WorldWideScience

Sample records for remote sensing information

  1. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  2. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  3. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  4. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  5. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  6. Online catalog access and distribution of remotely sensed information

    Science.gov (United States)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  7. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Science.gov (United States)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  8. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  9. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  10. Regional Analysis of Remote Sensing Based Evapotranspiration Information

    Science.gov (United States)

    Geli, H. M. E.; Hain, C.; Anderson, M. C.; Senay, G. B.

    2017-12-01

    Recent research findings on modeling actual evapotranspiration (ET) using remote sensing data and methods have proven the ability of these methods to address wide range of hydrological and water resources issues including river basin water balance for improved water resources management, drought monitoring, drought impact and socioeconomic responses, agricultural water management, optimization of land-use for water conservations, water allocation agreement among others. However, there is still a critical need to identify appropriate type of ET information that can address each of these issues. The current trend of increasing demand for water due to population growth coupled with variable and limited water supply due to drought especially in arid and semiarid regions with limited water supply have highlighted the need for such information. To properly address these issues different spatial and temporal resolutions of ET information will need to be used. For example, agricultural water management applications require ET information at field (30-m) and daily time scales while for river basin hydrologic analysis relatively coarser spatial and temporal scales can be adequate for such regional applications. The objective of this analysis is to evaluate the potential of using an integrated ET information that can be used to address some of these issues collectively. This analysis will highlight efforts to address some of the issues that are applicable to New Mexico including assessment of statewide water budget as well as drought impact and socioeconomic responses which all require ET information but at different spatial and temporal scales. This analysis will provide an evaluation of four remote sensing based ET models including ALEXI, DisALEXI, SSEBop, and SEBAL3.0. The models will be compared with ground-based observations from eddy covariance towers and water balance calculations. Remote sensing data from Landsat, MODIS, and VIIRS sensors will be used to provide ET

  11. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  12. AN INFORMATION SERVICE MODEL FOR REMOTE SENSING EMERGENCY SERVICES

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available This paper presents a method on the semantic access environment, which can solve the problem about how to identify the correct natural disaster emergency knowledge and return to the demanders. The study data is natural disaster knowledge text set. Firstly, based on the remote sensing emergency knowledge database, we utilize the sematic network to extract the key words in the input documents dataset. Then, using the semantic analysis based on words segmentation and PLSA, to establish the sematic access environment to identify the requirement of users and match the emergency knowledge in the database. Finally, the user preference model was established, which could help the system to return the corresponding information to the different users. The results indicate that semantic analysis can dispose the natural disaster knowledge effectively, which will realize diversified information service, enhance the precision of information retrieval and satisfy the requirement of users.

  13. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  14. Providing Data Quality Information for Remote Sensing Applications

    Science.gov (United States)

    Albrecht, F.; Blaschke, T.; Lang, S.; Abdulmutalib, H. M.; Szabó, G.; Barsi, Á.; Batini, C.; Bartsch, A.; Kugler, Zs.; Tiede, D.; Huang, G.

    2018-04-01

    The availability and accessibility of remote sensing (RS) data, cloud processing platforms and provided information products and services has increased the size and diversity of the RS user community. This development also generates a need for validation approaches to assess data quality. Validation approaches employ quality criteria in their assessment. Data Quality (DQ) dimensions as the basis for quality criteria have been deeply investigated in the database area and in the remote sensing domain. Several standards exist within the RS domain but a general classification - established for databases - has been adapted only recently. For an easier identification of research opportunities, a better understanding is required how quality criteria are employed in the RS lifecycle. Therefore, this research investigates how quality criteria support decisions that guide the RS lifecycle and how they relate to the measured DQ dimensions. Subsequently follows an overview of the relevant standards in the RS domain that is matched to the RS lifecycle. Conclusively, the required research needs are identified that would enable a complete understanding of the interrelationships between the RS lifecycle, the data sources and the DQ dimensions, an understanding that would be very valuable for designing validation approaches in RS.

  15. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  16. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  17. Geographic information systems and remote sensing techniques in environmental assessment

    International Nuclear Information System (INIS)

    Kenny, F.M.

    1996-01-01

    Digital map products and spatial inventories are becoming increasingly available from geological surveys, agricultural, natural resource, environmental, energy, transportation and forestry departments. As well there are now multitudes of specialized digital airborne and satellite image products available. This wide availability of geographically referenced data and the advances in spatial data analysis software are providing geoscientists with new tools and new ways of viewing traditionally used data. Through several examples, this paper will demonstrate how remote sensing and GIS technologies can contribute to environmental assessment of an urban fringe area. Nowhere is the need for spatial inventories and mapping greater than in such areas, where pre-existing information becomes rapidly outdated. A 260-km 2 site, north of Metropolitan Toronto was chosen as a study area. A spatial data base was constructed which included imagery from three different satellite sensors, a Digital Terrain Model (DTM), and digital drainage network, and a digital copy of the Ontario Geological Survey's Quaternary geological map. (author). 15 refs., 1 tab., 17 figs

  18. Comprehensive Calibration and Validation Site for Information Remote Sensing

    Science.gov (United States)

    Li, C. R.; Tang, L. L.; Ma, L. L.; Zhou, Y. S.; Gao, C. X.; Wang, N.; Li, X. H.; Wang, X. H.; Zhu, X. H.

    2015-04-01

    As a naturally part of information technology, Remote Sensing (RS) is strongly required to provide very precise and accurate information product to serve industry, academy and the public at this information economic era. To meet the needs of high quality RS product, building a fully functional and advanced calibration system, including measuring instruments, measuring approaches and target site become extremely important. Supported by MOST of China via national plan, great progress has been made to construct a comprehensive calibration and validation (Cal&Val) site, which integrates most functions of RS sensor aviation testing, EO satellite on-orbit caration and performance assessment and RS product validation at this site located in Baotou, 600km west of Beijing. The site is equipped with various artificial standard targets, including portable and permanent targets, which supports for long-term calibration and validation. A number of fine-designed ground measuring instruments and airborne standard sensors are developed for realizing high-accuracy stepwise validation, an approach in avoiding or reducing uncertainties caused from nonsynchronized measurement. As part of contribution to worldwide Cal&Val study coordinated by CEOS-WGCV, Baotou site is offering its support to Radiometric Calibration Network of Automated Instruments (RadCalNet), with an aim of providing demonstrated global standard automated radiometric calibration service in cooperation with ESA, NASA, CNES and NPL. Furthermore, several Cal&Val campaigns have been performed during the past years to calibrate and validate the spaceborne/airborne optical and SAR sensors, and the results of some typical demonstration are discussed in this study.

  19. Theme issue ;State-of-the-art in photogrammetry, remote sensing and spatial information science;

    Science.gov (United States)

    Heipke, Christian; Madden, Marguerite; Li, Zhilin; Dowman, Ian

    2016-05-01

    Over the past few years, photogrammetry, remote sensing and spatial information science have witnessed great changes in virtually every stage of information from imagery. Indeed, we have seen, for example, a sharply increased interest in unmanned aerial vehicles,

  20. CYBERNETIC BASIS AND SYSTEM PRACTICE OF REMOTE SENSING AND SPATIAL INFORMATION SCIENCE

    Directory of Open Access Journals (Sweden)

    X. Tan

    2017-09-01

    Full Text Available Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  1. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  2. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  3. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  4. Site-characterization information using LANDSAT satellite and other remote-sensing data: integration of remote-sensing data with geographic information systems. A case study in Pennsylvania

    International Nuclear Information System (INIS)

    Campbell, W.J.; Imhoff, M.L.; Robinson, J.; Gunther, F.; Boyd, R.; Anuta, M.

    1983-06-01

    The utility and cost effectiveness of incorporating digitized aircraft and satellite remote sensing data into a geographic information system for facility siting and environmental impact assessments was evaluated. This research focused on the evaluation of several types of multisource remotely sensed data representing a variety of spectral band widths and spatial resolution. High resolution aircraft photography, Landsat MSS, and 7 band Thematic Mapper Simulator (TMS) data were acquired, analyzed, and evaluated for their suitability as input to an operational geographic information system (GIS). 78 references, 59 figures, 74 tables

  5. Applications of Remote Sensing and Geographic Information System (GIS) in Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    The advancement of remote sensing technology and the analysing capability of Geographical Information System (GIS) can very well be used in the science of Archaeology. Though these subjects look apart, they can be studied in conjunction with each...

  6. EPIC'S NEW REMOTE SENSING DATA AND INFORMATION TOOLS AVAILABLE FOR EPA CUSTOMERS

    Science.gov (United States)

    EPIC's New Remote Sensing Data and Information Tools Available for EPA Customers Donald Garofalo Environmental Photographic Interpretation Center (EPIC) Landscape Ecology Branch Environmental Sciences Division National Exposure Research Laboratory Several new too...

  7. Institutional issues affecting the integration and use of remotely sensed data and geographic information systems

    Science.gov (United States)

    Lauer, D.T.; Estes, J.E.; Jensen, J.R.; Greenlee, D.D.

    1991-01-01

    The developers as well as the users of remotely sensed data and geographic information system (GIS) techniques are associated with nearly all types of institutions in government, industry, and academia. Individuals in these various institutions often find the barriers to accepting remote sensing and GIS are not necessarily technical in nature, but can be attributed to the institutions themselves. Several major institutional issues that affect the technologies of remote sensing and GIS are data availability, data marketing and costs, equipment availability and costs, standards and practices, education and training, and organizational infrastructures. Not only are problems associated with these issues identified, but needs and opportunities also are discussed. -from Authors

  8. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  9. Application of remote sensing and Geographic Information Systems to ecosystem-based urban natural resource management

    Science.gov (United States)

    Xiaohui Zhang; George Ball; Eve Halper

    2000-01-01

    This paper presents an integrated system to support urban natural resource management. With the application of remote sensing (RS) and geographic information systems (GIS), the paper emphasizes the methodology of integrating information technology and a scientific basis to support ecosystem-based management. First, a systematic integration framework is developed and...

  10. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  11. Informing a hydrological model of the Ogooué with multi-mission remote sensing data

    DEFF Research Database (Denmark)

    Kittel, Cecile Marie Margaretha; Nielsen, Karina; Tøttrup, C.

    2018-01-01

    with publicly available and free remote sensing observations. We used a rainfall–runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the model using the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) and forced it using precipitation from......Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological model of the ungauged Ogooué river basin in Africa...... model also captures overall total water storage change patterns, although the amplitude of storage change is generally underestimated. By combining hydrological modeling with multi-mission remote sensing from 10 different satellite missions, we obtain new information on an otherwise unstudied basin...

