroke (41; Parkinson's Disease (PD (20; dementia (11; traumatic brain injury (2 and ataxia (1. Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering.These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  14. Infrared Radiant Temperatures in the Alpine/Periglacial Environment as Related to Thermal Remote Sensing,

    remote sensing in the alpine/periglacial environment. Techniques of ground truth observations were tested by which a researcher might determine the usefulness of infrared scanning to his study without the financial investment of airborne remote sensing on a trial-and-error basis. Also, an attempt was made to determine the environmental controls upon radiant temperature by monitoring changing patterns of radiant temperature relative to changing meteorologic conditions. Observations of both actual and thermal infrared radiant temperatures were made

  15. ITS Temperature Monitoring

    Savin, A E; CERN. Geneva; Gerasimov, S F


    The results of the R&D done under the ISTC#345 grant are presented for consideration for possible future application. The choice of the temperature sensors is described. Thin-film miniature Pt-sensors were produced and the results of the metrological studies of the manufactured samples are presented. The multi-channel temperature data readout system prototype and results of long-term stability tests are discussed. List of figures: Figure 1 Thin film Pt-thermometer topology Figure 2 Studies of long-term stability of Pt-thermometers Figure 3 DT structural scheme Figures 4 & 5 Output data ADC read operation, Control register ADC write operation

  16. Landfill monitoring using remote sensing: a case study of Glina, Romania.

    Iacoboaea, Cristina; Petrescu, Florian


    Landfill monitoring is one of the most important components of waste management. This article presents a case study on landfill monitoring using remote sensing technology. The study area was the Glina landfill, one of the largest municipal waste disposal sites in Romania. The methodology consisted of monitoring the differences of temperature computed for several distinct waste disposal zones with respect to a ground reference area, all of them located within the landfill site. The remote sensing data used were Landsat satellite multi-temporal data. The differences of temperature were computed using Landsat thermal infrared data. The study confirmed the use of multi-temporal Landsat imagery as a complementary data source.

  17. Remote monitoring: An implementation on the Gemini System

    Sheridan, R.; Ondrik, M.; Kadner, S.; Resnik, W. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Chitumbo, K. [International Atomic Energy Agency, Vienna (Austria); Corbell, B. [Sandia National Labs., Albuquerque, NM (United States)


    The Gemini System consists of a sophisticated, digital surveillance unit and a high performance review system. Due to the open architectural design of the Gemini System, it provides an excellent hardware and software platform to support remote monitoring. The present Gemini System provides the user with the following Remote Monitoring features, via a modem interface and powerful support software: state-of-health reporting, alarm reporting, and remote user interface. Future enhancements will contribute significantly to the Gemini`s ability to provide a broader spectrum of network interfaces and remote review.

  18. Survey of remote data monitoring systems

    Logee, T.L.; Kendall, P.W.; Pollock, E.O.; Raymond, M.G.; Knapp, R.C. Jr.


    A self-contained data-logger device called an SDAS (Site Data Acquisition Subsystem) was built for the National Solar Data Network (NSDN) which could collect analog data from 96 channels, store the data for up to three days, and then transmit the stored data on request to a central facility by voice-grade telephone lines. This system has worked fairly well for the eight years that it has been in service. However, the design and components are getting old and newer dataloggers may be more reliable and accurate and less expensive. This report discusses the results of an extensive search for an SDAS replacement. The survey covered 62 models from 36 manufacturers. These numbers are not indicative of all the dataloggers or manufacturers available, but only those which appeared to have some qualifications for the NSDN datalogger replacement. This report views the datalogger as a system which is made up of sensors, a data acquisition and storage unit, a telecommunications subsystem, and a data processing subsystem. Therefore, there is a section on sensors used in the NSDN, telecommunications technology, and data processing requirements. These four components or subsystems are all necessary in order to have an integrated, successful remote data monitoring network.

  19. Optoelectronic biosensor for remote monitoring of toxins

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Fiorilli, Mina; Jauda, Lilana


    12 A biosensor telemetry system for the on-line remote monitoring of toxic sites is described in this paper. The device is a self-contained field measurement system that employs immobilized luminescent. Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals in the air will lead to a measurable decrease in the intensity of light produced by the bacteria population. Both cellular and environmental factors control the level of bioluminescence exhibited by the bacteria. The biological sensing element is placed inside a miniature airflow chamber that houses a light-to-frequency transducer, power supply, and Radio-Frequency (RF) transmitter to convert the intensity of bioluminescence exhibited by the bacteria population into a radio signal that is picked up by a RF receiver at a safe location. The miniature biosensor can be transported to the investigated on either a terrestrial or airborne robotic vehicle. Furthermore, numerous spatially distributed biosensors can be used to both map the extent and the rate-of-change in the dispersion of the hazardous contaminants over a large geographical area.

  20. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    Zong, Xiaoping; Shao, Heling


    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  1. A remote drip infusion monitoring system employing Bluetooth.

    Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton


    We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.

  2. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    Huang, Qing; Zhou, Qing-bo; Zhang, Li


    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  3. Product Maintenance Oriented Remote Monitoring and Diagnosis System

    张之敬; 林飞


    A research on maintenance oriented remote monitoring and diagnosis modular as well as the data transportation technique is carried out. An opened and modularized data share framework integrated with virtual graphic transportation is presented to realize the data exchange. As a result, it implements a real-time monitoring, diagnosis and maintenance system based on WWW. An effective support technique for the real-time remote fault diagnosis, maintenance and entire life cycle design of products is supplied.

  4. Application of GPRS and GIS in Boiler Remote Monitoring System

    Hongchao Wang; Yifeng Wu


    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  5. Wireless Remote Weather Monitoring System Based on MEMS Technologies

    Rong-Hua Ma


    Full Text Available This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS and wireless sensor network (WSN technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC. Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance value of 8.2 × 10−4 (°C−1. The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10−2 (Ω/kPa. The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10−2, 9.2 × 10−2, 9.7 × 10−2 (Ω/ms−1 with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  6. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.


    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  7. Perioperative thermoregulation and temperature monitoring.

    Insler, Steven R; Sessler, Daniel I


    patients becoming sufficiently hypothermic. Mild hypothermia in the perioperative period has been associated with adverse outcomes, including impaired drug metabolism, prolonged recovery from anesthesia, cardiac morbidity, coagulopathy, wound infections, and postoperative shivering. Perioperative temperature monitoring devices vary by transducer type and site monitored. More important than the specific device is the site of temperature monitoring. Sites that are accessible during surgery and give an accurate reflection of core temperature include esophageal, nasopharynx, bladder, and rectal sites. Core temperature also may be estimated reasonably using axillary temperature probes except under extreme thermal conditions. Rather than taking a passive approach to thermal management, anesthesiologists need to be proactive in monitoring patients in cold operating rooms and use available technology to prevent gross disturbances in the core temperature. Various methods are available to achieve this. Prewarming patients reduces redistribution hypothermia and is an effective strategy for maintaining intraoperative normothermia. Additionally, forced-air warming and circulating water garments also have been shown to be effective. Heating intravenous fluids does not warm patients, but does prevent fluid-induced hypothermia in patients given large volumes of fluid. This article examined the evolutionary adaptations people possess to combat inadvertent hypothermia and hyperthermia. Because thermal disturbances are associated with severe consequences, the standard of care is to monitor temperature during general anesthesia and to maintain normothermia unless otherwise specifically indicated.

  8. Development of a cloud-based system for remote monitoring of a PVT panel

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques


    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  9. Redskaber til monitorering af trafikken (REMOTE)

    Denne rapport samler op på erfaringerne fra REMOTE projektet. Rapporten r skrevet på en blanding af dansk og engelsk, da der både har været dansk og engelsk talende personer med i projektet. Den første del af rapporten beskriver overordnet, hvad der er sket i projektet. Herefter kommer der et afs...

  10. Research on Key Technology of Mining Remote Sensing Dynamic Monitoring Information System

    Sun, J.; Xiang, H.


    Problems exist in remote sensing dynamic monitoring of mining are expounded, general idea of building remote sensing dynamic monitoring information system is presented, and timely release of service-oriented remote sensing monitoring results is established. Mobile device-based data verification subsystem is developed using mobile GIS, remote sensing dynamic monitoring information system of mining is constructed, and "timely release, fast handling and timely feedback" rapid response mechanism of remote sensing dynamic monitoring is implemented.

  11. Application of Remote Sensing Technology in Mine Environment Monitoring

    Li Yue


    Full Text Available Mine environment problem caused by the exploitation of mineral resources has become a key factor which affects normal production of mine and safety of ecological environment for human settlement. For better protection and management of mine environment, this article has introduced the important role of remote sensing technology in pollution monitoring of mine environment, geological disaster monitoring and monitoring of mining activities.

  12. A Framework for Resilient Remote Monitoring


    monitored system. This paper describes the security architecture of Gestalt , a next-generation cyber informa- tion management platform that aims to...increase in the attack surface of the monitored system. This paper describes the security architecture of Gestalt , a next-generation cyber information... Gestalt ?s federated monitoring architecture is based on the principles of strong isolation, leastprivilege policies, defense-in-depth, crypto-strong

  13. Monitoring vegetation responses to drought -- linking Remotely-sensed Drought Indices with Meteorological drought indices

    Wang, H.; Lin, H.; Liu, D.


    Abstract: Effectively monitoring vegetation drought is of great significance in ecological conservation and agriculture irrigation at the regional scale. Combining meteorological drought indices with remotely sensed drought indices can improve tracking vegetation dynamic under the threat of drought. This study analyzes the dynamics of spatially-defined Temperature Vegetation Dryness Index (TVDI) and temporally-defined Vegetation Health Index (VHI) from remotely sensed NDVI and LST datasets in the dry spells in Southwest China. We analyzed the correlation between remotely sensed drought indices and meteorological drought index of different time scales. The results show that TVDI was limited by the spatial variations of LST and NDVI, while VHI was limited by the temporal variations of LST and NDVI. Station-based buffering analysis indicates that the extracted remotely sensed drought indices and Standard Precipitation Index (SPI) could reach stable correlation with buffering radius larger than 35 km. Three factors affect the spatiotemporal relationship between remotely sensed drought indices and SPI: i) different vegetation types; ii) the timescale of SPI; and iii) remote sensing data noise. Vegetation responds differently to meteorological drought at various time scales. The correlation between SPI6 and VHI is more significant than that between SPI6 and TVDI. Spatial consistency between VHI and TVDI varies with drought aggravation. In early drought period from October to December, VHI and TVDI show limited consistency due to the low quality of remotely sensed images. The study helps to improve monitoring vegetation drought using both meteorological drought indices and remotely sensed drought indices.

  14. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo


    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  15. Remote self-contained undersea monitor

    Page, R. E.


    A remote oceanographic data recording system which is self-contained battery operated and removably attachable to an external surface of a submerged hull without a need to penetrate said hull is presented. The system is capable of gathering and recording oceanographic data and may be joined to the hull of a submarine without interfering in submarine operation in any way. The system receives analog ac and dc electrical input signals from a variety of oceanographic data sensors and converts the signals to digital data signals for recording on magnetic tape cassette. The housing the system is watertight and capable of withstanding external hydrostatic pressures up to 1620 psi.

  16. The International Remote Monitoring Project -- First results of the Argentina nuclear power station field trial

    Bonino, A.; Pizarro, L.; Perez, A. [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina); Schoeneman, J.L.; Dupree, S.A.; Martinez, R.L. [Sandia National Labs., Albuquerque, NM (United States); Maxey, C. [Oak Ridge National Lab., TN (United States)


    As part of the International Remote Monitoring Project field trials, during the month of March, 1995 a Remote Monitoring System (RMS) was installed at the Embalse Nuclear Power Station in Embalse, Argentina. This system monitors the status of four typical Candu spent fuel dry storage silos. The monitoring equipment for each silo consists of analog temperature and gamma radiation sensors and digital motion and electronic fiber-optic seals connected to a wireless Authenticate Item Monitoring System (AIMS). All sensor data are authenticated and transmitted via RF link to Receiver Processor Units (RPU) coupled to Remote Monitoring System equipment located in a nearby IAEA/ENREN inspector office. One of these RPUs is connected to Remote Monitoring equipment capable of information transmission (via commercial telephone links) to Data Review Stations (DRS) at ENREN laboratories in Buenos Aires, Argentina, and at Sandia National Laboratories, Albuquerque, New Mexico. The other RPU is used for on-site data storage and analysis. It is anticipated that this information will soon be transmitted to a DRS at the ABACC facility in Rio de Janeiro, Brazil. During these trials site data will be collected and analyzed periodically from Buenos Aires, Albuquerque, and Rio de Janeiro. Installation detail and data analysis will be presented in this paper.

  17. Application of GPRS and GIS in Boiler Remote Monitoring System

    Hongchao Wang


    Full Text Available Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the system has convenience to use, high reliability, which play an active role to improve the operating efficiency, to prevent the boiler accident, and to decrease the energy consumption.

  18. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    Alonzo, G M [ed.


    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  19. Remote monitoring system workshop and technical cooperation

    Kim, Jung Soo; Kwack, E. H.; Yoon, W. K.; Kim, J. S.; Cha, H. Y.; Na, W.W


    RMS workshop at the year focus on installing the material monioring system at technology lab. within TCNC. This system was developed by cooperative monitoring center(CMC) belonging to Sandia national lab. MMS consisted of data storage computer, data collection computer and easily connet to DCM-14 camera using monitoring the NPP by IAEA. The system run when the motion is catching and stroes the event data to MMS server. Also, the system communicate with the internet and then they access to check the event data only if the authencated person.

  20. Remote container monitoring and surveillance systems

    Resnik, W.M.; Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States)


    Aquila Technologies Group is developing a monitoring and surveillance system to monitor containers of nuclear materials. The system will both visually and physically monitor the containers. The system is based on the combination of Aquila`s Gemini All-Digital Surveillance System and on Aquila`s AssetLAN{trademark} asset tracking technology. This paper discusses the Gemini Digital Surveillance system as well as AssetLAN technology. The Gemini architecture with emphasis on anti-tamper security features is also described. The importance of all-digital surveillance versus other surveillance methods is also discussed. AssetLAN{trademark} technology is described, emphasizing the ability to continually track containers (as assets) by location utilizing touch memory technology. Touch memory technology provides unique container identification, as well as the ability to store and retrieve digital information on the container. This information may relate to container maintenance, inspection schedules, and other information. Finally, this paper describes the combination of the Gemini system with AssetLAN technology, yielding a self contained, container monitoring and area/container surveillance system. Secure container fixture design considerations are discussed. Basic surveillance review functions are also discussed.

  1. Drought monitoring using remote sensing of evapotranspiration

    Drought assessment is a complex endeavor, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture (SM), ground and surface water anomalies reflect deficiencies in moist...

  2. A Remote Real-Time Monitoring System for Power Quality

    黄治清; 贺建闽


    An introduction is made to the composition, design method and engineering application of a remote real-time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real-time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.

  3. Challenges for remote monitoring and control of small reactors

    Trask, D., E-mail: [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)


    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  4. BANip: Enabling Remote Healthcare Monitoring with Body Area Networks

    Dokovski, Nikolay; Halteren, van Aart; Widya, Ing; Guelfi, Nicolas; Astesiano, Egidio; Reggio, Gianna


    This paper presents a Java service platform for mobile healthcare that enables remote health monitoring using 2.5/3G public wireless networks. The platform complies with todayrsquos healthcare delivery models, in particular it incorporates some functionality of a healthcare call center, a healthport

  5. BANip: Enabling Remote Healthcare Monitoring with Body Area Networks

    Dokovski, N.T.; van Halteren, Aart; Widya, I.A.; Guelfi, Nicolas; Astesiano, Egidio; Reggio, Gianna


    This paper presents a Java service platform for mobile healthcare that enables remote health monitoring using 2.5/3G public wireless networks. The platform complies with todayrsquos healthcare delivery models, in particular it incorporates some functionality of a healthcare call center, a healthport


    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...


    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...


    Shalkovskii, A G; Kuptsov, S M; Berseneva, E A


    The article considers issues of necessity of development and implementation of remote monitoring of arterial blood pressure and rate of heartbeats as a mean of enhancing quality of medical care of patients. The main characteristics of development of specialized automated system as an integral component of the project is considered too.

  9. 3.5G based mobile remote monitoring system.

    Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul


    Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.

  10. Fuel processor temperature monitoring and control

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.


    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  11. Vulnerability analysis on a VPN for a remote monitoring system

    Kim, Jung Soo; Kim, Jong Soo; Park, Il Jin; Min, Kyung Sik; Choi, Young Myung [KAERI, Taejon (Korea, Republic of)


    14 Pressurized Water Reactors(PWR) in Korea use a Remote Monitoring System(RMS), which have been in Korea Since 1998. A memorandum of understanding on remote monitoring, based on enhanced cooperation on PWRs, was signed at the 10th safeguards review meeting in October 2001 between the International Atomic Energy Agency(IAEA) and Ministry Of Science and Technology(MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an internet system for remote monitoring. According to the internet-based Virtual Private Network(VPN) applied to remote monitoring, the Korea Atomic Energy Research Institute(KAERI) came to an agreement with the IAEA, using a Member State Support Program(MSSP). Phase I is a lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated system(SDIS) server, IAEA server and TCNC(Technology Center for Nuclear Control) server. In each system, Virtual Private Network(VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS server and VPN; TCNC server and VPN; and IAEA server and VPN) via penetration testing.

  12. Monitoring of Gangotri glacier using remote sensing and ground observations

    H S Negi; N K Thakur; A Ganju; Snehmani


    In this study, Gangotri glacier was monitored using Indian Remote Sensing (IRS) LISS-III sensor data in combination with field collected snow-meteorological data for a period of seven years (2001–2008). An overall decreasing trend in the areal extent of seasonal snow cover area (SCA) was observed. An upward shifting trend of wet snow line was observed in the beginning of melt period, i.e., in May and dominant wet snow conditions were observed between May and October. Snow meteorological parameters collected in the Gangotri sub-basin suggest reduction in fresh snowfall amount during winter, increase in rainfall amount during summer, decrease in snowfall days, increase in rainfall days and rising trend of average temperature. The prevailing wet snow condition on glacier has caused scouring of slopes which led the excessive soil/debris deposition on the glacier surface. This was observed as one of the major factor for activating fast melting and affecting the glacier health significantly. Apart from climatic conditions, terrain factors were observed for changing the glacio-morphology. The significant changes on the glacier surface were observed in the regions of abrupt slope change. The above factors affecting the Gangotri glacier health were also validated using high resolution satellite imageries and field visit. A deglaciation of 6% in overall area of Gangotri glacier was observed between the years 1962 and 2006.

  13. [Review of monitoring soil water content using hyperspectral remote sensing].

    Wu, Dai-hui; Fan, Wen-jie; Cui, Yao-kui; Yan, Bin-yan; Xu, Xi-ru


    Soil water content is a key parameter in monitoring drought. In recent years, a lot of work has been done on monitoring soil water content based on hyperspectral remotely sensed data both at home and abroad. In the present review, theories, advantages and disadvantages of the monitoring methods using different bands are introduced first. Then the unique advantages, as well as the problems, of the monitoring method with the aid of hyperspectral remote sensing are analyzed. In addition, the impact of soil water content on soil reflectance spectrum and the difference between values at different wavelengths are summarized. This review lists and summarizes the quantitative relationships between soil water content and soil reflectance obtained through analyzing the physical mechanism as well as through statistical way. The key points, advantages and disadvantages of each model are also analyzed and evaluated. Then, the problems in experimental study are pointed out, and the corresponding solutions are proposed. At the same time, the feasibility of removing vegetation effect is discussed, when monitoring soil water content using hyperspectral remote sensing. Finally, the future research trend is prospected.

  14. Optimized Radar Remote Sensing for Levee Health Monitoring

    Jones, Cathleen E.


    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  15. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Alan F. Smeaton


    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  16. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    Duk-jin Kim


    Full Text Available Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  17. ZigBee-based remote patient monitoring.

    Fernandez-Lopez, Helena; Afonso, José Augusto; Correia, José Higino; Simões, Ricardo


    This paper describes a developed continuous patient monitoring system based on the ZigBee protocol. The system was tested in the hospital environment using six sensor devices in two different modes. For electrocardiogram transmission and in the absence of hidden-nodes, the system achieved a mean delivery ratio of 100% and 98.56%, respectively for star and 2-hop tree network topologies. When sensor devices were arranged in a way that three of them were unable to hear the transmissions made by the other three, the mean delivery ratio dropped to 83.96%. However, when sensor devices were reprogrammed to transmit only heart rate values, the mean delivery ratio increased to 99.90%, despite the presence of hidden-nodes.

  18. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Li, Na; Lü, Jian-sheng; Altemann, W


    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  19. Environmental monitoring: civilian applications of remote sensing

    Bolton, W.; Lapp, M.; Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States); Phipps, G. [Sandia National Labs., Albuquerque, NM (United States)


    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  20. Remote monitoring of LED lighting system performance

    Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah


    The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.

  1. Geostatistical Solutions for Downscaling Remotely Sensed Land Surface Temperature

    Wang, Q.; Rodriguez-Galiano, V.; Atkinson, P. M.


    Remotely sensed land surface temperature (LST) downscaling is an important issue in remote sensing. Geostatistical methods have shown their applicability in downscaling multi/hyperspectral images. In this paper, four geostatistical solutions, including regression kriging (RK), downscaling cokriging (DSCK), kriging with external drift (KED) and area-to-point regression kriging (ATPRK), are applied for downscaling remotely sensed LST. Their differences are analyzed theoretically and the performances are compared experimentally using a Landsat 7 ETM+ dataset. They are also compared to the classical TsHARP method.

  2. Preliminary Analysis of Remote Monitoring & Robotic Concepts for Performance Confirmation

    D.A. McAffee


    As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2

  3. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    Zhang, Jie


    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  4. Wearable technologies for soldier first responder assessment and remote monitoring (Conference Presentation)

    Lee, Stephen


    Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.

  5. Channel Islands, Kelp Forest Monitoring, Sea Temperature

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has subtidal temperature data taken at permanent monitoring sites. Since 1993,...

  6. Radar-based remote sensing monitoring of roads

    Crosetto, Michele; Monserrat, Oriol; Luzi, Guido; Cuevas-González, María; Devanthéry, Núria


    This paper provides a brief description of two powerful radar-based remote sensing techniques to monitor the deformations of roads, their associated infrastructures and, more in general, their surroundings. The first technique is the satellite radar interferometric technique. In this work a specific technique, named Persistent Scatterer Interferometry (PSI), is considered. This technique has wide-area coverage capability (e.g. covering thousands of square kilometres at the time) and,at the...




    Since 1993, the IAEA has made great progress in the implementation of remote monitoring. Equipment has been developed and tested, and installed systems are being used for safeguards purposes. The cost of equipment, the complexity of communication technology, and maintenance of the equipment are challenges that still face the IAEA. Resolution of these challenges will require significant effort. The USSP is committed to assisting the IAEA to overcome these challenges.

  8. Autonomous analyser platforms for remote monitoring of water quality

    Diamond, Dermot; Cleary, John; Maher, Damien; Kim, Jung Ho; Lau, King-Tong


    This paper describes progress in the realization of reliable, relatively low-cost autonomous microfluidic analysers that are capable of monitoring the chemistry of water bodies for significant periods of time (weeks, months) without human intervention. The data generated is transmitted wireless to a remote web server and transferred to a web-database that renders data access location independent. Preliminary results obtained from a ‘matchbox’ scale analyzer are also presented and routes to...

  9. TeleLab – A Remote Monitoring and Control System

    Ashish Taneja; Aakash Kushwah; Akshat Gupta; Vats, Vipin B.


    Presented herein is a remote monitoring and control system which provides the user (client) with graphical output of the acquired experimental data. The experiment is based on MATLAB, Atmel AVR (namely the mega8). Instead of using different tools, the project focuses at using just one so as to make it simple for the user to understand and debug if necessary. A tool such as MatLab, being simple yet efficient, provides the greatest flexibility. At present the setup ...

  10. Exploring a New Security Framework for Remote Patient Monitoring Devices

    Brian Ondiege


    Full Text Available Security has been an issue of contention in healthcare. The lack of familiarity and poor implementation of security in healthcare leave the patients’ data vulnerable to attackers. The main issue is assessing how we can provide security in an RPM infrastructure. The findings in literature show there is little empirical evidence on proper implementation of security. Therefore, there is an urgent need in addressing cybersecurity issues in medical devices. Through the review of relevant literature in remote patient monitoring and use of a Microsoft threat modelling tool, we identify and explore current vulnerabilities and threats in IEEE 11073 standard devices to propose a new security framework for remote patient monitoring devices. Additionally, current RPM devices have a limitation on the number of people who can share a single device, therefore, we propose the use of NFC for identification in Remote Patient Monitoring (RPM devices for multi-user environments where we have multiple people sharing a single device to reduce errors associated with incorrect user identification. We finally show how several techniques have been used to build the proposed framework.

  11. Remote monitoring of biodynamic activity using electric potential sensors

    Harl, C J; Prance, R J; Prance, H [Centre for Physical Electronics and Quantum Technology, Department of Engineering and Design, School of Science and Technology, University of Sussex, Brighton, BN1 9QT (United Kingdom)], E-mail:


    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  12. Remote instrumentation and safeguards monitoring for the star project

    Buettner, H M; Labiak, W; Spiridon, A


    A part of the Nuclear Energy Research Initiative (NERI) is the development of the Small Transportable Autonomous Reactor (STAR) for deployment in countries that do not have a nuclear industry. STARs would have an output of from 100 to 150 MW electric, would be fueled in the country of manufacture, and after 15 to 20 years of operation the reactor core would be returned to the country of manufacture for refueling. A candidate STAR design can be found in (Greenspan, 2000). This paper describes the design of the control and monitoring system that might be used. There are two unique features to this system. One is that the monitored information will be transmitted to a remote site for two purposes, safeguards, and allowing experts a great distance away direct access to view the reactor's operating parameters. The second feature is safeguards sensors will be designed into the system and there will monitoring of the safeguards aspects of the system for tampering. Any safeguards anomalies will be sent to the remote site as alarms. Encrypted satellite communications will be used to transmit the data. These features allow the STAR to be operated by a small staff and will reduce the costs of safeguards monitoring by reducing the number of plant visits by inspectors.

  13. Remote instrumentation and safeguards monitoring for the star project

    Buettner, H M; Labiak, W; Spiridon, A


    A part of the Nuclear Energy Research Initiative (NERI) is the development of the Small Transportable Autonomous Reactor (STAR) for deployment in countries that do not have a nuclear industry. STARs would have an output of from 100 to 150 MW electric, would be fueled in the country of manufacture, and after 15 to 20 years of operation the reactor core would be returned to the country of manufacture for refueling. A candidate STAR design can be found in (Greenspan, 2000). This paper describes the design of the control and monitoring system that might be used. There are two unique features to this system. One is that the monitored information will be transmitted to a remote site for two purposes, safeguards, and allowing experts a great distance away direct access to view the reactor's operating parameters. The second feature is safeguards sensors will be designed into the system and there will monitoring of the safeguards aspects of the system for tampering. Any safeguards anomalies will be sent to the remote site as alarms. Encrypted satellite communications will be used to transmit the data. These features allow the STAR to be operated by a small staff and will reduce the costs of safeguards monitoring by reducing the number of plant visits by inspectors.

  14. Remote Sensing of Coral Reefs for Monitoring and Management: A Review

    John D. Hedley


    Full Text Available Coral reefs are in decline worldwide and monitoring activities are important for assessing the impact of disturbance on reefs and tracking subsequent recovery or decline. Monitoring by field surveys provides accurate data but at highly localised scales and so is not cost-effective for reef scale monitoring at frequent time points. Remote sensing from satellites is an alternative and complementary approach. While remote sensing cannot provide the level of detail and accuracy at a single point than a field survey, the statistical power for inferring large scale patterns benefits in having complete areal coverage. This review considers the state of the art of coral reef remote sensing for the diverse range of objectives relevant for management, ranging from the composition of the reef: physical extent, benthic cover, bathymetry, rugosity; to environmental parameters: sea surface temperature, exposure, light, carbonate chemistry. In addition to updating previous reviews, here we also consider the capability to go beyond basic maps of habitats or environmental variables, to discuss concepts highly relevant to stakeholders, policy makers and public communication: such as biodiversity, environmental threat and ecosystem services. A clear conclusion of the review is that advances in both sensor technology and processing algorithms continue to drive forward remote sensing capability for coral reef mapping, particularly with respect to spatial resolution of maps, and synthesis across multiple data products. Both trends can be expected to continue.

  15. Remote monitoring of nursing home residents using a humanoid robot.

    Bäck, Iivari; Kallio, Jouko; Perälä, Sami; Mäkelä, Kari


    We studied the feasibility of using a humanoid robot as an assistant in the monitoring of nursing home residents. The robot can receive alarms via its wireless Internet connection and navigate independently to the room where the alarm originated. Once it has entered the room, the robot can transmit near real time images to the staff and also open a voice connection between the resident and the remote caregivers. This way the remote caregiver is able to check the situation in the room, and take appropriate actions. We tested the prototype robot in three private nursing homes in the Finnish county of South Ostrobothnia. During the testing, 2-4 alarms were produced by each participant and there were 29 alarms in total. The robot was able to navigate correctly to the room from which the alarm was sent and open the speech connection, as well as transmit images via the wireless Internet connection. The experiments provided evidence of the feasibility of using autonomous robots as assistants to nursing home staff in remote monitoring. The response from the nursing home residents was uniformly positive.

  16. Research Advances in Monitoring Agro-meteorological Disasters Using Remote Sensing

    Xueyan; SUI; Rujuan; WANG; Huimin; YAO; Meng; WANG; Shaokun; LI; Xiaodong; ZHANG


    Remote sensing is an important method for rapidly obtaining farmland information. Once meteorological disaster occurs,using the remote sensing technology to extract disaster area of crops and monitor disaster level has great significance for evaluating disasters and making a timely remedy. This paper elaborated the importance of monitoring agro-meteorological disasters using remote sensing in current special historical period,overviewed remote sensing methods both at home and abroad,analyzed existing problems,made clear major problems to be solved in monitoring agro-meteorological disasters using remote sensing,and discussed the development prospect of the remote sensing technology.

  17. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Ju Geon Pak


    Full Text Available Pulse oximetry data such as saturation of peripheral oxygen (SpO2 and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient’s pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  18. Remote Control and Monitoring of VLBI Experiments by Smartphones

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.


    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  19. Analysis of remote reflection spectroscopy to monitor plant health.

    Woodhouse, R; Heeb, M; Berry, W; Hoshizaki, T; Wood, M


    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Lactuca [correction of Latuca] Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  20. Analysis of remote reflectin spectroscopy to monitor plant health

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.


    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  1. Analysis of remote reflection spectroscopy to monitor plant health

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.


    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  2. Monitoring Movement Patterns on a Large Landslide Using Remote Methods.

    Murphy, W.; Bulmer, M. H.; Petley, D.


    Traditional methods of landslide monitoring have normally employed ground based instrumentation that is either read directly, logged by computer or telemetered to a remote station. While such methods have shown excellent results they remain labour intensive and costly. Furthermore such equipment is frequently lost. In recent years the use of remotely sensed data for the detection and monitoring of landslides has become more common. Such methods may take a number of forms. Firstly, the use of multitemporal satellite-based systems in either multispectral or panchromatic mode has allowed the detection and growth of landslides. These methods, despite allowing a stable platform and regular data collection are limited with regards to their spatial (and sometimes spectral) resolution. Secondly, repeat pass aerial photography now may have the advantage of being collected digitally, and possesses the capability of being orthorectified using either ground control stations or to onboard GPS measurements. These have the advantages of superior ground resolution and can be used to create high resolution digital elevation models allowing the frequent monitoring of landform change by DEM subtraction methods. The limiting factor is that the absence of good spectral coverage may make the detection of landslide related features (such as vegetation stress) difficult. Such a limitation can be overcome by simultaneous collection of airborne multispectral data, such as ATM, that can give excellent results for landslide monitoring and mapping. These techniques compliment the use of InSAR for the monitoring of ground deformation. While the use of InSAR allows the detection of surface deformation other methods allow actual landslide observation. Additionally, the greater precision of DEM derived from orthophotography can enhance the quality of the InSAR product. These complimentary techniques have been combined over the Black Ven landslide on the south-west coast of England to test their

  3. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall


    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  4. Engineering a laser remote sensor for atmospheric pressure and temperature

    Kalshoven, J. E., Jr.; Korb, C. L.


    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  5. Laser-Raman remote temperature sensing in liquids

    Pan, Y.; Faw, R. E.; Lester, T. W.


    A feasibility study has been conducted on the use of laser-Raman spectroscopy as a remote temperature sensing technique for liquids. Empirical relations between the temperature and parameters describing Raman band intensities were determined over a temperature range of 15 to 65 °C in carbon tetrachloride, benzene, ethylene glycol, aqueous sodium nitrate (5 M), and water. Using a 2-W argon ion laser and two 0.25-m monochromators in tandem, it was possible to measure temperatures in water to within 2 °C and, in ethylene glycol, to within 4 °C.

  6. A Self-Calibrating Remote Control Chemical Monitoring System

    Jessica Croft


    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  7. Remote monitoring technical review for light water reactors (Phase 1)

    Park, Seung Sik; Yoon, Wan Ki; Na, Won Woo; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejon (Korea)


    The IAEA has been conducting a field trial of a Remote Monitoring System (RMS) at the spent fuel storage, Younggwang 3 nuclear power plant. The system installation plan was initiated after the agreement in the 7th ROK-IAEA safeguards Implementation Review Meeting that was held in Soul, 1998. It describes that IAEA and Korea proceed RM tasks Implementation of RMS at LWRs in the ROK for field trials. The project of RMS is conducting through 3 stages with timing. RMS has been installed for the Phase I of field trial, one of two stages at Younggwang Unit 3 in October 1998. The RMS consists of video systems and a seal at the spent fuel pond area. This report provides a description of the monitoring system and its functions focusing on several technical points of the installation and its 6 month operation at Younggwang Unit 3. Subjects are selected and analyzed in the three chapters, IAEA safeguards policy on Remote Monitoring, the technology, and field test experiences. 8 refs., 12 figs., 12 tabs. (Author)


    A. Arun


    Full Text Available Remote Patient Monitoring (RPM provides flexible and powerful patient surveillance through wearable devices at anytime and anywhere. This can be achieved by using a Body Sensor Network (BSN, which is deployed on a human body for monitoring the healthcare. The mobile healthcare management with increased feasibility and handiness introduced several noteworthy challenges for the provider, policy makers, patient and hospitals. A significant challenge is to provide round-the-clock healthcare services to those patients who require it via wearable medical devices. In addition to this, the sensors collect the personal medical data where the security and privacy are important components in RPM. As a result, one of the most significant and challenging concern to deal with is how to secure the personal information of the patients and to eliminate their privacy issue. This study presents System on Programmable Chip (SoPC implementation of Remote Patient Monitoring System (RPM with Ultra Lightweight algorithms for security issues. Humming Bird 2 (HB-2, PRESENT and HIGHT algorithms were implemented since the wearable medical devices require fewer areas to achieve portability. The comparison results shows that Degree of Confusion of HB-2 is 50.43 which outstand the other, the efficiency of the entire algorithm implemented in SoPC are higher comparing with conventional Field Programmable Gate Array (FPGA implementation. The comparison was extended and in Particular, power and area consumption of HB-2 is less than PRESENT and HIGHT algorithm, which is more suitable for RPM devices.

  9. Temperature Monitoring and Perioperative Thermoregulation

    Sessler, Daniel I.


    Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature measuring sites are completely non-invasive and easy to use — especially in patients not having general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients having general anesthesia exceeding 30 minutes in duration, and in patients having major operations under neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature triggering cold defenses including arterio-venous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, and the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extant than general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown. PMID:18648241

  10. A Study on a Remote Monitoring and Diagnosis System and Its Application

    GAO Qiang; HE Zheng-jia


    Remote monitoring and diagnosis ( RMD ) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described.

  11. Jellyfish monitoring on coastlines using remote piloted aircraft

    Barrado, C.; Fuentes, J. A.; Salamí, E.; Royo, P.; Olariaga, A. D.; López, J.; Fuentes, V. L.; Gili, J. M.; Pastor, E.


    In the last 10 years the number of jellyfish shoals that reach the swimming area of the Mediterranean Sea are increasing constantly. The term "Jellyfish" refers to animals from different taxonomic groups but the Scyphomedusae are within the most significant one. Four species of Scyphomedusae are the most conspicuous ones inhabiting the studied area, the Barcelona metropolitan area. Jellyfish are usually found at the surface waters, forming big swarms. This feature makes possible to detect them remotely, using a visual camera and image processing algorithms. In this paper we present the characteristics of a remote piloted aircraft capable to perform monitoring flights during the whole summer season. The requirements of the aircraft are to be easy to operate, to be able to flight at low altitude (100 m) following the buoy line (200 m from the beach line) and to be save for other users of the seaside. The remote piloted aircraft will carry a vision system and a processing board able to obtain useful information on real-time.

  12. An optically remote powered subsea video monitoring system

    Lau, Fat Kit; Stewart, Brian; McStay, Danny


    The drive for Ocean pollution prevention requires a significant increase in the extent and type of monitoring of subsea hydrocarbon production equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such monitoring systems will all require to be powered. Conventionally electrical powering is supplied by standard subsea electrical cabling. The ability to visualise the assets being monitored and any changes or faults in the equipment is advantageous to an overall monitoring system. However the effective use of video cameras, particularly if the transmission of real time high resolution video is desired, requires a high data rate and low loss communication capability. This can be challenging for heavy and costly electrical cables over extended distances. For this reason optical fibre is often adopted as the communication channel. Using optical fibre cables for both communications and power delivery can also reduce the cost of cabling. In this paper we report a prototype optically remote powered subsea video monitoring system that provides an alternative approach to powering subsea video cameras. The source power is transmitted to the subsea module through optical fibre with an optical-to-electrical converter located in the module. To facilitate intelligent power management in the subsea module, a supercapacitor based intermediate energy storage is installed. Feasibility of the system will be demonstrated. This will include energy charging and camera operation times.

  13. ARM和ZigBee的远程温湿度监控系统设计%Design of Remote Temperature/Humidity Monitoring System Based on ARM and ZigBee

    刘彤; 谢永超; 汪科


    Aiming at temperature/humidity control status of Chinese sericulture full-scale cultivation, a temperature/humidity control scheme for centralized management and distributed control in the silkworm house is put forward. The scheme takes 32-bit ARM chip as the center of centralized management module,uses MCU and multi-channel temperature/humidity sensors to build remote terminal control module. Hardware structure and software flow are given,and the transport protocol is designed based on ZigBee wireless network transmission technology.%针对我国蚕业规模化养殖的温湿度控制现状,提出了集中管理,分布控制的蚕室温湿度的控制方案.本方案以32位ARM芯片为中心构成集中管理模块,以单片机和多路温湿度传感器构成远程终端控制模块,给出了模块实现的硬件结构和软件流程,并结合ZigBee无线网络传输技术设计了传输协议.

  14. A study on correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data and underground temperature

    HAN; Liqun; BI; Siwen; SONG; Shixin


    Based on an analysis of the correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data (QPTIRSD) and underground temperature field distribution, the main factors which obviously influence underground-layer temperatures were derived. Using neural network technology, a model was built to compute underground temperatures via parameters out of the inversion of thermal infrared remote sensing (TIRS) and then analyze the correlativity between above-ground parameters and underground temperatures. This method offers a new way to apply TIRS in monitoring the suture zone of a large-area massif as well as to research structural thermal anomalies.

  15. New cryogenic temperature monitor: PLT-HPT-32

    Viera Curbelo, Teodora Aleida; Martín-Fernández, Sergio Gonzáles; Hoyland, R.; Vega-Moreno, A.; Cozar Castellano, Juan; Gómez Reñasco, M. F.; Aguiar-González, M.; Pérez de Taoro, Angeles; Sánchez-de la Rosa, V.; Rubiño-Martín, J. A.; Génova-Santos, R.


    The PLT-HPT-32, a new cryogenic temperature monitor, has been developed by the Institute of Astrophysics of the Canary Islands (IAC) and an external engineering company (Sergio González Martín-Fernandez). The PLT-HPT-32 temperature monitor offers precision measurement in a wide range of cryogenic and higher-temperature applications with the ability to easily monitor up to 32 sensor channels. It provides better measurement performance in applications where researchers need to ensure accuracy and precision in their low cryogenic temperature monitoring. The PLT-HPT-32 supports PTC RTDs such as platinum sensors, and diodes such as the Lake Shore DT-670 Series. Used with silicon diodes, it provides accurate measurements in cryo-cooler applications from 16 K to above room temperature. The resolution of the measurement is less than 0.1K. Measurements can be displayed in voltage units or Kelvin units. For it, two different tables can be used. One can be programmed by the user, and the other one corresponds to Lake Shore DT670 sensor that comes standard. There are two modes of measuring, the instantaneous mode and averaged mode. In this moment, all channels must work in the same mode but in the near future it expected to be used in blocks of eight channels. The instantaneous mode takes three seconds to read all channels. The averaged mode takes one minute to average twenty samples in all channels. Alarm thresholds can be configured independently for each input. The alarm events, come from the first eight channels, can activate the unit's relay outputs for hard-wired triggering of other systems or audible annunciators. Activate relays on high, low, or both alarms for any input. For local monitoring, "Stand-Alone Mode", the front panel of the PLT-HPT-32 features a bright liquid crystal display with an LED backlight that shows up to 32 readings simultaneously. Plus, monitoring can be done over a network "Remote Control Mode". Using the Ethernet port on the PLT-HPT-32, you

  16. A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation

    张仁华; 孙晓敏; 朱治林; 苏红波; 唐新斋


    The presently applied remote sensing algorithms and approaches to monitor soil surface fluxes are reviewed at the beginning of this paper, and the bottleneck of the estimation of soil surface fluxes lies in the dependence on non remotely sensed parameters (NRSP). A soil surface evaporation model based on differential thermal inertia, only using remotely sensed information, has thus been proposed after many experiments. The key of the model is to derive soil moisture availability by differential thermal inertia rather than local soil parameters such as soil properties and type. Bowen ratio is estimated by means of soil moisture availability instead of NRSP, such as temperature and wind velocity. Net radiation flux and apparent thermal inertia have been used for soil heat flux parameterization, therefore, the objective of evaporation (latent heat flux) inversion for bare soil only by remotely sensed information can be realized. Two NOAA-AVHRR five-band images, taken at Shapotou northwest of China when soil surface temperature approximated to the highest and lowest of the region, were applied in combination with the ground surface information measured synchronously. The distribution of soil evaporation in Shapotou could be determined. Model verification has been performed between the measured soil surface evaporation and the corresponding calculated value of the images, and the result has proved model to be feasible. Finally, the possible errors and further modifications when applying model to fulling vegetation canopy have been discussed.

  17. [Combustion temperature measurement of solid propellant by remote sensing FTIR].

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie


    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  18. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M


    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  19. Remote monitoring of nuclear power plants in Baden-Wuerttemberg.

    Neff, U; Müller, U; Mandel, C; Coutinho, P; Aures, R; Grimm, C; Hagmann, M; Wilbois, T; Ren, Y


    As part of its responsibilities as nuclear supervisory authority, the Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wuerttemberg (UM) operates a computer-based system for remote monitoring of nuclear power plants (NPPs) (KFUe, Kernreaktor-Fernüberwachung). In addition to the Baden-Wuerttemberg NPPs located at Philippsburg, Neckarwestheim and the disused Obrigheim, those in foreign locations close to the border area, i.e. Fessenheim in France, and Leibstadt and Beznau in Switzerland, are monitored. The KFUe system provides several methods to evaluate and present the measured data as well as to ensure compliance of threshold limits and safety objectives. For the UM, it serves as an instrument of the nuclear supervision. In case of a radioactive release, the authorities responsible for civil protection can use dispersion calculations in order to identify potentially affected areas and to initiate protective measures for the population. Beyond the data collected at the plant sites, various international radiation and meteorological measuring networks are integrated in the KFUe. The State Institute for Environment, Measurements and Nature Protection (LUBW), the technical operator of the KFUe, runs its own special monitoring network for ambient gamma dose rate and nuclide specific activity concentration measurements in the vicinity of each NPP. This article gives an overview of the solution to combine data of different sources on a single screen: dose rate networks, dose rate traces measured by car, airborne gamma spectra of helicopters, mobile dose rate probes, grid data of weather forecasts, dispersion calculations, etc.

  20. Remote Monitoring of Forest Insect Defoliation -A Review-

    C.D. Rullan-Silva


    Full Text Available Aim of study: This paper reviews the global research during the last 6 years (2007-2012 on the state, trends and potential of remote sensing for detecting, mapping and monitoring forest defoliation caused by insects.Area of study: The review covers research carried out within different countries in Europe and America.Main results: A nation or region wide monitoring system should be scaled in two levels, one using time-series with moderate to coarse resolutions, and the other with fine or high resolution. Thus, MODIS data is increasingly used for early warning detection, whereas Landsat data is predominant in defoliation damage research. Furthermore, ALS data currently stands as the more promising option for operative detection of defoliation.Vegetation indices based on infrared-medium/near-infrared ratios and on moisture content indicators are of great potential for mapping insect pest defoliation, although NDVI is the most widely used and tested.Research highlights: Among most promising methods for insect defoliation monitoring are Spectral Mixture Analysis, best suited for detection due to its sub-pixel recognition enhancing multispectral data, and use of logistic models as function of vegetation index change between two dates, recommended for predicting defoliation.Key words: vegetation damage; pest outbreak; spectral change detection.

  1. Monitoring desertification around Huolinguole using multitemporal remotely sensed imagery

    Wang, Guangjun; Fu, Meichen; Xiao, Qiuping; Wang, Zeng


    Because of the capability of remote sensing to acquire synoptic coverage and repetitive data acquisition it has become a widely used technique for monitoring the effects of human activity on terrestrial ecosystems. This paper presents the spatial extent, magnitude and temporal behavior of land desertification around Holinguole caused by city expansion. The selected test area, Huoliguole City, is a typical grassland city in China that is located in the northeast of China. A time-series of Landsat TM images covering a period of 20 years (1987-2006) were used. The data sets were geometrically and radiometrically pre-processed in a rigorous fashion, followed by a linear spectral mixture unmixing model to extract feature images of vegetation and sandy soil. The biomass images were derived using a polynomial regression model based on the ground-based observations of the amount of grass and a vegetation index based on satellite remote sensing. By combing the vegetation fraction images, the sandy soil fraction images, biomass images, and PC (principal components) images, the grassland desertification information around the built-up area of the city was extracted based on BP (Back-Propagation) neural network algorithm. The results of our studies indicate significant expansion of the city over the last 20 years, and a similar trend was also observed in the temporal magnitude behavior of severe grassland desertification away from the city.

  2. Monitoring and remote control of a hybrid photovoltaic microgrid

    Henrique Tiggemann


    Full Text Available The search of new alternatives for energy supply in island communities has always been a challenge in scientific and social context. In order to attend these communities, in January 2013 a photovoltaic hybrid microgrid project had its beginning at Universidade do Vale do Rio dos Sinos (UNISINOS. This paper presents the characterization and the development of such microgrid, monitored remotely via internet, which allows visualizing the electrical measurements, energy production and performing remote control actions. This work also aims increasing the interaction between students of universities to perform laboratory practices. The system consists of two photovoltaic modules technologies, mono and multicrystalline, totaling 570 Wp, connected to an energy storage bank of 200 Ah in 24 V and a pure sinusoidal inverter of 1 kW to supply AC voltage loads of 220 V. All acquisition components of data, conversion and management system are located in a control cabinet. Currently, the microgrid uses the utility grid as an auxiliary generator, simulating an alternative source of energy, which can be further replaced by fuel cell, biodiesel generator, etc.

  3. Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring

    Ecological and crop condition monitoring requires high temporal and spatial resolution remote sensing data. Due to technical limitations and budget constraints, remote sensing instruments trade spatial resolution for swath width. As a result, it is difficult to acquire remotely sensed data with both...

  4. A remote reactor monitoring with plastic scintillation detector

    Georgadze, A Sh; Ponkratenko, O A; Litvinov, D A


    Conceiving the possibility of using plastic scintillator bars as robust detectors for antineutrino detection for the remote reactor monitoring and nuclear safeguard application we study expected basic performance by Monte Carlo simulation. We present preliminary results for a 1 m3 highly segmented detector made of 100 rectangular scintillation bars forming an array which is sandwiched at both sides by the continuous light guides enabling light sharing between all photo detectors. Light detection efficiency is calculated for several light collection configurations, considering different scintillation block geometries and number of photo-detectors. The photo-detectors signals are forming the specific hit pattern, which is characterizing the impinging particle. The statistical analysis of hit patterns allows effectively select antineutrino events and rejects backgrounds. To evaluate detector sensitivity to fuel isotopic composition evolution during fuel burning cycle we have calculated antineutrino spectra. The ...

  5. Remote auscultatory patient monitoring during magnetic resonance imaging

    Henneberg, S; Hök, B; Wiklund, L;


    A system for patient monitoring during magnetic resonance imaging (MRI) is described. The system is based on remote auscultation of heart sounds and respiratory sounds using specially developed pickup heads that are positioned on the precordium or at the nostrils and connected to microphones via...... can be simultaneously auscultated both inside and outside the shielded MRI room by infrared transmission through a metal mesh window. Bench tests of the system show that common mode acoustic noise is suppressed by approximately 30 dB in the frequency region of interest (100-1,000 Hz), and that polymer...... tubing having a diameter of approximately 2 mm can be used for efficient sound transmission. Recordings in situ show satisfactory detection of both heart sounds and respiratory sounds, although the signal is somewhat masked by noise during imaging. A clinical test incorporating 17 sedated or anesthetized...

  6. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  7. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Guangwen Fan


    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  8. A Low-Cost Remote Healthcare Monitor System Based on Embedded Server

    He Liu


    Full Text Available In the paper, we propose a scheme about a low-cost remote healthcare monitor system based on embedded server between home and hospital. In the scheme, we design an embedded server based on an ARM9 microprocessor. The embedded server supplies all kinds of interfaces such as GPIO interfaces, serial interfaces. These interfaces can acquire all kinds of physiology signals such as Electrocardiograph, heart rate, respiration wave, blood pressure, oxygen saturation, body temperature and so on through connecting the sensor modules. The network is based on local area network and adopts the Browser/Server model. Each home with an embedded server is as a server endpoint and the hospital is as a Browser endpoint. Every embedded server owns an independent static internet protocol address. The doctors can easily acquire patients’ physiology information through writing patients’ internet protocol address on any computer browser. The embedded server can store patients’ physiology information using database in an 8 GB SD card. The doctor can download the database information into the local computers. The system can conveniently upgrade all software in the embedded server only on a remote hospital computer. The remote healthcare monitor system based on embedded server has advantages of low-cost, convenience and feasibility.

  9. Monitoring the frozen duration of Qinshai Lake using satellite passive microwave remote sensing low frequency data

    CHE Tao; LI Xin; JIN Rui


    The Qinghai Lake is the largest inland lake in China.The significant difference of dielectric properties between water and ice suggests that a simple method of monitoring the Qinghai lake freeze-up and break-up dates using satellite passive microwave remote sensing data could be used.The freeze-up and break-up dates from the Qinghai Lake hydrological station and the MODIS L1B reflectance data were used to validate the passive microwave remote sensing results.The validation shows that passive microwave remote sensing data can accurately monitor the lake ice.Some uncertainty comes mainly from the revisit frequency of satellite overpass.The data from 1978 to 2006 show that lake ice duration is reduced by about 14-15 days.The freeze-up dates are about 4 days later and break-up dates about 10 days earlier.The regression analyses show that,at the 0.05 significance level,the correlations are 0.83,0.66 and 0.89 between monthly mean air temperature (MMAT) and lake ice duration days,freeze-up dates,break-up dates,respectively.Therefore,inter-annual variations of the Qinghai Lake ice duration days can significantly reflect the regional climate variation.

  10. Remote monitoring of breathing dynamics using infrared thermography

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen


    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient’s body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as “gold standard” for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1–3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages. PMID:26601003

  11. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Tremsin, A.S., E-mail: [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)


    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  12. Remote monitoring of cardiac implantable devices in the Asia-Pacific.

    Lau, Chu-Pak; Zhang, Shu


    Remote monitoring of pacemakers and implantable cardioverter defibrillators (ICDs) has emerged as a tool to replace regular follow-up of such devices, and to detect hardware failure, arrhythmias, and heart failure decompensation. The Asia-Pacific region is a geographically diverse area, with widely different cardiac device implant rates and expertise. However, common to all countries, distance and logistic for patients to reach an expert monitoring centre for routine follow up are significant, and in some countries, this will likely be replaced by remote monitoring. Unscheduled visits such as for the treatment of atrial fibrillation and ICD shocks will be expedited. There has been an increase in both pacemaker and ICD implant rates in Asia-Pacific, due to an ageing population and improvement in economic condition. Among the countries, Australia and Japan are the major users of remote monitoring. According to the statistics of the suppliers, in Australia, up to 15% of pacemakers, 40% ICD, and 30% cardiac resynchronization therapy (CRT)/cardiac resynchronization therapy defibrillator (CTRD) are remotely monitored. The corresponding numbers for Japan are 5, 50, and 50% respectively. The monitoring personnel include nurses, technicians, and doctors, either from local centre or from device companies. Cost, lack of reimbursement, and logistic support are major issues in widespread application of remote monitoring technology. In conclusion, remote monitoring is increasing in Asia-Pacific region despite the increase in cost. Implantable cardioverter defibrillators and CRT/CRTDs are more likely than pacemakers to be enabled with remote monitoring.

  13. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Rossel, R.E., E-mail: [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Fedosseev, V.N.; Marsh, B.A. [CERN, Geneva (Switzerland); Richter, D. [Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Rothe, S. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Wendt, K.D.A. [Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)


    Highlights: • The requirements for continuous and automated RILIS operation are outlined. • Laser wavelength, power, beam position and pulse timing are continuously monitored. • A network-extended LabVIEW-based equipment operation framework was developed. • The system serves as a foundation for collaborative laser spectroscopy data acquisition. • Example applications have been successfully tested with ISOLDE experiment setups. -- Abstract: With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  14. The development of remote wireless radiation dose monitoring system

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)


    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  15. The Remote Sensing of Surface Radiative Temperature over Barbados.

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  16. Remote monitoring as a tool in condition assessment of a highway bridge

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George


    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  17. Passive SiC irradiation temperature monitor

    Youngblood, G.E.


    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  18. Monitoring Drought at Continental Scales Using Thermal Remote Sensing of Evapotranspiration (Invited)

    Anderson, M. C.; Hain, C.; Mecikalski, J. R.; Kustas, W. P.


    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status: soil surface temperature increases with decreasing water content, while moisture depletion in the plant root zone leads to stomatal closure, reduced transpiration, and elevated canopy temperatures that can be effectively detected from space. Empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring drought conditions over large areas, but may provide ambiguous results when vegetation growth is limited by energy (radiation, air temperature) rather than moisture. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. In this approach, moisture stress can be quantified in terms of the reduction of evapotranspiration (ET) from the potential rate (PET) expected under non-moisture limiting conditions. The Atmosphere-Land Exchange Inverse (ALEXI) model couples a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map fluxes across the U.S. continent at 5-10km resolution using thermal band imagery from the Geostationary Operational Environmental Satellites (GOES). Finer resolution flux maps can be generated through spatial disaggregation using TIR data from polar orbiting instruments such as Landsat (60-120m) and MODIS (1km). A derived Evaporative Stress Index (ESI), given by 1-ET/PET, shows good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be produced at significantly higher spatial resolution due to limited reliance on ground observations. Because the ESI does not use precipitation data as input, it provides an independent means for

  19. Low temperature monitoring system for subsurface barriers

    Vinegar, Harold J.; McKinzie, II. Billy John


    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  20. Reducing Clinical Trial Monitoring Resource Allocation and Costs Through Remote Access to Electronic Medical Records

    Uren, Shannon C.; Kirkman, Mitchell B.; Dalton, Brad S.; Zalcberg, John R.


    Purpose: With electronic medical records (eMRs), the option now exists for clinical trial monitors to perform source data verification (SDV) remotely. We report on a feasibility study of remote access to eMRs for SDV and the potential advantages of such a process in terms of resource allocation and cost. Methods: The Clinical Trials Unit at the Peter MacCallum Cancer Centre, in collaboration with Novartis Pharmaceuticals Australia, conducted a 6-month feasibility study of remote SDV. A Novartis monitor was granted dedicated software and restricted remote access to the eMR portal of the cancer center, thereby providing an avenue through which perform SDV. Results: Six monitoring visits were conducted during the study period, four of which were performed remotely. The ability to conduct two thirds of the monitoring visits remotely in this complex phase III study resulted in an overall cost saving to Novartis. Similarly, remote monitoring eased the strain on internal resources, particularly monitoring space and hospital computer terminal access, at the cancer center. Conclusion: Remote access to patient eMRs for SDV is feasible and is potentially an avenue through which resources can be more efficiently used. Although this feasibility study involved limited numbers, there is no limit to scaling these processes to any number of patients enrolled onto large clinical trials. PMID:23633977

  1. Mobile health in cardiology: a review of currently available medical apps and equipment for remote monitoring.

    Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico


    Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.

  2. Autonomic neural control and implications for remote medical monitoring in space.

    Cooke, William H


    Long-duration space travel or extended stays on the moon or Mars will pose new challenges for maintaining and monitoring the health status of astronauts. Remote medical monitoring systems will need to be developed for a number of applications, including providing decision support for care-givers in the event of traumatic injury in space. The focus of this brief review is to introduce potential methods of monitoring astronaut status remotely from simple ECG recordings.

  3. Comparison of remote sensing indices for monitoring of desert cienegas

    Wilson, Natalie R; Norman, Laura M.; Villarreal, Miguel; Gass, Leila; Tiller, Ron; Salywon, Andrew


    This research considers the applicability of different vegetation indices at 30 m resolution for mapping and monitoring desert wetland (cienega) health and spatial extent through time at Cienega Creek in southeastern Arizona, USA. Multiple stressors including the risk of decadal-scale drought, the effects of current and predicted global warming, and continued anthropogenic pressures threaten aquatic habitats in the southwest and cienegas are recognized as important sites for conservation and restoration efforts. However, cienegas present a challenge to satellite-imagery based analysis due to their small size and mixed surface cover of open water, exposed soils, and vegetation. We created time series of five well-known vegetation indices using annual Landsat Thematic Mapper (TM) images retrieved during the April–June dry season, from 1984 to 2011 to map landscape-level distribution of wetlands and monitor the temporal dynamics of individual sites. Indices included the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Infrared Index (NDII). One topographic index, the Topographic Wetness Index (TWI), was analyzed to examine the utility of topography in mapping distribution of cienegas. Our results indicate that the NDII, calculated using Landsat TM band 5, outperforms the other indices at differentiating cienegas from riparian and upland sites, and was the best means to analyze change. As such, it offers a critical baseline for future studies that seek to extend the analysis of cienegas to other regions and time scales, and has broader applicability to the remote sensing of wetland features in arid landscapes.


    Watkins, Allen H.; Lauer, D.T.; Bailey, G.B.; Moore, D.G.; Rohde, W.G.


    Space remote sensing systems are compared for suitability in assessing and monitoring the Earth's renewable resources. Systems reviewed include the Landsat Thematic Mapper (TM), the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), the French Systeme Probatoire d'Observation de la Terre (SPOT), the German Shuttle Pallet Satellite (SPAS) Modular Optoelectronic Multispectral Scanner (MOMS), the European Space Agency (ESA) Spacelab Metric Camera, the National Aeronautics and Space Administration (NASA) Large Format Camera (LFC) and Shuttle Imaging Radar (SIR-A and -B), the Russian Meteor satellite BIK-E and fragment experiments and MKF-6M and KATE-140 camera systems, the ESA Earth Resources Satellite (ERS-1), the Japanese Marine Observation Satellite (MOS-1) and Earth Resources Satellite (JERS-1), the Canadian Radarsat, the Indian Resources Satellite (IRS), and systems proposed or planned by China, Brazil, Indonesia, and others. Also reviewed are the concepts for a 6-channel Shuttle Imaging Spectroradiometer, a 128-channel Shuttle Imaging Spectrometer Experiment (SISEX), and the U. S. Mapsat.

  5. Reliable Remote-Monitoring Electrochemical Potentiostat for Glucose Measurements

    JIN Yang; WANG Hong; LV Zhengliang; YANG Shiyuan; CAI Haoyuan; JIANG Junfeng


    Electrochemical methods have been widely used in the chemical and pharmaceutical industries, which require accurate concentration measurements, chemical reaction detections and analyses. The elec-trochemical potentiostat, the core element in electrochemical instruments, have been discussed as a hot topic addressing the difficulty of applying high-preclsion constant voltage and picoampere current meas-urements. Meanwhile, reliable potenUostats are in demand for complicated industrial environments with noises as well as requirements of remotemonitors. This paper describes a potentiostat for industrial glucose measurement that is not only accurate but also fault tolerant to guarantee high reliability in industrial envi-ronments. The instrument uses standard industrial communication protocols, profibus, and a 4-20 mA cur-rent loop, for remote control and monitoring. Experimental results show that this design has 0.01% accuracy with 1 mV resolution for voltage applications and 0.01% accuracy with 1 pA resolution for current measure-ments. The design is also shown to be highly reliable in noisy environments.

  6. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Rossel, R E; Richter, D; Wendt, K D A; Rothe, S; Marsh, B A


    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The syst...

  7. Food storage temperatures monitored at retail

    Eleonora Sarno


    Full Text Available Aim of the present work is to report data concerning the maintenance of the cold chain by retail food business operators. A total of 401 refrigerators and 105 freezers from 112 retails (big, medium, small size were monitored for display temperatures. In addition, the surface temperature of 341 stored food products was recorded. Storage temperatures were respected in the majority of retail markets, with the exception of small retails, where cold chain was not respected. Among all food samples, yogurt was stored at temperature higher than law limits. Our findings show that retailers, in particular those from small markets, are not always familiar with cold chain maintenance. In our opinion, much more attention should be paid in keeping food at cold temperature in order to ensure food safety.

  8. Norwegian remote sensing spectrometry for mapping and monitoring of algal blooms and pollution - NORSMAP-89

    Pettersson, L.H.; Johannessen, O.M.; Frette, O. (Nansen Remote Sensing Center, Bergen (Norway))


    During the late spring of 1988 an extensive bloom of the toxic algae Chrysocromulina polylepis occurred in the Skagerrak region influencing most life in the upper 30 meter of the ocean. The algal front was advected northward with the Norwegian Coastal Current along the coast of southern Norway, where it became a severe threat to the Norwegian seafarming industry. An ad-hoc expert team was established to monitor and forecast the movement of the algae front. Remote sensing of sea surface temperature from the operational US NOAA satellites monitored the movement of the algal front, consistent with a warm ocean front. The lack of any optical remote sensing instrumentation was recognized as a major de-efficiency during this algal bloom. To prepare for similar events in the future Nansen Remote Sensing Center initiated a three week pilot study in the Oslofjord and Skagerrak region, during May 1989. The Canadian Compact Airborne Spectrographic Imager (CASI) was installed in the surveillance aircraft. Extensive in situ campaigns was also carried out by the Norwegian Institute for Water Research and Institute of Marine Research. A ship-borne non-imaging spectrometer was operated from the vessels participating in the field campaign. As a contribution from a joint campaign (EISAC '89) between the Joint Research Centre (JRC) of the European Community and the European Space Agency (ESA) both the Canadian Fluorescence Line Imager (FLI) and the US 64-channel GER scanner was operated simultaneously at the NORSMAP 89 test site. Regions of different biological and physical conditions were covered during the pilot study and preliminary analysis are obtained from oil slicks, suspended matter from river, as well as minor algal bloom. The joint analysis of the data collected during the NORSMAP 89 campaign and conclussions will be presented, as well as suggestions for future utilization of airborne spectroscopy systems for operational monitoring of algal bloom and water pollution.

  9. Remote sensing of agricultural drought monitoring: A state of art review

    Khaled Hazaymeh


    Full Text Available Agricultural drought is a natural hazard that can be characterized by shortage of water supply. In the scope of this paper, we synthesized the importance of agricultural drought and methods commonly employed to monitor agricultural drought conditions. These include: (i in-situ based methods, (ii optical remote sensing methods, (iii thermal remote sensing methods, (iv microwave remote sensing methods, (v combined remote sensing methods, and (vi synergy between in-situ and remote sensing based methods. The in-situ indices can provide accurate results at the point of measurements; however, unable to provide spatial dynamics over large area. This can potentially be addressed by using remote sensing based methods because remote sensing platforms have the ability to view large area at a near continuous fashion. The remote sensing derived agricultural drought related indicators primarily depend on the characteristics of reflected/emitted energy from the earth surface, thus the results can be relatively less accurate in comparison to the in-situ derived outcomes. Despite a significant amount of research and development has been accomplished in particular to the area of remote sensing of agricultural drought, still there are several challenges. Those include: monitoring relatively small area, filling gaps in the data, developing consistent historical dataset, developing remote sensing-based agricultural drought forecasting system, integrating the recently launched and upcoming remote sensors, and developing standard validation schema, among others.

  10. Integrated system for remotely monitoring critical physiological parameters

    Alexakis, S.; Karalis, S.; Asvestas, P.


    Monitoring several human parameters (temperature, heart rate, blood pressure etc.) is an essential task in health care in hospitals as well as in home care. This paper presents the design and implementation of an integrated, embedded system that includes an electrocardiograph of nine leads and two channels, a digital thermometer for measuring the body temperature and a power supply. The system provides networking capabilities (wired or wireless) and is accessible by means of a web interface that allows the user to select the leads, as well as to review the values of heart rate (beats per minute) and body temperature. Furthermore, there is the option of saving all the data in a Micro SD memory card or in a Google Spreadsheet. The necessary analog circuits for signal conditioning (amplification and filtering) were manufactured on printed circuit boards (PCB). The system was built around Arduino Yun, which is a platform that contains a microcontroller and a microprocessor running a special LINUX distribution. Furthermore, the Arduino Yun provides the necessary network connectivity capabilities by means of the integrated Wi-Fi and Ethernet interfaces. The web interface was developed using HTML pages with JavaScript support. The system was tested on simulated data as well as real data, providing satisfactory accuracy regarding the measurement of the heart rate (±3 bpm error) and the temperature (±0.3°C error).

  11. A remote condition monitoring system for wind-turbine based DG systems

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.


    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  12. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa


    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  13. Smart Multi-Level Tool for Remote Patient Monitoring Based on a Wireless Sensor Network and Mobile Augmented Reality

    Fernando Cornelio Jiménez González


    Full Text Available Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN and mobile augmented reality (MAR. The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1 hardware such as Arduino microcontrollers (in the patient nodes, personal computers (for the nurse server, smartphones (for the mobile nurse monitor and the virtual patient file and sensors (to measure body temperature and heart rate, (2 a network layer using WiFly technology, and (3 software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  14. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Thuan Chu


    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  15. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    Tamás, János; Nagy, Attila; Fehér, János


    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins.

  16. 21 CFR 882.5500 - Lesion temperature monitor.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  17. Remote control of magnetostriction-based nanocontacts at room temperature.

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph


    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.


    A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...

  19. Coral reef remote sensing a guide for mapping, monitoring and management

    Goodman, James A; Phinn, Stuart R


    This book offers a multi-level examination of remote-sensing technologies for mapping and monitoring coral reef ecosystems, ranging from satellite and airborne imagery to ship-based observation. Includes examples of practical applications of the technologies.

  20. Comparison of different remote sensing methods for mixing layer height monitoring

    Emeis, Stefan; Schäfer, Klaus; Münkel, Christoph; Friedl, Roman; Suppan, Peter


    Since 2006 different remote monitoring methods for mixing layer height have been operated in Augsburg. One method is based on eye-safe commercial mini-lidar systems (ceilometers). The optical backscatter intensities recorded with these ceilometers provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the tops of mixed layers. A special software for these ceilometers provides routine retrievals of lower atmosphere layering. A second method, based on SODAR (Sound Detection and Ranging) observations, detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component. This information is extended by measurements with a RASS (Radio-Acoustic Sounding System) which provide the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions which mark atmospheric layers. These SODAR and RASS data are the input to a software-based determination of mixing layer heights developed with MATLAB. A comparison of results of the three remote sensing methods during simultaneous measurements was performed. The information content of the ceilometer data is assessed by comparing it to the results from the other two instruments and near-by radiosonde data.