  12. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  13. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  14. Remote Sensing

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3 · Current Issue Volume 23 | Issue 3. March 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  15. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    Science.gov (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  16. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    Science.gov (United States)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  17. Information Extraction of Tourist Geological Resources Based on 3d Visualization Remote Sensing Image

    Science.gov (United States)

    Wang, X.

    2018-04-01

    Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.

  18. Using remote sensing to inform integrated coastal zone management

    CSIR Research Space (South Africa)

    Roberts, W

    2010-06-01

    Full Text Available TO INFORM INTERGRATED COASTAL ZONE MANAGEMENT GISSA Western Cape Regional Meeting Wesley Roberts & Melanie Luck-Vogel 2 June 2010 CSIR NRE Ecosystems Earth Observation Group What is Integrated Coastal Zone Management? Integrated coastal management... D1D1 B a n d 1 Band 2 Quick theory of CVA Magnitude Direction ( ) ( )22 xaxbyaybM ?+?= Quadrant 1 (++) Accretion Quadrant 2 (-+) Quadrant 4 (+-) Quadrant 3 (--) Erosion CVA Results & Conclusions ? Change in image time series...

  19. GEOGRAPHIC INFORMATION SYSTEM AND REMOTE SENSING BASED DISASTER MANAGEMENT AND DECISION SUPPORT PLATFORM: AYDES

    OpenAIRE

    Keskin, İ.; Akbaba, N.; Tosun, M.; Tüfekçi, M. K.; Bulut, D.; Avcı, F.; Gökçe, O.

    2018-01-01

    The accelerated developments in information technology in recent years, increased the amount of usage of Geographic Information Systems (GIS) and Remote Sensing (RS) in disaster management considerably and the access from mobile and web-based platforms to continuous, accurate and sufficient data needed for decision-making became easier accordingly. The Disaster Management and Decision Support System (AYDES) has been developed with the purpose of managing the disaster and emergency manageme...

  20. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    Science.gov (United States)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  1. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  2. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  3. RESEARCH ON REMOTE SENSING GEOLOGICAL INFORMATION EXTRACTION BASED ON OBJECT ORIENTED CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. Gao

    2018-04-01

    Full Text Available The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  4. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  5. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    Science.gov (United States)

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  6. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  7. Remotely Sensed Information and Field Data are both Essential to Assess Biodiversity CONDITION!

    Science.gov (United States)

    Sparrow, B.; Schaefer, M.; Scarth, P.; Phinn, S. R.; Christensen, R.; Lowe, A. J.; O'Neill, S.; Thurgate, N.; Wundke, D.

    2015-12-01

    Over the past year the TERN Ausplots facility has hosted a process to determine the definition of Biodiversity Condition in an Australian Continental Context, and conducted a wide collaborative process to determine which environmental attributes are required to be measures to accurately inform on biodiversity condition. A major output from this work was the acknowledgement that good quality data from both remotely sensed sources and good quality field collected data are both essential to provide the best information possible on biodiversity condition. This poster details some background to the project, the assesment of which attributes to measure, and if the are sources primarily from field based or remotely sensed measures. It then proceeds to provide three examples of ways in which the combination of data types provides a superior product as output, with one example being provided for the three cornerstone areas of condition: Structure, Function and Composition.

  8. Theory and approach of information retrievals from electromagnetic scattering and remote sensing

    CERN Document Server

    Jin, Ya-Qiu

    2006-01-01

    Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.

  9. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  10. REMOTE SENSING IMAGE CLASSIFICATION APPLIED TO THE FIRST NATIONAL GEOGRAPHICAL INFORMATION CENSUS OF CHINA

    Directory of Open Access Journals (Sweden)

    X. Yu

    2016-06-01

    Full Text Available Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC and Maximum Likelihood Classification Method (MLC in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  11. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  12. Study on the remote sensing geological information of uranium mineralization in Western Liaoning and Northern Hebei

    International Nuclear Information System (INIS)

    Yu Baoshan; Wang Dianbai; Jin Shihua; Qiao Rui

    1996-01-01

    Based on the whole areal geological map joint application rd exploitation, composite forming map, generalization analysis and field examination in detail of key region that mainly depend on remote sensing information and generalize the data of geology, geophysical and geochemical prospecting, and geohydrology, this paper reveals the structure framework, regional geological background, uranium metallogenic condition and space time distribution rule of orustal evolution and its result, and set up the interpretation marks of arc-shaped structure in different of rock area and discusses its geological genesis. The author also interprets volcanic apparatus, small type closed sedimentary basin, magmatic rock body which relate closely to uranium deposit, ore control structure and occurrence and type of mineralization alteration envelope. The thermal halo point of satellite image is emphatically interpreted and its geological meaning and its relation to uranium deposit is discussed. Remote sensing geological prospecting ore model and synthetic provision model is determined lastly

  13. Study on remote sensing geologic information of uranium metallogeny in western Liaoning-northern Hebei region

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    Based on the study on geologic metallogenic environment, temporal and spatial distribution and deposit features of uranium deposits in western Liaoning-northern Hebei region, summarizing mainly remote sensing information and synthesizing geologic, geophysical and geochemical as well as hydrological data, the author has implemented all-region joint-quadrangle analysis, composite mapping and applications, set up interpretation criteria for circular and arcuate structures of different lithological areas, and then expounded their geologic meaning. Volcanic apparatuses, small close sedimentary basins and magmatic rockbodies closely associated with uranium mineralizations, especially the altitude and types of ore-controlling structures and mineralized alteration zones have been interpreted. 'Heat halo spot' has also been interpreted on the satellite image and its geologic meaning and relation to uranium metallization have been discussed. Finally, remote sensing geologic prospecting model and comprehensive prediction model have been established

  14. Family Life Cycle and Deforestation in Amazonia: Combining Remotely Sensed Information with Primary Data

    Science.gov (United States)

    Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.

    2003-01-01

    This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.

  15. Extraction Method for Earthquake-Collapsed Building Information Based on High-Resolution Remote Sensing

    International Nuclear Information System (INIS)

    Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing

    2014-01-01

    At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing

  16. Techniques of uranium mineralization alteration remote sensing information identification and its application in Taoshan area, Jiangxi province

    International Nuclear Information System (INIS)

    Xuan Yanxiu; Zhang Jielin

    2010-01-01

    Based on the spectrum characteristics analysis of uranium mineralization alteration rocks and minerals, and using satellite multi-spectral remote sensing image data as the main information sources, multiple remote sensing data processing techniques and methods such as color compound, band ratio, principal component analysis and image color segmentation, are synthetically applied to extract uranium mineralization and alteration information from the remote sensing image. The results of this study provided basic data for analysis of uranium ore-formation conditions in the area. (authors)

  17. Health assessment and risk mitigation of railroad networks exposed to natural hazards using commercial remote sensing and spatial information technologies.

    Science.gov (United States)

    2017-05-31

    The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...

  18. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  19. Reference Information Based Remote Sensing Image Reconstruction with Generalized Nonconvex Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-06-01

    Full Text Available Because of the contradiction between the spatial and temporal resolution of remote sensing images (RSI and quality loss in the process of acquisition, it is of great significance to reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference image-based reconstruction methods have great potential for higher reconstruction performance, while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing objective function incorporating a reference image as prior information is developed. We resort to the reference prior information inherent in interior and exterior data simultaneously to build a new generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the innovation of this paper consists of the following three respects: (1 we propose a nonconvex low-rank approximation for reconstructing RSI; (2 we inject reference prior information to overcome over smoothed edges and texture detail losses; (3 on this basis, we combine conjugate gradient algorithms and a single-value threshold (SVT simultaneously to solve the proposed algorithm. The performance of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR and preserves image details significantly compared to most of the current approaches without reference images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy inputs in a more unified framework.

  20. Handbook on advances in remote sensing and geographic information systems paradigms and applications in forest landscape modeling

    CERN Document Server

    Favorskaya, Margarita N

    2017-01-01

    This book presents the latest advances in remote-sensing and geographic information systems and applications. It is divided into four parts, focusing on Airborne Light Detection and Ranging (LiDAR) and Optical Measurements of Forests; Individual Tree Modelling; Landscape Scene Modelling; and Forest Eco-system Modelling. Given the scope of its coverage, the book offers a valuable resource for students, researchers, practitioners, and educators interested in remote sensing and geographic information systems and applications.

  1. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  2. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  3. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  4. Remote sensing and geographic information system for appraisal of salt-affected soils in India.

    Science.gov (United States)

    Singh, Gurbachan; Bundela, D S; Sethi, Madhurama; Lal, Khajanchi; Kamra, S K

    2010-01-01

    Quantification of the nature, extent, and spatial distribution of salt-affected soils (SAS) for India and the world is essential for planning and implementing reclamation programs in a timely and cost-effective manner for sustained crop production. The national extent of SAS for India over the last four decades was assessed by conventional and remote sensing approaches using diverse methodologies and class definitions and ranged from 6.0 to 26.1 million hectares (Mha) and 1.2 to 10.1 Mha, respectively. In 1966, an area of 6 Mha under SAS was first reported using the former approach. Three national estimates, obtained using remote sensing, were reconciled using a geographic information system, resulting in an acceptable extent of 6.73 Mha. Moderately and severely salt-encrusted lands having large contiguous area have been correctly mapped, but slightly salt-encrusted land having smaller affected areas within croplands has not been accurately mapped. Recent satellite sensors (e.g., Resourcesat-1, Cartosat-2, IKONOS-II, and RISAT-2), along with improved image processing techniques integrated with terrain and other spatial data using a geographic information system, are enabling mapping at large scale. Significant variations in salt encrustation at the surface caused by soil moisture, waterlogging conditions, salt-tolerant crops, and dynamics of subsurface salts present constraints in appraisal, delineation, and mapping efforts. The article provides an overview of development, identification, characterization, and delineation of SAS, past and current national scenarios of SAS using conventional and remote sensing approaches, reconciliation of national estimates, issues of SAS mapping, and future scope.