  1. Remote sensing for gas plume monitoring using state-of-the-art infrared hyperspectral imaging

    Hinnrichs, Michele


    Under contract to the US Air Force and Navy, Pacific Advanced Technology has developed a very sensitive hyperspectral imaging infrared camera that can perform remote imaging spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of gas plume emissions. Pacific Advanced Technology (PAT) currently has the technology available to detect and identify chemical species in gas plumes using a small light weight infrared camera the size of a camcorder. Using this technology as a remote sensor can give advanced warning of hazardous chemical vapors undetectable by the human eye as well as monitor the species concentrations in a gas plume from smoke stack and fugitive leaks. Some of the gas plumes that have been measured and species detected using an IMSS imaging spectrometer are refinery smoke stacks plumes with emission of CO2, CO, SO2, NOx. Low concentration vapor unseen by the human eye that has been imaged and measured is acetone vapor evaporating at room temperature. The PAT hyperspectral imaging sensor is called 'Image Multi-spectral Sensing or IMSS.' The IMSS instrument uses defractive optic technology and exploits the chromatic aberrations of such lenses. Using diffractive optics for both imaging and dispersion allows for a very low cost light weight robust imaging spectrometer. PAT has developed imaging spectrometers that span the spectral range from the visible, midwave infrared (3 to 5 microns) and longwave infrared (8 to 12 microns) with this technology. This paper will present the imaging spectral data that we have collected on various targets with our hyperspectral imaging instruments as will also describe the IMSS approach to imaging spectroscopy.

  2. Remote Multimedia Monitoring System Based on Embedded Web Server for Networked Manufacturing

    HEDeqiang; YANGYu; 等


    A new-style remote monitoring system is propsed.which is based on enterprises' embedded wed servers and can be widely used in enterprises' networked manufactureing systems.The principle and characteristics of remote monitoring system based on embedded web server are analyzed.Such a kind of system for networked manufacturing is designed ,and it proves efficient and feasible in promoting communication among enterprises,improving designing and scheduling,decreasing facility failure and reducing product cost.

  3. [Design and application of user managing system of cardiac remote monitoring network].

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing


    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  4. Hyperspectral Geobotanical Remote Sensing for CO2 Storage Monitoring

    Pickles, W; Cover, W


    This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant and animal ecologies in our geothermal exploration, remote sensing research program at Mammoth Mountain CA USA. We also know from our geothermal exploration remote sensing programs, that we can map subtle hidden faults by spatial signatures of altered minerals and of plant species and health distributions. Mapping hidden faults is important because in our experience these highly localized (one to several centimeters) spatial pathways are good candidates for potentially significant CO2 leaks from deep underground formations. The detection and discrimination method we are developing uses primarily airborne hyperspectral, high spatial (3 meter) with 128 band wavelength resolution, visible and near infrared reflected light imagery. We also are using the newly available ''Quickbird'' satellite imagery that has high spatial resolution (0.6 meter for panchromatic images, 2.4 meters for multispectral). We have a commercial provider, HyVista Corp of Sydney Australia, of airborne hyperspectral imagery acquisitions and very relevant image data post processing, so that eventually the ongoing surveillance of CO2 storage fields can be contracted for commercially. In this project we have imaged the Rangely Colorado Oil field and surrounding areas with an airborne hyperspectral visible and near infrared reflected light sensor. The images were analyzed by several methods using the suite of

  5. Land Desertification Monitoring on Tibetan Plateau Using Remote Sensing Technology

    Liu, Z.; Zou, X.; Liu, H.


    As one of the serious ecological environmental problems of the Tibetan plateau, desertification has critically hampered the economic and social development in Tibet, so it is imperative to monitoring the desertification in Tibet area. Due to its 200 thousand km2 vast area and steep terrain, this paper uses multi-source remote sensing image to survey the current situation of land desertification in Tibetan plateau, and study dynamic desertification change on the 10 km2 land between Namucuo lake and Selincuo lake. Data of the 250 meters time-series MODIS-NDVI images, 30 m resolution Landsat TM images and 90 m SRTM DEM data were used. Through the analysis of the relationship between MODIS-NDVI, vegetation growth characteristics and vegetation vertical distribution, this paper chooses the MODIS-NDVI time series data and principal component analysis of the first band (PC1), vegetation coverage(VC), DEM and its derived slope data as indicators for desertification monitoring. Visual interpretation based on 30 m TM image is also used to classify each type of desertification. Using the high temporal resolution data, we can quickly obtain desertification hot spot areas then accurately distinguish each degree of desertification with high spatial resolution images. The results are: (1) The desertification area in Tibetan plateau in 2008 is 218,286 km2, which is 18.91% of the total area, and mainly distributed in the Ali region, next by Nagqu and Xigaze. The severe desertification land area is 8,866 km2 ( 4.06% of the desertified land), of which the mobile dune area is 3224 km2, heavy saline area is 5641 km2. Moderate desertified land area is 110,915 km2( 50.81% of the desertified land), of which semi-fixed sand dune area is 10,075 km2 and the bare sand area is 100,839 km2. Mild desertified land area is 98,504 km2 ( 45.12% of the desertified land), of which the fixed dune area is 4,177 km2 and the half bare gravel area is 94,326 km2. (2) By using GIS spatial analysis, westudied

  6. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices.

    Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R


    Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care.

  7. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)


    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  8. Evaluation of a Remote Monitoring System for Diabetes Control.

    Katalenich, Bonnie; Shi, Lizheng; Liu, Shuqian; Shao, Hui; McDuffie, Roberta; Carpio, Gandahari; Thethi, Tina; Fonseca, Vivian


    The use of technology to implement cost-effective health care management on a large scale may be an alternative for diabetes management but needs to be evaluated in controlled trials. This study assessed the utility and cost-effectiveness of an automated Diabetes Remote Monitoring and Management System (DRMS) in glycemic control versus usual care. In this randomized, controlled study, patients with uncontrolled diabetes on insulin were randomized to use of the DRMS or usual care. Participants in both groups were followed up for 6 months and had 3 clinic visits at 0, 3, and 6 months. The DRMS used text messages or phone calls to remind patients to test their blood glucose and to report results via an automated system, with no human interaction unless a patient had severely high or low blood glucose. The DRMS made adjustments to insulin dose(s) based on validated algorithms. Participants reported medication adherence through the Morisky Medication Adherence Scale-8, and diabetes-specific quality of life through the diabetes Daily Quality of Life questionnaire. A cost-effectiveness analysis was conducted based on the estimated overall costs of DRMS and usual care. A total of 98 patients were enrolled (59 [60%] female; mean age, 59 years); 87 participants (89%) completed follow-up. HbA1c was similar between the DRMS and control groups at 3 months (7.60% vs 8.10%) and at 6 months (8.10% vs 7.90%). Changes from baseline to 6 months were not statistically significant for self-reported medication adherence and diabetes-specific quality of life, with the exception of the Daily Quality of Life-Social/Vocational Concerns subscale score (P = 0.04). An automated system like the DRMS may improve glycemic control to the same degree as usual clinic care and may significantly improve the social/vocational aspects of quality of life. Cost-effectiveness analysis found DRMS to be cost-effective when compared to usual care and suggests DRMS has a good scale of economy for program scale

  9. Application of the Wireless Digital Transmission Technology in Remote ECG Monitoring System

    Xu,Lixin; Li,Qingliang; Chen,Zhen; Qi,Xinbo; Zhang,Xincheng


    Heart disease is one of the main diseases menace human' s health. The limited monitoring ability and limited serving ability are shortcomings of the existing remote ECG (electrocardiograph) monitoring system. It is practical to bring ECG monitoring from hospital to home. A new method is introduced that the application of wireless digital transmission technology in remote ECG monitoring system. In the system, the portable ECG monitoring device to collect and transmit patient""s electrocardiogram signals and the device to transmit and receive ECG signals are designed by using the PTR2000. The method solves the remote collection and transmission of patient's electrocardiogram signals, and creates the condition of the transmitting of patient"" s electrocardiogram signals through the Broadband network.

  10. Application of the Wireless Digital Transmission Technology in Remote ECG Monitoring System

    Xu,Lixin; Li,Qingliang; Chen,Zhen; Qi,Xinbo; Zhang,Xincheng


    Heart disease is one of the main diseases menace human's health. The limited monitoring ability and limited serving ability are shortcomings of the existing remote ECG (electrocardiograph) monitoring system. It is practical to bring ECG monitoring from hospital to home. A new method is introduced that the application of wireless digital transmission technology in remote ECG monitoring system. In the system, the portable ECG monitoring device to collect and transmit patient's electrocardiogram signals and the device to transmit and receive ECG signals are designed by using the PTR2000. The method solves the remote collection and transmission of patient s electrocardiogram signals, and creates the condition of the transmitting of patient's electrocardiogram signals through the Broadband network.


    Hemanta Kumar Kalita


    Full Text Available Non-intrusive remote monitoring of data centre services should be such that it does not require (or minimal modification of legacy code and standard practices. Also, allowing third party agent to sit on every server in a data centre is a risk from security perspective. Hence, use of standard such as SNMPv3 is advocated in this kind of environment. There are many tools (open source or commercial available which uses SNMP; but we observe that most of the tools do not have an essential feature for auto-discovery of network. In this paper we present an algorithm for remote monitoring of services in a data centre. The algorithm has two stages: 1 auto discovery of network topology and 2 data collection from remote machine. Further, we compare SNMP with WBEM and identify some other options for remote monitoring of services and their advantages and disadvantages.

  12. Inland and coastal water environment remote sensing monitoring system: rapid construction and application

    Xu, Hua; Gu, Xingfa; Yin, Qiu; Li, Li; Chen, Qiang; Ren, Yuhuan; Chen, Hong; Liu, Xudong; Zhang, Juan


    This paper aims at bridging the gap between the academic research and practical application in water environment monitoring by remote sensing. It mainly focuses on how to rapidly construct the Inland and coastal Water Environment Remote Sensing Monitoring System (IWERSMS) in a software perspective. In this paper, the remote sensed data processing framework, dataflow and product levels are designed based on the retrieval algorithms of water quality parameters. The prototype is four-tier architecture and modules are designed elaborately. The paper subsequently analyzes the strategy and key technology of conglutinating hybrid components, adopting semantic metafiles and tiling image during rapid construction of prototype. Finally, the paper introduces the successful application to 2008 Qingdao enteromorpha prolifra disaster emergency monitoring in Olympics Sailing Match fields. The solution can also fit other domains in remote sensing and especially it provides a clue for researchers who are in an attempt to establish a prototype to apply research fruits to practical applications.

  13. Remote, real-time monitoring and analysis of vital signs of neonatal graduate infants.

    Greer, Robert; Olivier, Chris; Pugh, J Edward; Eklund, J Mikael; McGregor, Carolyn


    This paper presents a system for the remote monitoring of a newborn infant's physiological data outside the Neonatal Intensive Care Unit. By providing a simple means for parents to enable monitoring, and physicians a simple mobile application to monitor live and historical physiological information, this system provides the insight once only possible in an Intensive Care Unit. The system utilizes a variety of connectivity means such as Wi-Fi and 3G to facilitate the communication between a multitude of industry standard vital sign monitor and a remote server. A system trial monitoring an infant to simulate neonatal graduate monitoring has determined the system was able to successfully transmit 99.99% of data generated from the vital sign monitor.

  14. InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain

    Contreras, Sergio; Hunink, Johannes E.


    We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía ( aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.

  15. Wireless Remote Monitoring of Glucose Using a Functionalized ZnO Nanowire Arrays Based Sensor

    Magnus Willander


    Full Text Available This paper presents a prototype wireless remote glucose monitoring system interfaced with a ZnO nanowire arrays-based glucose sensor, glucose oxidase enzyme immobilized onto ZnO nanowires in conjunction with a Nafion® membrane coating, which can be effectively applied for the monitoring of glucose levels in diabetics. Global System for Mobile Communications (GSM services like General Packet Radio Service (GPRS and Short Message Service (SMS have been proven to be logical and cost effective methods for gathering data from remote locations. A communication protocol that facilitates remote data collection using SMS has been utilized for monitoring a patient’s sugar levels. In this study, we demonstrate the remote monitoring of the glucose levels with existing GPRS/GSM network infra-structures using our proposed functionalized ZnO nanowire arrays sensors integrated with standard readily available mobile phones. The data can be used for centralized monitoring and other purposes. Such applications can reduce health care costs and allow caregivers to monitor and support to their patients remotely, especially those located in rural areas.

  16. Engaging Remote Sensing and Citizen Science into Water Quality Monitoring: A Case Study in Nhue-Day River Basin, Vietnam

    Thi Van Le, Khoa; Minkman, Ellen; Nguyen Thi Phuong, Thuy; Rutten, Martine; Bastiaanssen, Wim


    Remote sensing and citizen science can be utilized to fulfill the gap of conventional monitoring methods. However, how to engage these techniques, principally taking advantage of local capacities and of globally accessible data for satisfying the continuous data requirements and uncertainties are exciting challenges. Previous studies in Vietnam showed that official documents regulated towards responding the vital need of upgrading national water monitoring infrastructures do not put the huge potentials of free satellite images and crowd-based data collection into account, this factor also limits publications related to these techniques. In this research, a new water monitoring approach will be developed friendly with areas suffering poor quality monitoring works. Particularly, algorithms respecting to the relationship between temperature, total suspended sediment (TSS), chlorophyll and information collected by sensors onboard Landsat-8 and Sentinel-2 MSI satellites are built in the study area in Northern Vietnam; additionally, undergraduate student volunteers were sent to the sites with all the measurement activities are designed to coincide with the time when the study area captured by the satellites to compare the results. While conventional techniques are proving their irreplaceable role in the water monitoring network, the utilization of remote sensing techniques and citizen science in this study will demonstrate highly supportive values, saving monitoring costs and time; advantaging local human resources to science; providing an inclusive assessment of water quality changes along with land-use change in the study area, these approaches are excellent alternatives to meet the demand of real-time, continuous data nationwide.

  17. Remote Query Resonant-Circuit Sensors for Monitoring of Bacteria Growth: Application to Food Quality Control

    Leonidas G. Bachas


    Full Text Available This paper presents a technique for in-situ remote query monitoring of bacteria growth utilizing a printed thin or thick-film sensor comprised of an inductor-capacitor (LC resonant circuit. The sensor, which is placed within the biological medium of interest and remotely detected using a loop antenna, measures the complex permittivity of the medium. Since bacteria growth increases the complex permittivity of a biological medium the LC sensor can be used to determine bacteria concentration. This paper presents results on monitoring of three different bacteria strains, Bacillus subtilis, Escherichia coli JM109, and Pseudomonas putida, demonstrating application of the sensor for monitoring bacteria growth in milk, meat, and beer. Due to its low unit cost and remote query detection, the sensor is potentially useful for commercial scale monitoring of food quality.


    BO Li-qun; ZHAO Yun-ping; HUA Ren-kui


    Volcanic eruption is one of the most serious geological disasters, however, a host of facts have proven that the Changbai Mountains volcano is a modem dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology, space monitoring of volcanic activities has already become possible, particularly in the application of thermal infrared remote sensing. The paper, through the detailed analysis of geothermal anomaly factors such as heat radiation, heat conduction and convection, depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed, and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also, a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally, some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.

  19. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant.

    Chen, Chuqun; Shi, Ping; Mao, Qingwen


    This article introduces a practical method to investigate thermal pollution in coastal water from satellite data. The intensity and distribution areas of thermal pollution by the heated effluent discharge from the nuclear power plant on Daya Bay, southern China were investigated by using Landsat-5 Thematic Mapper (TM) thermal band data from 1994 to 2001. A local algorithm was developed, based on sea-truth data of water surface temperature measured when the satellite passed over the study area. The local algorithm was then applied to estimate water temperature from TM data. It shows that the remote sensing technique provides an effective means to quantitatively monitor the intensity of thermal pollution and to retrieve a very detailed distribution pattern of thermal pollution in coastal waters. The remotely-sensed results of the thermal pollution can be used for environmental management of coastal waters.

  20. Possibility of using remote sensing data for glaciological calculations and monitoring

    V. G. Konovalov


    Full Text Available Altitude and areal characteristics of glaciation of the Earth, as well as annual ELA and AAR values for a limited number of glaciers can be found in references [10, 15, 16, 18, 29]. According to these data, the analysis of the relations between ELA, AAR, annual mass balance of glaciers and its components was performed for use in the remote monitoring of glaciation. Appropriate sample included 45 to 66 glaciers located mainly in Eurasia, at mean weighted altitudes Zmed from 520 m to 4253 m above sea level. The existence of close and stable spatial relations AAR = f (Bn and AAR = f (ELA (see Table 1 allows, ultimately obtain local or regional estimates of glacier mass balance. In 1957, the area of the moraine on the glaciers of the Pamir was 320 km 2 , or 4.8% of the total area of glaciers in the region, and after ~ 20 years it has increased to 644 km2 or 10.7% [10]. In this paper we used photos of glaciers Medvezhiy and Bivachny in late August 2007 and 2012 from the ISS. Ground resolution is of 3–5 meters. Photos were transformed into WGS projection and tied to a topographic map 1:50 000. Altitudinal interval of moraines propagation on glaciers Medvezhiy and Bivachny in 2007–2012 was equal to, respectively: 3000–5000 and 3400–4800 m above sea level. It was revealed increase of total area of the moraine on these glaciers for the years 1975– 2007. Analysis of the content and quality of the main sources of global and regional information about modern glaciation of the Earth shows that without additional thematic processing they are not suitable for monitoring the dynamics of glaciers in the major river basins and use on a par with the existing data on precipitation, temperature, humidity, cloud cover and other climatic characteristics. Additional processing should be provided to exclude asynchronies in morphometric parameters. This will reduce errors in glaciological interpretation of satellite images and improve the quality of spatial

  1. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.


    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  2. Study on remote monitoring system for landslide hazard based on Wireless Sensor Network and its application

    GUI Yang; TAO Zhi-gang; WANG Chang-jun; XIE Xing


    Based on Beidou satellite communication platform,sliding force remote monitoring and warning system was widely used in Lingbao Luoshan gold ore,which had achieved remarkable social and economical benefits.However,there is one monitoring point at every 1 000 m2,and their distribution is so discrete that it will no doubt increase construction and operation cost if every monitoring point was installed a Beidou subscriber machine.Therefore,based on Zigbee wireless sensor network technology,network structure and the nodes,embed wireless sensor node in remote monitoring and warning system,a base platform of local wireless sensor network is formed,and it can combine punctiform monitoring information with planar network and transmit concentrated information through Beidou satellite terminal machine; as a result,this largely expands the transmission distance of monitoring data.

  3. Remote and Centralized Monitoring of PV Power Plants

    Kopacz, Csaba; Spataru, Sergiu; Sera, Dezso


    the inverters within each PV plant. The monitoring software stores the PV measurements in a data warehouse optimized for managing and data mining large amounts of data, from where it can be later visualized, analyzed and exported. By combining PV production measurements data with I-V curve measurements......This paper presents the concept and operating principles of a low-cost and flexible monitoring system for PV plants. Compared to classical solutions which can require dedicated hardware and/or specialized data logging systems, the monitoring system we propose allows parallel monitoring of PV plants...

  4. Remote Monitoring System for Communication Base Based on Short Message

    Han Yu Fu


    Full Text Available This paper presents design and development of an automatic monitoring system of communication base which is an important means to realize modernization of mobile communication base station management. Firstly, this paper proposes the architecture of the monitoring system. The proposed system consists of mocrocontrollers, sensors, GSM module and MFRC500 etc. The value of parameters is measured in the system including terminal is studied and designed, including hardware design based on embedded system and software design. Finally, communication module is discussed. The monitoring system which is designed  based on GSM SMS(short message service can improve the integrity, reliability, flexibility and intellectuality of monitoring system.

  5. Remote Configuration Monitoring of Autonomous Information Processing Machine on LAN.

    Hema Thomas


    Full Text Available Remote Information Configuration is advanced software for capturing automatically the configuration of Computers available in the LAN. The software will collect all the configuration of computers in the network and store the information in the Data Base. The configuration such as the Processor, Memory such as RAM and Hard Disk, System Software and Application software installed will be captured from remote and stored in the Data Base with the timestamp. Any change in the configuration will be captured on time to time basis and updated; this will bring in a change management control of the components. Provision for manual recording of owner of the computer asset and location details will be provided for Asset Management. This module will also include the process of allotment of asset, removal of asset, re-allotment of asset, new asset request management, asset procurement planning.

  6. The detection of wind turbine shaft misalignment using temperature monitoring.


    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  7. Patient satisfaction and suggestions for improvement of remote ICD monitoring

    Petersen, Helen Høgh; Larsen, Mie Christa Jensen; Nielsen, Olav Wendelboe


    -up clinic at Rigshospitalet using CareLink® (Medtronic) remote follow-up, who had made =2 transmissions, received a questionnaire. RESULTS: Three hundred eighty-five patients (81.2%) answered. Mean time with ICD was 56¿±¿45 months and mean age was 62¿±¿13 years; 80% was male. Diagnosis related to ICD...

  8. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    Xiuhong Li


    Full Text Available Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.

  9. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica.

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long


    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.

  10. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim


    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  11. A remote data access architecture for home-monitoring health-care applications.

    Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son


    With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.

  12. Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.

    Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre


    Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.

  13. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui


    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  14. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation

    Battista, L.


    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  15. Research Progress of Farmland Drought Monitoring and Prediction Based on Multi-Source Remote Sensing Data

    Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Raffaele; Pascucci, Simone; Silvesrtro, Paolo Cosmo


    Since the Kick-off of the Dragon-3 project Farmland Drought Monitoring and Prediction Based on Multi-source Remote Sensing Data (ID: 10448), our research focuses on three points including 1) the monitoring of key biophysical variables of crop and soil in farmland drought by optical and radar remote sensing data, 2) the risk assessment of farmland drought by time series remote sensing and meteorological data, and 3) the crop loss evaluation under farmland drought mainly based on AquaCrop crop model. Our study area is mainly located in Beijing, and Shaanxi Province (semi-arid region), China. Experiment campaign and data analysis were carried out and some new methods aiming at farmland drought monitoring and prediction were developed, which highlighting the importance of ESA-NRSCC Dragon cooperation.


    A. V. Adaskin


    Full Text Available The article describes the technology of remote patient monitoring and the parameters of circulatory assist device AVK-N as well as the advantages of said technology to improve the efficiency of personalized medicine in diagnosis and treatment of patients with AVK-N in the postoperative period. Authors show the capabilities of remote monitoring technology to determine the location of the patient by satellite navigation in the case of emergency call for medical and technical services, and present the structure and modes of the displayed information for mobile devices and Web-server. Doctor-patient interaction based on remote monitoring technology via mobile/ satellite/wired Internet is also shown. 

  17. The design of multi temperature and humidity monitoring system for incubator

    Yu, Junyu; Xu, Peng; Peng, Zitao; Qiang, Haonan; Shen, Xiaoyan


    Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.

  18. Drought Monitoring by Remote Sensing over India and Pakistan Based on Temperature Vegetation Dryness Index%基于温度植被干旱指数的印度和巴基斯坦干旱监测

    高华; 张佳华; 夏学齐


    Drought has frequently been witnessed in the country due to various environmental changes such as rise in atmospheric pollution and climatic changes.Based on MOD13A3 and MOD11A2 data,the temperature vegetation dryness index (TVDI)model was constructed and verified.This study used MODIS data for many years during the same period over India and Pakistan to build the feature space of normalized difference vegetation index (NDVI)and land surface temperature (Ts),and fit dry and wet edge equations in the feature space.The TVDI was calculated over India and Pakistan of hot season (from March to May)from 2009 to 2014.In addition,the TVDI drought level standard is graded to analyze its temporal and spatial variation characteristics with using land use type and terrain data.TVDI is verified using the precipitation data from meteorological sites, and TVDI is contrasted with the standard precipitation index (SPI).The results show that:1)from the drought area statistics, the study region is mainly moderate drought,the area proportion of other grades is smaller;2)from the land use type,the land cover of entire district is good,the TVDI has certain rationality as drought evaluation index for study area;3 ) from meteorological sites,the inversion of TVDI from NDVI-Ts feature space and the total precipitation of the prophase and same period are closely related.%针对印度和巴基斯坦近年干旱频发的问题,该文使用温度植被干旱指数对印巴地区2009~2014年干季(3~5月)实现遥感干旱监测,利用多年同期 MODIS 卫星数据构建印巴地区归一化植被指数-陆地表面温度的特征空间,拟合特征空间中的干、湿边方程,进一步反演温度植被干旱指数,对该区土地利用和地形作了统计与分析,对温度植被干旱指数划分等级,并利用印巴气象站点的实测降水量以及标准降水指数进行验证。结果表明:1)从干旱等级面积统计来看,印巴地区干季主要

  19. Bridging the Self-care Deficit Gap: Remote Patient Monitoring and the Hospital-at-Home

    Cafazzo, Joseph A.; Leonard, Kevin; Easty, Anthony C.; Rossos, Peter G.; Chan, Christopher T.

    This study examines the use of a remote patient monitoring intervention to address the challenge of patient self-care in complex hospital-at-home therapies. It was shown that in a home hemodialysis patient group, remote patient monitoring facilitated self-care and was supported by patients and, in particular, family caregivers. This does not come without cost to the patient however, who now has greater personal responsibility and accountability for their health management. Promising results from this study indicate that most patients are willing to assume this cost in exchange for the possibility of improved health outcomes.

  20. Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy.

    Zhang, Hulin; Wang, Jie; Xie, Yuhang; Yao, Guang; Yan, Zhuocheng; Huang, Long; Chen, Sihong; Pan, Taisong; Wang, Liping; Su, Yuanjie; Yang, Weiqing; Lin, Yuan


    Meteorologic monitoring plays a key role on weather forecast and disaster warning and deeply relies on various sensor networks. It is an optimal choice that grabbing the environmental energy around sensors for driving sensor network. Here, we demonstrate a self-powered, wireless, remote meteorologic monitoring system based on an innovative TENG. The TENG has been proved capable of scavenging wind energy and can be employed for self-powered, wireless meteorologic sounding. This work not only promotes the development of renewable energy harvesting, but also exploits and enriches promising applications based on TENGs for self-powered, wireless, remote sensing.

  1. Application of remote monitoring technology in landslides in the Luoshan mining area

    Man-chao He; Zhi-gang Tao; Bin Zhang [China University of Mining & Technology, Beijing (China). Research Center of Geotechnical Engineering


    With the scale extending of mining, the landslide disaster in the earth's surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning. 11 refs., 8 figs., 1 tab.

  2. Application of remote monitoring technology in landslides in the Luoshan mining area

    HE Man-chao; TAO Zhi-gang; ZHANG Bin


    With the scale extending of mining, the landslide disaster in the earth's surface will become more and more serious, and these landslide disasters are being threatened to the sustainable safe mining of the underground mine and the open-pit mine. Based on the theory that sliding force is greater than the shear resistance (resisting force) at the potential slip surface is the necessary and sufficient condition to occur the landslide as the sliding criterion, the principle and method for sliding force remote monitoring is presented, and the functional relationship between the human mechanical quantity and the natural sliding force is derived, hereby, the natural sliding force can be calculated according to the human mechanical quantity. Based on above principle and method, a new system of landslide remote monitoring is designed and 53 systems are installed on the landslide body in the Luoshan mining area, which make up the landslide remote monitoring network. According to the results of field test around 8 months, monitoring curves between sliding force and time are obtained, which can describe and forecast the develop trend of landslide. According to above analysis, the results show that this system has some following advantages: (1) real-time monitoring; (2) remote intelligent transmission; (3) landslides early warning.

  3. Research on Remote Monitoring and Fault Diagnosis Technology of Numerical Control Machine

    ZHANG Jianyu; GAO Lixin; CUI Lingli; LI Xianghui; WANG Yingwang


    Based on the internet technology, it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine. In order to capture the micro-shock signal induced by the incipient fault on the rotating parts, the resonance demodulation technology is utilized in the system. As a subsystem of the remote monitoring system, the embedded data acquisition instrument not only integrates the demodulation board but also complete the collection and preprocess of monitoring data from different machines. Furthermore, through connecting to the internet, the data can be transferred to the remote diagnosis center and data reading and writing function can be finished in the database. At the same time, the problem of the IP address floating in the dial-up of web server is solved by the dynamic DNS technology. Finally, the remote diagnosis software developed on the LabVIEW platform can analyze the monitoring data from manufacturing field. The research results have indicated that the equipment status can be monitored by the system effectively.

  4. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    Biruk Gebre


    Full Text Available The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimating the data from the sensors at the remote location before transmission. The decimation is adjusted to the available bandwidth of the communications network which is characterized in real-time. As a result, the system allows users at the remote command center to view high bandwidth data (at a lower resolution with user-aware and minimized latency. This technique is applied to an eight hydrophone data acquisition system that requires a 25.6 Mbps connection for the transmission of the full data set using a wireless connection with 1 – 3.5 Mbps variable bandwidth. This technique can be used for applications that require monitoring of high bandwidth data from remote sensors in research and education fields such as remote scientific instruments and visually driven control applications.

  5. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    Biruk Gebre


    Full Text Available The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimating the data from the sensors at the remote location before transmission. The decimation is adjusted to the available bandwidth of the communications network which is characterized in real-time. As a result, the system allows users at the remote command center to view high bandwidth data (at a lower resolution with user-aware and minimized latency. This technique is applied to an eight hydrophone data acquisition system that requires a 25.6 Mbps connection for the transmission of the full data set using a wireless connection with 1 – 3.5 Mbps variable bandwidth. This technique can be used for applications that require monitoring of high bandwidth data from remote sensors in research and education fields such as remote scientific instruments and visually driven control applications.

  6. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming


    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  7. Remote monitoring within the framework of rock burst prevention. Fernueberwachung in der Gebirgsschlagverhuetung

    Hahnekamp, H.G.; Koenig, W.; Kuzia, M.


    The DMT Institute for Rock Control and Backfilling of Cavities has developed a technically simple remote monitoring system for use within the framwork of rock burst prevention. With this system coal faces can be continuously monitored even under difficult underground conditions without serious operating problems. For the monitoring the variables measured underground, viz. rock pressure, rock movement and deformation of test boreholes, are transmitted via the telecommunication network of the colliery to a computer on the surface, where they are evaluated online with regard to recognition of a rock burst hazard. Display of the actual monitoring situation on the computer screen permits immediate initiation of safety measures in the event of danger. (orig.).

  8. Fundamentals for remote condition monitoring of offshore wind turbine blades

    McGugan, Malcolm; Sørensen, Bent F.


    It is anticipated that the large offshore wind farms planed for the near future will require a level of sensor technology sufficient to monitor their general condition from on-shore stations. The continuous monitoring of operational condition and structural responses will give a higher level...... damage or failure in the Structural materials. The vision is of future blades containing sensors that give very early indications of any damage that is classed as critical or that is developing unacceptably rapidly. This early indication allows the option of changing operating conditions, and of a timely...

  9. Remote monitoring of lower-limb prosthetic socket fit using wireless technologies.

    Sahandi, R; Sewell, P; Noroozi, S; Hewitt, M


    Accurate fitting of a lower-limb prosthetic socket is the most important factor affecting amputee satisfaction and rehabilitation. The technology is now available to allow real-time monitoring of in-service pressure distribution of prosthetic limbs. This paper proposes a remote interfacial pressure monitoring system necessary for the assessment of fit. The suitability of a wireless ZigBee network due to its relevant technical specification is investigated. The system enables remote monitoring of a prosthetic socket and its fit under different operating conditions thereby improving design, efficiency and effectiveness. The data can be used by prosthetists and may also be recorded for future training or for patient progress monitoring. This can minimize the number of iterations by getting it right first time, thereby minimizing the number of replacement prostheses.

  10. Remotely sensed monitoring of small reservoir dynamics: a Bayesian approach

    Eilander, D.M.; Annor, F.O.; Iannini, L.; Van de Giesen, N.C.


    Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitorin

  11. A Remote Patient Monitoring System for Congestive Heart Failure

    Suh, Myung-kyung; Chen, Chien-An; Woodbridge, Jonathan; Tu, Michael Kai; Kim, Jung In; Nahapetian, Ani; Evangelista, Lorraine S.; Sarrafzadeh, Majid


    Congestive heart failure (CHF) is a leading cause of death in the United States affecting approximately 670,000 individuals. Due to the prevalence of CHF related issues, it is prudent to seek out methodologies that would facilitate the prevention, monitoring, and treatment of heart disease on a daily basis. This paper describes WANDA (Weight and Activity with Blood Pressure Monitoring System); a study that leverages sensor technologies and wireless communications to monitor the health related measurements of patients with CHF. The WANDA system is a three-tier architecture consisting of sensors, web servers, and back-end databases. The system was developed in conjunction with the UCLA School of Nursing and the UCLA Wireless Health Institute to enable early detection of key clinical symptoms indicative of CHF-related decompensation. This study shows that CHF patients monitored by WANDA are less likely to have readings fall outside a healthy range. In addition, WANDA provides a useful feedback system for regulating readings of CHF patients. PMID:21611788

  12. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    Wallace, Gary; Souccar, Kamal; Malin, Daniella


    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  13. A comparison between remote sensing approaches to water extent monitoring

    elmi, omid; javad tourian, mohammad; sneeuw, nico


    Monitoring the variation of water storage in a long period is a primary issue for understanding the impact of climate change and human activities on earth water resources. In order to obtain the change in water volume in a lake and reservoir, in addition to water level, water extent must be repeatedly determined in an appropriate time interval. Optical satellite imagery as a passive system is the main source of determination of coast line change as it is easy to interpret. Optical sensors acquire the reflected energy from the sunlight in various bands from visible to near infrared. Also, panchromatic mode provides more geometric details. Establishing a ratio between visible bands is the most common way of extract coastlines because with this ratio, water and land can be separated directly. Also, since the reflectance value of water is distinctly less than soil in infrared bands, applying a histogram threshold on this band is a effective way of coastline extraction. However, optical imagery is highly vulnerable to occurrence of dense clouds and fog. Moreover, the coastline is hard to detect where it is covered by dense vegetation. Synthetic aperture radar (SAR) as an active system provides an alternative source for monitoring the spatial change in coastlines. Two methods for monitoring the shoreline with SAR data have been published. First, the backscatter difference is calculated between two images acquired at different times. Second, the change in coastline is detected by computing the coherence of two SAR images acquired at different times. A SAR system can operate in all weather, so clouds and fog don't impact its efficiency. Also, it can penetrate into the plant canopy. However, in comparison with optical imagery, interpretation of SAR image in this case is relatively hard because of limitation in the number of band and polarization modes, also due to effects caused by speckle noises, slant-range imaging and shadows. The primary aim of this study is a

  14. An overview of passive remote sensing for post-fire monitoring


    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and HR (Landsat 7, Spot HVR and VHR satellite imagery (Ikonos, Quickbird, Spot 5 is currently sought as a highly viable option for the post-fire monitoring.