  5. Discussion on the correlation between geophysical and remote sensing information. Primary study on information correlation of research content and concept of post-remote sensing application technology for uranium exploration

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang

    2005-01-01

    Based on the research content of post-remote sensing application technology for uranium exploration, a preliminary discussion on the correlation between RS information and geophysical information from gravity, aero-magnetics, aero-radioactivity is made on five aspects: physical meaning, depth of geological rule meaning, time and phase, planar pattern and inter-reaction mechanism. It creates a good beginner for deeply studying the correlation in quality and quantity between RS information from post-remote sensing application technology and other geologic information. (authors)

  6. Construction of analysis system on personal computer for slope disaster information using remote sensing technology. Remote sensing wo riyoshita pasokongata no shamen bosai joho kaiseki system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Setojima, M [Kokusai Kogyo Co. Ltd., Tokyo (Japan); Goto, K [Nagasaki Universtiy, Nagasaki (Japan). FAculty of Engineering

    1991-08-25

    An analytical system with superposition of images which uses picture elements as a unit was developed to treat information obtained by remote sensing and other geographical information by superposing the images in order to extract the second information which expresses qualitatively and quantitatively the degree of slope disaster in the future, based on the first information about the damage caused by disaster and landform and geology. As necessary function for analytical system of the second information, precise correction of geometrical strain, superposition of images, visual reading treatment, and output of analytical result in map are listed and described respectively. Next, the detailed explanation of hardware and software of pilot system which used personal computer was given. The analytical procedure and result of land conditions around the landslide occurred at Nagano city in 1985 was shown. 3 refs., 1 fig., 1 tab.

  7. Remote sensing and modeling. A tool to provide the spatial information for biomass production potential

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.P.; Wisskirchen, K.; Schroedter-Homscheidt, M. [DLR, Wessling (Germany). German Remote Sensing Data Center; Borg, E.; Fichtelmann, B. [DLR, Neustrelitz (Germany). German Remote Sensing Data Center

    2006-07-01

    Earth observation from space has been successfully demonstrated over a wide range of monitoring activities, mostly with the aim of measuring the spatial and temporal distribution of biophysical and geophysical parameters as e.g. the Normalized Difference Vegetation Index (NDVI), the land surface temperature (LST) or the land use classification (LCC). With the growing need for more reliable information of global biomass activity in the frame of climate change, the identification and quantification of carbon sinks and sources got of importance. The goal of our activities is to use time series of remote sensing data and carbon modeling to assess the biomass of large regions. Future activities will be discussed as reprocessing of archived time series (e.g. 30 years) of remote sensing data, which will be used as input to biomass modeling, improving the spatial resolution of local, historic land use maps by processing archived Landsat data (30m), using an innovative classification processor for deriving actual multi-temporal land use maps based MERIS data (300m) and delivering a biomass equivalent indicator as productivity indicator. (orig.)

  8. Application of remote sensing and geographical information system for generation of runoff curve number

    Science.gov (United States)

    Meshram, S. Gajbhiye; Sharma, S. K.; Tignath, S.

    2017-07-01

    Watershed is an ideal unit for planning and management of land and water resources (Gajbhiye et al., IEEE international conference on advances in technology and engineering (ICATE), Bombay, vol 1, issue 9, pp 23-25, 2013a; Gajbhiye et al., Appl Water Sci 4(1):51-61, 2014a; Gajbhiye et al., J Geol Soc India (SCI-IF 0.596) 84(2):192-196, 2014b). This study aims to generate the curve number, using remote sensing and geographical information system (GIS) and the effect of slope on curve number values. The study was carried out in Kanhaiya Nala watershed located in Satna district of Madhya Pradesh. Soil map, Land Use/Land cover and slope map were generated in GIS Environment. The CN parameter values corresponding to various soil, land cover, and land management conditions were selected from Natural Resource Conservation Service (NRCS) standard table. Curve number (CN) is an index developed by the NRCS, to represent the potential for storm water runoff within a drainage area. The CN for a drainage basin is estimated using a combination of land use, soil, and antecedent soil moisture condition (AMC). In present study effect of slope on CN values were determined. The result showed that the CN unadjusted value are higher in comparison to CN adjusted with slope. Remote sensing and GIS is very reliable technique for the preparation of most of the input data required by the SCS curve number model.

  9. A Holistic Concept to Design Optimal Water Supply Infrastructures for Informal Settlements Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Lea Rausch

    2018-02-01

    Full Text Available Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time and describe how the result of the optimization depends on the entered remote sensing data.

  10. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  11. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  12. Analyzing regional geological setting of DS uranium deposit based on the extensional research of remote sensing information

    International Nuclear Information System (INIS)

    Liu Dechang; Ye Fawang; Zhao Yingjun

    2006-01-01

    Through analyzing remote sensing image, a special geological environment for uranium ore-formation in Dongsheng-Hangjinqi area consisting of fault-uplift, southern margin fault and annular structure is discovered in this paper. Then the extensional researches on fault-uplift, southern margin fault as well as annular structure are made by using the information-integrated technologies to overlap the remote sensing information with other geoscientific information such as geophysics, geology and so on. Finally, the unusual regional geological setting is analyzed in the view of uranium ore formation, and its influences on the occurrence of DS uranium deposit are also discussed. (authors)

  13. Role of satellite remote sensing in the geographic information economics in France

    Science.gov (United States)

    Denégre, Jean

    In national and international economics, geographic information plays a role which is generally acknowledged to be important but which is however, difficult to assess quantitatively, its applications being rather miscellaneous and indirect. Computer graphics and telecommunications increae that importance still more and justify many investments and research into new cartographic forms. As part of its responsibility for participating in the promotion of those developments, by taking into account needs expressed by public or private users, the National Council for Geographic Information (C.N.I.G.) has undertaken a general evaluation of the economic and social utility of geographic information in France. The study involves an estimation of the cost of production and research activities, which are probably about 0.1% of the Cross National Product—similar to many other countries. It also devised a method of estimating "cost/advantage" ratios applicable to these "intangible" benefits. Within that framework, remote sensing emphasizes particular aspects related both to the increase of economic performances in cartographic production and to the advent of new products and new ways of utilization. A review of some significant sectors shows effective earnings of about 10-20%, or even 50% or 100% of the costs, and these are doubtless much greater for the efficacy in the exploitation of products. Finally, many applications, entirely new result from extensions in various fields which would have been impossible without remote sensing: here the "cost advantage" ratio cannot even be compared with previous processes. Studies were undertaken in parallel for defining different types of products derived from satellite imagery, as well as those domains where development effort is required in order to make new advances.

  14. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    Science.gov (United States)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  15. Informing a hydrological model of the Ogooué with multi-mission remote sensing data

    Science.gov (United States)

    Kittel, Cecile M. M.; Nielsen, Karina; Tøttrup, Christian; Bauer-Gottwein, Peter

    2018-02-01

    Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological model of the ungauged Ogooué river basin in Africa with publicly available and free remote sensing observations. We used a rainfall-runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the model using the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) and forced it using precipitation from two satellite-based rainfall estimates, FEWS-RFE (Famine Early Warning System rainfall estimate) and the Tropical Rainfall Measuring Mission (TRMM) 3B42 v.7, and temperature from ECMWF ERA-Interim. We combined three different datasets to calibrate the model using an aggregated objective function with contributions from (1) historical in situ discharge observations from the period 1953-1984 at six locations in the basin, (2) radar altimetry measurements of river stages by Envisat and Jason-2 at 12 locations in the basin and (3) GRACE (Gravity Recovery and Climate Experiment) total water storage change (TWSC). Additionally, we extracted CryoSat-2 observations throughout the basin using a Sentinel-1 SAR (synthetic aperture radar) imagery water mask and used the observations for validation of the model. The use of new satellite missions, including Sentinel-1 and CryoSat-2, increased the spatial characterization of river stage. Throughout the basin, we achieved good agreement between observed and simulated discharge and the river stage, with an RMSD between simulated and observed water amplitudes at virtual stations of 0.74 m for the TRMM-forced model and 0.87 m for the FEWS-RFE-forced model. The hydrological model also captures overall total water storage change patterns, although the amplitude of storage change is generally underestimated. By combining hydrological modeling

  16. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  17. [Ecosystem services evaluation based on geographic information system and remote sensing technology: a review].

    Science.gov (United States)

    Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min

    2011-12-01

    Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.

  18. Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology.

    Science.gov (United States)

    Bhunia, Gouri Sankar; Dikhit, Manas Ranjan; Kesari, Shreekant; Sahoo, Ganesh Chandra; Das, Pradeep

    2011-11-01

    Visceral leishmaniasis or kala-azar is a potent parasitic infection causing death of thousands of people each year. Medicinal compounds currently available for the treatment of kala-azar have serious side effects and decreased efficacy owing to the emergence of resistant strains. The type of immune reaction is also to be considered in patients infected with Leishmania donovani (L. donovani). For complete eradication of this disease, a high level modern research is currently being applied both at the molecular level as well as at the field level. The computational approaches like remote sensing, geographical information system (GIS) and bioinformatics are the key resources for the detection and distribution of vectors, patterns, ecological and environmental factors and genomic and proteomic analysis. Novel approaches like GIS and bioinformatics have been more appropriately utilized in determining the cause of visearal leishmaniasis and in designing strategies for preventing the disease from spreading from one region to another.

  19. Information operator approach and iterative regularization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Hilgers, S.; Bargen, A. von; Rozanov, A.; Eichmann, K.-U.; Savigny, C. von; Burrows, J.P.

    2007-01-01

    In this study, we present the main features of the information operator approach for solving linear inverse problems arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-posed problems and derive the truncated versions of the Gauss-Newton and Levenberg-Marquardt methods. Although the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided, which exemplify the performances of the methods. These results correspond to the NO 2 retrieval from SCIAMACHY limb scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen

  20. New insights into the application of geographical information systems and remote sensing in veterinary parasitology

    Directory of Open Access Journals (Sweden)

    Laura Rinaldi

    2006-11-01

    Full Text Available Over the past 10-15 years, significant advances have been made in the development and application of geographical information systems (GIS and remote sensing (RS. In veterinary sciences, particularly in veterinary parasitology, GIS and RS offer powerful means for disease mapping, ecological analysis and epidemiological surveillance and have become indispensable tools for processing, analysing and visualising spatial data. They can also significantly assist with the assessment of the distribution of health-relevant environmental factors via interpolation and modelling. In this review, we first summarize general aspects of GIS and RS, and emphasize the most important applications of these tools in veterinary parasitology, including recent advances in territorial sampling. Disease mapping, spatial statistics, including Bayesian inference, ecological analyses and epidemiological surveillance are summarized in the next section and illustrated with a set of figures. Finally, a set of conclusions is put forward.

  1. From remote sensing data about information extraction for 3D geovisualization - Development of a workflow

    International Nuclear Information System (INIS)

    Tiede, D.