  15. Eliciting caregivers’ needs for remote activity monitoring in early dementia at home

    Boerema, S.T.; Brul, M.; Willems, C.; Hermens, H.J.


    INTRODUCTION: With an increasing prevalence of dementia in the Netherlands from 235.000 in 2008 (1 per 70 inhabitants) up to an estimated 500.000 in 2050 (1 per 34 inhabitants), assisting technologies are needed to support care delivery in the home environment. Remote activity monitoring systems sho

  16. Remote monitoring of videourodynamics using smart phone and free instant messaging software.

    Hsieh, Po-Fan; Chang, Chao-Hsiang; Lien, Chi-Shun; Wu, Hsi-Chin; Hsiao, Po-Jen; Chou, Eric Chieh-Lung


    To evaluate the feasibility of using smart phones plus free instant messaging software for remote monitoring of videourodynamics. From November 2011 to October 2012, 85 females with voiding disorders were enrolled for videourodynamic tests. The patients were assigned to videourodynamics remotely monitored by the attending physician by using iPhone/iPad and Skype (group 1) and videourodynamics with the attending physician present (group 2). The procedural time and videourodynamic qualities, assessed by the frequency of adherence to the modified Sullivan criteria, in each group were recorded and compared. There were 44 and 41 patients in group 1 and group 2, respectively. The mean procedural time was comparable between group 1 and group 2 (56.3 vs. 54.4 min, P = 0.25). The frequencies of adherence to the modified Sullivan criteria were similar in each group. The qualities of videourodynamics under the attending physician's remote or direct monitoring were both appropriate. Based on the convenience of Internet, the popularity of smart phones and the intention to make the urologists use their time more efficiently, our study provides remote monitoring as an alternative way for performing videourodynamics. © 2013 Wiley Periodicals, Inc.

  17. The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites


    sensor systems would be very interesting. REFERENCES CITED Acevedo, W., J.S. Buis, and R.C. Wrigley . "Changes in Classification Accuracy Due to Varying...Bryant, Anthony J. Brazel, Charles F. Hutchinson, and Robert C. Balling. "Using Remotely Sensed Data to Monitor Land Surface Climatology Variations in a

  18. Remote sensing applied to pollution monitoring. (Latest citations from the NTIS bibliographic database). Published Search



    The bibliography contains citations concerning the use of remote sensors to aid in the monitoring of air and water pollution. Citations address the use of lasers, optical radar systems, aerial photography, and satellite observations. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)


    Berseneva, E A; Korsakov, I M; Mikhailova, A G


    The issues are considered concerning necessity of development and implementation of mobile application of physician within the framework of automated system of remote monitoring of indicators of human health as a mean of increasing of quality medical care of patients. The main characteristics of development of the given mobile application of physician are considered.

  20. Earth Observation for Ecosystems Monitoring in Space and Time: A Special Issue in Remote Sensing

    Duccio Rocchini


    This Editorial introduces the papers published in the special issue “Earth Observation for Ecosystems Monitoring in Space and Time” which includes the most important researchers in the field and the most challenging aspects of the application of remote sensing to study ecosystems.

  1. Towards Proactive Context-Aware Service Selection in the Geographically Distributed Remote Patient Monitoring System

    Pawar, Pravin; Beijnum, van Bert-Jan; Mei, Hailiang; Hermens, Hermie


    In the mobile (M)-health domain, the remote patient monitoring system (RPMS) facilitates continuous collection, transmission and viewing of the patient vital signs data. Furthermore, in case of an emergency it provides context-aware emergency response services (ERSs) such as the doctor, paramedic, a

  2. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    Sarna, K.; Russchenberg, H.W.J.


    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  3. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    Sarna, K.; Russchenberg, H.W.J.


    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  4. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects

    Robert E. Kennedy; Philip A. Townsend; John E. Gross; Warren B. Cohen; Paul Bolstad; Wang Y. Q.; Phyllis Adams


    Remote sensing provides a broad view of landscapes and can be consistent through time, making it an important tool for monitoring and managing protected areas. An impediment to broader use of remote sensing science for monitoring has been the need for resource managers to understand the specialized capabilities of an ever-expanding array of image sources and analysis...

  5. Monitoring of glacier in Alaknanda basin using remote sensing data

    Rahul Nijhawan


    Full Text Available This study monitors the great Himalayas between the year 1998–2008 using satellite data. The Landsat satellite data was used to monitor variations in the area of glacier. Further the snow-covered area (SCA of the part of Alaknanda basin was computed both for the winter and the summer season. The analysis for the same was done between 1998 and 2008. It was observed that the amount of decrease in the SCA was more in winter season compared to summer season, which also shows the rate of retreat of glacier. This study also classifies the snow into two categories (1 dry snow and (2 wet snow. The pattern in the change in area of these two categories was analysed both for the winter and summer season.

  6. Sensitive change detection for remote sensing monitoring of nuclear treaties

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg


    or uninteresting changes, see e.g. (Canty and Schlittenhardt 2001). In our contribution we focus attention on the use of conventional multispectral earth observation satellite platforms with moderate ground resolution (Landsat TM, ASTER, SPOT) to detect changes over wide areas which are relevant to nuclear non......Triggered in part by the advent of high resolution commercial optical satellites, the analysis of open-source satellite imagery has now established itself as an important tool for monitoring nuclear activities throughout the world (Chitumbo et al 2001). Whereas detection of land cover and land use...... the framework of the Global Monitoring for Security and Stability Network of Excellence (GMOSS) initiated by the European Commission. Chitumbo, K., Robb, S., Bunney, J. and Lev\\$\\backslash\\$'e, G., IAEA Satellite imagery and the Department of Safeguards, Proceedings of the Symposium on International Safeguards...

  7. Northern Mariana Islands Marine Monitoring Team Sea Temperature Measurements

    National Oceanic and Atmospheric Administration, Department of Commerce — Site specific monitoring of sea temperature is conducted using submersible temperature dataloggers at selected sites and depths around the islands of Saipan and Rota.

  8. Remote sensing monitoring of thermal discharge in Daya Bay Nuclear Power Station based on HJ-1 infrared camera

    Zhu, Li; Yin, Shoujing; Wu, Chuanqing; Ma, Wandong; Hou, Haiqian; Xu, Jing


    In this paper, the method of monitoring coastal areas affected by thermal discharge of nuclear plant by using remote sensing techniques was introduced. The proposed approach was demonstrated in Daya Bay nuclear plant based on HJ-B IRS data. A single channel water temperature inversion algorithm was detailed, considering the satellite zenith angle and water vapor. Moreover the reference background temperature was obtained using the average environmental temperature method. In the case study of Daya Bay nuclear plant, the spatial distribution of thermal pollution was analyzed by taking into account the influence of tidal, wind and so on. According to the findings of this study, the speed and direction of the ebb tide, is not conducive to the diffusion of thermal discharge of DNNP. The vertically thermal diffusion was limited by the shallow water depth near the outlet.


    LANYong-chao; MAQua-jie; 等


    The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China.The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring .So snowmelt runoff forecast has importance for hydropower,flood prevention and water resources utilize-tion.The application of remote sensing and Geographic Information System(GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper.The key parame-ter-snow cover area can be computed by satellite images from multi-platform,multi-templral and multi-spectral.A clus-ter of snow-cover data can be yielded by means of the classification filter method.Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning .According to the typical samples extracting snow covered moun-tained in detail also.The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff,precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reser-voir,which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June.The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin.With the develop-ment of remote sensing technique and the progress of the interpretation method,the forecast accuracy of snowmelt runoff will be improved in the near future .Large scale extent and few stations are two objective reality situations in Chian,so they should be considered in simulation and forecast.Apart from dividing ,the derivation of



    The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China. The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring. So snowmelt runoff forecast has importance for hydropower, flood prevention and water resources utilization. The application of remote sensing and Geographic Information System (GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper. The key parameter- snow cover area can be computed by satellite images from multi-platform, multi-temporal and multi-spectral. A cluster of snow-cover data can be yielded by means of the classification filter method. Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning. According to the typical samples extracting snow covered mountainous region, the snowmelt runoff calculation models in the upper Huanghe River basin are presented and they are mentioned in detail also. The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff, precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reservoir , which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June. The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin. With the development of remote sensing technique and the progress of the interpretation method, the forecast accuracy of snowmelt runoff will be improved in the near future. Large scale extent and few stations are two

  11. Real-time optoacoustic monitoring of temperature in tissues

    Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States)


    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser ({lambda} = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1{sup 0}C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy.

  12. Desertification Assessment and Monitoring Based on Remote Sensing

    Fan, Jinlong; Defourny, Pierre


    The European medium resolution satellite data ENVISAT/MERIS were available in 2002 while the Chinese medium resolution spectrometer data with 5 bands in 250m spatial resolution and 15 bands in 1000m onboard Fengyun 3 series satellites became a new data source at the end of the year 2008. Under the framework of Dragon program 3, both teams demonstrated the utilization of medium resolution satellite data in crop monitoring. The Chinese team has made efforts to improve the processing of the Chinese Medium resolution satellite data (MERSI) in order to promote its applications in crop monitoring. The European team has checked and evaluated the processed FY3A/3B MERSI data and inspiring findings have found in terms of the imaging quality and the performance of retrieving LAI and GAI etc. The Chinese team has mapped the winter wheat area in North China Plain in the growing season from 2009 to 2014 with the finely processed FY3A MERSI 250m data. The LAI retrieval algorithm with the FY3 MERSI data was developed based on the in-situ data and other satellite products. The participation of young scientists is critical for the implementation of the project. 4 Chinese master students were involving in this project and the Chinese team hosted a European young master student to carry out research in China in the spring of 2014. Both research teams are looking forward to successful and productive achievements for this Dragon project and new deep cooperation in Dragon 4.

  13. Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach

    Dirk Eilander


    Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.

  14. Remote Mobile Health Monitoring System Based on Smart Phone and Browser/Server Structure.

    Zhang, Yunzhou; Liu, Huiyu; Su, Xiaolin; Jiang, Pei; Wei, Dongfei


    A remote mobile health monitoring system with mobile phone and web service capabilities is proposed in this paper. It provides an end-to-end solution; specifically, (1) physiologic parameters, including respiration rate and heart rate, are measured by wearable sensors and recorded by a mobile phone which presents the graphical interface for the user to observe his/her health status more easily; (2) it provides doctors and family members with necessary data through a web interface and enables authorized personnel to monitor the patient's condition and to facilitate remote diagnosis; and (3) it supports real-time alarming and positioning services during an urgent situation, such as a tumble or a heart attack, so that unexpected events can be handled in a timely manner. Experimental results show that the proposed system can reliably monitor the physiologic parameters and conveniently report the user's position.

  15. Remote monitoring using technologies from the Internet and World Wide Web

    Puckett, J.M.; Burczyk, L.


    Recent developments in Internet technologies are changing and enhancing how one processes and exchanges information. These developments include software and hardware in support of multimedia applications on the World Wide Web. In this paper the authors describe these technologies as they have applied them to remote monitoring and show how they will allow the International Atomic Energy Agency to efficiently review and analyze remote monitoring data for verification of material movements. The authors have developed demonstration software that illustrates several safeguards data systems using the resources of the Internet and Web to access and review data. This Web demo allows the user to directly observe sensor data, to analyze simulated safeguards data, and to view simulated on-line inventory data. Future activities include addressing the technical and security issues associated with using the Web to interface with existing and planned monitoring systems at nuclear facilities. Some of these issues are authentication, encryption, transmission of large quantities of data, and data compression.

  16. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Peter Corke


    Full Text Available Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs. We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

  17. Remote Mobile Health Monitoring System Based on Smart Phone and Browser/Server Structure

    Yunzhou Zhang


    Full Text Available A remote mobile health monitoring system with mobile phone and web service capabilities is proposed in this paper. It provides an end-to-end solution; specifically, (1 physiologic parameters, including respiration rate and heart rate, are measured by wearable sensors and recorded by a mobile phone which presents the graphical interface for the user to observe his/her health status more easily; (2 it provides doctors and family members with necessary data through a web interface and enables authorized personnel to monitor the patient’s condition and to facilitate remote diagnosis; and (3 it supports real-time alarming and positioning services during an urgent situation, such as a tumble or a heart attack, so that unexpected events can be handled in a timely manner. Experimental results show that the proposed system can reliably monitor the physiologic parameters and conveniently report the user’s position.

  18. Methodology of traffic flows remote monitoring in the Ural Federal District largest cities using satellite monitoring data

    Testeshev, Alexander; Timohovetz, Vera


    The article considers the method of remote research of traffic flow characteristics in the largest cities based on satellite monitoring. The aim of the research is to develop mathematical conformities of traffic flow theory that allow interpreting the results of decoding the traffic situation static picture obtained from free online services into primary and derived traffic characteristics. Data on functional dependences of traffic density and traffic flow speed differentiated with respect to transport and road conditions is provided. The developed technique made it possible to minimize resource costs to conduct simultaneous monitoring of traffic flows on the road network in the largest cities of the Ural Federal District.

  19. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)


    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  20. The Monitoring of Red Tides Based on Modular Neural Networks Using Airborne Hyperspectral Remote Sensing

    JI Guangrong; SUN Jie; ZHAO Wencang; ZHANG Hande


    This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Correction (LRC) is used to normalize the data, and then clustering analysis is adopted to select and form the training samples for the neural networks. For rapid monitoring, the discriminator is composed of modular neural networks, whose structure and learning parameters are determined by an Adaptive Genetic Algorithm (AGA). The experiments showed that this method can monitor red tide rapidly and effectively.

  1. Online Remote Recording and Monitoring of Sensor Data Using DTMF Technology

    Niladri Sekhar TRIPATHY


    Full Text Available Different wireless application platforms are available for remote monitoring and control of systems. In the present paper a system has been described for online remote recording and monitoring of sensor data using DTMF (Dual Tone Multi Frequency technology where acoustic communication has been implemented. One DTMF transceiver in the sensing system has been used to generate and decode the DTMF tone corresponding to the sensor output which in turn is received from the mobile phone in the user side. A separate DTMF decoder has been used in the user side to decode the received DTMF tone corresponding to the sensor output from the sensor side. Microcontroller has been used to store the decoded data from the sensor and to control the whole operation sequentially. Thus online remote recording and monitoring of the sensor data have been possible at any where in the coverage area of the mobile network. Experimental result shows good linearity between data output taken directly from the sensor side and that remotely from user side.

  2. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.


    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  3. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma


    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  4. Fundamentals for remote condition monitoring of offshore wind turbines

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems......In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...


    A. S. Arya


    Full Text Available Desert ecosystems are unique but fragile ecosystems , mostly vulnerable to a variety of degradational processes like water erosion, vegetal degradation, salinity, wind erosion , water logging etc. Some researchers consider desertification to be a process of change, while others view it as the end result of a process of change. There is an urgent need to arrest the process of desertification and combat land degradation. Under the auspices of the United Nations Convention to Combat Desertification (UNCCD, Space Applications Centre, Ahmedabad has undertaken the task of mapping, monitoring and assessment of desertification carrying out pilot project in hot and cold desert regions in drylands on 1:50,000 scale followed by systematic Desertification Status Mappaing (DSM of India on 1:500,000 scale.

  6. Combining modelled and remote sensing soil moisture anomalies for an operational global drought monitoring

    Cammalleri, Carmelo; Vogt, Jürgen


    Soil moisture anomalies (i.e., deviations from the climatology) are often seen as a reliable tool to monitor and quantify the occurrence of drought events and their potential impacts, especially in agricultural and naturally vegetated lands. Soil moisture datasets (or their proxy) can be derived from a variety of sources, including land-surface models and thermal and microwave satellite remote sensing images. However, each data source has different advantages and drawbacks that prevent to unequivocally prefer one dataset over the others, especially in global applications that encompass a wide range of soil moisture regimes. The analysis of the spatial reliability of the different datasets at global scale is further complicated by the lack of reliable long-term soil moisture records for a ground validation over most regions. To overcome this limitation, in recent years the Triple Collocation (TC) technique has been deployed in order to quantify the likely errors associated to three mutually-independent datasets without assuming that one of them represents the "truth". In this study, three global datasets of soil moisture anomalies are investigated: the first one derived from the runs of the Lisflood hydrological model, the second one obtained from the combined active/passive microwave dataset produced in the framework of the European Space Agency (ESA) Climate Change Initiative (CCI), and the last one derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) observations. A preliminary analysis of the three datasets aimed at detecting the areas where the TC technique can be successfully applied, hence the spatial distribution of the random error variance for each model is evaluated. This study allows providing useful advises for a robust combination of the three datasets into a single product for a more reliable global drought monitoring.

  7. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.


    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  8. On-line remote monitoring of radioactive waste repositories

    Calì Claudio


    Full Text Available A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy. Such a development is currently under way, with the installation foreseen within 2014.



    Horqin Sand Land is regarded as the typical region for studying the problem of desertification. The integration of 3S(GIS, GPS and RS) techniques offer a most helpful method to study and monitor the dynamics of desertification.Based on the data derived from 3 periods' mulfitemporal Landsat TM imagery of the 1990s, the regional land use and dynamics of desertification in Horqin Sand L and were studied. The main results revealed that: 1 ) as long as the general changetendency was concerned, the desertification of Horqin Sand Land would continue to spread; 2) there was a gradual decrease in the area of both moving sand dunes and semi-stabilized ones, which meant that fruitful progress had been madeto control the desertification during the 1990s; 3) as a result of unreasonable cultivation, the total area of stabilized sanddunes and grassland in the middle and western region decreased obviously. It suggested that the increasing damagecaused by human was leading to the hazard of further desertitication. So in the future, it is necessary to take more effective measures to control the spread of desertification and restore the degraded ecosystems for the purpose of optimizing theglobal eco-environment in Horqin Sand Land.

  10. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.


    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  11. An artificial reality environment for remote factory control and monitoring

    Kosta, Charles Paul; Krolak, Patrick D.


    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  12. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    M. Marshall


    Full Text Available Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET, a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  13. A Remote Monitoring System for Greenhouse Based on the Internet of Things

    Xu Zhenfeng


    Full Text Available The Internet of Things (IOT is considered as a great opportunity for the development in the information field nowadays, and has been applied widely in many fields. The IOT can be applied to monitor and control the microclimate factors of greenhouse remotely. In this paper, a wireless monitoring network is designed in the perception layer of the IOT. The nodes are developed based on the Mica2 hardware and the TinyOS software. The LPL (low power listening technology is adopted to reduce the energy consumption of the relay node which is powered by a solar panel. The ACK (Acknowledgement mechanism is used in the software to improve the quality of wireless communications. A remote monitoring terminal is developed by using Java technology. The monitoring terminal is easy to operate with good interactivity. The system has been installed in a glass greenhouse. The actual operation results show that the system is stable and reliable, which lays a good foundation for the development of remote control strategies in future.

  14. Development of an early-warning system for monitoring remote volcanoes

    G. Sauvage


    Full Text Available Many andesitic volcanoes are quiescent for long time periods: usually (but not always an increase in seismic activity and in deformation precedes an eruption by a few months or a few days. A UNESCO panel has put forward the concept of an early warning system for monitoring dormant volcanoes in remote regions. Simple seismic or deformation measuring devices can in principle be built for monitoring remote volcanoes. These instruments are composed of two units: 1 a processor that measures the baseline «activity» of the volcano and decides when the activity increases above a certain threshold; 2 a transmitter for long distance communication. For slow parameters like tilt or extensometry, the signal can be transmitted every few minutes or hours. For seismology, signals include a large quantity of data and therefore they are usually not transmitted. The processing unit is not easy to design because a single seismic station can record noises that are very similar to «volcanic events». Average noise level on a given time interval, event detection counters and high amplitude ground motion counters are a simple (but not exhaustive way to summarize seismic activity. The transmission of data from the field to a monitoring center is feasible by present and future satellite telemetry. We present our attempt to develop an early warning system for remote volcano monitoring with data transmission by satellite.

  15. The potential for synthesizing multi-sensor remote sensing data for global volcano monitoring

    Furtney, M.; Pritchard, M. E.; Carn, S. A.; McCormick, B.; Ebmeier, S. K.; Jay, J.


    Volcanoes exhibit variable eruption frequencies and styles, from near-continuous eruptions of effusive lavas to more intermittent, explosive eruptions. The monitoring frequency necessary to capture precursory signals at any volcano remains uncertain, as some warnings allot hours for evacuation. Likewise, no precursory signal appears deterministic for each volcano. Volcanic activity manifests in a variety of ways (i.e. tremor, deformation), thus requiring multiple monitoring mechanisms (i.e. geodetic, geochemical, geothermal). We are developing databases to compare relationships among remotely sensed volcanic unrest signals and eruptions. Satellite remote sensing utilizes frequent temporal measurements (daily to bi-weekly), an essential component of worldwide volcano monitoring. Remote sensing methods are also capable of detecting diverse precursory signals such as ground deformation from satellite interferometric synthetic aperture radar—InSAR— (multiple space agencies), degassing from satellite spectroscopy (i.e. OMI SO2 from NASA), and hot spots from thermal infrared (i.e. MODIS from NASA). We present preliminary results from seven SAR satellites and two thermal infrared satellites for 24 volcanoes with prominent SO2 emissions. We find near-continuous emissions at Ibu (Indonesia) since 2008 corresponded with hotspots and 10 cm of subsidence, with degassing and comparable subsidence observed at Pagan (Marianas). A newcomer to volcano monitoring, remote sensing data are only beginning to be utilized on a global scale, let alone as a synthesized dataset for monitoring developing eruptions. We foresee a searchable tool for rapidly accessing basic volcanic unrest characteristics for different types of volcanoes and whether or not they resulted in eruption. By including data from multiple satellite sensors in our database we hope to develop quantitative assessments for calculating the likelihood of eruption from individual events.

  16. A New Remote Monitoring System Application in Laser Power Based on LabVIEW

    Liu Gaoqiang


    Full Text Available In this paper, a new remote monitoring system based on LabVIEW was proposed to measure laser power automatically and remotely. This system consists of four basic components: an DH-JG2 optical power meter, a NI-USB 6008 data acquisition card, a personal computer (PC, and HP laserJet 1020 Plus printer. Since power output of laser is generally so unstable that abnormal work situation could not retroaction to inspectors right away, new system was designed to solve this problem. The detection system realized function of remote control by TCP protocol and mobile phone. Laser power curve that is measured by detection system demonstrated that the design has a good performance in real-time detection and operability.

  17. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    Severs, R. K.


    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  18. Remote monitoring of volcanic gases using passive Fourier transform spectroscopy

    Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C. [Los Alamos National Lab., NM (United States); Siebe, C.; Delgado, H. [Univ. Nactional Autonoma de Mexico, Coyoacan (Mexico)


    Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

  19. 基于LabVIEW的远程监控系统设计%The Design Of LabVIEW-based Remote Monitoring System



    Using the Lab VIEW software that realized important Treasury of temperature and humidity systems remote monitoring,And analyzed and discussed the system of some key technologies such as data acquisition,cal subsystem and remote parameter settings.%  本文主要利用LabVIEW软件对重要库房的温湿度系统实现远程化监控,对于远程实现中的一些关键技术如数据采集、调用子系统及远程参数设置等进行分析讨论。

  20. Monitoring soil moisture through assimilation of active microwave remote sensing observation into a hydrologic model

    Liu, Qian; Zhao, Yingshi


    Soil moisture can be estimated from point measurements, hydrologic models, and remote sensing. Many researches indicated that the most promising approach for soil moisture is the integration of remote sensing surface soil moisture data and computational modeling. Although many researches were conducted using passive microwave remote sensing data in soil moisture assimilation with coarse spatial resolution, few researches were carried out using active microwave remote sensing observation. This research developed and tested an operational approach of assimilation for soil moisture prediction using active microwave remote sensing data ASAR (Advanced Synthetic Aperture Radar) in Heihe Watershed. The assimilation was based on ensemble Kalman filter (EnKF), a forward radiative transfer model and the Distributed Hydrology Soil Vegetation Model (DHSVM). The forward radiative transfer model, as a semi-empirical backscattering model, was used to eliminate the effect of surface roughness and vegetation cover on the backscatter coefficient. The impact of topography on soil water movement and the vertical and lateral exchange of soil water were considered. We conducted experiments to assimilate active microwave remote sensing data (ASAR) observation into a hydrologic model at two field sites, which had different underlying conditions. The soil moisture ground-truth data were collected through the field Time Domain Reflectometry (TDR) tools, and were used to assess the assimilation method. The temporal evolution of soil moisture measured at point-based monitoring locations were compared with EnKF based model predictions. The results indicated that the estimate of soil moisture was improved through assimilation with ASAR observation and the soil moisture based on data assimilation can be monitored in moderate spatial resolution.

  1. Remote erosion and corrosion monitoring of subsea pipelines using acoustic telemetry and wet-mate connector technology

    Painter, Howard; Barlow, Stewart [Teledyne ODI, Thousand Oaks, CA (United States); Clarke, Daniel [Teledyne Cormon, Thousand Oaks, CA (United States); Green, Dale [Teledyne Benthos, North Falmouth, MA (United States)


    This paper will present a novel approach for monitoring erosion and corrosion using proven sub sea technologies: intrusive erosion and corrosion monitoring, acoustic telemetry and wet-mateable connector technology. Intrusive metal loss based monitoring systems on sub sea pipelines are increasingly being used because of their ability to directly measure erosion and corrosion. These systems are integrated with the sub sea production control system or located close to the platform and hard-wired. However, locations remote from a sub sea control system or platform requires a dedicated communication system and long lengths of cable that can be cost prohibitive to procure and install. The system presented consists of an intrusive erosion or corrosion monitor with pressure and temperature transmitters, a retrievable electronics module with an acoustic modem, a data storage module, and a replaceable power module. Time-stamped erosion and corrosion data can be transmitted via an acoustic link to a surface platform, a vessel of opportunity or to a relaying modem. Acoustic signals can be transmitted up to 6 km from the monitoring location. The power module along with data module and acoustic modem are mounted on the erosion and corrosion module using wet-mateable connectors, allowing retrieval by remotely operated vehicles. The collected data can be used to assess the cumulative erosion and corrosion as well as use the real-time metal loss rate data to correlate with operational parameters. Benefits include optimization of corrosion inhibitor dosage rates, mitigation of damage caused by solids production, and increased flow assurance. (author)

  2. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María


    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  3. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    Bohachek, Randolph Charles [Idaho National Laboratory (INL), Idaho Falls, ID (United States)


    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  4. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Chandra Giri


    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  5. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.


    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

  6. Gsm Based Embedded System for Remote Laboratory Safety Monitoring and Alerting



    Full Text Available This paper aims to modify an existing safety and security model for the environment of educationalinstitutions and in home. The aim of this project is to design an embedded system for remote monitoringof the laboratory environment. Nowadays remote monitoring the laboratory and its building is necessaryfor safety and security purpose, which also help us to know the environmental status of the laboratory.The environmental parameters inside the laboratory, such as presence of alcohol, gas and fire can bedetected using respective sensors and the sensed data are then transferred to the microcontroller. Themicrocontroller takes the control action of activating an alarm whenever the presence of theseparameters is found. In turn, the Voice alarm and alert message as SMS through GSM are also sent tothe remote area. The advantage of this automated detection and alarm system is that, it offers fasterresponse time and accurate detection during an emergency. Our experimental results show that, thesystem provides safe and secure remote monitoring of the environment in laboratories and it has highreliability and easy to implement a system like this wherever needed.

  7. Use of remote sensing in monitoring and forecasting of harmful algal blooms

    Stumpf, Richard P.; Tomlinson, Michelle C.


    Harmful algal blooms (HABs) have impacts on coastal economies, public health, and various endangered species. HABs are caused by a variety of organisms, most commonly dinoflagellates, diatoms, and cyanobacteria. In the late 1970's, optical remote sensing was found to have a potential for detecting the presence of blooms of Karenia brevis on the US Florida coast. Due to the nearly annual frequency of these blooms and the ability to note them with ocean color imagery, K. brevis blooms have strongly influenced the field of HAB remote sensing. However, with the variability between phytoplankton blooms, heir environment and their relatively narrow range of pigment types, particularly between toxic and non-toxic dinoflagellates and diatoms, techniques beyond optical detection are required for detecting and monitoring HABs. While satellite chlorophyll has some value, ecological or environmental characteristics are required to use chlorophyll. For example, identification of new blooms can be an effective means of identifying HABs that are quie intense, also blooms occurring after specific rainfall or wind events can be indicated as HABs. Several HAB species do not bloom in the traditional sense, in that they do not dominate the biomass. In these cases, remote sensing of SST or chlorophyll can be coupled with linkages to seasonal succession, changes in circulation or currents, and wind-induced transport--including upwelling and downwelling, to indicate the potential for a HAB to occur. An effective monitoring and forecasting system for HABs will require the coupling of remote sensing with an environmental and ecological understanding of the organism.

  8. MEMS acceleration sensor with remote optical readout for continuous power generator monitoring

    Tormen Maurizio


    Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.

  9. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.


    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  10. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang


    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  11. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V


    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  12. Evaluating the feasibility of multitemporal hyperspectral remote sensing for monitoring bioremediation

    Noomen, Marleen; Hakkarainen, Annika; van der Meijde, Mark; van der Werff, Harald


    In recent years, several studies focused on the detection of hydrocarbon pollution in the environment using hyperspectral remote sensing. Particularly the indirect detection of hydrocarbon pollution, using vegetation reflectance in the red edge region, has been studied extensively. Bioremediation is one of the methods that can be applied to clean up polluted sites. So far, there have been no studies on monitoring of bioremediation using (hyperspectral) remote sensing. This study evaluates the feasibility of hyperspectral remote sensing for monitoring the effect of bioremediation over time. Benzene leakage at connection points along a pipeline was monitored by comparing the red edge position (REP) in 2005 and 2008 using HyMap airborne hyperspectral images. REP values were normalized in order to enhance local variations caused by a change in benzene concentrations. 11 out of 17 locations were classified correctly as remediated, still polluted, or still clean, with a total accuracy of 65%. When only polluted locations that were remediated were taken into account, the (user's) accuracy was 71%.

  13. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi


    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163

  14. Multiple criteria analysis of remotely piloted aircraft systems for monitoring the crops vegetation status

    Cristea, L.; Luculescu, M. C.; Zamfira, S. C.; Boer, A. L.; Pop, S.


    The paper presents an analysis of Remotely Piloted Aircraft Systems (RPAS) used for monitoring the crops vegetation status. The study focuses on two types of RPAS, namely the flying wing and the multi-copter. The following criteria were taken into account: technical characteristics, power consumption, flight autonomy, flight conditions, costs, data acquisition systems used for monitoring, crops area and so on. Based on this analysis, advantages and disadvantages are emphasized offering a useful tool for choosing the proper solution according to the specific application conditions.

  15. Research on Monitoring the Wetland Landcover Change Based on the Moderate Resolution Remote Sensing Image

    Zhou, M.; Yuan, X.; Sun, L.


    Wetland is important natural resource. The main method to monitor the landcover change in wetland natural reserve is to extract and analyze information from remote sensing image. In this paper, the landcover information is extracted, summarized and analyzed by using multi-temporal HJ and Landsat satellite image in Zhalong natural reserve, Heilongjiang, China. The method can monitor the wetland landcover change accurately in real time and long term. This paper expounds the natural factors and human factors influence on wetland land use type, for scientific and effective support for the development of the rational use of wetlands in Zhalong natural wetland reserve.

  16. Development of a remote controlled robot system for monitoring nuclear power plant

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)


    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  17. Use of radiation detectors in remote monitoring for containment and surveillance

    Dupree, S.A.; Ross, M. [Sandia National Labs., Albuquerque, NM (United States); Bonino, A. [Nuclear Regulatory Authority of Argentina, Buenos Aires (Argentina); Lucero, R.; Hasimoto, Yu [PNC Oarai Engineering Center, Ibaraki (Japan)


    Radiation detectors have been included in several remote monitoring field trial systems to date. The present study considers detectors at Embalse, Argentina, and Oarai, Japan. At Embalse four gamma detectors have been operating in the instrumentation tubes of spent fuel storage silos for up to three years. Except for minor fluctuations, three of the detectors have operated normally. One of the detectors appears never to have operated correctly. At Oarai two gamma detectors have been monitoring a spent-fuel transfer hatch for over 18 months. These detectors have operated normally throughout the period, although one shows occasional noise spikes.

  18. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    Giordano Lanzola


    Full Text Available Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  19. Technical results of Y-12/IAEA field trial of remote monitoring system

    Corbell, B.H. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, J.M. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Welch, J. [Aquila Technologies Group, Albuquerque, NM (United States)] [and others


    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios.

  20. Using remotely sensed temperature to estimate climate response functions

    Heft-Neal, Sam; Lobell, David B.; Burke, Marshall


    Temperature data are commonly used to estimate the sensitivity of many societally relevant outcomes, including crop yields, mortality, and economic output, to ongoing climate changes. In many tropical regions, however, temperature measures are often very sparse and unreliable, limiting our ability to understand climate change impacts. Here we evaluate satellite measures of near-surface temperature (Ts) as an alternative to traditional air temperatures (Ta) from weather stations, and in particular their ability to replace Ta in econometric estimation of climate response functions. We show that for maize yields in Africa and the United States, and for economic output in the United States, regressions that use Ts produce very similar results to those using Ta, despite the fact that daily correlation between the two temperature measures is often low. Moreover, for regions such as Africa with poor station coverage, we find that models with Ts outperform models with Ta, as measured by both R 2 values and out-of-sample prediction error. The results indicate that Ts can be used to study climate impacts in areas with limited station data, and should enable faster progress in assessing risks and adaptation needs in these regions.