    2010-01-01

    With an increased availability of high (spatial) resolution remote sensing imagery since the late nineties, the need to develop operative workflows for the automated extraction, provision and communication of information from such data has grown. Monitoring requirements, aimed at the implementation of environmental or conservation targets, management of (environmental-) resources, and regional planning as well as international initiatives, especially the joint initiative of the European Commission and ESA (European Space Agency) for Global Monitoring for Environment and Security (GMES) play also a major part. This thesis addresses the development of an integrated workflow for the automated provision of information derived from remote sensing data. Considering applied data and fields of application, this work aims to design the workflow as generic as possible. Following research questions are discussed: What are the requirements of a workflow architecture that seamlessly links the individual workflow elements in a timely manner and secures accuracy of the extracted information effectively? How can the workflow retain its efficiency if mounds of data are processed? How can the workflow be improved with regards to automated object-based image analysis (OBIA)? Which recent developments could be of use? What are the limitations or which workarounds could be applied in order to generate relevant results? How can relevant information be prepared target-oriented and communicated effectively? How can the more recently developed freely available virtual globes be used for the delivery of conditioned information under consideration of the third dimension as an additional, explicit carrier of information? Based on case studies comprising different data sets and fields of application it is demonstrated how methods to extract and process information as well as to effectively communicate results can be improved and successfully combined within one workflow. It is shown that (1

  2. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  3. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    Science.gov (United States)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  4. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  5. Elimination of hidden a priori information from remotely sensed profile data

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2007-01-01

    Full Text Available Profiles of atmospheric state variables retrieved from remote measurements often contain a priori information which causes complication in the statistical use of data and in the comparison with other measured or modeled data. For such applications it often is desirable to remove the a priori information from the data product. If the retrieval involves an ill-posed inversion problem, formal removal of the a priori information requires resampling of the data on a coarser grid, which in some sense, however, is a prior constraint in itself. The fact that the trace of the averaging kernel matrix of a retrieval is equivalent to the number of degrees of freedom of the retrieval is used to define an appropriate information-centered representation of the data where each data point represents one degree of freedom. Since regridding implies further degradation of the data and thus causes additional loss of information, a re-regularization scheme has been developed which allows resampling without additional loss of information. For a typical ClONO2 profile retrieved from spectra as measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, the constrained retrieval has 9.7 degrees of freedom. After application of the proposed transformation to a coarser information-centered altitude grid, there are exactly 9 degrees of freedom left, and the averaging kernel on the coarse grid is unity. Pure resampling on the information-centered grid without re-regularization would reduce the degrees of freedom to 7.1 (6.7 for a staircase (triangular representation scheme.

  6. Remote sensing for restoration planning: how the big picture can inform stakeholders

    Science.gov (United States)

    Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth

    2016-01-01

    The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...

  7. Effective spatial database support for acquiring spatial information from remote sensing images

    Science.gov (United States)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  8. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  9. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  10. Environmental factor analysis of cholera in China using remote sensing and geographical information systems.

    Science.gov (United States)

    Xu, M; Cao, C X; Wang, D C; Kan, B; Xu, Y F; Ni, X L; Zhu, Z C

    2016-04-01

    Cholera is one of a number of infectious diseases that appears to be influenced by climate, geography and other natural environments. This study analysed the environmental factors of the spatial distribution of cholera in China. It shows that temperature, precipitation, elevation, and distance to the coastline have significant impact on the distribution of cholera. It also reveals the oceanic environmental factors associated with cholera in Zhejiang, which is a coastal province of China, using both remote sensing (RS) and geographical information systems (GIS). The analysis has validated the correlation between indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local number of cholera cases based on 8-year monthly data from 2001 to 2008. The results show the number of cholera cases has been strongly affected by the variables of SST, SSH and OCC. Utilizing this information, a cholera prediction model has been established based on the oceanic and climatic environmental factors. The model indicates that RS and GIS have great potential for designing an early warning system for cholera.

  11. Making an Informed Decision on Freshwater Management by Integrating Remote Sensing Data with Traditional Data

    Science.gov (United States)

    Hyon, Jason J.

    2012-01-01

    The US National Research Council (NRC) recommended that: "The U.S. government, working in concert with the private sector, academe, the public, and its international partners, should renew its investment in Earth-observing systems and restore its leadership in Earth science and applications." in response to the NASA Earth Science Division's request to prioritize research areas, observations, and notional missions to make those objectives. In this presentation, we will discuss our approach to connect remote sensing science to decision support applications by establishing a framework to integrate direct measurements, earth system models, inventories, and other information to accurately estimate fresh water resources in global, regional, and local scales. We will discuss our demonstration projects and lessons learned from the experience. Deploying a monitoring system that offers sustained, accurate, transparent and relevant information represents a challenge and opportunity to a broad community spanning earth science, water resource accounting and public policy. An introduction to some of the scientific and technical infrastructure issues associated with monitoring systems is offered here to encourage future treatment of these topics by other contributors as a concluding remark.

  12. Evaluating the ecotourism potentials of Naharkhoran area in Gorgan using remote sensing and geographic information system

    Science.gov (United States)

    Oladi, Jafar; Bozorgnia, Delavar

    2010-10-01

    Ecotourism may be defined as voluntary travels to intact natural areas in order to enjoy the natural attractions as well as to get familiar with the culture of local communities. The main factor contributing to inappropriate land uses and natural resource destruction is overaggregation of ecotourists in some specific natural areas such as forests and rangelands; while other parts remain unvisited due to the lack of a proper propagation about those areas. Evaluating the ecotourism potentials of each area would lead to a wider participation of local people in natural resource conservation activities. In order to properly introduce the ecotourism potential areas, at first, we carried out land preparation practices using Geographic Information System (GIS) and Remote Sensing (RS) techniques; then, the maps of height, slope and orientation were produced using the digital elevation model (DEM) of the study area. Afterwards, we overlaid these maps and the ecotourism potential areas were identified on the map. These specified areas were classified into two land uses of mass and alternative ecotourism, with three subclasses (including class1, class2 and an inappropriate class) considered for each land use. To classify the image, the training areas determined on the ground using a GPS device (Ground Positioning System) were transferred on the RS image. Subsequently, the ecotourism potential areas were determined using a hybrid method. At the final phase, these areas were compared with the areas determined on the ecotourism potential map; as a result of this comparison, the overlaid ecotourism potential areas were distinguished on the Geographic information System.

  13. Proceedings of the 1986 international geoscience and remote sensing symposium (IGARSS '86) on remote sensing: today's solutions for tomorrow's information needs, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Guyenne, T.D.; Hunt, J.J.

    1986-08-01

    New instruments with enormous information gathering abilities are being planned to provide data from all parts of the spectrum. New data processing and storage hardware, combined with fundamental advances in information systems concepts and algorithms are awaiting the research efforts to mold them for special use. Some topics covered in the proceedings are: Optical and infrared remote sensing systems; information transfer and Third World development; wave target interaction mechanisms; microwave remote sensing of sea ice; ERS-1 sensor performance, calibration, and data validation; geophysics; imaging spectrometry; image analysis systems; ocean radar scattering; marginal ice zone remote sensing; geomorphology; SAR applications; geology; multispectral image analysis; ocean wind scatterometry; passive microwave sensing; radar mapping and land use; meteorology and atmospheric sounding; and radar instrumentation.

  14. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    Science.gov (United States)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and

  15. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.

    Science.gov (United States)

    Lim, Joongbin; Lee, Kyoo-Seock

    2017-03-01

    Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.

  16. Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador

    Directory of Open Access Journals (Sweden)

    Mariela Palacios González

    2015-01-01

    Full Text Available The biodiversity of the Andean Chocó in western Ecuador and Colombia is threatened by anthropogenic changes in land cover. The main goal of this study was to contribute to conservation of 12 threatened species of amphibians at a cloud forest site in northwestern Ecuador, by identifying and proposing protection of critical areas. We used Geographic Information Systems (GIS and remote sensing techniques to quantify land cover changes over 35 years and outline important areas for amphibian conservation. We performed a supervised classification of an IKONOS satellite image from 2011 and two aerial photographs from 1977 and 2000. The 2011 IKONOS satellite image classification was used to delineate areas important for conservation of threatened amphibians within a 200 m buffer around rivers and streams. The overall classification accuracy of the three images was ≥80%. Forest cover was reduced by 17% during the last 34 years. However, only 50% of the study area retained the initial (1977 forest cover, as land was cleared for farming and eventually reforested. Finally, using the 2011 IKONOS satellite image, we delineated areas of potential conservation interest that would benefit the long term survival of threatened amphibian species at the Ecuadorian cloud forest site studied.

  17. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  18. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  19. Image Fusion Technologies In Commercial Remote Sensing Packages

    OpenAIRE

    Al-Wassai, Firouz Abdullah; Kalyankar, N. V.

    2013-01-01

    Several remote sensing software packages are used to the explicit purpose of analyzing and visualizing remotely sensed data, with the developing of remote sensing sensor technologies from last ten years. Accord-ing to literature, the remote sensing is still the lack of software tools for effective information extraction from remote sensing data. So, this paper provides a state-of-art of multi-sensor image fusion technologies as well as review on the quality evaluation of the single image or f...

  20. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs

    Directory of Open Access Journals (Sweden)

    Clement Atzberger

    2013-02-01

    Full Text Available Many remote sensing applications are devoted to the agricultural sector. Representative case studies are presented in the special issue “Advances in Remote Sensing of Agriculture”. To complement the examples published within the special issue, a few main applications with regional to global focus were selected for this review, where remote sensing contributions are traditionally strong. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. Five different applications have been selected, which are illustrated and described: (1 biomass and yield estimation, (2 vegetation vigor and drought stress monitoring, (3 assessment of crop phenological development, (4 crop acreage estimation and cropland mapping and (5 mapping of disturbances and land use/land cover (LULC changes. Many other applications exist, such as precision agriculture and irrigation management (see other special issues of this journal, but were not included to keep the paper concise. The paper starts with an overview of the main agricultural challenges. This section is followed by a brief overview of existing operational monitoring systems. Finally, in the main part of the paper, the mentioned applications are described and illustrated. The review concludes with some key recommendations.

  1. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    Science.gov (United States)

    Muller, Marc Francois

    Access to electricity remains an impediment to development in many parts of the world, particularly in rural areas with low population densities and prohibitive grid extension costs. In that context, community-scale run-of-river hydropower---micro-hydropower---is an attractive local power generation option, particularly in mountainous regions, where appropriate slope and runoff conditions occur. Despite their promise, micro hydropower programs have generally failed to have a significant impact on rural electrification in developing nations. In Nepal, despite very favorable conditions and approximately 50 years of experience, the technology supplies only 4% of the 10 million households that do not have access to the central electricity grid. These poor results point towards a major information gap between technical experts, who may lack the incentives or local knowledge needed to design appropriate systems for rural villages, and local users, who have excellent knowledge of the community but lack technical expertise to design and manage infrastructure. Both groups suffer from a limited basis for evidence-based decision making due to sparse environmental data available to support the technical components of infrastructure design. This dissertation draws on recent advances in remote sensing data, stochastic modeling techniques and open source platforms to bridge that information gap. Streamflow is a key environmental driver of hydropower production that is particularly challenging to model due to its stochastic nature and the complexity of the underlying natural processes. The first part of the dissertation addresses the general challenge of Predicting streamflow in Ungauged Basins (PUB). It first develops an algorithm to optimize the use of rain gauge observations to improve the accuracy of remote sensing precipitation measures. It then derives and validates a process-based model to estimate streamflow distribution in seasonally dry climates using the stochastic

  2. Wildfire monitoring via the integration of remote sensing with innovative information technologies

    Science.gov (United States)

    Kontoes, C.; Papoutsis, I.; Michail, D.; Herekakis, Th.; Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; Nikolaou, C.; Sioutis, M.; Garbis, G.; Vassos, S.; Keramitsoglou, I.; Kersten, M.; Manegold, S.; Pirk, H.

    2012-04-01

    In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such

  3. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  4. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  5. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  6. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  7. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  8. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  9. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  10. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth

    2012-01-01

    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... be expected from remote sensing imagery and the provided information shall help to better anticipate problems that will be encountered when acquiring, analyzing and interpreting remote sensing data. Beyond remote sensing, it may be a good point of departure for a large group of scientists with a diverse...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...

  11. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  12. Geographic information system for fusion and analysis of high-resolution remote sensing and ground data

    Science.gov (United States)

    Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz

    1993-01-01

    We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System (GIS), integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a boreal forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case 1) calibrated DC-8 SAR (Synthetic Aperture Radar) data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case 2) will produce calibrated DC-8 SAR

  13. Evaluation of Different Methods for Soil Classifications by Using Geographic Information Systems and Remote Sensing

    Directory of Open Access Journals (Sweden)

    S. H Sanaeinejad

    2012-12-01

    Full Text Available Soil salinity is an important factor that affects plant growth and reduces production of plantat different growth stages Remote sensing technology and GIS have a great potential for monitoring dynamic soil processes such as salinity. In the present study the efficiency of remote sensing technology and its integration with GIS was examined to estimate soil salinity for Neyshabour basin. Different classification methods for soil salinity were also investigated. We used 6 bands of LandSat ETM+ for this study. Classification results obtained from applying mathematical models for the images were compared with different band combinations results. The area of saline and non saline soil classes were identified in the study area based on the both methods and also based on the combination of the two methods. The results showed that the best method for soil classification was using of the two methods in the first stage to separate two classes of saline and non saline soils and then classifying the non saline soils in the second stage. As the variation in the numerical values of the image for different soil salinity in the study area was small, it was concluded that there is a limit potential of LandSat ETM+ images for identifying and classification of soil salinity in such an area.

  14. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution

  15. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS).

    Science.gov (United States)

    Zhang, Yuanzhi; Chen, Zhengyi; Zhu, Boqin; Luo, Xiuyue; Guan, Yanning; Guo, Shan; Nie, Yueping

    2008-12-01

    The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.

  16. Designing Financial Instruments for Rapid Flood Response Using Remote Sensed and Archival Hazard and Exposure Information

    Science.gov (United States)

    Lall, U.; Allaire, M.; Ceccato, P.; Haraguchi, M.; Cian, F.; Bavandi, A.

    2017-12-01

    Catastrophic floods can pose a significant challenge for response and recovery. A key bottleneck in the speed of response is the availability of funds to a country or regions finance ministry to mobilize resources. Parametric instruments, where the release of funs is tied to the exceedance of a specified index or threshold, rather than to loss verification are well suited for this purpose. However, designing and appropriate index, that is not subject to manipulation and accurately reflects the need is a challenge, especially in developing countries which have short hydroclimatic and loss records, and where rapid land use change has led to significant changes in exposure and hydrology over time. The use of long records of rainfall from climate re-analyses, flooded area and land use from remote sensing to design and benchmark a parametric index considering the uncertainty and representativeness of potential loss is explored with applications to Bangladesh and Thailand. Prospects for broader applicability and limitations are discussed.

  17. The Analysis of Tree Species Distribution Information Extraction and Landscape Pattern Based on Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Yi Zeng

    2017-08-01

    Full Text Available The forest ecosystem is the largest land vegetation type, which plays the role of unreplacement with its unique value. And in the landscape scale, the research on forest landscape pattern has become the current hot spot, wherein the study of forest canopy structure is very important. They determines the process and the strength of forests energy flow, which influences the adjustments of ecosystem for climate and species diversity to some extent. The extraction of influencing factors of canopy structure and the analysis of the vegetation distribution pattern are especially important. To solve the problems, remote sensing technology, which is superior to other technical means because of its fine timeliness and large-scale monitoring, is applied to the study. Taking Lingkong Mountain as the study area, the paper uses the remote sensing image to analyze the forest distribution pattern and obtains the spatial characteristics of canopy structure distribution, and DEM data are as the basic data to extract the influencing factors of canopy structure. In this paper, pattern of trees distribution is further analyzed by using terrain parameters, spatial analysis tools and surface processes quantitative simulation. The Hydrological Analysis tool is used to build distributed hydrological model, and corresponding algorithm is applied to determine surface water flow path, rivers network and basin boundary. Results show that forest vegetation distribution of dominant tree species present plaque on the landscape scale and their distribution have spatial heterogeneity which is related to terrain factors closely. After the overlay analysis of aspect, slope and forest distribution pattern respectively, the most suitable area for stand growth and the better living condition are obtained.

  18. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  19. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    Science.gov (United States)

    Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew

    2017-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with

  20. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  1. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  2. Remote Sensing Image in the Application of Agricultural Tourism Planning

    Directory of Open Access Journals (Sweden)

    Guojing Fan

    2013-06-01

    Full Text Available This paper introduces the processing technology of high resolution remote sensing image, the specific making process of tourism map and different remote sensing data in the key application of tourism planning and so on. Remote sensing extracts agricultural tourism planning information, improving the scientificalness and operability of agricultural tourism planning. Therefore remote sensing image in the application of agricultural tourism planning will be the inevitable trend of tourism development.

  3. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  4. Analysis of Debris Flow Kuranji River in Padang City Using Rainfall Data, Remote Sensing and Geographic Information System

    International Nuclear Information System (INIS)

    Umar, Z; Wan Mohd Akib, W A A; Ahmad, A

    2014-01-01

    Flash flood is the most common environmental hazard worldwide. This phenomenon is usually occurs due to intense and prolonged rainfall spells on saturated ground. When there is a rapid rise in water levels and high flow-velocities of the stream occur, the channel overflows and the result is a flash flood. Flash floods normally cause a dangerous wall of roaring water carrying rocks, mud and other debris. On Tuesday, July 24, 2012 at 18:00 pm, a flash flood (debris flow) struck Kuranji River whereby 19 urban villages in seven (7) sub-districts in the city of Padang were affected by this flood disaster. The temporary loss estimated is 40 Billion US Dollar reported by the West Sumatra Provincial Government due to many damages of the built environment infrastructures. This include damaged houses of 878 units, mosque 15 units, irrigation damaged 12 units, bridges 6 units, schools 2 units and health posts 1 unit. Generally, widely used methods for making a landslide study are Geographic Information System (GIS) and Remote Sensing techniques. The landslide information extracted from remotely sensed products is mainly related to morphology, vegetation and hydrologic conditions of a slope. While GIS is used to create a database, data management, data display and to analyze data such as thematic maps of land use/land cover, normalized difference vegetation index (NDVI), rainfall data and soil texture. This paper highlights the analysis of the condition of the Watershed Kuranji River experiencing flash floods, using remote sensing satellite image of Landsat ETM 7 in 2009 and 2012 and Geographic Information System (GIS). Furthermore, the data was analyzed to determine whether this flash flood occurred due to extreme rain or collapse of existing natural dams in the upstream of the Kuranji River

  5. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  6. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  7. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  8. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  9. Comprehensive, integrated, remote sensing at DOE sites

    International Nuclear Information System (INIS)

    Lackey, J.G.; Burson, Z.G.

    1985-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective of the program is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided, at present, consist of the following: large format aerial photography, video from aerial platforms, multispectral scanning, and airborne nuclear radiometric surveys. Implementation of the CIRS Program by EG and G Energy Measurements, Inc. began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in this summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis

  10. Potential application of remote sensing in monitoring informal settlements in South Africa where complimentary data does not exist

    CSIR Research Space (South Africa)

    Busgeeth, K

    2008-06-01

    Full Text Available as only the study conducted by Hofmann was available [7]. The study reported how informal settlements can be detected from other land-use-forms by describing typical characteristics of colour, texture, shape and context using remote sensed data from.... This approach may be appropriate for larger buildings, but Hofmann found that individual shacks could not be identified on IKONOS imagery [7]. QuickBird has a higher spatial resolution than IKONOS, at 0.6m vs 1m in the panchromatic band; this represents a...