  1. Application of remote debugging techniques in user-centric job monitoring

    dos Santos, T.; Mättig, P.; Wulff, N.; Harenberg, T.; Volkmer, F.; Beermann, T.; Kalinin, S.; Ahrens, R.


    With the Job Execution Monitor, a user-centric job monitoring software developed at the University of Wuppertal and integrated into the job brokerage systems of the WLCG, job progress and grid worker node health can be supervised in real time. Imminent error conditions can thus be detected early by the submitter and countermeasures can be taken. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job misbehaviour. To remove the last "blind spot" from this monitoring, a remote debugging technique based on the GNU C compiler suite was developed and integrated into the software; its design concept and architecture is described in this paper and its application discussed.

  2. Design and implementation of a remote UAV-based mobile health monitoring system

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix


    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  3. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt


    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  4. Agriculture In Uruguay: New Methods For Drought Monitoring and Crop Identification Using Remotely Sensed Data

    Lessel, J.; Ceccato, P.


    Agriculture is a vital resource in the country of Uruguay. Here we propose new methods using remotely sensed data for assisting ranchers, land managers, and policy makers in the country to better manage their crops. Firstly, we created a drought severity index based on the climatological anomalies of land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation data from the Tropical Rainfall Monitoring Mission (TRMM), and normalized difference water index (NDWI) data also using MODIS. The use of the climatological anomalies on the variables has improved the ability of the index to correlate with known drought indices versus previously published indices, which had not used them. We applied various coefficient schemes and vegetation indices in order to choose the model which best correlated with the drought indices across 10 sites throughout Uruguay's rangelands. The model was tested over summer months from 2009-2013. In years where drought had indeed been a problem in the country (such as 2009) the model showed intense signals of drought. Secondly, we used Landsat images to identify winter and summer crops in Uruguay. We first classified them using ENVI and then used the classifications in an ArcMap model to identify specific crop areas. We first created a polygon of the classifications for soils and vegetation for each month (omitting cloud covered images). We then used the crop growing cycle to identify the times during the year for which specific polygons should be soil and which should be vegetation. By intersecting the soil polygons with the vegetation polygons during their respective time periods during the crop growing cycle we were able to create an accurately identify crops. When compared to a shapefile of proposed crops for the year the model obtained a kappa value of 0.60 with a probability of detection of 0.79 and a false alarm ratio of 0.31 for the south-western study area over the 2013-2014 summer.

  5. Monitoring Chlorophyll-a with remote sensing techniques in the Tagus Estuary

    Benali, A. A.


    At the present there is a major challenge to monitor coastaltransitional systems in a robust, frequent, systematic and accurate fashion. With the implementation of the Water Framework Directive (WFD), the EU Member States must monitor regularly the most relevant physical and biological parameters. The work assessed the applicability and accuracy of chl-a products from the MODIS Terra sensor in the Tagus estuary, comparing them with simulations of an ecological model (EcoWin2000), at a box scale, which was previously calibrated and validated. It is proposed a conceptual and methodological framework for future monitoring of the estuary using remote sensing data, concerning data processing, handling and integration. Typical Case 1 algorithms were pre-assessed and Case 2 empirical algorithms were regionally calibrated. The GSM and Clark algorithms had the best performances, with errors of approximately of 1.1 μg chl-a l-1 (or 20%) and correlations ranging 0.4-0.5. During calibration, the ratio R678/R551 had good correlation (r = 0.83) and low errors ( 1μg chl-a l-1), however, its evaluation showed low performances. In agreement with the pre-assessment, the GSM algorithm had the best correlation (r 0.50) and errors of approximately 0.8μg chl-a l-1. Remote sensing is a tool with high potential to assist the EU Member States to accomplish the WFD objectives, however, extensive future work is still needed. Systematic chl-a monitoring in the Tagus estuary is feasible and future work should also be aimed at developing multisource monitoring procedures integrating model, in-situ and remote sensing data thus, minimizing their individual limitations and flaws.

  6. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring

    Petteri Vihervaara


    Full Text Available Essential Biodiversity Variables (EBVs have been suggested to harmonize biodiversity monitoring worldwide. Their aim is to provide a small but comprehensive set of monitoring variables that would give a balanced picture of the development of biodiversity and the reaching of international and national biodiversity targets. Globally, GEO BON (Group on Earth Observations Biodiversity Observation Network has suggested 22 candidate EBVs to be monitored. In this article we regard EBVs as a conceptual tool that may help in making national scale biodiversity monitoring more robust by pointing out where to focus further development resources. We look at one country –Finland –with a relatively advanced biodiversity monitoring scheme and study how well Finland’s current biodiversity state indicators correspond with EBVs. In particular, we look at how national biodiversity monitoring could be improved by using available remote sensing (RS applications. Rapidly emerging new technologies from drones to airborne laser scanning and new satellite sensors providing imagery with very high resolution (VHR open a whole new world of opportunities for monitoring the state of biodiversity and ecosystems at low cost. In Finland, several RS applications already exist that could be expanded into national indicators. These include the monitoring of shore habitats and water quality parameters, among others. We hope that our analysis and examples help other countries with similar challenges. Along with RS opportunities, our analysis revealed also some needs to develop the EBV framework itself.

  7. Distributed strain monitoring for bridges: temperature effects

    Regier, Ryan; Hoult, Neil A.


    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  8. Technological monitoring of subgrade construction on high-temperature permafrost

    Svyatoslav Ya. Lutskiy; Taisia V. Shepitko; Alexander M. Cherkasov


    Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.

  9. Remote Sensing and the Kyoto Protocol: A Review of Available and Future Technology for Monitoring Treaty Compliance

    Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.


    An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.

  10. Remote sensing applied to crop disease control, urban planning, and monitoring aquatic plants, oil spills, rangelands, and soil moisture


    The application of remote sensing techniques to land management, urban planning, agriculture, oceanography, and environmental monitoring is discussed. The results of various projects are presented along with cost effective considerations.

  11. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco


    Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite

  12. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.


    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  13. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL


    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.


    尹京苑; 沈迪; 李成范


    A large volcanic eruption can produce large amounts of volcanic ash,water vapor and heat,and form the volcanic ash cloud.The volcanic ash cloud is mainly composed of volcanic ash debris in diameter less than 2mm and gases including SO2,H2S,CO2,the mixture of the two can form acidic aerosols which can stay in the atmosphere for a long time.It not only destructs the balance of earth's surface solar radiation and causes the depletion of the ozone layer,the greenhouse effect,air pollution,acid rain,anomalies of air temperature and precipitation,and other major global climate and environmental changes,but also damages and corrodes the structure of an aircraft,reduces the visibility and jams the radio communication system.The most serious problem is that the volcanic ash debris particles are capable of cooling and adhering to the aircraft engine blades after high-temperature melting,resulting in the flameout of aircraft engine.Under the background of globalization and the boom of air-transport industry,the volcanic ash cloud is a serious threat to aviation safety.Remote sensing technology can quickly and accurately obtain the information of the surface's and the atmosphere's changes,therefore it is playing an important role in monitoring volcanic activity.In recent years,with the advancement of sensor technology,the thermal infrared remote sensing technology has become an important means of monitoring the volcanic ash cloud.Currently,there have been a variety of remote sensors for volcanic ash cloud monitoring.Meanwhile,based on that,a series of volcanic ash cloud monitoring algorithms have also been developed for different remote sensors.However,most of the volcanic ash cloud monitoring algorithms have limitations of a low accuracy and a narrow scope.This paper tries to conduct a more comprehensive overview of the different types of remote sensors and the different algorithms for volcanic ash cloud monitoring.First,the damage of volcanic ash cloud to the natural

  15. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis

  16. The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10

    Butler, James J.; Johnson, B. Carol; Barnes, Robert A.


    The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land

  17. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs

    Clement Atzberger


    Full Text Available Many remote sensing applications are devoted to the agricultural sector. Representative case studies are presented in the special issue “Advances in Remote Sensing of Agriculture”. To complement the examples published within the special issue, a few main applications with regional to global focus were selected for this review, where remote sensing contributions are traditionally strong. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. Five different applications have been selected, which are illustrated and described: (1 biomass and yield estimation, (2 vegetation vigor and drought stress monitoring, (3 assessment of crop phenological development, (4 crop acreage estimation and cropland mapping and (5 mapping of disturbances and land use/land cover (LULC changes. Many other applications exist, such as precision agriculture and irrigation management (see other special issues of this journal, but were not included to keep the paper concise. The paper starts with an overview of the main agricultural challenges. This section is followed by a brief overview of existing operational monitoring systems. Finally, in the main part of the paper, the mentioned applications are described and illustrated. The review concludes with some key recommendations.

  18. Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary

    Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi


    The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.

  19. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.


    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  20. Cardiac Care Assistance using Self Configured Sensor Network—a Remote Patient Monitoring System

    Sarma Dhulipala, V. R.; Kanagachidambaresan, G. R.


    Pervasive health care systems are used to monitor patients remotely without disturbing the normal day-to-day activities in real-time. Wearable physiological sensors required to monitor various significant ecological parameters of the patients are connected to Body Central Unit (BCU). Body Sensor Network (BSN) updates data in real-time and are designed to transmit alerts against abnormalities which enables quick response by medical units in case of an emergency. BSN helps monitoring patient without any need for attention to the subject. BSN helps in reducing the stress and strain caused by hospital environment. In this paper, mathematical models for heartbeat signal, electro cardio graph (ECG) signal and pulse rate are introduced. These signals are compared and their RMS difference-fast Fourier transforms (PRD-FFT) are processed. In the context of cardiac arrest, alert messages of these parameters and first aid for post-surgical operations has been suggested.

  1. The temperature and humidity monitoring system for PANDA

    Kuemmel, Miriam [Institut fuer Experimentalphysik I, Ruhr-Universitaet Bochum (Germany); Collaboration: PANDA-Collaboration


    The electromagnetic calorimeter (EMC) of the PANDA detector to be constructed at FAIR consists of lead tungstate (PWO) crystals, which have a temperature dependent light yield. To achieve the design energy resolution, the EMC must be operated at -25 {sup circle} C, where temperature fluctuations of at most 0.1 {sup circle} C are acceptable. This results in high demands on the precision and resolution of the temperature monitoring. Ultra-thin platinum resistance temperature detectors (RTDs) are needed to measure the temperature in the densely packed EMC. The RTDs are read out by the temperature and humidity monitoring system for PANDA (THMP). Both have been developed at Ruhr-Universitaet Bochum. Not only the RTDs, but also the readout electronics has to be calibrated individually to suffice the high demands. Both, the calibration procedure and improvements in the electronic read out system are presented.

  2. [The development of a respiration and temperature monitor].

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J


    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  3. The New Seafloor Observatory (OBSEA for Remote and Long-Term Coastal Ecosystem Monitoring

    Albert Palanques


    Full Text Available A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA, located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET. OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration; a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and

  4. Monitoring temperature and pressure over surfaces using sensitive paints

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia


    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  5. Synergy use of satellite remote sensing and in-situ monitoring data for air pollution impacts on urban climate

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.


    The increase of urban atmospheric pollution due to particulate matters (PM) in different fraction sizes affects seriously not only human health and environment, but also city climate directly and indirectly. In the last decades, with the economic development and the increased emissions from industrial, traffic and domestic pollutants, the urban atmospheric pollution with remarkable high PM2.5 (particulate matters with aerodynamic diameter less than 2.5 μm) and PM10 (particulate matters with aerodynamic diameter less than 10 μm) concentration levels became serious in the metropolitan area of Bucharest in Romania. Both active as well as satellite remote sensing are key applications in global change science and urban climatology. The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The current study presents a spatiotemporal analysis of the aerosol concentrations in relation with climate parameters in two size fractions (PM10 and PM2.5) in Bucharest metropolitan area. Daily average particle matters concentrations PM10 and PM2.5 for Bucharest metropolitan area have been provided by 8 monitoring stations belonging to air pollution network of Environmental Protection Agency. The C005 (version 5.1) Level 2 and Level 3 Terra and Aqua MODIS AOD550 time-series satellite data for period 01/01/2011- 31/12/2012 have been also used. Meteorological variables (air temperature, relative humidity, sea level atmospheric pressure) have been provided by in-situ measurements. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data for 2011-2012 period provided useful tools for particle matter PM2.5 and PM10 monitoring.

  6. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  7. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.


    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  8. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos


    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  9. Using a crowdsourced approach for monitoring water level in a remote Kenyan catchment

    Weeser, Björn; Jacobs, Suzanne; Rufino, Mariana; Breuer, Lutz


    Hydrological models or effective water management strategies only succeed if they are based on reliable data. Decreasing costs of technical equipment lower the barrier to create comprehensive monitoring networks and allow both spatial and temporal high-resolution measurements. However, these networks depend on specialised equipment, supervision, and maintenance producing high running expenses. This becomes particularly challenging for remote areas. Low income countries often do not have the capacity to run such networks. Delegating simple measurements to citizens living close to relevant monitoring points may reduce costs and increase the public awareness. Here we present our experiences of using a crowdsourced approach for monitoring water levels in remote catchments in Kenya. We established a low-cost system consisting of thirteen simple water level gauges and a Raspberry Pi based SMS-Server for data handling. Volunteers determine the water level and transmit their records using a simple text message. These messages are automatically processed and real-time feedback on the data quality is given. During the first year, more than 1200 valid records with high quality have been collected. In summary, the simple techniques for data collecting, transmitting and processing created an open platform that has the potential for reaching volunteers without the need for special equipment. Even though the temporal resolution of measurements cannot be controlled and peak flows might be missed, this data can still be considered as a valuable enhancement for developing management strategies or for hydrological modelling.

  10. [Vegetation water content retrieval and application of drought monitoring using multi-spectral remote sensing].

    Wang, Li-Tao; Wang, Shi-Xin; Zhou, Yi; Liu, Wen-Liang; Wang, Fu-Tao


    The vegetation is one of main drying carriers. The change of Vegetation Water Content (VWC) reflects the spatial-temporal distribution of drought situation and the degree of drought. In the present paper, a method of retrieving the VWC based on remote sensing data is introduced and analyzed, including the monitoring theory, vegetation water content indicator and retrieving model. The application was carried out in the region of Southwest China in the spring, 2010. The VWC data was calculated from MODIS data and spatially-temporally analyzed. Combined with the meteorological data from weather stations, the relationship between the EWT and weather data shows that precipitation has impact on the change in vegetation moisture to a certain extent. However, there is a process of delay during the course of vegetation absorbing water. So precipitation has a delaying impact on VWC. Based on the above analysis, the probability of drought monitoring and evaluation based on multi-spectral VWC data was discussed. Through temporal synthesis and combined with auxiliary data (i. e. historical data), it will help overcome the limitation of data itself and enhance the application of drought monitoring and evaluation based on the multi-spectral remote sensing.

  11. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Jianli Li


    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  12. Beyond Monitoring: A Brief Review of the Use of Remote Sensing Technology for Assessing Dryland Sustainability

    Washington-Allen, R. A.


    Drylands cover 41% of the terrestrial surface and provide > $1 trillion in ecosystem services to one-third of the global population, yet are not well studied with estimates of degradation ranging from 10 - 80%. Here I will present an abbreviated history of the use of remote sensing (RS) to monitor Dryland degradation, review contemporary applications, and provide guidance for future directions. These early monitoring attempts (and some recent efforts) assumed the social model of "Tragedy of the Commons" and the ecological model of "the Balance of Nature". These assumptions justified a monitoring approach rather than an assessment, where land degradation was understood to be primarily a function of human action through livestock grazing management. The perceived linear impact of grazing on grassland biomass led to the early development of a remote sensing-based proxy of vegetation response: the normalized difference vegetation index (NDVI). Many RS studies of Drylands are biased towards the NDVI or variants, whereas the contemporary view of Drylands as complex systems has led to a new synthesis of approaches from ecological modeling, ecohydrology, landscape ecology, and remote sensing that now explicitly confront both multiple drivers that include land-use policy, droughts & floods, fire, and responses that include increased soil erosion and changes in soil quality, landscape composition, pattern, and structure. However, problems still abound including 1) a consensus on the definition of Drylands, 2) the need for time series of drivers to conduct assessments, 3) a lack of understanding of below-ground biomass dynamics, 4) improved mapping of grassland, shrubland, and savanna dryland cover types and their 3D structure. There are new technologies in Dryland RS including multi-frequency ground penetrating radar (GPR), RADAR, IFSAR, LIDAR, and MISR that may lead to the development of new indicators to address these issues.

  13. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    Unruh, Troy Casey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahamad [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it

  14. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas


    In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for

  15. Remote electronic monitoring and the landing obligation – some insights into fishers’ and fishery inspectors’ opinions

    Schreiber Plet-Hansen, Kristian; Qvist Eliasen, Søren; Mortensen, Lars O.;


    The European fisheries management is currently undergoing a fundamental change in the handling of catches of commercial fisheries with the implementation of the 2013 Common Fisheries Policy. One of the main objectives of the policy is to end the practice of discarding in the EU by 2019. However......, for such changes to be successful, it is vital to ensure stakeholders acceptance, and it is prudent to consider possible means to verify compliance with the new regulation. Remote Electronic Monitoring (REM) with Closed-Circuit Television (CCTV) has been tested in a variety of fisheries worldwide for different...

  16. Lidar fluorosensor system for remote monitoring phytoplankton blooms in the Swedish marine campaign

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio [ENEA, Centro Ricerche Frascati, Rome (Italy); Micheli, Carla [ENEA, Centro Ricerche Casaccia, Rome (Italy)


    The National Agency for New Technologies and the Environments group participated to the ICES/IOC workshop at Kristineberg Marine Research Station (Sweden, 9 - 15 September 1996) with instrumentation suitable to local and remote analysis of phytoplankton. The laser induced fluorescence (LIF) emission of natural communities and cultures has been monitored in vivo allowing to obtain information on the algae species, characterized by different pigments content, and on their photosynthetic activity, the latter differentially measured at different light levels in the presence of a saturating laser pulse. Chemical methods have been used for calibration purposes.

  17. Linking archival and remotely sensed data for long-term environmental monitoring

    Hamandawana, Hamisai; Eckardt, Frank; Chanda, Raban


    The broad objective of this paper is to illustrate how archival, historical and remotely sensed data can be used to complement each other for long-term environmental monitoring. One of the major constraints confronting scientific investigation in the area of long-term environmental monitoring is lack of data at the required temporal and spatial scales. While remotely sensed data have provided dependable change detection databases since 1972, long-term changes such as those associated with typical climate scenarios often require longer time series data. The lack of data in readily accessible and usable formats for periods predating commercial satellite products has for a long time restricted the scope of environmental studies to temporally brief, synoptic overviews covering short time scales, thereby compromising our understanding of complex environmental processes. One way to improve this understanding is by cross-linking different forms of data at different temporal scales. However, most remote sensing based change research has tended to marginalize the utility of archival and historical sources in environmental monitoring. While the accuracy of data from non-instrumental records is often source-specific and varies from place to place, carefully conducted searches can yield useful information that can be effectively used to extend the temporal coverage of projects dependant on time series data. This paper is based on an ongoing project on environmental monitoring in the world's largest Ramsar site, the Okavango Delta, located on the northeastern fringes of Southern Africa's Kalahari-Namib desert in northern Botswana. With a database covering over 150 years between 1849 and 2001, the primary objectives of this paper are to: (1) outline how modern remotely sensed data (i.e., CORONA and Landsat) can be complemented by historical in situ observations (i.e., travellers' records and archival maps) to extend temporal coverage into the historical past, (2) illustrate that

  18. Monitoring and telemedicine support in remote environments and in human space flight.

    Cermack, M


    The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.

  19. Allometric equations for integrating remote sensing imagery into forest monitoring programmes.

    Jucker, Tommaso; Caspersen, John; Chave, Jérôme; Antin, Cécile; Barbier, Nicolas; Bongers, Frans; Dalponte, Michele; van Ewijk, Karin Y; Forrester, David I; Haeni, Matthias; Higgins, Steven I; Holdaway, Robert J; Iida, Yoshiko; Lorimer, Craig; Marshall, Peter L; Momo, Stéphane; Moncrieff, Glenn R; Ploton, Pierre; Poorter, Lourens; Rahman, Kassim Abd; Schlund, Michael; Sonké, Bonaventure; Sterck, Frank J; Trugman, Anna T; Usoltsev, Vladimir A; Vanderwel, Mark C; Waldner, Peter; Wedeux, Beatrice M M; Wirth, Christian; Wöll, Hannsjörg; Woods, Murray; Xiang, Wenhua; Zimmermann, Niklaus E; Coomes, David A


    Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Improving Inland Water Quality Monitoring through Remote Sensing Techniques

    Igor Ogashawara


    Full Text Available Chlorophyll-a (chl-a levels in lake water could indicate the presence of cyanobacteria, which can be a concern for public health due to their potential to produce toxins. Monitoring of chl-a has been an important practice in aquatic systems, especially in those used for human services, as they imply an increased risk of exposure. Remote sensing technology is being increasingly used to monitor water quality, although its application in cases of small urban lakes is limited by the spatial resolution of the sensors. Lake Thonotosassa, FL, USA, a 3.45-km2 suburban lake with several uses for the local population, is being monitored monthly by traditional methods. We developed an empirical bio-optical algorithm for the Moderate Resolution Imaging Spectroradiometer (MODIS daily surface reflectance product to monitor daily chl-a. We applied the same algorithm to four different periods of the year using 11 years of water quality data. Normalized root mean squared errors were lower during the first (0.27 and second (0.34 trimester and increased during the third (0.54 and fourth (1.85 trimesters of the year. Overall results showed that Earth-observing technologies and, particularly, MODIS products can also be applied to improve environmental health management through water quality monitoring of small lakes.

  1. A Novel Method for Enhancing Network Monitoring in Remote Medical Applications Using Software Defined Networks

    Mohammad Reza Parsaei


    Full Text Available The most important way for providing health in a large population, particularly developing countries, is developing efficient health care services such that everyone can use the services equally and justly. Telemedicine is a new area which uses modern communication technology for exchanging medical information. This communication might be between a patient and a doctor or two medical centers for consultation. Implementation of a Telemedicine system requires creating the necessary infrastructures, among which network monitoring is one of the most important ones. From hundreds to thousands of computers, hubs to switched networks, and Ethernet to either ATM or 10Gbps Ethernet, administrators need more sophisticated network traffic monitoring and analysis tools in order to deal with development. These tools are needed, not only to fix network problems on time, but also to prevent network failure, to detect inside and outside threats, and make good decisions for network planning. In this paper, a comprehensive survey on Telemedicine and network monitoring is performed. Afterward, network monitoring techniques and methods in current networks are discussed. Finally, an efficient architecture based on Software Defined Networks (SDNs in remote surgical applications is presented which significantly improves monitoring of the communication networks. The results showed the effectiveness of the proposed method.

  2. Remote forcing of subsurface currents and temperatures near the northern limit of the California Current System

    Engida, Zelalem; Monahan, Adam; Ianson, Debby; Thomson, Richard E.


    Local and remote wind forcing of upwelling along continental shelves of coastal upwelling regions play key roles in driving biogeochemical fluxes, including vertical net fluxes of carbon and nutrients. These fluxes are responsible for high primary productivity, which in turn supports a lucrative fishery in these regions. However, the relative contributions of local versus remote wind forcing are not well quantified or understood. We present results of coherence analyses between currents at a single mooring site (48.5°N, 126°W) in the northern portion of the California Current System (CalCS) from 1989 to 2008 and coincident time series of North America Regional Reanalysis (NARR) 10 m wind stress within the CalCS (36-54°N, 120-132°W). The two-decade-long current records from the three shallowest depths (35, 100, and 175 m) show a remote response to winds from south as far as 36°N. In contrast, only temperatures at the deepest depth (400 m) show strong coherences with remote winds. Weaker local wind influence is observed in both the currents and 400 m temperatures but is mostly due to the large spatial coherence within the wind field itself. Lack of coherence between distal winds and the 400 m currents suggests that the temperature variations at that depth are driven by vertical motion resulting from poleward travelling coastal trapped waves (CTWs). Understanding the effects of remote forcing in coastal upwelling regions is necessary for determining the occurrence and timing of extreme conditions in coastal oceans, and their subsequent impact on marine ecosystems.

  3. Hanford coring bit temperature monitor development testing results report

    Rey, D.


    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  4. Satellite Remote Sensing Atmospheric Compositions and their Application in Air Quality Monitoring in China

    Zhang, P.; Zhang, X. Y.; Bai, W. G.; Wang, W. H.; Huang, F. X.; Li, X. J.; Sun, L.; Wang, G.; Qi, J.; Qiu, H.; Zhang, Y.; van der A, R. J.; Mijling, B.


    This paper summarizes the achievements related to atmospheric compositions remote sensing from the bilateral cooperation under the framework of MOST-ESA Dragon Programme. The algorithms to retrieve Aerosol, ozone amount and profile, NO2, SO2, CH4, CO2, etc. have been developed since 2004. Such algorithms are used to process FY-3 series (Chinese second generation polar orbit satellites) observation and ground based FTIR observation. The results are validated with in-situ measurements. Aerosol, total ozone amount shows the very good consistent with the ground measurements. The temporal and spatial characteristics of the important atmospheric compositions, such as aerosol, O3, NO2, SO2, CH4, CO etc., have been analysed from satellite derived products. These works demonstrate the satellite’s capacity on atmospheric composition monitoring, as well as the possible application in the air quality monitoring and climate change research.

  5. Comparison of some very high resolution remote sensing techniques for the monitoring of a sandy beach

    Jaud, M.; Delacourt, C.; Allemand, P.; Deschamps, A.; Cancouët, R.; Ammann, J.; Grandjean, P.; Suanez, S.; Fichaut, B.; Cuq, V.


    Because the anthropogenic pressure on the coastal fringe is continuously increasing, the comprehension of morphological coastal changes is a key problem. An efficient, practical and affordable monitoring strategy is essential to investigate the physical processes that are on the origin of these changes and to model the changes to come. This paper presents an assessment of several very high resolution remote sensing techniques (DGPS, stereo-photogrammetry by drone, Terrestrial Laser Scanning and shallow-water multi-beam echo-sounder) which have been jointly used to survey a beach in French Brittany. These techniques allow an integrated approach for Digital Elevation Model (DEM) differencing in order to quantify morphological changes and to monitor the beach evolution. Gathering topographic and bathymetric data enables to draw up the sediment budget of a complete sediment compartment.

  6. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Zhang, Ying; Xiao, Hannan


    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  7. Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing.

    Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.


    Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the

  8. Monitoring of the mercury mining site Almadén implementing remote sensing technologies.

    Schmid, Thomas; Rico, Celia; Rodríguez-Rastrero, Manuel; José Sierra, María; Javier Díaz-Puente, Fco; Pelayo, Marta; Millán, Rocio


    The Almadén area in Spain has a long history of mercury mining with prolonged human-induced activities that are related to mineral extraction and metallurgical processes before the closure of the mines and a more recent post period dominated by projects that reclaim the mine dumps and tailings and recuperating the entire mining area. Furthermore, socio-economic alternatives such as crop cultivation, livestock breeding and tourism are increasing in the area. Up till now, only scattered information on these activities is available from specific studies. However, improved acquisition systems using satellite borne data in the last decades opens up new possibilities to periodically study an area of interest. Therefore, comparing the influence of these activities on the environment and monitoring their impact on the ecosystem vastly improves decision making for the public policy makers to implement appropriate land management measures and control environmental degradation. The objective of this work is to monitor environmental changes affected by human-induced activities within the Almadén area occurring before, during and after the mine closure over a period of nearly three decades. To achieve this, data from numerous sources at different spatial scales and time periods are implemented into a methodology based on advanced remote sensing techniques. This includes field spectroradiometry measurements, laboratory analyses and satellite borne data of different surface covers to detect land cover and use changes throughout the mining area. Finally, monitoring results show that the distribution of areas affected by mercury mining is rapidly diminishing since activities ceased and that rehabilitated mining areas form a new landscape. This refers to mine tailings that have been sealed and revegetated as well as an open pit mine that has been converted to an "artificial" lake surface. Implementing a methodology based on remote sensing techniques that integrate data from

  9. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.


    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  10. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng


    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  11. Calculation of Decision Support Interface Values for FEWS NET Remote Monitoring

    Husak, G. J.


    In an effort to expand the spatial extent of monitoring activities, the Famine Early Warning Systems Network (FEWS NET) is seeking new techniques to leverage remotely sensed data. The Decision Support Interface (DSI) represents a new product that is part of a growing suite of remote monitoring tools using existing data products to assist in assessing crop-growing conditions. The DSI indicates areas where remotely sensed data show that further investigation into conditions may be needed. It is designed to be a first-check of conditions for both core monitoring areas as well as those where standard FEWS NET monitoring information may not be available. Initially developed for Africa, the DSI integrates different products and methods into a single assessment of crop-growing conditions. Two primary data inputs drive the DSI: NOAA produced satellite rainfall estimates and eMODIS Normalized Difference Vegetation Index (NDVI). The temporal monitoring unit is the dekad, defined as an approximately 10-day period encompassing either the first ten days (1st-10th), second ten days (11th-20th), or remainder of the month (21st-end). Rainfall accumulations at durations of 1, 3, 6, 9, and 18-dekads are used to capture rainfall conditions for various intervals of the crop calendar. NDVI data are a composite of greenness values over a 10-day period, smoothed in time to correct for atmospheric contamination. Spatial averages of these input data are extracted for defined agricultural regions. The agricultural areas synthesize the best available data for each country, and contain information about typical start and end of the growing season used to determine the period of monitoring for each polygon. Spatial averages of rainfall and NDVI for each polygon are assigned two percentiles, one - termed empirical - based on the ranking of the amount compared to historical amounts for the interval, and a second - termed theoretical - based on a parametric distribution derived from the

  12. Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study

    Obade, Vincent

    The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes

  13. Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data

    Albright, T.P.; Ode, D.J.


    Potamogeton crispus L. (curly pondweed) is a cosmopolitan aquatic macrophyte considered invasive in North America and elsewhere. Its range is expanding and, on individual water bodies, its coverage can be dynamic both within and among years. In this study, we evaluate the use of free and low-cost satellite remote sensing data to monitor a problematic emergent macrophyte community dominated by P. crispus. Between 2000 and 2006, we acquired eight satellite images of 24,000-ha Lake Sharpe, South Dakota (USA). During one of the dates for which satellite imagery was acquired, we sampled the lake for P. crispus and other emergent macrophytes using GPS and photography for documentation. We used cluster analysis to assist in classification of the satellite imagery and independently validated results using the field data. Resulting estimates of emergent macrophyte coverage ranged from less than 20 ha in 2002 to 245 ha in 2004. Accuracy assessment indicated 82% of image pixels were correctly classified, with errors being primarily due to failure to identify emergent macrophytes. These results emphasize the dynamic nature of P. crispus-dominated macrophyte communities and show how they can be effectively monitored over large areas using low-cost remote sensing imagery. While results may vary in other systems depending on water quality and local flora, such an approach could be applied elsewhere and for a variety of macrophyte communities. ?? Springer Science+Business Media B.V. 2010.

  14. Monitoring crop land greening and degradation using remotely sensed MODIS time-series data

    Subhash Palmate, Santosh; Pandey, Ashish


    The management of crop land is crucial to sustain the food productivity in developing country like India. Manual monitoring of crop condition is difficult and time consuming in a large river basin. The phenological study is essential to understand changes in crop growth stages. This study is an attempt to monitor land greening and degradation, and to derive phenological parameters of crop land area using remotely sensed MODIS Normalized Difference Vegetation Index (NDVI) time-series data of the years 2001-2013 for the Betwa river basin, Central India. Savitzky Golay filtering method was employed to de-noise NDVI time-series data using TIMESAT software. Seven phenological parameters (start of the season, end of the season, length of the season, base value, peak time, peak value and amplitude) were obtained for the crop land area. Furthermore, spatial analysis was carried out to identify changes in crop land areas. Result shows that more land greening and degradation have been occurred for crop land and natural vegetation area respectively. This study revealed that remote sensing data based analysis will help to secure the food productivity in a large agricultural river basin.

  15. An IoT System for Remote Monitoring of Patients at Home

    KeeHyun Park


    Full Text Available Application areas that utilize the concept of IoT can be broadened to healthcare or remote monitoring areas. In this paper, a remote monitoring system for patients at home in IoT environments is proposed, constructed, and evaluated through several experiments. To make it operable in IoT environments, a protocol conversion scheme between ISO/IEEE 11073 protocol and oneM2M protocol, and a Multiclass Q-learning scheduling algorithm based on the urgency of biomedical data delivery to medical staff are proposed. In addition, for the sake of patients’ privacy, two security schemes are proposed—the separate storage scheme of data in parts and the Buddy-ACK authorization scheme. The experiment on the constructed system showed that the system worked well and the Multiclass Q-learning scheduling algorithm performs better than the Multiclass Based Dynamic Priority scheduling algorithm. We also found that the throughputs of the Multiclass Q-learning scheduling algorithm increase almost linearly as the measurement time increases, whereas the throughputs of the Multiclass Based Dynamic Priority algorithm increase with decreases in the increasing ratio.

  16. Remote monitoring and security alert based on motion detection using mobile

    Suganya Devi, K.; Srinivasan, P.


    Background model does not have any robust solution and constitutes one of the main problems in surveillance systems. The aim of the paper is to provide a mobile based security to a remote monitoring system through a WAP using GSM modem. It is most designed to provide durability and versatility for a wide variety of indoor and outdoor applications. It is compatible with both narrow and band networks and provides simultaneous image detection. The communicator provides remote control, event driven recording, including pre-alarm and post-alarm and image motion detection. The web cam allowing them to be mounted either to a ceiling or wall without requiring bracket, with the use of web cam. We could continuously monitoring status in the client system through the web. If any intruder arrives in the client system, server will provide an alert to the mobile (what we are set in the message that message send to the authorized person) and the client can view the image using WAP.

  17. Remote monitoring of implantable devices: Should we continue to ignore it?

    Bertini, Matteo; Marcantoni, Lina; Toselli, Tiziano; Ferrari, Roberto


    The number of patients with implantable cardioverter defibrillators (ICDs) is increasing. In addition to improve survival, ICD can collect data related to device function and physiological parameters. Remote monitoring (RM) of these data allows early detection of technical or clinical problems and a prompt intervention (reprogramming device or therapy adjustment) before the patient require hospitalization. RM is not a substitute for emergency service and its consultation is now limited during working hours. Thus, a consent form is required to inform patients about benefits and limitations. The available studies indicate that remote monitoring is more effective than traditional calendar face to face based encounters. RM is safe, highly reliable, cost efficient, allows quick reply to failures, and reduces the number of scheduled visits and the incidence of inappropriate shocks with a positive impact on survival. It follows that RM has the credentials to be the standard of care for ICD management; however, unfortunately, there is a delay in physician acceptance and implementation. The recent observations from randomized IN-TIME study that showed a clear survival benefit with RM in heart failure patients have encouraged us to review both the negative and positive aspects of RM collected in a little more than a decade.

  18. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    Hong, Yang; Adler, Robert F.; Huffman, George J.


    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  19. Dynamic time warping for temperature compensation in structural health monitoring

    Douglass, Alexander; Harley, Joel B.


    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  20. The use of remote sensing for monitoring environmental indicators: The case of the Incomati estuary, Mozambique

    LeMarie, Margarita; van der Zaag, Pieter; Menting, Geert; Baquete, Evaristo; Schotanus, Daniel

    The Incomati river basin is a transboundary basin shared by three countries: South Africa, Mozambique and Swaziland. To assess the water requirements of the environment, as stated in the Tripartite Interim Agreement (TIA) signed by the three riparian countries in Johannesburg in 2002, Mozambique needs to monitor the ecological state of the river, including the estuary. A monitoring system has to be established that can evaluate the environmental fresh water requirements based on appropriate indicators that reflect the health of the Incomati estuary. The estuary of the Incomati has important ecological functions but it also is an important socio-economic resource. Local communities depend on the estuary’s natural resources. Modifications of the river flow regime by upstream developments impact on the productivity of the estuary, diminishing fish and shrimp production, reducing biomass of natural vegetation such as grasses, reeds and mangroves and increasing salt intrusion. A decrease in estuary productivity consequently affects the incomes and living conditions of these communities. Based on an understanding of the effects of different pressures on the estuary ecosystem some indicators for monitoring the environmental state of the estuary are suggested, including the extent and vitality of mangrove forests. This latter indicator is further elaborated in the paper. Remote sensing techniques were used to identify and quantify mangrove forests in two selected areas of the estuary (Xefina Pequeña Island and Benguelene Island). Five satellite images covering a period of 20 years (1984-2003) showed that the area covered by non-degraded mangroves significantly decreased on both islands, by 25% in Xefina Pequeña Island and 40% in Benguelene Island. Moreover, the study of biomass reflection using NDVI also showed a significant decline in biomass densities over the last 20 years. Possible causes of these changes are reviewed: natural rainfall trends, modifications of the

  1. Real time remote monitoring and pre-warning system for Highway landslide in mountain area.

    Zhang, Yonghui; Li, Hongxu; Sheng, Qian; Wu, Kai; Chen, Guoliang


    The wire-pulling trigger displacement meter with precision of 1 mm and the grid pluviometer with precision of 0.1 mm are used to monitor the surface displacement and rainfall for Highway slope, and the measured data are transferred to the remote computer in real time by general packet radio service (GPRS) net of China telecom. The wire-pulling trigger displacement meter, grid pluviometer, data acquisition and transmission unit, and solar power supply device are integrated to form a comprehensive monitoring hardware system for Highway landslide in mountain area, which proven to be economical, energy-saving, automatic and high efficient. Meantime, based on the map and geographic information system (MAPGIS) platform, the software system is also developed for three dimensional (3D) geology modeling and visualization, data inquiring and drawing, stability calculation, displacement forecasting, and real time pre-warning. Moreover, the pre-warning methods based on monitoring displacement and rainfall are discussed. The monitoring and forecasting system for Highway landslide has been successfully applied in engineering practice to provide security for Highway transportation and construction and reduce environment disruption. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. [Simplification of crop shortage water index and its application in drought remote sensing monitoring].

    Liu, Anlin; Li, Xingmin; He, Yanbo; Deng, Fengdong


    Based on the principle of energy balance, the method for calculating latent evaporation was simplified, and hence, the construction of the drought remote sensing monitoring model of crop water shortage index was also simplified. Since the modified model involved fewer parameters and reduced computing times, it was more suitable for the operation running in the routine services. After collecting the concerned meteorological elements and the NOAA/AVHRR image data, the new model was applied to monitor the spring drought in Guanzhong, Shanxi Province. The results showed that the monitoring results from the new model, which also took more considerations of the effects of the ground coverage conditions and meteorological elements such as wind speed and the water pressure, were much better than the results from the model of vegetation water supply index. From the view of the computing times, service effects and monitoring results, the simplified crop water shortage index model was more suitable for practical use. In addition, the reasons of the abnormal results of CWSI > 1 in some regions in the case studies were also discussed in this paper.

  3. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Belić Ilija


    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  4. Silicon solar cell monitors high temperature furnace operation

    Zellner, G. J.


    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  5. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  6. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.


    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University

  7. Wireless device for monitoring the temperature - moisture regime in situ

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít


    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  8. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.


    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  9. Research on Raman-OTDR sensing based Optical Phase Conductor (OPPC) temperature monitoring and the section temperature field

    Tong, Jie; Yang, Delong; Gao, Qiang; Lei, Yuqing; Chen, Xi


    OPPC (Optical Phase Conductor) is a particular type of electric optical cables which composite the fiber unit into the structure of traditional phase lines. The special design fully leverages the power system's own line resources and achieves dual functions of power transmission and communication simultaneously, particularly in the power distribution networks. Furthermore, Raman optical time domain reflectometry (ROTDR) based distributed temperature sensing (DTS) system integrates with OPPC, that is to plant a single or several multimode optical fibers into the fiber unit of OPPC, which can realize the remote, online, continuous measure and location for the conductor's temperature. This kind of monitoring system has many advantages such as anti-electromagnetic interference, information sensing and data transmission unification, long life-cycle, light weight, long transmission distance and non-power supply on site. But nonetheless, there is still a problem has to been resolved, that is whether the temperature of DTS fiber's position represents exactly the one of OPPC's. This article takes the section temperature field of 400/50 OPPC as the research object. Based on the temperature data measured by the Raman distributed temperature optical fiber sensor, a large number of finite element analysis and experiments are developed. The DTS measurement results under different actual working conditions of current-carrying capacity, wind velocity and environment temperature are quantitative analyzed. The changing rules and the relationships among the measurement results of DTS, the maximum and the surface temperatures of OPPC, and the results of numerical simulations and experiments have been proposed and demonstrated. On the whole, the main contributions of this paper are: (1) According to the structure of 400/50 OPPC, the Fluid-Structure Interaction (FSI) methodology and the steady section temperature field model are established which can reveal the OPPC's temperature

  10. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead.

    Imen, Sanaz; Chang, Ni-Bin; Yang, Y Jeffrey


    Adjustment of the water treatment process to changes in water quality is a focus area for engineers and managers of water treatment plants. The desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of total suspended solids (TSS) concentrations. This paper presents the development of a suite of nowcasting and forecasting methods by using high-resolution remote-sensing-based monitoring techniques on a daily basis. First, the integrated data fusion and mining (IDFM) technique was applied to develop a near real-time monitoring system for daily nowcasting of the TSS concentrations. Then a nonlinear autoregressive neural network with external input (NARXNET) model was selected and applied for forecasting analysis of the changes in TSS concentrations over time on a rolling basis onward using the IDFM technique. The implementation of such an integrated forecasting and nowcasting approach was assessed by a case study at Lake Mead hosting the water intake for Las Vegas, Nevada, in the water-stressed western U.S. Long-term monthly averaged results showed no simultaneous impact from forest fire events on accelerating the rise of TSS concentration. However, the results showed a probable impact of a decade of drought on increasing TSS concentration in the Colorado River Arm and Overton Arm. Results of the forecasting model highlight the reservoir water level as a significant parameter in predicting TSS in Lake Mead. In addition, the R-squared value of 0.98 and the root mean square error of 0.5 between the observed and predicted TSS values demonstrates the reliability and application potential of this remote sensing-based early warning system in terms of TSS projections at a drinking water intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.


    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  12. Research and implement of remote vehicle monitoring and early-warning system based on GPS/GPRS

    Li, Shiwu; Tian, Jingjing; Yang, Zhifa; Qiao, Feiyan


    Concerning the problem of road traffic safety, remote monitoring and early-warning of vehicle states was the key to prevent road traffic accidents and improve the transportation effectiveness. Through the embedded development technology, a remote vehicle monitoring and early-warning system was developed based on UNO2170 industrial computer of Advantech with WinCE operating system using Embedded Visual C++ (EVC), which combined with multisensor data acquisition technology, global positioning system (GPS) and general packet radio service (GPRS). It achieved the remote monitoring and early-warning of commercial vehicle. This system was installed in a CA1046L2 light truck. Through many road tests, test results showed that the system reacted rapidly for abnormal vehicle states and had stable performance.

  13. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    A.-M. Kurth


    Full Text Available Distributed Temperature Sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater-surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote-control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid-independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  14. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    A.-M. Kurth


    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  15. Development of Remote Monitoring and a Control System Based on PLC and WebAccess for Learning Mechatronics

    Wen-Jye Shyr


    Full Text Available This study develops a novel method for learning mechatronics using remote monitoring and control, based on a programmable logic controller (PLC and WebAccess. A mechatronics module, a Web‐CAM and a PLC were integrated with WebAccess software to organize a remote laboratory. The proposed system enables users to access the Internet for remote monitoring and control of the mechatronics module via a web browser, thereby enhancing work flexibility by enabling personnel to control mechatronics equipment from a remote location. Mechatronics control and long‐distance monitoring were realized by establishing communication between the PLC and WebAccess. Analytical results indicate that the proposed system is feasible. The suitability of this system is demonstrated in the department of industrial education and technology at National Changhua University of Education, Taiwan. Preliminary evaluation of the system was encouraging and has shown that it has achieved success in helping students understand concepts and master remote monitoring and control techniques.

  16. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.


    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  17. Unsupervised Change Detection for Geological and Ecological Monitoring via Remote Sensing: Application on a Volcanic Area

    Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.


    The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991

  18. A new algorithm for microwave radiometer remote sensing of sea surface salinity and temperature

    YIN; Xiaobin; LIU; Yuguang; WANG; Zhenzhan


    The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface temperature, sea surface salinity and incidence angle of observation are investigated. Based on the investigations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.

  19. Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques

    Kimes, D. S.


    A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.

  20. Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network

    Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James


    Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.

  1. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain.

    Trescott, A; Park, M-H


    Lake Champlain is significantly impaired by excess phosphorus loading, requiring frequent lake-wide monitoring for eutrophic conditions and algal blooms. Satellite remote sensing provides regular, synoptic coverage of algal production over large areas with better spatial and temporal resolution compared with in situ monitoring. This study developed two algal production models using Landsat Enhanced Thematic Mapper Plus (ETM(+)) satellite imagery: a single band model and a band ratio model. The models predicted chlorophyll a concentrations to estimate algal cell densities throughout Lake Champlain. Each model was calibrated with in situ data compiled from summer 2006 (July 24 to September 10), and then validated with data for individual days in August 2007 and 2008. Validation results for the final single band and band ratio models produced Nash-Sutcliffe efficiency (NSE) coefficients of 0.65 and 0.66, respectively, confirming satisfactory model performance for both models. Because these models have been validated over multiple days and years, they can be applied for continuous monitoring of the lake.

  2. A digital filter-based approach to the remote condition monitoring of railway turnouts

    Garcia Marquez, Fausto Pedro [ETSII, Universidad de Castilla-La Mancha, Ciudad Real (Spain)]. E-mail:; Schmid, Felix [Railway Research UK, Birmingham University, Birmingham (United Kingdom)


    Railway operations in Europe have changed dramatically since the early 1990s, partly as a result of new European Union Directives. Performance targets have become more and more exacting, due to reductions in state support for railways and the need to increasing traffic. More intensive operations also place greater demands on the hardware of the railway. This is true for both rolling stock and infrastructure subsystems and components, particularly so in the case of the latter where the time available for maintenance is being reduced. The authors of this paper focus on the railway infrastructure, and more specifically on points. These are critical elements whose reliability is key to the operation of the whole system. Using intelligent monitoring systems, it is possible to predict problems and enable quick recovery before component failures disrupt operations. The authors have studied the application of remote condition monitoring to point mechanisms and their operation, and have identified algorithms which may be used to identify incipient failures. In this paper, the authors propose a Kalman filter for the linear discrete data filtering problem encountered when using current sensor data in a point condition monitoring system. The reason for applying Kalman filtering in this study was to increase the reliability of the model presented to the rule-based decision mechanism.

  3. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)


    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  4. Distributed Multi-Sensor Real-Time Building Environmental Parameters Monitoring System with Remote Data Access

    Beinarts Ivars


    Full Text Available In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.

  5. Precision temperature monitoring (PTM) and Humidity monitoring (HM) sensors of the CMS electromagnetic calorimeter


    A major aspect for the ECAL detector control is the monitoring of the system temperature and the verification that the required temperature stability of the crystal volume and the APDs, expected to be (18 ± 0.05)C, is achieved. The PTM is designed to read out thermistors, placed on both the front and back of the crystals, with a relative precision better than 0.01 C. In total there are ten sensors per supermodule. The humidity level in the electronics compartment is monitored by the HM system and consists of one humidity sensor per module.

  6. Remote monitoring of Xpert® MTB/RIF testing in Mozambique: results of programmatic implementation of GxAlert.

    Cowan, J; Michel, C; Manhiça, I; Mutaquiha, C; Monivo, C; Saize, D; Beste, J; Creswell, J; Codlin, A J; Gloyd, S


    Electronic diagnostic tests, such as the Xpert® MTB/RIF assay, are being implemented in low- and middle-income countries (LMICs). However, timely information from these tests available via remote monitoring is underutilized. The failure to transmit real-time, actionable data to key individuals such as clinicians, patients, and national monitoring and evaluation teams may negatively impact patient care. To describe recently developed applications that allow for real-time, remote monitoring of Xpert results, and initial implementation of one of these products in central Mozambique. In partnership with the Mozambican National Tuberculosis Program, we compared three different remote monitoring tools for Xpert and selected one, GxAlert, to pilot and evaluate at five public health centers in Mozambique. GxAlert software was successfully installed on all five Xpert computers, and test results are now uploaded daily via a USB internet modem to a secure online database. A password-protected web-based interface allows real-time analysis of test results, and 1200 positive tests for tuberculosis generated 8000 SMS result notifications to key individuals. Remote monitoring of diagnostic platforms is feasible in LMICs. While promising, this effort needs to address issues around patient data ownership, confidentiality, interoperability, unique patient identifiers, and data security.

  7. Micro-controller based Remote Monitoring using Mobile through Spoken Commands

    Naresh P Jawarkar


    Full Text Available Mobile phone can serve as powerful tool for world-wide communication. A system is developed to remotely monitor process through spoken commands using mobile. Mel cepstrum features are extracted from spoken words. Learning Vector Quantization Neural Network is used for recognition of various words used in the command. The accuracy of spoken commands is about 98%. A text message is generated and sent to control system mobile in form of SMS. On receipt of SMS, control system mobile informs AVR micro-controller based card, which performs specified task. The system alerts user in case of occurrence of any abnormal conditions like power failure, loss of control, etc. Other applications where this approach can be extended are also discussed.

  8. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F


    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.

  9. Estimation and seasonal monitoring of urban vegetation abundance based on remote sensing

    Zhou, Ji; Chen, Yun H.; Li, Jing; Weng, Qi H.; Tang, Yan


    Vegetation is a fundamental component of urban environment and its abundance is determinant of urban climate and urban ground energy fluxes. Based on the radiometric normalization of multitemporal ASTER imageries, the objectives of this study are: firstly, to estimate the vegetation abundance based on linear spectral mixture model (LSMM), and to compare it with NDVI and SDVI; secondly, to analyze the spatial distribution patterns of urban vegetation abundance in different seasons combined with some landscape metrics. The result indicates that both the vegetation abundance estimation based on LSMM and SDVI can reach high accuracy; however, NDVI is not a robust parameter for vegetation abundance estimation because there is significant non-linear effect between NDVI and vegetation abundance. This study reveals that the landscape characteristics of vegetation abundance is most complicated in summer, with spring and autumn less complicated and simplest in winter. This provides valuable information for urban vegetation abundance estimation and its seasonal change monitoring using remote sensing data.

  10. The Soy Moratorium in the Amazon Biome Monitored by Remote Sensing Images

    Bernardo Machado Pires


    Full Text Available The Soy Moratorium is a pledge agreed to by major soybean companies not to trade soybean produced in deforested areas after 24th July 2006 in the Brazilian Amazon biome. The present study aims to identify soybean planting in these areas using the MOD13Q1 product and TM/Landsat-5 images followed by aerial survey and field inspection. In the 2009/2010 crop year, 6.3 thousand ha of soybean (0.25% of the total deforestation were identified in areas deforested during the moratorium period. The use of remote sensing satellite images reduced by almost 80% the need for aerial survey to identify soybean planting and allowed monitoring of all deforested areas greater than 25 ha. It is still premature to attribute the recent low deforestation rates in the Amazon biome to the Soy Moratorium, but the initiative has certainly exerted an inhibitory effect on the soybean frontier expansion in this biome.

  11. An intelligent system for continuous blood pressure monitoring on remote multi-patients in real time

    Marani, Roberto


    In this paper we present an electronic system to perform a non-invasive measurement of the blood pressure based on the oscillometric method, which does not suffer from the limitations of the well-known auscultatory one. Moreover the proposed system is able to evaluate both the systolic and diastolic blood pressure values and makes use of a microcontroller and a Sallen-Key active filter. With reference to other similar devices, a great improvement of our measurement system is achieved since it performs the transmission of the systolic and diastolic pressure values to a remote computer. This aspect is very important when the simultaneous monitoring of multi-patients is required. The proposed system, prototyped and tested at the Electron Devices Laboratory (Electrical and Information Engineering Department) of Polytechnic University of Bari, Italy, is characterized by originality, by plainness of use and by a very high level of automation (so called intelligent system).

  12. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Gokce B. Laleci


    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  13. Telehomecare telecommunication framework - from remote patient monitoring to video visits and robot telepresence.

    Lepage, Pierre; Letourneau, Dominic; Hamel, Mathieu; Briere, Simon; Corriveau, Helene; Tousignant, Michel; Michaud, Francois


    Over the last few years, the number of remote patient monitoring (RPM) products and of videoconferencing systems has exploded. There is also a significant number of research initiatives addressing the use of service robots for assistance in daily living activities. From a technological standpoint, providing telehomecare services is certainly feasible. However, one technological barrier is to have access to a telecommunication platform that can be adapted to address the broad range of specifications and requirements of clinical and telehealth applications. Handling the full spectrum of possibilities requires a telecommunication framework that can transmit vital sign data from patients to clinicians, bidirectional audio-video from a standard computing device, and also multiple video streams and bidirectional transmission of control data. This paper presents a framework that integrates such capabilities. It also illustrates the versatility of the framework by presenting custom-designed devices allowing integration of capabilities ranging from RPM to video visits and robot telepresence.

  14. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Quansheng Ge


    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  15. Remote monitoring based on Modbus%基于Modbus的远程监控

    林雪; 黄昶


    通过对Modbus的研究,利用LabView平台实现了客户端程序,完成了对网络上支持该协议的设备的访问.以研华公司提供的ADAM-6050为例,实现了对其的实时远程监控,以及灵活配置.%Based on the research of Modbus, we completed the client application with the platform of Lab View and accomplished the access to the device supporting the protocol on the web. Taking the ADAM-6050 from YanHua Corporation for example, we achieved remote real-time monitoring with flexible configuration.

  16. Rain Check Application: Mobile tool to monitor rainfall in remote parts of Haiti

    Huang, X.; Baird, J.; Chiu, M. T.; Morelli, R.; de Lanerolle, T. R.; Gourley, J. R.


    Rainfall observations performed uniformly and continuously over a period of time are valuable inputs in developing climate models and predicting events such as floods and droughts. Rain-Check is a mobile application developed in Google App Inventor Platform, for android based smart phones, to allow field researchers to monitor various rain gauges distributed though out remote regions of Haiti and send daily readings via SMS messages for further analysis and long term trending. Rainfall rate and quantity interact with many other factors to influence erosion, vegetative cover, groundwater recharge, stream water chemistry and runoff into streams impacting agriculture and livestock. Rainfall observation from various sites is especially significant in Haiti with over 80% of the country is mountainous terrain. Data sets from global models and limited number of ground stations do not capture the fine-scale rainfall patterns necessary to describe local climate. Placement and reading of rain gauges are critical to accurate measurement of rainfall.

  17. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing].

    Meng, Qing-ye; Dong, Heng; Qin, Qi-ming; Wang, Jin-liang; Zhao, Jiang-hua


    The chlorophyll content of plant has relative correlation with photosynthetic capacity and growth levels of plant. It affects the plant canopy spectra, so the authors can use hyperspectral remote sensing to monitor chlorophyll content. By analyzing existing mature vegetation index model, the present research pointed out that the TCARI model has deficiencies, and then tried to improve the model. Then using the PROSPECT+SAIL model to simulate the canopy spectral under different levels of chlorophyll content and leaf area index (LAI), the related constant factor has been calculated. The research finally got modified transformed chlorophyll absorption ratio index (MTCARI). And then this research used optimized soil background adjust index (OSAVI) to improve the model. Using the measured data for test and verification, the model has good reliability.

  18. Remote sensing of temperature and wind using acoustic travel-time measurements

    Manuela Barth


    Full Text Available A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre.

  19. Monitoring of resistivity and IP: The Syscal Monitoring Unit (SMU), a new system dedicated for remote control of the Syscal Pro resistivimeter

    Gance, Julien; Leite, Orlando; Texier, Benoît; Bernard, Jean; Truffert, Catherine


    All matter, gas, fluids and energy transfer at soil/atmosphere interface govern soil, rock and life evolution in the critical zone. Near surface electrical resistivity and chargeability modifications with time are distinguishable and process related enough for bringing to geoscientist relevant clue within this highly studied zone. Such non-invasive measurements are directly sensitive to a wide range of remarkable parameters (soil water content, temperature, soil water conductivity, clay content, etc.). In order to increase physical, chemical and biological processes understanding, resistivity and IP monitoring remain the less costly and the more powerful method among others. Indeed, these methods are the most suitable to image 2D/3D and 4D processes in an automated way. Whether such geophysical survey are for academic knowledge, waste landfill leakage or landslide monitoring purpose, it has to be done during medium to long period of time (from days to years). Nevertheless, operators don't need to be on site all the survey long. So, equipment manufacturers had to propose them suitable solutions for their needs. Syscal Pro resistivimeter is well adapted to observe the critical zone down to 100 m depth with its 10 channels and 250 watts. Its high speed recording (up to 1000 records/min) ability is also suited to apprehend expected kinetics of studied phenomena. In this context, IRIS Instruments developed a dedicated remote unit able to remote control Syscal Pro resistivimeter. It allows to change acquisition parameters (sequences), to check the main constant (battery levels, internal temperature) and to alert in case of any recording troubles. Data can be sent directly to FTP or SSH server or by mail for an easy and constant access to the data. Alert functionalities sent by mail in case of low battery or too many outliers present in the data are welcome to check the dimensioning of the energy source and for easily maintaining the long-term acquisition necessary for

  20. Distributed multisensor processing, decision making, and control under constrained resources for remote health and environmental monitoring

    Talukder, Ashit; Sheikh, Tanwir; Chandramouli, Lavanya


    Previous field-deployable distributed sensing systems for health/biomedical applications and environmental sensing have been designed for data collection and data transmission at pre-set intervals, rather than for on-board processing These previous sensing systems lack autonomous capabilities, and have limited lifespans. We propose the use of an integrated machine learning architecture, with automated planning-scheduling and resource management capabilities that can be used for a variety of autonomous sensing applications with very limited computing, power, and bandwidth resources. We lay out general solutions for efficient processing in a multi-tiered (three-tier) machine learning framework that is suited for remote, mobile sensing systems. Novel dimensionality reduction techniques that are designed for classification are used to compress each individual sensor data and pass only relevant information to the mobile multisensor fusion module (second-tier). Statistical classifiers that are capable of handling missing/partial sensory data due to sensor failure or power loss are used to detect critical events and pass the information to the third tier (central server) for manual analysis and/or analysis by advanced pattern recognition techniques. Genetic optimisation algorithms are used to control the system in the presence of dynamic events, and also ensure that system requirements (i.e. minimum life of the system) are met. This tight integration of control optimisation and machine learning algorithms results in a highly efficient sensor network with intelligent decision making capabilities. The applicability of our technology in remote health monitoring and environmental monitoring is shown. Other uses of our solution are also discussed.

  1. Web-based remote monitoring of infant incubators in the ICU.

    Shin, D I; Huh, S J; Lee, T S; Kim, I Y


    A web-based real-time operating, management, and monitoring system for checking temperature and humidity within infant incubators using the Intranet has been developed and installed in the infant Intensive Care Unit (ICU). We have created a pilot system which has a temperature and humidity sensor and a measuring module in each incubator, which is connected to a web-server board via an RS485 port. The system transmits signals using standard web-based TCP/IP so that users can access the system from any Internet-connected personal computer in the hospital. Using this method, the system gathers temperature and humidity data transmitted from the measuring modules via the RS485 port on the web-server board and creates a web document containing these data. The system manager can maintain centralized supervisory monitoring of the situations in all incubators while sitting within the infant ICU at a work space equipped with a personal computer. The system can be set to monitor unusual circumstances and to emit an alarm signal expressed as a sound or a light on a measuring module connected to the related incubator. If the system is configured with a large number of incubators connected to a centralized supervisory monitoring station, it will improve convenience and assure meaningful improvement in response to incidents that require intervention.

  2. Relationships between evaprorative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands

    Kustas, W. P.; Schimugge, T. J.; Humes, K. S.; Jackson, T. J.; Parry, R.; Weltz, M. A.; Moran, M. S.


    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experiment Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship. Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These findings indicate that information obtained from optical and microwave data can be used for quantifying the energy balance of semiarid areas. The microwave data can indicate

  3. Relationships between Evaporative Fraction and Remotely Sensed Vegetation Index and Microwave Brightness Temperature for Semiarid Rangelands.

    Kustas, W. P.; Schmugge, T. J.; Humes, K. S.; Jackson, T. J.; Parry, R.; Weltz, M. A.; Moran, M. S.


    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experimental Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during the experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship with a significant correlation (r2 = 0.69). Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. It caused a substantial reduction in the correlation with r2 = 0.40 or only 40% of the variation in EF being explained by TB. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These

  4. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Pei-Chi Chen


    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  5. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi


    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  6. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare.

    Stewart, M; Wilson, M T; Schaefer, A L; Huddart, F; Sutherland, M A


    Increasing reliance on automated systems on-farm has led to a need for remote monitoring of health and welfare. We aimed to validate 2 methods that could be integrated into automated systems currently in use: infrared thermography (IRT) to measure respiration rate (RR), and accelerometers to measure the flinch, step, kick (FSK) response and assessing stress and discomfort. We monitored 22 multiparous, nonlactating, Friesian and Friesian × Jersey cows (average 5.1 yr of age) during a baseline period (2 min), a restraint in a crush (2 min), and then a recovery period after exposure to a startle (2 min). We measured RR with continuous IRT imaging of airflow through the nostrils and by counting flank movements from video and live recordings. We recorded heart rate (HR) and HR variability using HR monitors, and we recorded FSK from continuous video analysis of leg movements and indirectly using accelerometers attached to both hind legs. The FSK response was scored between 1 and 4 based on the height and direction of each leg movement. We observed no change in RR, HR variability, or FSK in response to the startle; however, HR increased briefly by 10 bpm. Bland-Altman plots indicated good agreement between the different methods of measuring RR, with average differences of -0.01 ± 0.87, 0.83 ± 0.57, and 0.37 ± 1.02 breaths/min for video versus live, IRT versus live and IRT versus video, respectively. Acceleration was also highly correlated with FSK scores of ≤3 (R(2) = 0.96) and ≤2 (R(2) = 0.89) and moderately correlated with FSK scores of 1 (R(2) = 0.66) over the 4-min sampling period. The results show that accelerometers can provide an indirect measure of the FSK response, and IRT can be used reliably to measure RR. With further development, both technologies could be integrated into existing systems for remote monitoring of dairy cows' health and welfare on-farm.

  7. Monitoring and modeling of wetland environment using time-series bi-sensor remotely sensed data

    Michishita, Ryo

    More than half of the wetlands in the world have been lost in the last century mainly due to human activities. Since natural wetlands receive a significant amount of untreated runoff from urban and agricultural areas, it is necessary to account for other landscapes adjacent to wetlands, such as water bodies, agricultural areas, and urban areas, in the protection and restoration of the wetlands. The goal of this dissertation is to monitor and model land cover changes using the time-series Landsat-5 TM and Terra MODIS data in the Poyang Lake area of China from two perspectives: wetland cover changes and urbanization. A bi-scale monitoring approach was adopted in the monitoring and modeling of wetland cover changes to examine the similarities and differences derived from remotely sensed imagery with different spatial resolutions. The effect of different modeling settings of multiple endmember spectral mixture analysis (MESMA) were examined utilizing a single pair of TM and MODIS scenes. MESMA applied to nine pairs of TM and MODIS scenes acquired from July 2004 to October 2005 captured phenological and hydrological trends of land cover fractions (LCFs) and LCF agreement between the image pairs. Ground surface reflectance, rather than LCFs, was chosen as the key parameter in the blending of bi-scale remotely sensed data that utilized the spatial details of one data type and temporal details of the other. This research customized an existing fusion model to overcome the problem with the unobserved pixels in MODIS data acquired on TM data acquisition dates. It is interesting that the input data combination considering water level change achieved higher accuracy. In the monitoring of urbanization, this research investigated the relationship between urban land cover and human activities, and detected the areas of new urban development and redevelopment of built-up areas. Different urbanization processes largely influenced by the economic reforms of China were demonstrated

  8. Satellite Remote Sensing Analysis to Monitor Desertification Processes in Central Plateau of Mexico

    Becerril, R.; González Sosa, E.; Diaz-Delgado, C.; Mastachi-Loza, C. A.; Hernández-Tellez, M.


    Desertification is defined as land degradation in arid, semi-arid and sub-humid areas due to climatic variations and human activities. Therefore there is a need to monitor the desertification process in the spatiotemporal scale in order to develop strategies to fight against desertification (Wu and Ci, 2002). In this sense, data provided by remote sensing is an important source for spatial and temporal information, which allows monitoring changes in the environment at low cost and high effectiveness. In Mexico, drylands hold 65% of the area, with about 1,280,494 km2 (UNESCO, 2010), where is located 46% of the national population (SEMARNAT, 2008). Given these facts, there is interest in monitoring the degradation of these lands, especially in Mexico because no specific studies have identified trends and progress of desertification in the country so far. However, it has been considered land degradation as an indicator of desertification process. Thus, it has been determined that 42% of soils in Mexico present some degradation degree. The aim of this study was to evaluate the spatial and temporal dynamics of desertification for 1993, 2000 and 2011 in the semiarid central plateau in Mexico based on demographic, climatic and satellite data. It took into consideration: 1) the Anthropogenic Impact Index (HII), based on the spatial population distribution and its influence on the use of resources and 2) the Aridity Index (AI), calculated with meteorological station records for annual rainfall and potential evapotranspiration. Mosaics were made with Landsat TM scenes; considering they are a data source that allows evaluate surface processes regionally and with high spectral resolution. With satellite information five indices were estimated to assess the vegetation and soil conditions: Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Weighted Difference Vegetation Index (WDVI), Grain Size Index (GSI) and Bare Soil Index (BSI). The rates

  9. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.

    Vázquez-Vázquez, Carmen; Vaz, Belén; Giannini, Vincenzo; Pérez-Lorenzo, Moisés; Alvarez-Puebla, Ramon A; Correa-Duarte, Miguel A


    We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.

  10. Advanced targeted monitoring of high temperature components in power plants

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)


    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  11. Using remote sensing and spatial analysis of trees characteristics for long-term monitoring in arid environments

    Isaacson, Sivan; Blumberg, Dan G.; Rachmilevitch, Shimon; Ephrath, Jhonathan E.; Maman, Shimrit


    Trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, low humidity and small amount of precipitation. Trees In arid environments such an Acacia are considered to be `keystone species', because they have major influence over both plants and animal species. Long term monitoring of acacia tree population in those areas is thus essential tool to estimate the overall ecosystem condition. We suggest a new remote sensing data analysis technique that can be integrated with field long term monitoring of trees in arid environments and improve our understanding of the spatial and temporal changes of these populations. In this work we have studied the contribution of remote sensing methods to long term monitoring of acacia trees in hyper arid environments. In order to expand the time scope of the acacia population field survey, we implemented two different approaches: (1) Trees individual based change detection using Corona satellite images and (2) Spatial analysis of trees population, converting spatial data into temporal data. A map of individual acacia trees that was extracted from a color infra-red (CIR) aerial photographs taken at 2010 allowed us to examine the distribution pattern of the trees size and foliage health status (NDVI). Comparison of the tree sizes distribution and NDVI values distribution enabled us to differentiate between long-term (decades) and short-term (months to few years) processes that brought the population to its present state. The spatial analysis revealed that both tree size and NDVI distribution patterns were significantly clustered, suggesting that the processes responsible for tree size and tree health status (i.e., flash-floods spatial spreading) have a spatial expression. The distribution of the trees in the Wadi (ephemeral river) was divided into three distinct parts: large trees with high NDVI values, large trees with low NDVI values and small trees with

  12. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    J.L. Rovey


    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  13. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.


    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  14. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan


    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  15. Design and Implementation of Remote/Short-range Smart Home Monitoring System Based on ZigBee and STM32

    Yuanxin Lin


    Full Text Available As the continuous development of Internet of Things (IOT, life intelligent gradually. Therefore, home devices of remote/short-range monitoring become the inevitable trend of development. Based on this background, the smart home monitoring system is presented based on the STM32 and ZigBee technology. The system uses a low-power-cost STM32 processor as the main controller and porting of µC/OS-II and µC/GUI on the system is achieved. The system uses a resistive touch screen as the human-computer interaction interface, combined with the ZigBee technology to achieve a short-range monitoring of home devices. The system transplanted and modified the procedures of UIP network protocol. The master controller is connected to the Ethernet and erected a WEB server, achieved the remote monitoring of home devices. And finally give the implementation details of the prototype system and functional testing.