  11. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  12. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  13. Exploiting Surface Albedos Products to Bridge the Gap Between Remote Sensing Information and Climate Models

    Science.gov (United States)

    Pinty, Bernard; Andredakis, Ioannis; Clerici, Marco; Kaminski, Thomas; Taberner, Malcolm; Stephen, Plummer

    2011-01-01

    We present results from the application of an inversion method conducted using MODIS derived broadband visible and near-infrared surface albedo products. This contribution is an extension of earlier efforts to optimally retrieve land surface fluxes and associated two- stream model parameters based on the Joint Research Centre Two-stream Inversion Package (JRC-TIP). The discussion focuses on products (based on the mean and one-sigma values of the Probability Distribution Functions (PDFs)) obtained during the summer and winter and highlight specific issues related to snowy conditions. This paper discusses the retrieved model parameters including the effective Leaf Area Index (LAI), the background brightness and the scattering efficiency of the vegetation elements. The spatial and seasonal changes exhibited by these parameters agree with common knowledge and underscore the richness of the high quality surface albedo data sets. At the same time, the opportunity to generate global maps of new products, such as the background albedo, underscores the advantages of using state of the art algorithmic approaches capable of fully exploiting accurate satellite remote sensing datasets. The detailed analyses of the retrieval uncertainties highlight the central role and contribution of the LAI, the main process parameter to interpret radiation transfer observations over vegetated surfaces. The posterior covariance matrix of the uncertainties is further exploited to quantify the knowledge gain from the ingestion of MODIS surface albedo products. The estimation of the radiation fluxes that are absorbed, transmitted and scattered by the vegetation layer and its background is achieved on the basis of the retrieved PDFs of the model parameters. The propagation of uncertainties from the observations to the model parameters is achieved via the Hessian of the cost function and yields a covariance matrix of posterior parameter uncertainties. This matrix is propagated to the radiation

  14. THE USE OF SATELLITE REMOTE SENSING DATA AND GEOGRAPHIC INFORMATION SYSTEMS ON CRITICAL LAND ANALYSIS

    Directory of Open Access Journals (Sweden)

    Agus Suharyanto

    2013-06-01

    Full Text Available Critical land classification can be analyzed using combination between Top Soil Thickness - Land erosion method, and BRLT methods. Both methods are needed soil erosion data as one of input data. The soil erosion data can be analyzed using USLE and MUSLE methods. The combination of two critical land analyses methods with input soil erosion data from two analyses methods will be produced four combinations of critical land classification. In this research, four of the critical land classification and two soil erosion classification will be analyzed using GIS. The best method to classify critical land will be investigated in this research. The best classified critical land is the classified critical land data is nearest with the field condition. Percentage of vegetation cover (PVC is one of the most important input data in the critical land classification analysis using BRLKT method. This data have 50% weight. PVC condition is classified into five categories i.e. very good, good, fair, poor, and very poor. Each category have score 5, 4, 3, 2, 1 respectively. To analyze this PVC classification, NDVI generated from satellite remote sensing data is used in this research. From the four methods of land critical classification analyses used in this research, critical land classified using BRLKT method with input soil erosion analyzed using method is produced the critical land classification nearest with the critical land condition in the field.

  15. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  16. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  17. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  18. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 4 : web-based bridge information database--visualization analytics and distributed sensing.

    Science.gov (United States)

    2012-03-01

    This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...

  19. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  20. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS in Water Resources and Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Xianwei Wang

    2018-05-01

    Full Text Available Water is one of the most critical natural resources that maintain the ecosystem and support people’s daily life. Pressures on water resources and disaster management are rising primarily due to the unequal spatial and temporal distribution of water resources and pollution, and also partially due to our poor knowledge about the distribution of water resources and poor management of their usage. Remote sensing provides critical data for mapping water resources, measuring hydrological fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS provide the best tools for water resources, drought and flood risk management. This special issue presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation, water body and flood inundation mapping, and risk management. The latest technologies applied include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV video image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil moisture estimation, the Tropical Rainfall Measuring Mission (TRMM and the Global Precipitation Measurement (GPM satellite rainfall measurements, storm hyetography analysis, rainfall runoff and urban flooding simulation, and satellite radar and optical image classification for urban water bodies and flooding inundation. The application of those technologies is expected to greatly relieve the pressures on water resources and allow better mitigation of and adaptation to the disastrous impact of droughts and flooding.

  1. Assessment Of Morphometric Characteristics Of Karwadi-Nandapur Micro Watershed Using Remote Sensing And Geographical Information System

    Directory of Open Access Journals (Sweden)

    N.P. Patil

    2015-04-01

    Full Text Available Abstract The study area is Karwadi-Nandapur watershed is a micro watershed which falls in the Kayadhu river watershed in Marathwada region of Maharashtra. Using the remotely sensed images of the Indian Remote Sensing Satellite P6 IRS P6 Linear Imaging Self Scanner IIILISS III images captured in October 2010 and November 2011 having resolution of 23.5m X 23.5m and images from Google Earth Pro of study area were used and cartosat satellites. Map of India with scale 11500000 and soil maps of India were used for the experimental study. The thematic maps like drainage map land use and land cover map soil maps and contour map were prepared adopting the PCI Geomatica10.0 software. The geographical information systems GIS analysis was made for the said themes using the Arc GIS ArcMap10.0. The Karwadi- Nandapur watershed was found to be the third order basin. The present study aims to assess the morphometric characteristics of the watershed basin and it has been assessed by applying GIS techniques. Strahlers method has been employed to assess the fluvial characteristics of the study watershed. Each morphometric characteristic is considered as a single parameter and knowledge based weight age has been assigned by considering its role in soil erosion. The morphometric properties determined for this watershed as a whole and for each watershed will be useful for the efficient planning of water harvesting and groundwater projects on watershed basis.

  2. Community Based Informatics: Geographical Information Systems, Remote Sensing and Ontology collaboration - A technical hands-on approach

    Science.gov (United States)

    Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.

    2009-12-01

    With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.

  3. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  4. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  5. Remote sensing, geographical information systems, and spatial modeling for analyzing public transit services

    Science.gov (United States)

    Wu, Changshan

    Public transit service is a promising transportation mode because of its potential to address urban sustainability. Current ridership of public transit, however, is very low in most urban regions, particularly those in the United States. This woeful transit ridership can be attributed to many factors, among which poor service quality is key. Given this, there is a need for transit planning and analysis to improve service quality. Traditionally, spatially aggregate data are utilized in transit analysis and planning. Examples include data associated with the census, zip codes, states, etc. Few studies, however, address the influences of spatially aggregate data on transit planning results. In this research, previous studies in transit planning that use spatially aggregate data are reviewed. Next, problems associated with the utilization of aggregate data, the so-called modifiable areal unit problem (MAUP), are detailed and the need for fine resolution data to support public transit planning is argued. Fine resolution data is generated using intelligent interpolation techniques with the help of remote sensing imagery. In particular, impervious surface fraction, an important socio-economic indicator, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, Ohio in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil are selected to model heterogeneous urban land cover. Impervious surface fraction is estimated by analyzing low and high albedo endmembers. With the derived impervious surface fraction, three spatial interpolation methods, spatial regression, dasymetric mapping, and cokriging, are developed to interpolate detailed population density. Results suggest that cokriging applied to impervious surface is a better alternative for estimating fine resolution population density. With the derived fine resolution data, a multiple

  6. Applications of Geographic Information System and Remote Sensing in marine fisheries management and challenges for its development in Colombia

    International Nuclear Information System (INIS)

    Selvaraj, John J; Rajasekharan, Maya; Guzman Angela I

    2008-01-01

    Geographic Information System (GIS) and Remote Sensing (RS) techniques have been used increasingly for marine fisheries development and management over the last years. However, its applications continue to be scarce in Colombia. This paper briefly reviews use of spatial tools in marine fisheries management, both retrospectively and predictively. Case studies of RS and GIS in fisheries research in Colombia and challenges for future use for management measures are discussed. In order to harness the potential of GIS and RS tools in marine fisheries research and management, priority should be given for training fisheries scientists in RS and GIS, increasing collaboration among institutions, departments, standardize data collection, and development of a common platform for data sharing.

  7. PHOTOGRAMMETRY – REMOTE SENSING AND GEOINFORMATION

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2012-07-01

    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  8. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  9. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  10. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, Jesslyn F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  11. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  12. Remote sensing-based Information for crop monitoring: contribution of SAR and Moderate resolution optical data on Asian rice production

    Science.gov (United States)

    Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew

    2013-04-01

    Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of

  13. Operational Use of Remote Sensing within USDA

    Science.gov (United States)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  14. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  15. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  16. Proceedings of the 1986 international geoscience and remote sensing symposium (IGARSS' 86) on remote sensing: today's solutions for tomorrow's information needs, volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Guyenne, T.D.; Hunt, J.J.

    1986-08-01

    Remote sensing applications to agriculture; image processing methodology; active microwave sensing of the ocean; passive microwave sensing of vegetation and soils; radar forestry; hydrology; imaging radar missions; SAR observation of ocean waves; land analysis with optical sensors; and SAR system considerations were discussed.

  17. Critical Data Source; Tool or Even Infrastructure? Challenges of Geographic Information Systems and Remote Sensing for Disaster Risk Governance

    Directory of Open Access Journals (Sweden)

    Alexander Fekete

    2015-09-01

    Full Text Available Disaster risk information is spatial in nature and Geographic Information Systems (GIS and Remote Sensing (RS play an important key role by the services they provide to society. In this context, to risk management and governance, in general, and to civil protection, specifically (termed differently in many countries, and includes, for instance: civil contingencies in the UK, homeland security in the USA, disaster risk reduction at the UN level. The main impetus of this article is to summarize key contributions and challenges in utilizing and accepting GIS and RS methods and data for disaster risk governance, which includes public bodies, but also risk managers in industry and practitioners in search and rescue organizations. The article analyzes certain method developments, such as vulnerability indicators, crowdsourcing, and emerging concepts, such as Volunteered Geographic Information, but also investigates the potential of the topic Critical Infrastructure as it could be applied on spatial assets and GIS and RS itself. Intended to stimulate research on new and emerging fields, this article’s main contribution is to move spatial research toward a more reflective stance where opportunities and challenges are equally and transparently addressed in order to gain more scientific quality. As a conclusion, GIS and RS can play a pivotal role not just in delivering data but also in connecting and analyzing data in a more integrative, holistic way.

  18. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  19. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  20. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  1. Look-up-table approach for leaf area index retrieval from remotely sensed data based on scale information

    Science.gov (United States)

    Zhu, Xiaohua; Li, Chuanrong; Tang, Lingli

    2018-03-01

    Leaf area index (LAI) is a key structural characteristic of vegetation and plays a significant role in global change research. Several methods and remotely sensed data have been evaluated for LAI estimation. This study aimed to evaluate the suitability of the look-up-table (LUT) approach for crop LAI retrieval from Satellite Pour l'Observation de la Terre (SPOT)-5 data and establish an LUT approach for LAI inversion based on scale information. The LAI inversion result was validated by in situ LAI measurements, indicating that the LUT generated based on the PROSAIL (PROSPECT+SAIL: properties spectra + scattering by arbitrarily inclined leaves) model was suitable for crop LAI estimation, with a root mean square error (RMSE) of ˜0.31m2 / m2 and determination coefficient (R2) of 0.65. The scale effect of crop LAI was analyzed based on Taylor expansion theory, indicating that when the SPOT data aggregated by 200 × 200 pixel, the relative error is significant with 13.7%. Finally, an LUT method integrated with scale information was proposed in this article, improving the inversion accuracy with RMSE of 0.20 m2 / m2 and R2 of 0.83.

  2. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    Science.gov (United States)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  3. Knowledge-driven information mining in remote-sensing image archives

    Science.gov (United States)

    Datcu, M.; Seidel, K.; D'Elia, S.; Marchetti, P. G.