  16. The Design and Implementation of the Remote Centralized-Monitoring System of Well-Control Equipment Based on RFID Technique

    Luo Bin


    Full Text Available At present, in domestic for the management of well control equipment continue to the traditional way of nameplates identifies and paper-based registration, there are many issues like the separation of data information of device, easy lose, difficult query, confused management and many other problems, which will make the problem device into the well field, and then resulting in well control runaway drilling accident. To solve the above problems, this paper put forward to the integrated remote centralized-monitoring management mode of the well-control equipment. Taking the advantages of IOT technology, adopting the RFID technology, and combining with the remote transmission, this paper designs the remote centralized-monitoring system of well-control equipment based on RFID, which realizes the intelligent management of well-control equipment and meets the actual demand of the well-control equipment safe use and timely scheduling, and it has the ability of field application.


    S. Schulte


    Full Text Available Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  18. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.


    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  19. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot


    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation. PMID:27589770

  20. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics.

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot


    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  1. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    Margaret McCaul


    Full Text Available The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8, small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  2. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried


    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  3. Identification of high-risk areas for harbour porpoise Phocoena phocoena bycatch using remote electronic monitoring and satellite telemetry data

    Kindt-Larsen, Lotte; Berg, Casper Willestofte; Tougaard, J.


    and lower risk of porpoise bycatch. From May 2010 to April 2011, 4 commercial gillnet vessels were equipped with remote electronic monitoring (REM) systems. The REM system recorded time, GPS position and closed-circuit television (CCTV) footage of all gillnet hauls. REM data were used to identify fishing...

  4. Monitoring long-term ocean health using remote sensing: A case study of the Bay of Bengal

    Yi, Lim J.; Sarker, Md Latifur Rahman; Zhang, Lei; Siswanto, Eko; Mubin, Ahmad; Sabarudin, Saadah


    Oceans play a significant role in the global carbon cycle and climate change, and the most importantly it is a reservoir for plenty of protein supply, and at the center of many economic activities. Ocean health is important and can be monitored by observing different parameters, but the main element is the phytoplankton concentration (chlorophyll-a concentration) because it is the indicator of ocean productivity. Many methods can be used to estimate chlorophyll-a (Chl-a) concentration, among them, remote sensing technique is one of the most suitable methods for monitoring the ocean health locally, regionally and globally with very high temporal resolution. In this research, long term ocean health monitoring was carried out at the Bay of Bengal considering three facts i.e. i) very dynamic local weather (monsoon), ii) large number of population in the vicinity of the Bay of Bengal, and iii) the frequent natural calamities (cyclone and flooding) in and around the Bay of Bengal. Data (ten years: from 2001 to 2010) from SeaWiFS and MODIS were used. Monthly Chl-a concentration was estimated from the SeaWiFS data using OC4 algorithm, and the monthly sea surface temperature was obtained from the MODIS sea surface temperature (SST) data. Information about cyclones and floods were obtained from the necessary sources and in-situ Chl-a data was collected from the published research papers for the validation of Chl-a from the OC4 algorithm. Systematic random sampling was used to select 70 locations all over the Bay of Bengal for extracting data from the monthly Chl-a and SST maps. Finally the relationships between different aspects i.e. i) Chl-a and SST, ii) Chl-a and monsoon, iii) Chl-a and cyclones, and iv) Chl-a and floods were investigated monthly, yearly and for long term (i.e 10 years). Results indicate that SST, monsoon, cyclone, and flooding can affect Chl-a concentration but the effect of monsoon, cyclone, and flooding is temporal, and normally reduces over time

  5. Application of remote-sensing-image fusion to the monitoring of mining induced subsidence

    LI Liang-jun; WU Yan-bin


    We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromatic image data and multi-spectral image data were first decomposed with a multi-ary wavelet method. Then the high frequency components of the high resolution image were fused with the features from the R, G, B bands of the multi-spectral image to form a new high frequency component. Then the newly formed high frequency component and the low frequency component were inversely transformed using a multi-ary wavelet method. Finally, color images were formed from the newly formed R, G, B bands. In our experiment we used images with a resolution of 10 m (SPOT), and TM30 images, of the Huainan mining area. These images were fused with a trinary wavelet method. In addition, we used four indexes-entropy, average gradient, wavelet energy and spectral distortion-to assess the new method. The result indicates that this new method can improve the clarity and resolution of the images and also preserves the information from the original images. Using the fused images for monitoring mining induced subsidence achieves a good effect.

  6. Toward a Remote Sensing Solution for Regional Sustainability Assessment and Monitoring

    James K. Lein


    Full Text Available Regional sustainability encourages a re-examination of development programs in the context of environmental, social and economic policies and practices. However, sustainability remains a broadly defined concept that has been applied to mean everything from environmental protection, social cohesion, economic growth, neighborhood design, alternative energy, and green building design. To guide sustainability initiatives and assess progress toward more sustainable development patterns, a need exists to place this concept into a functional decision-centric context where change can be evaluated and the exploitation of resources better understood. Accepting the premise that sustainable development defines a set of conditions and trends in a given system that can continue indefinitely without contributing to environmental degradation, answers to four critical questions that direct sustainability over the long-term must be addressed: (1 What is the present state of the environmental system, (2 Is that pattern sustainable, (3 Are there indications that the environmental system is degrading, and (4 Can that information be incorporated into policy decisions to guide the future? Answers to these questions hinge on the development of tractable indices that can be employed to support the long-term monitoring required to assess sustainability goals and a means to measure those indices. In this paper, a solution based on the application of remote sensing technology is introduced focused on the development of land use intensity indices derived from earth-observation satellite data. Placed into a monitoring design, this approach is evaluated in a change detection role at the watershed scale.

  7. Distributed System for 3D Remote Monitoring Using KINECT Depth Cameras

    M. Martinez-Zarzuela


    Full Text Available This article describes the design and development ofa system for remote indoor 3D monitoring using an undetermined number of Microsoft® Kinect sensors. In the proposed client-server system, the Kinect cameras can be connected to different computers, addressing this way the hardware limitation of one sensor per USB controller. The reason behind this limitation is the high bandwidth needed by the sensor, which becomes also an issue for the distributed system TCP/IP communications. Since traffic volume is too high, 3D data has to be compressed before it can be sent over the network. The solution consists in self-coding the Kinect data into RGB images and then using a standard multimedia codec to compress color maps. Information from different sources is collected into a central client computer, where point clouds are transformed to reconstruct the scene in 3D. An algorithm is proposed to conveniently merge the skeletons detected locally by each Kinect, so that monitoring of people is robust to self and inter-user occlusions. Final skeletons are labeled and trajectories of every joint can be saved for event reconstruction or further analysis.

  8. Remote Operating Monitoring Of Spatial Stability Magnets On A Kurchatov Source Of Synchrotron Radiation

    Barkovsky, E V; Martynenko, V V; Novikov, V A; Udin, L I


    During operation of the accelerator because of a nonuniform warm -up of the ring base and constructions of installation there are angular and linear displacements of bending and focusing magnets of a Big Accelerator Ring (BR) of a Kurchatov Source of Synchrotron Radiation. With the purpose of remote operating monitoring of a spatial position of elements BR was used anglemetrical control and measuring system with digital and analog registration in a real time mode. The results of the first stage of a monitoring BR have shown high informativity of the given instrumental - methodical means. The basic radiants of cyclical thermoelastic alternating strains are detected; the amplitudes of angular and linear displacements of magnets from different internal factors evaluated during operation of the accelerator. Is established, that the maximum radial angular and linear displacements of magnets are watched in 3,5-4 day after switching on of installation and achieve in max 30-35 seconds of an arc or 120-150 microns in ...

  9. The study for practicality of remote fire monitoring using the image

    Kim, Tae Joon; Hwang, Sung Tai; Jeong, Kwung Chai; Jeong, Ji Young; Kim, Go Leo; Baik, Hong Kee; Baik, Moon Kee; Kim, Joo Sung; No, In Young


    1. Object; The study for practicality of remote fire monitoring system early to be able to the fire with small scaled fire in nuclear facility and commercial building. 2. Content; Examination of algorithm for artificial intelligence neural network(NN), Achieving of image preprocessing technology need to application, Production of image files of firing, Experiment of the feature extraction from images, Construction of experimental equipment and software for discrimination of the fire, Experiment of functionality of software for fire monitoring, Learning of neural network with the image and testing of discrimination of the fire. 3. Results; The technology of feature extraction of event related with neural network, discrimination of event generation, and enhancement to be discriminated the fire with learning of neural network was established. The present ability of discrimination of the fire that the reliability was about 99 percent as error of discrimination being about 0.0098 in case of learning, but it is difficult to discriminate because of various kinds of background images. Later it will be required the working for reducing the error of discrimination of the fire, with non-fire images. (author)

  10. Software Application for Remote Monitoring of Fleets Based on Geographic Information Systems Using Open Source Technologies.

    Jesse Daniel Cano


    Full Text Available Controlling a fleet usually implies to establish means of control of vehicles, to collect the data associated with the routes taken by these vehicles, to interpret and evaluate the meaning of the collected data and to make the appropriate decisions to improve the efficiency in the use of vehicles in an organization. The implementation of this process of fleet management is mainly performed manually and the solutions available on the market are costly because of the payments for licenses, it is also necessary that the people monitoring the fleets are geographically close to them. This paper aims to answer the following questions: How to reduce errors in the management of information resulting from the fleet management process? How to reduce the cost of remote fleet monitoring? To obtain the solution, we propose the use of GPS devices in each vehicle, the GPS device’s information is captured and consistently stored in a data base, then the information is consulted, analyzed and represented on a map. The result is a software application that allows users have fast and reliable information that will enable them to take the necessary decisions in the vehicle fleet they are trying to control at a low cost.

  11. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.


    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  12. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    Biswas, Subir; Quwaider, Muhannad


    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  13. Monitoring the Philippine Forest Cover Change Using Ndvi Products of Remote Sensing Data

    Torres, R. C.; Mouginis-Mark, P.; Wright, R.; Garbeil, H.; Craig, B.


    The Philippines has one of the world's fastest disappearing forest cover, which is being lost to natural processes and landscape-modifying human activities. Currently, forested landscape covers 24% (i.e., 7.2 million hectares) of the Philippines' total land area, of which only 800,000 hectares are considered as old-growth forests. Occasionally, volcanic activities and earthquakes cause large-scale impacts on the forest cover, but the systematic reduction of the country's forest has been sustained through unregulated logging operations and other human-induced landscape modification. Reforestation and watershed protection have become important public policy programs as forest denudation is linked to recent devastating landslides, debris flows and flashfloods. However, many watershed areas that are at risk to deforestation are hardly accessible to ground-based monitoring. A spaced-based monitoring system facilitates an efficient and timely response to changes in the quality and extent of the Philippine forest cover. This monitoring system relies in the generation of Normalized Difference Vegetation Index (NDVI) products from the red and infrared bands of remote sensing data, which correlates with the amount of chlorophyll in the vegetation. Given the existing forest classification maps, non-forested regions are masked in the data analysis, so that only forest-related changes in the vegetation are shown in the NDVI image difference products. A combination of two MODIS-bearing satellites, i.e., Terra and Aqua, acquire high temporal and moderate spatial resolution data, enabling the countrywide detection of vegetation changes within a certain observation period. MODIS data are calibrated for setting the pixel quality thresholds, which minimize the artifact of clouds and haze in the analysis. Areas showing dramatic changes are further investigated using higher resolution data, such as ASTER and Landsat 7 ETM. Sequential NDVI products of remote sensing data provide

  14. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Jeff Bird


    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  15. High temperature integrated ultrasonic transducers for engine condition monitoring

    Kobayashi, M.; Jen, C.K. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Wu, K.T. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Bird, J.; Galeote, B. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Aerospace Research; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station


    Piezoelectric ultrasonic transducers (UTs) are used for real-time, in-situ or off-line nondestructive evaluation (NDE) of large metallic structures such as airplanes, automobiles, ships, pressure vessels and pipelines because of their subsurface inspection capability, fast inspection speed, simplicity and cost-effectiveness. The objective of this study was to develop and evaluate effective integrated ultrasonic transducers (IUT) technology to perform non-intrusive engine NDE and structural health monitoring (SHM). High temperature IUTs made of bismuth titanate piezoelectric film greater than 50 {mu}m in thickness were coated directly onto a modified CF700 turbojet engine outer casing, oil sump and supply lines and gaskets using sol-gel spray technology. The assessment was limited to temperatures up to 500 degrees C. The center frequencies of the IUTs were approximately 10 to 17 MHz. Ultrasonic signals obtained in pulse/echo measurements were excellent. High temperature ultrasonic performance will likely be obtained in the transmission mode as well. The potential applications of the developed IUTs include non-intrusive real-time temperature, lubricant oil quality and metal debris monitoring within a turbojet engine environment. 9 refs., 13 figs.

  16. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars


    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  17. MRI monitoring of high-temperature ultrasound therapy

    McDannold, Nathan Judson

    More than fifty years ago, it was demonstrated that ultrasound could penetrate deep into tissue and induce a biological response. By focusing the ultrasound beam, localized heating in soft tissue is possible, allowing for a completely non-invasive technique to thermally ablate diseased tissue. Despite many promising results and advances in the last fifty years, widespread clinical implementation of therapeutic heating with ultrasound has not occurred because of the difficulty in guiding and monitoring the procedure. Magnetic resonance imaging (MRI) has been shown capable of monitoring thermal therapies such as focused ultrasound surgery. With MRI, the tumor can be accurately detected and targeted. Temperature-sensitive MRI techniques can be used to guide and monitor the ultrasound therapy. Thermal tissue damage induced by the ultrasound can be imaged. The purpose of this work was to test the use of MRI for guiding and monitoring high temperature ultrasound surgery. MRI-derived thermal imaging, which maps temperature-induced changes in the water proton resonant frequency, was implemented in a series of experiments. The first experiments demonstrated that MRI-derived temperature and thermal dose measurements correctly predict the onset of tissue damage in vivo, while the applied ultrasound power does not. The accuracy of the MRI-derived thermometry during long ultrasound exposures was also verified, and the limit of the technique in light of heating-induced tissue swelling was demonstrated. The accuracy of the thermometry to estimate online the extent of tissue damage was verified at the exposure time limit. Methods for using the temperature information gathered with MRI to estimate the ultrasound treatment parameters were also demonstrated experimentally. Focused ultrasound surgery in tumor models (animal and clinical breast tumor treatments) was shown feasible and demonstrated the need for image guidance. Finally, two new pulse sequences were shown capable of

  18. Surface Water Quality Monitoring Using Remote Sensing%表面水质遥感监测研究

    张渊智; 聂跃平; 蔺启忠; 荆林海; 张兵


    主要讨论了应用多种传感器遥感技术进行表面水质监测研究的有效性。首先论述了纯水和不同水质的波谱特性,然后以芬兰海湾和芬兰南部湖泊为应用实例,进行多种遥感数据和主要水质参数之间的相关性分析,从而确定不同波谱段是否可以有效地监测表面水质的变化情况。本研究为新一代传感器的设计提供水质监测的重要参数,进一步的试验研究仍在进行之中。%This paper describes the possibility of surface water quality monitoring using remote sensing technolo gy and the spectral signatures of pure water and other types of water quality. Using airborne and spacebornedata (TM and ERS-2) analysed with in situ measurements of ground truth points for water quality parameters, some major factors of surface water quality can be derived from remote sensing data by case studies. Concurrent in situ surface water quality measurments, Landsat TM data and ERS-2 SAR data were obtained in the selected locations in August1997. In situ data included measurements of chlorophyll-a, total dissolved organic carbon and turbidity, Secchi disk depth, color index, estimated wave height, salinity and surface temperature. The Landsat TM and ERS-2 SAR data from locations of water samples were extracted and the digital data were examined in their raw states as well as numerous transformations. Significant correlations were observed between digital numbers and surface water quality parameters. The results indicate that it may be possible to derive surface water quality parameters using remote sensing data in our case study area. However, the technique still needs to be refined to detect differences within the range of water quality which is typically found in the area under study.

  19. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    Lanza di Scalea, Francesco; Salamone, Salvatore


    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  20. Monitoring And Recording Data For Solar Radiation Temperature And Charging Current

    Aung Bhone Myint


    Full Text Available A data logger based on 8051 microcontroller has been implemented in this project to measure the solar radiation temperature and charging current. Development of a low-cost data logger can easily be made and easily be used to convert the analog signal of physical parameters of various test or other purposes of engineering. By using a suitable program code it can be used to read the value digitally with a PC. Our aim is to provide with a module and a software package when installed in a computer one can remotely acquire and monitor several numbers of the same or different types of signals sequentially at a time. Signals obtained from various sensors have been effectively conditioned. Now interfacing these signals using ADC with the Bluetooth module port of a computer satisfies the very goal of data acquisition. Proposed system provides better performance and has low cost versatile portable.

  1. Monitoring gully erosion at Nyaba river of Enugu state southeastern Nigeria, using remote sensing

    Okwu-Delunzu, V. U.; Enete, I. C.; Abubakar, A. S.; Lamidi, S.


    Erosion is a natural, gradual and continuous process of earth surface displacement caused by various agents of denudation. It is also caused by some anthropogenic activities. Erosion rate of an area at any point in time is dependent mainly on climate and geological factors. Physical aspects of the erosive force experienced in gullies are mainly dependent on the local prevailing climate condition. In this study, remotely sensed data was used in the analysis of gully erosion progression at Nyaba River in Enugu Urban, aimed at mapping and monitoring gully erosion at the study site. Methodologies employed include; data acquisition from field observation and satellite images; data processing and analyses using ilwis 3.7 and Arc GIS 9.3 software. The result showed that gully progressed from 578,713,735 square meters in 1986 to 1, 002,819,723 in 2011. Prediction showed that the magnitude of the gully area is expected to increase as the years go by if measures are not taken to control the expansion rate. The forecast put the expected coverage of gully erosion at Nyaba River to be 45,210,440 square meters by the year 2040. Consequently, recommendations made include: constant monitoring to detect early stages of gully formation; regulation of grazing of pasture in the area; restriction of sand mining from the river bank and construction of water ways to stabilize river flow. In conclusion, monitoring clearly showed that there was a geometric progression in gully formation at Nyaba over years; the expansion was aided more by anthropogenic activities than natural factors.

  2. Remote Monitoring of Patients With Heart Failure: An Overview of Systematic Reviews

    Karunanithi, Mohanraj; Fatehi, Farhad; Ding, Hang; Walters, Darren


    Background Many systematic reviews exist on the use of remote patient monitoring (RPM) interventions to improve clinical outcomes and psychological well-being of patients with heart failure. However, research is broadly distributed from simple telephone-based to complex technology-based interventions. The scope and focus of such evidence also vary widely, creating challenges for clinicians who seek information on the effect of RPM interventions. Objective The aim of this study was to investigate the effects of RPM interventions on the health outcomes of patients with heart failure by synthesizing review-level evidence. Methods We searched PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature), and the Cochrane Library from 2005 to 2015. We screened reviews based on relevance to RPM interventions using criteria developed for this overview. Independent authors screened, selected, and extracted information from systematic reviews. AMSTAR (Assessment of Multiple Systematic Reviews) was used to assess the methodological quality of individual reviews. We used standardized language to summarize results across reviews and to provide final statements about intervention effectiveness. Results A total of 19 systematic reviews met our inclusion criteria. Reviews consisted of RPM with diverse interventions such as telemonitoring, home telehealth, mobile phone–based monitoring, and videoconferencing. All-cause mortality and heart failure mortality were the most frequently reported outcomes, but others such as quality of life, rehospitalization, emergency department visits, and length of stay were also reported. Self-care and knowledge were less commonly identified. Conclusions Telemonitoring and home telehealth appear generally effective in reducing heart failure rehospitalization and mortality. Other interventions, including the use of mobile phone–based monitoring and videoconferencing, require further investigation. PMID:28108430

  3. Remote sensing monitoring of bean crop cultivated in the Boi Branco watershed (Brazil)

    Soares da Silva, Natália; Sánchez-Román, Rodrigo; Marchamalo Sacristán, Miguel; Rodriguez-Sinobas, Leonor


    Nowadays, the concern of the effect of climate change on water availability on a global scale is getting bigger and bigger. In average, about 65 % of the world water consumption is devoted to irrigated agriculture. In countries such as Brazil, water scarcity has been a main issue in populated areas (i.e. São Paulo) in the last two years. This has affected not only water availability for the population but also irrigation water to maintain crop yield and Brazilian economy. Remote sensing is a tool broadly used in multiple fields of science such as water management in irrigated agriculture. Actually, there are several satellites moving around the earth, and they take images of every place in a weekly or biweekly basis. The images can be downloaded from the internet site at no cost by the users. Then, they are used to determine the vegetation index NDVI which is based in the energy reflected in red and infrared spectrum and it depends on the vegetation photosynthetic activity. Within the above context, this study focus on remote sensing monitoring of a bean crop located in the basin of Boi Branco, São Paulo - Brazil, which is irrigated by pivot center. The images from the Landsat and Modis satellites were downloaded throughout the bean growing period and then, they were processed and analyzed with the Qgis software. In addition, soil moisture was measured by several TDR probe sensors deployed in the irrigated area, and the leaf area index was measured as well in the field. Both variables were used to estimate the Normalized Difference Vegetation Index (NDVI) for each bean phenology state.

  4. Remote Monitoring of Chronic Diseases: A Landscape Assessment of Policies in Four European Countries.

    Rojahn, Katherine; Laplante, Suzanne; Sloand, James; Main, Claire; Ibrahim, Aftab; Wild, Janet; Sturt, Nicky; Areteou, Thelga; Johnson, K Ian


    Remote monitoring (RM) is defined as the surveillance of device-transmitted outpatient data. RM is expected to enable better management of chronic diseases. The objective of this research was to identify public policies concerning RM in four European countries. Searches of the medical literature, the Internet, and Ministry of Health websites for the United Kingdom (UK), Germany, Italy, and Spain were performed in order to identify RM policies for chronic diseases, including end stage renal disease (ESRD), chronic pulmonary obstructive disease (COPD), diabetes, heart failure, and hypertension. Searches were first performed in Q1 2014 and updated in Q4 2015. In addition, in depth interviews were conducted with payers/policymakers in each country. Information was obtained on existing policies, disease areas and RM services covered and level of reimbursement, other incentives such as quality indicators, past/current assessments of RM technologies, diseases perceived to benefit most from RM, and concerns about RM. Policies on RM and/or telemedicine were identified in all four countries. Pilot projects (mostly in diabetes, COPD, and/or heart failure) existed or were planned in most countries. Perceived value of RM was moderate to high, with the highest rating given for heart failure. Interviewees expressed concerns about sharing of medical information, and the need for capital investment. Patients recently discharged from hospital, and patients living remotely, or with serious and/or complicated diseases, were believed to be the most likely to benefit from RM. Formal reimbursement is scarce, but more commonly available for patients with heart failure. In the four European countries surveyed, RM has attracted considerable interest for its potential to increase the efficiency of healthcare for chronic diseases. Although rare at this moment, incentives to use RM technology are likely to increase in the near future as the body of evidence of clinical and/or economic benefit

  5. Remote Monitoring of Chronic Diseases: A Landscape Assessment of Policies in Four European Countries.

    Katherine Rojahn

    Full Text Available Remote monitoring (RM is defined as the surveillance of device-transmitted outpatient data. RM is expected to enable better management of chronic diseases. The objective of this research was to identify public policies concerning RM in four European countries.Searches of the medical literature, the Internet, and Ministry of Health websites for the United Kingdom (UK, Germany, Italy, and Spain were performed in order to identify RM policies for chronic diseases, including end stage renal disease (ESRD, chronic pulmonary obstructive disease (COPD, diabetes, heart failure, and hypertension. Searches were first performed in Q1 2014 and updated in Q4 2015. In addition, in depth interviews were conducted with payers/policymakers in each country. Information was obtained on existing policies, disease areas and RM services covered and level of reimbursement, other incentives such as quality indicators, past/current assessments of RM technologies, diseases perceived to benefit most from RM, and concerns about RM.Policies on RM and/or telemedicine were identified in all four countries. Pilot projects (mostly in diabetes, COPD, and/or heart failure existed or were planned in most countries. Perceived value of RM was moderate to high, with the highest rating given for heart failure. Interviewees expressed concerns about sharing of medical information, and the need for capital investment. Patients recently discharged from hospital, and patients living remotely, or with serious and/or complicated diseases, were believed to be the most likely to benefit from RM. Formal reimbursement is scarce, but more commonly available for patients with heart failure.In the four European countries surveyed, RM has attracted considerable interest for its potential to increase the efficiency of healthcare for chronic diseases. Although rare at this moment, incentives to use RM technology are likely to increase in the near future as the body of evidence of clinical and

  6. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics

    Johnson, E. D.; Cowen, E. A.


    Current methods employed by the United States Geological Survey (USGS) to measure river discharge are manpower intensive, expensive, and during high flow events require field personnel to work in dangerous conditions. Indirect methods of estimating river discharge, which involve the use of extrapolated rating curves, can result in gross error during high flow conditions due to extrapolation error and/or bathymetric change. Our goal is to develop a remote method of monitoring volumetric discharge that reduces costs at the same or improved accuracy compared with current methods, while minimizing risk to field technicians. We report the results of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements conducted in a wide-open channel under a range of flow conditions, i.e., channel aspect ratio (B/H = 6.6-31.9), Reynolds number (ReH = 4,950-73,800), and Froude number (Fr = 0.04-0.46). Experiments were carried out for two different channel cross sections (rectangular and asymmetric compound) and two bathymetric roughness conditions (smooth glass and rough gravel bed). The results show that the mean surface velocity normalized by the depth-averaged velocity (the velocity index) decreases with increasing δ*/H, where δ* is the boundary layer displacement thickness and that the integral length scales, L11,1 and L22,1, calculated on the free-surface vary predictably with the local flow depth. Remote determination of local depth-averaged velocity and flow depth over a channel cross section yields an estimate of volumetric discharge.

  7. Factor analysis and classification of remotely sensed data for monitoring tidal flats

    Doerffer, Roland; Murphy, Desmond


    Interest in using remote sensing techniques, principally those involving satellite, in Wadden Sea research has centred on attempting a classification of the various sediment surface types present. Unlike most recent studies which have used mainly Landsat Multispectral Scanner data, we have assessed the feasibility of using Landsat Thematic Mapper data, which in conjunction with time series aerial photography, forms the basis of a strategy for remotely sensing the Wadden Sea. This paper focusses on an approach for extracting potentially “hidden” within-pixel information from multispectral data sets. A hierarchical (unsupervised) classification of a Thematic Mapper image successfully classified five different classes, including land, saltmarsh, water, cloud and tidal flat areas. This procedure thus enabled a “masking-out” of all classes other than those classified as tidal flat, following which a factor analysis was used to determine the minimum number of independent factors necessary to explain the observed variation in the signal received by the satellite. Three factors accounted for a total of 82% of the variation in all seven TM channels. Preliminary studies of the primary factor (score) image shows a good correlation with existing latterday cartographic data. Considering the proximate relationship between topography and other important biotic and abiotic sedimentary characteristics, this approach may prove valuable for future applications of satellite data for monitoring long-term change in physical and thus biological Wadden Sea characteristics. Ongoing research efforts are focussing on a classification and quantification of sub-pixel patchiness using aerial photography and ground surveys. The approaches taken and results obtained to date are discussed.

  8. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.

    De Padova, Diana; Mossa, Michele; Adamo, Maria; De Carolis, Giacomo; Pasquariello, Guido


    In case of oil spills due to disasters, one of the environmental concerns is the oil trajectories and spatial distribution. To meet these new challenges, spill response plans need to be upgraded. An important component of such a plan would be models able to simulate the behaviour of oil in terms of trajectories and spatial distribution, if accidentally released, in deep water. All these models need to be calibrated with independent observations. The aim of the present paper is to demonstrate that significant support to oil slick monitoring can be obtained by the synergistic use of oil drift models and remote sensing observations. Based on transport properties and weathering processes, oil drift models can indeed predict the fate of spilled oil under the action of water current velocity and wind in terms of oil position, concentration and thickness distribution. The oil spill event that occurred on 31 May 2003 in the Baltic Sea offshore the Swedish and Danish coasts is considered a case study with the aim of producing three-dimensional models of sea circulation and oil contaminant transport. The High-Resolution Limited Area Model (HIRLAM) is used for atmospheric forcing. The results of the numerical modelling of current speed and water surface elevation data are validated by measurements carried out in Kalmarsund, Simrishamn and Kungsholmsfort stations over a period of 18 days and 17 h. The oil spill model uses the current field obtained from a circulation model. Near-infrared (NIR) satellite images were compared with numerical simulations. The simulation was able to predict both the oil spill trajectories of the observed slick and thickness distribution. Therefore, this work shows how oil drift modelling and remotely sensed data can provide the right synergy to reproduce the timing and transport of the oil and to get reliable estimates of thicknesses of spilled oil to prepare an emergency plan and to assess the magnitude of risk involved in case of oil spills due

  9. Vegetation Growth Monitoring Under Coal Exploitation Stress by Remote Sensing in the Bulianta Coal Mining Area


    Coal exploitation inevitably damages the natural ecological environment through large scale underground exploitation which exhausts the surrounding areas and is the cause of surface subsidence and cracks.These types of damage seriously lower the underground water table.Deterioration of the environment has certainly an impact on and limits growth of vegetation, which is a very important indicator of a healthy ecological system.Dynamically monitoring vegetation growth under coal exploitation stress by remote sensing technology provides advantages such as large scale coverage, high accuracy and abundant information.A scatter plot was built by a TM (Thematic Mapper) infrared and red bands.A detailed analysis of the distributional characteristics of vegetation pixels has been carried out.Results show that vegetation pixels are affected by soil background pixels, while the distribution of soil pixels presents a linear pattern.Soil line equations were obtained mainly by linear regression.A new band, reflecting vegetation growth, has been obtained based on the elimination of the soil background.A grading of vegetation images was extracted by means of a density slice method.Our analysis indicates that before the exploitation of the Bulianta coal mining area, vegetation growth had gradually reduced; especially intermediate growth vegetation had been transformed into low vegetation.It may have been caused by the deterioration of the brittle environment in the western part of the mining area.All the same, after the start of coal production, vegetation growth has gradually improved, probably due to large scale aerial seeding.Remote sensing interpretation results proved to be consistent with the actual situation on the ground.From our research results we can not conclude that coal exploitation stress has no impact on the growth of vegetation.More detailed research on vegetation growth needs to be analyzed.

  10. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    Shang, J.; Huang, X.; Liu, J.; Wang, J.


    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  11. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring

    Yan, Hongxiang; Moradkhani, Hamid


    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  12. Home BP monitoring using a telemonitoring system is effective for controlling BP in a remote island in Japan.

    Kaihara, Toshiki; Eguchi, Kazuo; Kario, Kazuomi


    The purpose of this study was to assess whether a home blood pressure (HBP) telemonitoring system could improve BP control and overcome the problems of HBP monitoring in a remote location. The authors enrolled 60 subjects and randomized them to either a Telemonitoring group or a Control group. The outcomes were changes in HBP level, adherence to HBP monitoring, and visual analog scale (VAS; score 0-100) as a measure of the motivation to perform HBP measurements. The reductions in morning systolic BP (-5.5 ± 0.9 mm Hg vs 0.7 ± 0.7 mm Hg, P Telemonitoring group than in the Control group. The measure of the adherence to HBP monitoring tended to be better (P = .064) in the Telemonitoring group than in the Control group. These results indicate that an HBP telemonitoring system would be a beneficial healthcare measure in remote geographical locations. ©2014 Wiley Periodicals, Inc.

  13. Approximating snow surface temperature from standard temperature and humidity data: new possibilities for snow model and remote sensing validation (Invited)

    Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.


    The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.

  14. Inferential monitoring of global change impact on biodiversity through remote sensing and species distribution modeling

    Sangermano, Florencia


    The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this

  15. Wildfire monitoring via the integration of remote sensing with innovative information technologies

    Kontoes, C.; Papoutsis, I.; Michail, D.; Herekakis, Th.; Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; Nikolaou, C.; Sioutis, M.; Garbis, G.; Vassos, S.; Keramitsoglou, I.; Kersten, M.; Manegold, S.; Pirk, H.


    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such

  16. Design of remote machine room monitoring base on IOT%基于物联网技术的远程机房监控系统设计



    Aiming at the problem existing in the domestic computer room monitoring and management, a remote room equipment and environmental information monitoring system based on IOT sensor technology is proposed. With the system, the relevant departments can off-site or even remote monitor and manage the equipment in the machine room and relevant environmental controls (such as temperature, smoke, power supply, etc.). According to the default strategy thresholds, the room management automation can be achieved.%  针对国内计算机机房监控和管理存在的问题,提出了一种基于物联网传感技术的远程机房设备和环境信息监控系统。通过该系统,相关部门可以在机房外,甚至异地远程监视和管理机房内的设备和相应的环境控制(如温度、烟感、电源等),也可以根据预设的策略阈值来实现机房管理的自动化。

  17. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data

    XU; Xiru; (徐希孺); CHEN; Liangfu; (陈良富); ZHUANG; Jiali; (庄家礼)


    After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.

  18. [Remote passive detection of flame temperature of solid propellant adulterating nanoparticles].

    Zhang, Li-ming; Zhang, Lin; Li, Yan; Liu, Bing-ping; Wang, Xiao-fei; Wang, Jun-de


    The flame temperature of three kinds of solid propellants was measured by passive remote sensing FTIR with the resolution of 1 cm(-1). These three kinds of solid propellants are adulterate nano-scale metal oxide particles, adulterate normal metal oxide particles, and propellant without any adulterations. The main components of the solid propellant are nitrocellulose and nitroglycerin. The metallic oxides, including 6 nm CuO, 56 nm Fe2O3, 16 nm NiO, and correspondingly the normal particles, were adulterated into the solid propellants respectively. The flame temperature was calculated through the fine structure of the emission fundamental band of H2O at 2.75 microm. The results of the flame temperature of the solid propellants adulterating nano-scale CuO, Fe2O3 and NiO are 3089, 3193 and 3183 K, respectively. The temperatures of the three kinds of solid propellants were compared, and it was shown that there is no obvious difference in the flame temperature among the three kinds of solid propellants.