    2002-05-01

    Users in all domains require information or information-related services that are focused, concise, reliable, low cost and timely and which are provided in forms and formats compatible with the user's own activities. In the current Earth Observation (EO) scenario, the archiving centres generally only offer data, images and other "low level" products. The user's needs are being only partially satisfied by a number of, usually small, value-adding companies applying time-consuming (mostly manual) and expensive processes relying on the knowledge of experts to extract information from those data or images.

  4. Remote sensing as a source of land cover information utilized in the universal soil loss equation

    Science.gov (United States)

    Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.; Scarpace, F. L.

    1979-01-01

    In this study, methods for gathering the land use/land cover information required by the USLE were investigated with medium altitude, multi-date color and color infrared 70-mm positive transparencies using human and computer-based interpretation techniques. Successful results, which compare favorably with traditional field study methods, were obtained within the test site watershed with airphoto data sources and human airphoto interpretation techniques. Computer-based interpretation techniques were not capable of identifying soil conservation practices but were successful to varying degrees in gathering other types of desired land use/land cover information.

  5. The Application of Chinese High-Spatial Remote Sensing Satellite Image in Land Law Enforcement Information Extraction

    Science.gov (United States)

    Wang, N.; Yang, R.

    2018-04-01

    Chinese high -resolution (HR) remote sensing satellites have made huge leap in the past decade. Commercial satellite datasets, such as GF-1, GF-2 and ZY-3 images, the panchromatic images (PAN) resolution of them are 2 m, 1 m and 2.1 m and the multispectral images (MS) resolution are 8 m, 4 m, 5.8 m respectively have been emerged in recent years. Chinese HR satellite imagery has been free downloaded for public welfare purposes using. Local government began to employ more professional technician to improve traditional land management technology. This paper focused on analysing the actual requirements of the applications in government land law enforcement in Guangxi Autonomous Region. 66 counties in Guangxi Autonomous Region were selected for illegal land utilization spot extraction with fusion Chinese HR images. The procedure contains: A. Defines illegal land utilization spot type. B. Data collection, GF-1, GF-2, and ZY-3 datasets were acquired in the first half year of 2016 and other auxiliary data were collected in 2015. C. Batch process, HR images were collected for batch preprocessing through ENVI/IDL tool. D. Illegal land utilization spot extraction by visual interpretation. E. Obtaining attribute data with ArcGIS Geoprocessor (GP) model. F. Thematic mapping and surveying. Through analysing 42 counties results, law enforcement officials found 1092 illegal land using spots and 16 suspicious illegal mining spots. The results show that Chinese HR satellite images have great potential for feature information extraction and the processing procedure appears robust.

  6. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Science.gov (United States)

    2013-07-24

    ... a current information collection). Affected Public: Business or other for-profit organizations... application; 10 hours for the submission of a data protection plan; 5 hours for the submission of a plan... operations plan for restricting collection or dissemination of imagery of Israeli territory; 3 hours for...

  7. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used. Remotely sensed .... growing stock in Tahno range of Dehradun Forest Division. Okhandiara (2008) .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral signatures to ...

  8. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.

    2012-01-01

    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  9. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  10. Landsat's role in ecological applications of remote sensing.

    Science.gov (United States)

    Warren B. Cohen; Samuel N. Goward

    2004-01-01

    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  11. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  12. SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2013-01-01

    SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community

  13. Remote Sensing and Geographic Information Systems as Decision Support Tools for Malaria Control in the Republic of Korea

    Science.gov (United States)

    2001-05-30

    remote sensing and GIS techniques to monitor vectors and vector-borne disease in Mexico, Belize and, more recently, Peru (Roberts et al. 1999...parasite is severe hemolytic anemia in persons who are deficient in glucose-6- phosphate dehydrogenase (G-6-PD). Primaquine is the only drug currently...the denaturation of hemoglobin, resulting in hemoglobinuria, kidney damage and anemia . Erythrocytes are protected from oxidation by the hexose

  14. Spectral differences of the functional crown parts and status of Norway spruce trees studied using remote sensing information

    Czech Academy of Sciences Publication Activity Database

    Malenovský, Zbyněk; Clevers, J G P W.; Arkima, H.; Kuosmanen, V.; Cudlín, Pavel; Polák, T.

    2003-01-01

    Roč. 22, Suppl. 1 (2003), s. 207-210 ISSN 1335-342X. [Long Term Air Pollution Effect on Forest Ecosystems (International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems)/20./. Zvolen, 30.08.2002-01.09.2002] R&D Projects: GA MŠk OK 389 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * stress response * remote sensing Subject RIV: EH - Ecology, Behaviour Impact factor: 0.100, year: 2003

  15. Remote sensing applications for urban planning - The LUMIS project. [Land Use Management Information System

    Science.gov (United States)

    Paul, C. K.; Landini, A. J.; Diegert, C.

    1975-01-01

    The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-

  16. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  17. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    Science.gov (United States)

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  18. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Science.gov (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  19. Identification and classification of inland wetlands in Tamaulipas through remote sensing and geographic information systems

    Directory of Open Access Journals (Sweden)

    Wilver Enrique Salinas Castillo

    2012-03-01

    Full Text Available This work aimed to identify and classify artificial and natural inland wetlands in the state of Tamaulipas, Mexico, important for migratory aquatic birds. Historically, efforts nave been focused on natural coastal wetlands or specific water bodies located in highlands; however, these surveys have not reflected the dramatic changes in landscape due to farming development in northem Mexico in the Iatest decades. Agricultural fieids and dams associated to them provide food, water and shelterto many migratory birds and other species, a fact not well documented. Factors that may influence the use of wetlands were analyzed, including surface area, associated vegetation and proximity to agricultural fieids. The inventory of inland wetlands was based on the analysis of seven 2000 Landsat ETM satellite imagery and field data gathered from 261 sites surveyed in 2001. Baseline maps were created and GIS analyses were undertaken to classify these water bodies. More than 23 000 inland wetlands were identified, and the information derived from this study will be assist in the development of programs to manage and protect wetlands of importance for migratory aquatic birds in Tamaulipas.

  20. Monitoring of pipeline oil spill fire events using Geographical Information System and Remote Sensing

    Science.gov (United States)

    Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.

    2016-12-01

    Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.

  1. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  2. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  3. Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia.

    Science.gov (United States)

    Minale, Amare Sewnet; Alemu, Kalkidan

    2018-05-07

    The main objective of this study was to develop a malaria risk map for Bahir Dar City, Amhara, which is situated south of Lake Tana on the Ethiopian plateau. Rainfall, temperature, altitude, slope and land use/land cover (LULC), as well as proximity measures to lake, river and health facilities, were investigated using remote sensing and geographical information systems. The LULC variable was derived from a 2012 SPOT satellite image by supervised classification, while 30-m spatial resolution measurements of altitude and slope came from the Shuttle Radar Topography Mission. Metrological data were collected from the National Meteorological Agency, Bahir Dar branch. These separate datasets, represented as layers in the computer, were combined using weighted, multi-criteria evaluations. The outcome shows that rainfall, temperature, slope, elevation, distance from the lake and distance from the river influenced the malaria hazard the study area by 35%, 15%, 10%, 7%, 5% and 3%, respectively, resulting in a map showing five areas with different levels of malaria hazard: very high (11.2%); high (14.5%); moderate (63.3%); low (6%); and none (5%). The malaria risk map, based on this hazard map plus additional information on proximity to health facilities and current LULC conditions, shows that Bahir Dar City has areas with very high (15%); high (65%); moderate (8%); and low (5%) levels of malaria risk, with only 2% of the land completely riskfree. Such risk maps are essential for planning, implementing, monitoring and evaluating disease control as well as for contemplating prevention and elimination of epidemiological hazards from endemic areas.

  4. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information.

    Science.gov (United States)

    Chen, Gongbo; Knibbs, Luke D; Zhang, Wenyi; Li, Shanshan; Cao, Wei; Guo, Jianping; Ren, Hongyan; Wang, Boguang; Wang, Hao; Williams, Gail; Hamm, N A S; Guo, Yuming

    2018-02-01

    PM 1 might be more hazardous than PM 2.5 (particulate matter with an aerodynamic diameter ≤ 1 μm and ≤2.5 μm, respectively). However, studies on PM 1 concentrations and its health effects are limited due to a lack of PM 1 monitoring data. To estimate spatial and temporal variations of PM 1 concentrations in China during 2005-2014 using satellite remote sensing, meteorology, and land use information. Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM 1 data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability. The results of 10-fold cross-validation showed R 2 and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 μg/m 3 , respectively. For seasonal prediction, the R 2 and RMSE were 77% and 11.4 μg/m 3 , respectively. The predicted annual mean concentration of PM 1 across China was 26.9 μg/m 3 . The PM 1 level was highest in winter while lowest in summer. Generally, the PM 1 levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM 1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region. GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-level PM 1 . Ambient PM 1 reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM 1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  6. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  7. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  8. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  9. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  10. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  11. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  12. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  13. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  14. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L. in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1 identified and located the six predominant treeline vegetation types; 2 modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3 simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2 and (3 to 4 locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix, Rhododendron-dominated, Juniperus-dominated and mixed heathland were predicted with high accuracy (AUC >0.9. Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29% would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2% and Alnus viridis (4.8%. The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the

  15. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial

  16. Commercial future: making remote sensing a media event

    Science.gov (United States)

    Lurie, Ian

    1999-12-01

    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  17. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  18. Geographic information system for fusion and analysis of high-resolution remote sensing and ground truth data

    Science.gov (United States)

    Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz

    1992-01-01

    We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System, integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a bore Al forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case I) calibrated DC-8 SAR data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case II) will produce calibrated DC-8 SAR and AVIRIS data, together with

  19. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  20. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  1. Energy and remote sensing applications

    Science.gov (United States)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  2. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  3. 348 A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT ...

    African Journals Online (AJOL)

    Osondu

    remote sensing data for Uyo for the periods 1969, 1978, 1988, 2001 and 2004; evaluate the ... geographical information system (GIS) technology was applied to carry out this research. Field ..... preventing erosion, landslides, and making the.

  4. Remote-sensing and geological information for prospective area selection of in-situ leachable sandstone-type uranium deposit in Songliao and Liaohe faulted-depressed basins

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    On the basis of remote-sensing information and geological environments for the formation of in-situ leachable sandstone-type uranium deposits such as geomorphic features, distribution of drainage system, and paleo-alluvial (diluvial) fans and time-space distribution regularities of orehosting rocks and sandstone bodies in Songliao and Liaohe faulted-depressed basins, image features, tectonic patterns and paleo-geographic environment of the prospective areas are discussed for both basins, and based on a great number of petroleum-geological data and comparison analysis, a remote sensing-geological prospecting model for in-situ leachable sandstonetype uranium deposits in the region is established, providing indications for selection of prospective area

  5. Assimilating Merged Remote Sensing and Ground based Snowpack Information for Runoff Simulation and Forecasting using Hydrological Models

    Science.gov (United States)

    Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.