  19. Remote Sensing-based Drought Monitoring Approach and Research Progress%以遥感为基础的干旱监测方法研究进展

    周磊; 武建军; 张洁


    Drought is a serious natural disaster. It is doing increasingly damage to the human environment as the drought events occur more frequently. Real-time and effective drought monitoring is an effective means to reduce the losses caused by drought. Since the beginning of 20th century, a lot of drought indices have been de-veloped for monitoring the occurrence and variation of drought. Drought is a complex natural disaster. Howev-er, each drought index has its own advantages and weaknesses in drought monitoring. Almost all the drought indices are based on specific geographical and temporal scales;it is difficult to spread its applicability all over the world. Because of the meteorological drought indices using discrete, point-based meteorological measure-ments collected at weather station locations, the results have restricted level of spatial precision for monitoring drought patterns. Remote sensing technology provides alternative data for operational drought monitoring, with advanced temporal and spatial characteristics. However, additional information still needs to be incorpo-rated so as to thoroughly explain the anomaly in vegetation caused by drought. Besides, to achieve a more ac-curate description of drought characteristics, drought intensity differences caused by vegetation type, tempera-ture, elevation, manmade irrigation, and other factors under the same water condition must be considered. Therefore, effective drought monitoring indicator should both reflect soil moisture, vegetation condition and take into account vegetation type, temperature, and man-made factors leading to regional drought differences. Aiming at the problem mentioned above, the satellite based drought indices, and integrated meteorological and remote sensed drought indices was reviewed in our research. Firstly, this paper summarized the widely used drought monitoring models which were based on remote sensing data. The remote sensing drought monitoring approach was summarized by dividing

  20. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review

    Tran, Melody; Angelaccio, Michele; Arcona, Steve


    Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181

  1. Application of multispectral remote sensing techniques for dismissed mine sites monitoring and rehabilitation

    Bonifazi, Giuseppe; Serranti, Silvia


    Mining activities, expecially those operated in open air (open pit), present a deep impact on the sourrondings. Such an impact, and the related problems, are directly related to the correct operation of the activities, and usually strongly interact with the environment. Impact can be mainly related to the following issues: high volumes of handled material, ii) generation of dust, noise and vibrations, water pollution, visual impact and, finally, mining area recovery at the end of exploitation activities. All these aspects can be considered very important, and must be properly evaluated and monitored. Environmental impact control is usually carried out during and after the end of the mining activities, adopting methods related to the detection, collection, analysis of specific environmental indicators and with their further comparison with reference thresholding values stated by official regulations. Aim of the study was to investigate, and critically evaluate, the problems related to development of an integrated set of procedures based on the collection and the analysis of remote sensed data in order to evaluate the effect of rehabilitation of land contaminated by extractive industry activities. Starting from the results of these analyses, a monitoring and registration of the environmental impact of such operations was performed by the application and the integration of modern information technologies, as the previous mentioned Earth Observation (EO), with Geographic Information Systems (GIS). The study was developed with reference to different dismissed mine sites in India, Thailand and China. The results of the study have been utilized as input for the construction of a knowledge based decision support system finalized to help in the identification of the appropriate rehabilitation technologies for all those dismissed area previously interested by extractive industry activities. The work was financially supported within the framework of the Project ASIA IT&C - CN

  2. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan


    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  3. An Improved Unmixing-Based Fusion Method: Potential Application to Remote Monitoring of Inland Waters

    Yulong Guo


    Full Text Available Although remote sensing technology has been widely used to monitor inland water bodies; the lack of suitable data with high spatial and spectral resolution has severely obstructed its practical development. The objective of this study is to improve the unmixing-based fusion (UBF method to produce fused images that maintain both spectral and spatial information from the original images. Images from Environmental Satellite 1 (HJ1 and Medium Resolution Imaging Spectrometer (MERIS were used in this study to validate the method. An improved UBF (IUBF algorithm is established by selecting a proper HJ1-CCD image band for each MERIS band and thereafter applying an unsupervised classification method in each sliding window. Viewing in the visual sense—the radiance and the spectrum—the results show that the improved method effectively yields images with the spatial resolution of the HJ1-CCD image and the spectrum resolution of the MERIS image. When validated using two datasets; the ERGAS index (Relative Dimensionless Global Error indicates that IUBF is more robust than UBF. Finally, the fused data were applied to evaluate the chlorophyll a concentrations (Cchla in Taihu Lake. The result shows that the Cchla map obtained by IUBF fusion captures more detailed information than that of MERIS.

  4. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    Bo Cheng


    Full Text Available In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST Machine-to-Machine (M2M gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.

  5. A remote monitor of bed patient cardiac vibration, respiration and movement.

    Mukai, Koji; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Maki, Hiromichi; Caldwell, W Morton


    We have developed a remote system for monitoring heart rate, respiration rate and movement behavior of at-home elderly people who are living alone. The system consists of a 40 kHz ultrasonic transmitter and receiver, linear integrated circuits, a low-power 8-bit single chip microcomputer and an Internet server computer. The 40 kHz ultrasonic transmitter and receiver are installed into a bed mattress. The transmitted signal diffuses into the bed mattress, and the amplitude of the received ultrasonic wave is modulated by the shape of the mattress and parameters such as respiration, cardiac vibration and movement. The modulated ultrasonic signal is received and demodulated by an envelope detection circuit. Low, high and band pass filters separate the respiration, cardiac vibration and movement signals, which are fed into the microcontroller and digitized at a sampling rate of 50 Hz by 8-bit A/D converters. The digitized data are sent to the server computer as a serial signal. This computer stores the data and also creates a graphic chart of the latest hour. The person's family or caregiver can download this chart via the Internet at any time.

  6. Remote health monitoring: predicting outcome success based on contextual features for cardiovascular disease.

    Alshurafa, Nabil; Eastwood, Jo-Ann; Pourhomayoun, Mohammad; Liu, Jason J; Sarrafzadeh, Majid


    Current studies have produced a plethora of remote health monitoring (RHM) systems designed to enhance the care of patients with chronic diseases. Many RHM systems are designed to improve patient risk factors for cardiovascular disease, including physiological parameters such as body mass index (BMI) and waist circumference, and lipid profiles such as low density lipoprotein (LDL) and high density lipoprotein (HDL). There are several patient characteristics that could be determining factors for a patient's RHM outcome success, but these characteristics have been largely unidentified. In this paper, we analyze results from an RHM system deployed in a six month Women's Heart Health study of 90 patients, and apply advanced feature selection and machine learning algorithms to identify patients' key baseline contextual features and build effective prediction models that help determine RHM outcome success. We introduce Wanda-CVD, a smartphone-based RHM system designed to help participants with cardiovascular disease risk factors by motivating participants through wireless coaching using feedback and prompts as social support. We analyze key contextual features that secure positive patient outcomes in both physiological parameters and lipid profiles. Results from the Women's Heart Health study show that health threat of heart disease, quality of life, family history, stress factors, social support, and anxiety at baseline all help predict patient RHM outcome success.

  7. Hybrid control and acquisition system for remote control systems for environmental monitoring

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio


    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an alternative to a VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and a 16-bit DAC module at 1 MHz. The module can be configured as stand-alone or mounted on a motherboard as mezzanine. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC for the real-time computation. The tests have demonstrated that a distributed control systems based on this architecture exhibits a delay time of less than 25 us on a single channel, i.e a sustained sampling frequency of more than 40 kHz (and up to 80 kHz). The system is now under extensive test in the remote controls of seismic sensors (to simulate a geophysics networks of sensors) of a large baseline suspended Michelson interferometer.

  8. Fiber optic video monitoring system for remote CT/MR scanners clinically accepted

    Tecotzky, Raymond H.; Bazzill, Todd M.; Eldredge, Sandra L.; Tagawa, James; Sayre, James W.


    With the proliferation of CT travel to distant scanners to review images before their patients can be released. We designed a fiber-optic broadband video system to transmit images from seven scanner consoles to fourteen remote monitoring stations in real time. This system has been used clinically by radiologists for over one years. We designed and conducted a user survey to categorize the levels of system use by section (Chest, GI, GU, Bone, Neuro, Peds, etc.), to measure operational utilization and acceptance of the system into the clinical environment, to clarify the system''s importance as a clinical tool for saving radiologists travel-time to distant CT the system''s performance and limitations as a diagnostic tool. The study was administered directly to radiologists using a printed survey form. The results of the survey''s compiled data show a high percentage of system usage by a wide spectrum of radiologists. Clearly, this system has been accepted into the clinical environment as a highly valued diagnostic tool in terms of time savings and functional flexibility.

  9. Monitoring Land Use Dynamics in Chanthaburi Province of Thailand Using Digital Remotely Sensed Images



    A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning System) and ancillary data were combined by the method which adopts the main idea of classifying images by steps from decision tree method and the hybridized supervised and unsupervised classification. An integration of automatic image interpretation, ancillary materials and expert knowledge was realized. Two subscenes of Landsat 5 Thematic Mapper (TM) images of bands 3, 4 and 5 obtained on December 15, 1992, and January 17, 1999, were used for image processing and spatial data analysis in the study. The overall accuracy of the results of classification reached 90%, which was verified by field check.Results showed that shrimp farm land, urban and traffic land, barren land, bush and agricultural developing area increased in area, mangrove, paddy field, swamp and marsh land, orchard and plantation, and tropical grass land decreased, and the forest land kept almost stable. Ecological analysis on the land use changes showed that more attentions should be paid on the effect of land development on ecological environment in the future land planning and management.

  10. Enhancing eHealth Information Systems for chronic diseases remote monitoring systems

    Amir HAJJAM


    Full Text Available Statistics and demographics for the aging population in Europe are compelling. The stakes are then in terms of disability and chronic diseases whose proportions will increase because of increased life expectancy. Heart failure (HF, a serious chronic disease, induces frequent re-hospitalizations, some of which can be prevented by up-stream actions. Managing HF is quite a complex process: long, often difficult and expensive. In France, nearly one million people suffer from HF and 120,000 new cases are diagnosed every year. Managing such patients, a telemedicine system tools associated with motivation and education can significantly reduce the number of hospital days that believes therefore that the patient is hospitalized for acute HF. The current development projects are fully in prevention, human security, and remote monitoring of people in their living day-to-day spaces, from the perspective of health and wellness. These projects encompass gathering, organizing, structuring and sharing medical information. They also have to take into account the main aspects of interoperability. A different approach has been used to capitalize on such information: data warehouse approach, mediation approach (or integration by views or integration approach by link (or so-called mashup. In this paper, we will focus on ontologies that take a central place in the Semantic Web: on one hand, they rely on modeling from conceptual representations of the areas concerned and, on the other hand, they allow programs to make inferences over them.

  11. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.

    Li, Ying; Cui, Can; Liu, Zexi; Liu, Bingxin; Xu, Jin; Zhu, Xueyuan; Hou, Yongchao


    Current marine oil spill detection and monitoring methods using high-resolution remote sensing imagery are quite limited. This study presented a new bottom-up and top-down visual saliency model. We used Landsat 8, GF-1, MAMS, HJ-1 oil spill imagery as dataset. A simplified, graph-based visual saliency model was used to extract bottom-up saliency. It could identify the regions with high visual saliency object in the ocean. A spectral similarity match model was used to obtain top-down saliency. It could distinguish oil regions and exclude the other salient interference by spectrums. The regions of interest containing oil spills were integrated using these complementary saliency detection steps. Then, the genetic neural network was used to complete the image classification. These steps increased the speed of analysis. For the test dataset, the average running time of the entire process to detect regions of interest was 204.56 s. During image segmentation, the oil spill was extracted using a genetic neural network. The classification results showed that the method had a low false-alarm rate (high accuracy of 91.42%) and was able to increase the speed of the detection process (fast runtime of 19.88 s). The test image dataset was composed of different types of features over large areas in complicated imaging conditions. The proposed model was proved to be robust in complex sea conditions.

  12. Snow Monitoring Using Remote Sensing Data: Modification of Normalized Difference Snow Index

    Kaplan, G.; Avdan, U.


    Snow cover is an important part of the Earth`s climate system so its continuous monitoring is necessary to map snow cover in high resolution. Satellite remote sensing can successfully fetch land cover and land cover changes. Although normalized difference snow index NDSI has quite good accuracy, topography shadow, water bodies and clouds can be easily misplaced as snow. Using Landsat TM, +ETM and TIRS/OLI satellite images, the NDSI was modified for more accurate snow mapping. In this paper, elimination of the misplaced water bodies was made using the high reflectance of the snow in the blue band. Afterwards, the modified NDSI (MNDSI) was used for estimating snow cover through the years on the highest mountains in Republic of Macedonia. The results from this study show that the MNDSI accuracy is bigger than the NDSI`s, totally eliminating the misplaced water bodies, and partly the one caused from topography and clouds. Also, it was noticed that the snow cover in the study area has been lowered through the years. For future studies, the MNDSI should be validated on different study areas with different characteristics.

  13. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    K. Sarna


    Full Text Available A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product–Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m−2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα is not the best way of quantifying aerosol–cloud interactions.

  14. Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH.

    Mistlberger, Günter; Koren, Klaus; Borisov, Sergey M; Klimant, Ingo


    Magnetic sensor macrospheres (MagSeMacs), i.e., stainless steel spheres coated with optical chemical sensors, are presented as an alternative to existing optical sensor patches and fiber-optical dip-probes. Such spheres can either be reversibly attached to the tip of an optical fiber (dip-probe) or trapped inside a vessel for read-out through the side wall. Moving the magnetic separator at the exterior enables measurements at varying positions with a single sensor. Moreover, the sensor's replacement is rapid and contactless. We measured dissolved oxygen or pH in stirred liquids, rotating flasks, and 24-well plates with a SensorDish-reader device for parallel cell culture monitoring. In these applications, MagSeMacs proved to be advantageous over conventional sensor patches and magnetic optical sensor particles because of their magnetism, spherical shape, reflectance, and size. These properties resulted in strong but reversible fixation, magnetic remote-controllability, short response times, high signal intensities, and simplified handling.

  15. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation

    X. K. Shi


    Full Text Available As the satellite microwave remote sensed brightness temperature is sensitive to land surface soil moisture (SM and SM is a basic output variable in model simulation, it is of great significance to use the brightness temperature data to improve SM numerical simulation. In this paper, the theory developed by Yan et al. (2004 about the relationship between satellite microwave remote sensing polarization index and SM was used to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System brightness temperature data. With consideration of land surface soil texture, surface roughness, vegetation optical thickness, and the AMSR-E monthly SM products, the regional daily land surface SM was estimated over the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM is lower than the ground measurements and the NCEP (American National Centers for Environmental Prediction reanalysis data at the Maqu Station (33.85° N, 102.57° E and the Tanglha Station (33.07° N, 91.94° E, but its regional distribution is reasonable and somewhat better than that from the daily AMSR-E SM product, and its temporal variation shows a quick response to the ground daily precipitations. Furthermore, in order to improve the simulating ability of the WRF (Weather Research and Forecasting model to land surface SM, the estimated SM was assimilated into the Noah land surface model by the Newtonian relaxation (NR method. The results indicate that, by fine tuning of the quality factor in NR method, the simulated SM values are improved most in desert area, followed by grassland, shrub and grass mixed zone. At temporal scale, Root Mean Square Error (RMSE values between simulated and observed SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and the Tanglha Station, respectively.

  16. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.


    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  17. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)


    of multiple in-house developed, state-of-the-art building blocks. They have all been assessed and characterized up to a dose higher than 1 MGy. The first block in the signal chain is a smaller than 1 uV offset, low noise instrumentation amplifier that has a programmable gain between 8 and 256. This amplifier is followed by a high precision 16 bit ADC. Its main function is to digitize the amplified signal coming from the amplifier. The output of the ADC is a serial digital data stream. The next block is a 8 channel digital multiplexer. It converts the 8 digital data streams into 1 digital data stream. Hereby the instrumentation solution reduces the number of cables from 16 to 1 (8* 2 analogue differential signals). In addition, the multiplexer modules can be combined with other modules to reduce even further the number of cables. Every instrumentation solution requires a stable high precision voltage reference. Therefore also a bandgap reference has been developed and assessed under gamma irradiation. A low jitter, 10 MHz clock generator has been developed and qualified to clock the ADC and the multiplexer with high accuracy. Finally, an on-chip radiation-hard temperature sensor is also included. A complete remote, real-time test setup was prepared by MAGyICS in cooperation with Fusion for Energy to qualify the sensor instrumentation link at SCK-CEN. It is qualified by closely following the ESCC22900 space standard for electronics used in a radiation environment. The main benefit of the sensor instrumentation solution discussed here is that it can be directly employed in a MGy-level accumulated dose radiation environment, therefore it can digitize and multiplex sensor readout values early in the signal chain. Hereby the sensor values are not distorted by external interferences on the long transmission cable. Moreover it allows readout and digitize multiple low-bandwidth sensors ( pressure and temperature sensors, thermocouples, angular resolvers and LVDTs). Hence

  18. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots.

    Tycko, Robert


    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5K over a temperature range that extends from approximately 50K (-223°C) to well above 310K (37°C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance. Published by Elsevier Inc.

  19. Remote Measurement of Pollution - A 40-Year Langley Retrospective. Part 1; Temperature and Gaseous Species

    Remsberg, Ellis E.


    The National Aeronautics and Space Administration (NASA) phased down its Apollo Moon Program after 1970 in favor of a partly reusable Space Shuttle vehicle that could be used to construct and supply a manned, Earth-orbiting Space Station. Applications programs were emphasized in response to the growing public concern about Earth's finite natural resources and the degradation of its environment. Shortly thereafter, a workshop was convened in Norfolk, Virginia, on Remote Measurement of Pollution (or RMOP), and its findings are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for the regional to global-scale, remote measurements from an Earth-orbiting satellite. The findings and recommendations of the RMOP Report represent the genesis of and a blueprint for the satellite, atmospheric sensing programs within NASA for nearly two decades. This paper is a brief, 40-year retrospective of those instrument developments that were an outgrowth of the RMOP activity. Its focus is on satellite measurement capabilities for temperature and gaseous species that were demonstrated by atmospheric technologists at the Langley Research Center. Limb absorption by solar occultation, limb infrared radiometry, and gas filter correlation radiometry techniques provided significant science data, so they are emphasized in this review.

  20. Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses.

    Konrad, Stephanie; Paduraru, Peggy; Romero-Barrios, Pablo; Henderson, Sarah B; Galanis, Eleni


    temperatures. Monitoring of SST, particularly through readily accessible remote sensing data, could serve as a warning signal for Vp and help inform the introduction and cessation of preventative or control measures.

  1. Synergies of the European Microwave Remote Sensing Missions SMOS and ASCAT for Monitoring Soil Moisture

    Scipal, K.; Wagner, W.


    The lack of global soil moisture observations is one of the most glaring and pressing deficiencies in current research activities of related fields, from climate monitoring and ecological applications to the quantification of biogeophysical fluxes. This has implications for important issues of the international political agenda like managing global water resources, securing food production and studying climate change. Currently it is held that only microwave remote sensing offers the potential to produce reliable global scale soil moisture information economically. Recognising the urgent need for a soil moisture mission several international initiatives are planning satellite missions dedicated to monitor the global hydrological cycle among them two European microwave satellites. ESA is planning to launch the Soil Moisture and Ocean Salinity Mission SMOS, in 2006. SMOS will measure soil moisture over land and ocean salinity over the oceans. The mission rests on a passive microwave sensor (radiometer) operated in L-band which is currently believed to hold the largest potential for soil moisture retrieval. One year before (2005) EUMETSAT will launch the Meteorological Operational satellite METOP which carries the active microwave system Advanced Scatterometer ASCAT on board. ASCAT has been designed to retrieve winds over the oceans but recent research has established its capability to retrieve soil moisture. Although currently it is hold that, using active microwave techniques, the effect of surface roughness dominates that of soil moisture (while the converse is true for radiometers), the ERS scatterometer was successfully used to derive global soil moisture information at a spatial resolution of 50 km with weekly to decadal temporal resolution. The quality of the soil moisture products have been assessed by independent experts in several pilot projects funded by the European Space Agency. There is evidence to believe that both missions will provide a flow of

  2. A novel approach to co registering multi-temporal remotely sensed data in a vulnerability monitoring framework

    Harb, Mostapha; De Vecchi, Daniele; Dell'Acqua, Fabio


    The paper introduces a novel approach for the geometric co registration of optical remote sensing imagery. In the context of disaster mitigation and preparedness, a multi-temporal set of several remote sensing images often has to be processed separately to extract the required information. Then, a comparison among the obtained results would provide clues towards the time-evolving extent and distribution of risk. Therefore, it is of significant importance to achieve a proper geometric matching among the compared images. The traditional procedure of using manually-determined ground control points is not viable for large stacks of images, and automated methods may fail short of ensuring image conformity. The established method uses image data itself to effectively perform the co registration among the images relying on feature extraction and matching, without the necessity of using ground control points (GCPs). The approach has been tested using both high and medium resolution images on different test cases in a context of multi-risk vulnerability monitoring. The obtained results were highly promising in resolving the mismatching problem of objects in images taken from different dates and allowing smooth extraction of vulnerability proxies from multi-temporal moderate resolution optical satellite images. In conclusion, the methodology would be a useful contribution towards easing the tracking of temporal variation of ground features in the wide domain of risk-related application of remote sensing (e.g. urban development, deforestation, wild fire, damage assessment...) Keywords: Risk monitoring, remote sensing, optical imagery, geometric co registration

  3. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Robert Paul Breckenridge


    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  4. Electrodynamic energy harvester for electrical transformer's temperature monitoring system

    Farid Khan; Shadman Razzaq


    The development of an electrodynamic energy harvester (EDEH) for operating a wireless temperature monitoring system for electrical transformer is reported in this work. Analytical modeling, fabrication and characterization of EDEH prototype are performed. The developed EDEH consists of a mild steel core, a wound copper coil and Teflon housing. COMSOL Multiphysics software is used to optimize the design of the harvester. The split-cylindrical design of the developed EDEH permitted the harvester to be wrapped around the output power cable of the electrical transformer without shutting-off the power or disconnecting the power cable. From the electrical transformer, at current levels of 27, 72 and 155 A in the main power line, the energy harvester produced maximum RMS load voltages of 0.356, 1.09 and 2.58 V respectively, when connected to 100 load resistance. However, at matching impedance of 24 (resistance of the coil), the EDEH produced the maximum power levels of 2.99, 19.66 and 112.03 mW for a cable currents of 27, 72 and 155 A respectively. The simulation results of the devised analytical model of the harvester are in good agreement with the experimental results. Moreover, at a cable current of 93 A, when the harvester is connected to the rectifying circuit, the optimum impedance shifted to 185 and the maximum power of 19 mW is generated at that load. The reduction in power generation is attributed to the power consumption of the rectifying circuit. When the rectified DC voltage is used to charge a 3.8 V, Nickel–Cadmium (Ni–Cd) rechargeable battery, it took 3 h to completely charge the battery from 1 to 3.85 V. With the charged battery a wireless temperature sensor node is successfully operated for monitoring the temperature of the electrical transformer.

  5. Satellite Altimetry and SAR Remote Sensing for Monitoring Inundation in the Pantanal Wetland

    Dettmering, Denise; Strehl, Franziska; Schwatke, Christian; Seitz, Florian


    Large wetlands are an important component of the global water cycle and the knowledge of water flow and storage dynamics within these regions is valuable for many applications such as flood risk assessment and water availability studies. Most of the inundation areas are remote regions without significant infrastructure, especially without in-situ gauging observations. Remote sensing techniques can help to provide highly valuable information for hydrological questions.Combining water level and water extent from different remote sensing sensors allows for the quantification of water volume changes in remote inundation areas.

  6. Remote monitoring of solar PV system for rural areas using GSM, V-F & F-V converters

    Tejwani, R.; Kumar, G.; Solanki, C. S.


    The Small capacity photovoltaic (PV) systems like solar lantern and home lighting systems installed in remote rural area often fail without any prior warning due to lack of monitoring and maintenance. This paper describes implementation of remote monitoring for small capacity solar PV system that uses GSM voice channel for communication. Through GSM analog signal of sine wave with frequency range 300-3500 Hz and amplitude range 2.5-4 V is transmitted. Receiver is designed to work in the same frequency range. The voltage from solar PV system in range of 2 to 7.5 V can be converted to frequency directly at the transmitting end. The frequency range from 300-6000 Hz can be sensed and directly converted to voltage signal at receiving end. Testing of transmission and reception of analog signal through GSM voice channel is done for voltage to frequency (V-F) and frequency to voltage (F-V) conversions.

  7. Temperature-monitored optical treatment for radial tissue expansion.

    Bak, Jinoh; Kang, Hyun Wook


    Esophageal stricture occurs in 7-23% of patients with gastroesophageal reflux disease. However, the current treatments including stent therapy, balloon dilation, and bougienage involve limitations such as stent migration, formation of the new strictures, and snowplow effect. The purpose of the current study was to investigate the feasibility of structural expansion in tubular tissue ex vivo during temperature-monitored photothermal treatment with a diffusing applicator for esophageal stricture. Porcine liver was used as an ex vivo tissue sample for the current study. A glass tube was used to maintain a constant distance between the diffuser and tissue surface and to evaluate any variations in the luminal area after 10-W 1470-nm laser irradiation for potential stricture treatment. The 3D goniometer measurements confirmed roughly isotropic distribution with less than 10% deviation from the average angular intensity over 2π (i.e., 0.86 ± 0.09 in arbitrary unit) from the diffusing applicator. The 30-s irradiation increased the tissue temperature up to 72.5 °C, but due to temperature feedback, the interstitial tissue temperature became saturated at 70 °C (i.e., steady-state error = ±0.4 °C). The irradiation times longer than 5 s presented area expansion index of 1.00 ± 0.04, signifying that irreversible tissue denaturation permanently deformed the lumen in a circular shape and secured the equivalent luminal area to that of the glass tube. Application of a temperature feedback controller for photothermal treatment with the diffusing applicator can regulate the degree of thermal denaturation to feasibly treat esophageal stricture in a tubular tissue.

  8. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model

    王锦地; 李小文; 孙晓敏; 刘强


    When the remote sensing pixel is composed of multiple components and a non-isothermal surface, its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel. In this paper, we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel’s component parameters, and invert the model to get the component temperatures. For the inversion algorithm, we focus on how to use the information of given observations in a more effective way. The information content in data space and parameter space is defined, and the transferring of information content in inversion procedure is studied. Our forward model and inversion method are validated using indoor directional measurement data.

  9. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model


    When the remote sensing pixel is composed of multiple components and a non-isothermal surface,its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel.In this paper,we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel's component parameters,and invert the model to get the component temperatures.For the inversion algorithm,we focus on how to use the information of given observations in a more effective way.The information content in data space and parameter space is defined,and the transferring of information content in inversion procedure is studied.Our forward model and inversion method are validated using indoor directional measurement data.

  10. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.


    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  11. Inactivation of Escherichia Coli Using Remote Low Temperature Glow Discharge Plasma

    HU Miao; CHEN Jierong; CHEN Chua


    Low-temperature plasma is distinguished as a developing approach for sterilization which can deal with and overcome those problems such as thermal sensitivity and destruction by heat,formation of toxic by-products,higher costs and inefficiency in performances,caused by conventional methods.In this study,an experimental investigation was undertaken to characterize the effects of the operational parameters,such as treating time,discharge power and gas flow rate,of remote glow discharge air plasma.The results show that the inactivation of Escherichia coli can reach above 99.99% in less than 60 seconds and the optimal operational conditions for treating time,discharge power and gas flow rate were:40 s,80 W and 60 cm3/min,respectively.The contribution of UV radiation during plasma germ deactivation is very limited.

  12. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific

    Webley, P. W.; Dehn, J.


    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  13. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena


    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  14. Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing

    Carro-Calvo, L.; Hoose, C.; Stengel, M.; Salcedo-Sanz, S.


    The phase partitioning between supercooled liquid water and ice in clouds in the temperature range between 0 and -37°C influences their optical properties and the efficiency of precipitation formation. Passive remote sensing observations provide long-term records of the cloud top phase at a high spatial resolution. Based on the assumption of a cumulative Gaussian distribution of the ice cloud fraction as a function of temperature, we quantify the cloud glaciation temperature (CGT) as the 50th percentile of the fitted distribution function and its variance for different cloud top pressure intervals, obtained by applying an evolutionary algorithm (EA). EAs are metaheuristics approaches for optimization, used in difficult problems where standard approaches are either not applicable or show poor performance. In this case, the proposed EA is applied to 4 years of Pathfinder Atmospheres-Extended (PATMOS-x) data, aggregated into boxes of 1° × 1° and vertical layers of 5.5 hPa. The resulting vertical profile of CGT shows a characteristic sickle shape, indicating low CGTs close to homogeneous freezing in the upper troposphere and significantly higher values in the midtroposphere. In winter, a pronounced land-sea contrast is found at midlatitudes, with lower CGTs over land. Among this and previous studies, there is disagreement on the sign of the land-sea difference in CGT, suggesting that it is strongly sensitive to the detected and analyzed cloud types, the time of the day, and the phase retrieval method.

  15. Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998.

    Nitatpattana, Narong; Singhasivanon, Pratap; Kiyoshi, Honda; Andrianasolo, Haja; Yoksan, Sutee; Gonzalez, Jean-Paul; Barbazan, Philippe


    A pilot study was designed to analyze a potential association between dengue hemorrhagic fever (DHF) incidence and, temperature computed by satellite. DHF is a mosquito transmitted disease, and water vapor and humidity are known to have a positive effect on mosquito life by increasing survival time and shortening the development cycle. Among other available satellite data, Land Surface Temperature (LST) was chosen as an indicator that combined radiated earth temperature and atmospheric water vapor concentration. Monthly DHF incidence was recorded by province during the 1998 epidemic and obtained as a weekly combined report available from the National Ministry of Public Health. Conversely, LST was calculated using remotely sensed data obtained from thermal infrared sensors of NOAA satellites and computed on a provincial scale. Out of nine selected study provinces, five (58.3%) exhibited an LST with a significant positive correlation with rainfall (p < 0.05). In four out of nineteen surveyed provinces (21.3%), LST showed a significant positive correlation with DHF incidence (p < 0.05). Positive association between LST and DHF incidence was significantly correlated in 75% of the cases during non-epidemic months, while no correlation was found during epidemic months. Non-climatic factors are supposed to be at the origin of this discrepancy between seasonality in climate (LST) and DHF incidence during epidemics.

  16. Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples

    Felix eRembold


    Full Text Available Monitoring crop and natural vegetation conditions is highly relevant, particularly in the food insecure areas of the world. Data from remote sensing image time series at high temporal and medium to low spatial resolution can assist this monitoring as they provide key information about vegetation status in near real-time over large areas. The Software for the Processing and Interpretation of Remotely sensed Image Time Series (SPIRITS is a stand-alone flexible analysis environment created to facilitate the processing and analysis of large image time series and ultimately for providing clear information about vegetation status in various graphical formats to crop production analysts and decision makers. In this paper we present the latest functional developments of SPIRITS and we illustrate recent applications. The main new developments include: HDF5 importer, Image re-projection, additional options for temporal Smoothing and Periodicity conversion, computation of a rainfall-based probability index (Standardized Precipitation Index for drought detection and extension of the Graph composer functionalities.In particular,. The examples of operational analyses are taken from several recent agriculture and food security monitoring reports and bulletins. We conclude with considerations on future SPIRITS developments also in view of the data processing requirements imposed by the coming generation of remote sensing products at high spatial and temporal resolution, such as those provided by the Sentinel sensors of the European Copernicus programme.

  17. Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare

    Hariz, Alex; Mehmood, Nasir; Voelcker, Nico


    Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.

  18. Preliminary data for the 20 May 1974, simultaneous evaluation of remote sensors experiment. [water pollution monitoring

    Johnson, R. W.; Batten, C. E.; Bowker, D. E.; Bressette, W. E.; Grew, G. W.


    Several remote sensors were simultaneously used to collect data over the tidal James River from Hopewell to Norfolk, Virginia. Sensors evaluated included the Multichannel-Ocean Color Sensor, multispectral scanners, and multispectral photography. Ground truth measurements and remotely sensed data are given. Preliminary analysis indicates that suspended sediment and concentrated industrial effluent are observable from all sensors.

  19. Technical implementation in support of the IAEA`s remote monitoring field trial at the Oak Ridge Y-12 Plant

    Corbell, B.H. [Sandia National Labs., Albuquerque, NM (United States); Moran, B.W.; Pickett, C.A.; Whitaker, J.M. [Oak Ridge Y-12 Plant, TN (United States); Resnik, W. [Aquila Technologies Group Inc., Albuquerque, NM (United States); Landreth, D. [COMSAT/RSI, Atlanta, GA (United States)


    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines.

  20. Monitoring Food Security Indicators from Remote Sensing and Predicting Cereal Production in Afghanistan

    Pervez, M. S.; Budde, M. E.; Rowland, J.


    We extract percent of basin snow covered areas above 2500m elevation from Moderate Resolution Imaging Spectroradiometer (MODIS) 500-meter 8-day snow cover composites to monitor accumulation and depletion of snow in the basin. While the accumulation and depletion of snow cover extent provides an indication of the temporal progression of the snow pack, it does not provide insight into available water for irrigation. Therefore, we use snow model results from the National Operational Hydrologic Remote Sensing Center to quantify snow water equivalent and volume of water available within the snowpack for irrigation. In an effort to understand how water availability, along with its inter-annual variability, relates to the food security of the country, we develop a simple, effective, and easy-to-implement model to identify irrigated areas across the country on both annual and mid-season basis. The model is based on applying thresholds to peak growing season vegetation indices—derived from 250-meter MODIS images—in a decision-tree classifier to separate irrigated crops from non-irrigated vegetation. The spatial distribution and areal estimates of irrigated areas from these maps compare well with irrigated areas classified from multiple snap shots of the landscape from Landsat 5 optical and thermal images over selected locations. We observed that the extents of irrigated areas varied depending on the availability of snowmelt and can be between 1.35 million hectares in a year with significant water deficit and 2.4 million hectares in a year with significant water surplus. The changes in the amount of available water generally can contribute up to a 30% change in irrigated areas. We also observed that the strong correlation between inter-annual variability of irrigated areas and the variability in the country's cereal production could be utilized to predict an annual estimate of cereal production, providing early indication of food security scenarios for the country.