    2013-12-01

    Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.

  6. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  7. Project THEMIS: A Center for Remote Sensing.

    Science.gov (United States)

    This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.

  8. OPERATIONAL REMOTE SENSING SERVICES IN NORTH EASTERN REGION OF INDIA FOR NATURAL RESOURCES MANAGEMENT, EARLY WARNING FOR DISASTER RISK REDUCTION AND DISSEMINATION OF INFORMATION AND SERVICES

    Directory of Open Access Journals (Sweden)

    P. L. N. Raju

    2016-06-01

    Full Text Available North Eastern Region (NER of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the

  9. Operational Remote Sensing Services in North Eastern Region of India for Natural Resources Management, Early Warning for Disaster Risk Reduction and Dissemination of Information and Services

    Science.gov (United States)

    Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.

    2016-06-01

    North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and

  10. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  11. A Remote Sensing Survey of Deepwater Port Group on Yangtze River Delta

    National Research Council Canada - National Science Library

    Lou, Dong; Zhiu, Bingjian; Zhu, Yingbo

    2005-01-01

    ...+, SPOT, ESR- 2SAR and NOAA-AVHRR remote sensing data as well as other general data. TM/ETM+ and SPOT remote sensing images were used to obtain the information about port conditions, shoreline types and storage fields...

  12. A remote sensing and GIS-enabled asset management system (RS-GAMS).

    Science.gov (United States)

    2013-04-01

    Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...

  13. A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.

    Science.gov (United States)

    2014-04-01

    Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...

  14. Geographic Information and Remotely Sensed Data For The Assessment and Monitoring of The Flood Hazard In Romania

    Science.gov (United States)

    Predescu, C.; Stancalie, G.; Savin, E.

    Floodings represent an important risk in many areas around the globe and especially in Romania. In the latest years floodings occurred quite frequently in Romania, some of which isolated, others were affecting wide areas of the countrySs territory. The paper assumes a modern approach for the flooding risk indices, associated to the physic- geographical, morpho-hydrographical and vulnerability characteristics of a region, in view to establish a methodology which should further allow to determine the flooding risk, using representatives indices at a scale compatible with a synthetic representa- tion of the territory. There are stressed the facilities supplied by the Geographic Infor- mation System (GIS) and the remotely sensed data to manage flooding during their characteristic phases: before, during and after flooding. Accent is laid on the pre and post-crisis phases. An important research topic was the study of the parameters that can be extracted from satellite images in view of organising a hierarchy of the geo- graphical space versus the flooding risk. Information obtained from satellite images proved to be useful for the determination of certain parameters necessary to monitor flooding: hydrographic network, water accumulation, size of floodable surface, land impermeability degree, water absorption capacity over the basin surface, resilience to in-soil water infiltration. The study encompassed both the risk degree levels related with various parameters, which condition and determine floodings, and the one, which takes into consideration the human presence in the sensitive areas. It was planned to design and build a database, which will help to elaborate the flooding hydrological risk indices. The application was developed for the Arges hydrographic basin in Romania, a critical area, keeping in mind that it withholds many localities, including the capital and also important economic centres. The database allows obtaining synthetic repre- sentations of the

  15. Mapping Geohazards in the Churia Region of Nepal: An Application of Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Bannister, Terri

    The Churia region of Nepal is experiencing serious environmental degradation due to landslides, monsoon flooding, land use changes, and gravel excavation. The objectives of this study were to quantify the temporal change of landslides as related to changes in land use/deforestation/urbanization, to quantify the temporal change and extent of river inundation in the Terai, to quantify the extent to which stone quarrying exacerbates the degradation process, and to generate a landslide hazard risk map. Gravel extraction and precipitation data, along with field work and geospatial methods, were used to map degradation by focusing on the centrally located districts of Bara, Rautahat, and Makwanpur. Landsat land use classifications were conducted on imagery from 1976, 1988, 1999, and 2015. A modified Normalized Difference Mid-Infrared (NDMIDIR) algorithm was created by incorporating slope, elevation, and land use types to identify landslide scars. A GIS model using weighted landslide variables derived from remote sensing and GIS methods to predict landslide susceptibility was created. These variables include hydrology, settlement, lithology, geology, precipitation, infrastructure, elevation, slope, aspect, land use, and previous landslides. Gravel excavation in 2007/2008 was nearly 700% higher than in 2001/2002. The Normalized Difference Vegetation Index (NDVI) results showed that the study area is losing 1.03% forest cover annually; in 1977, there was 70% forest cover, but only 32% forest cover remained in 2016. The accuracy assessment of the 2015 Landsat 8 land use classification was 79%. NDMIDIR results showed that from 1988 to 2016, the total area representing landslide scars increased from 7.26km2 to 8.73 km2. The weighted variable GIS model output map indicated that 70% of the Siwalik zone and southern Lesser Himalayan zone in the three study districts have significant risk of landslides. Landslides and flooding from heavy monsoon rain, deforestation to develop

  16. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  17. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  18. Looking back to inform the future: The role of cognition in forest disturbance characterization from remote sensing imagery

    Science.gov (United States)

    Bianchetti, Raechel Anne

    Remotely sensed images have become a ubiquitous part of our daily lives. From novice users, aiding in search and rescue missions using tools such as TomNod, to trained analysts, synthesizing disparate data to address complex problems like climate change, imagery has become central to geospatial problem solving. Expert image analysts are continually faced with rapidly developing sensor technologies and software systems. In response to these cognitively demanding environments, expert analysts develop specialized knowledge and analytic skills to address increasingly complex problems. This study identifies the knowledge, skills, and analytic goals of expert image analysts tasked with identification of land cover and land use change. Analysts participating in this research are currently working as part of a national level analysis of land use change, and are well versed with the use of TimeSync, forest science, and image analysis. The results of this study benefit current analysts as it improves their awareness of their mental processes used during the image interpretation process. The study also can be generalized to understand the types of knowledge and visual cues that analysts use when reasoning with imagery for purposes beyond land use change studies. Here a Cognitive Task Analysis framework is used to organize evidence from qualitative knowledge elicitation methods for characterizing the cognitive aspects of the TimeSync image analysis process. Using a combination of content analysis, diagramming, semi-structured interviews, and observation, the study highlights the perceptual and cognitive elements of expert remote sensing interpretation. Results show that image analysts perform several standard cognitive processes, but flexibly employ these processes in response to various contextual cues. Expert image analysts' ability to think flexibly during their analysis process was directly related to their amount of image analysis experience. Additionally, results show

  19. Ten ways remote sensing can contribute to conservation

    Science.gov (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  20. Ten ways remote sensing can contribute to conservation.

    Science.gov (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  1. Remote sensing of coral reefs and their physical environment

    International Nuclear Information System (INIS)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T.

    2004-01-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas

  2. Remote sensing of coral reefs and their physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T

    2004-02-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.

  3. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  4. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  5. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical... studies are: where to sample, what to sample and how many samples to obtain. Conventional sampling techniques are not always suitable in environmental studies and scientists have explored the use of remotely-sensed data as ancillary information to aid...

  6. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  7. Review of Remote Sensing Needs and Applications in Africa

    Science.gov (United States)

    Brown, Molly E.

    2007-01-01

    Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.

  8. Fault Control on Copper Depositsin the Sar Cheshmeh Area Indicated by Remote Sensing & Geographic Information Systems (GIS

    Directory of Open Access Journals (Sweden)

    Hojjat Ollah Safari

    2016-07-01

    Full Text Available Introduction The Sar Cheshmeh copper deposit and indications of other deposits are located in the Dehaj-Sarduieh belt in the Kerman region (Khadem and Nedimovic, 1973. This belt is one of the most important provinces of Cu mineralization in Iran, with approximately 300 Cu deposits and prospects, includingtwenty of the porphyry copper type (Ghorbani, 2013. This belt, 300 km in length and 30–45 km width, is situated in the southern part of the Uramia-Dokhtar volcanic belt in central Iran (Shafiei, 2010. Zarasvandi (2004 has proposed that faulting has played a role in the location of copper deposition in this area. Methods of Investigation In order to check Zarasvandi’s hypothesis, the spatial relationship between faults and Cu deposits was investigated using remote sensing and GIS techniques together with field investigations in the Sar Cheshmeh area. The the following steps were used in this research: 1. Review of available data 2. Surface geology field studies 3. Preparation of digital overlay of Copper occurrences 4. Analysis of the relationshipof faulting to Copper occurrences Using remote sensing techniques, a geometrically corrected satellite image was filtered with high pass and Sharpen Edge filters to detect possible lineaments (Lillesand and Keifer, 2008; Sabins, 1996. Directional filters (45º, 90º, 135º and 180º were then applied to the processed image to enhance the linear structures. Subsequently,the major lineaments were documented in the field as major and minor faults (Safari et al., 2011. Four main faults, designated as the Rafsanjan, Mani, Gaud-e-Ahmar and Sar Cheshmeh faultswere determined to be major. These faults were digitized and overlaid on other data layers in GIS environment. The strikes, dips, striae and directions of movementof the faultswere measured at 20 locations in the field. Structural analyses were done with Rose diagrams, calculation of P-axes and preparation of a structural map. Copper occurrences on the

  9. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  10. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia

    2017-12-01

    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  11. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  12. Use of change detection in assessing development plans - A Philippine example. [aircraft/Landsat remote sensing information system for regional planning

    Science.gov (United States)

    Coiner, J. C.; Bruce, R. C.

    1978-01-01

    An aircraft/Landsat change-detection study conducted 1948-1972 on Marinduque Province, Republic of the Philippines, is discussed, and a procedure using both remote sensing and information systems for collection, spatial analysis, and display of periodic data is described. Each of the 4,008 25-hectare cells representing Marinduque were observed, and changes in and between variables were measured and tested using nonparametric statistics to determine the effect of specific land cover changes. Procedures using Landsat data to obtain a more continuous updating of the data base are considered. The system permits storage and comparison of historical and current data.

  13. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  14. NOAA Coastal Mapping Remote Sensing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  15. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  16. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  17. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  18. Extraction and analysis of reducing alteration information of oil-gas in Bashibulake uranium ore district based on ASTER remote sensing data

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Yang Xu

    2008-01-01

    Beginning with the analysis of the spectral characteristics of sandstone with reducing alteration of oil-gas in Bashibulake ore district, the extract technology of reducing alteration information based on ASTER data is presented. Several remote sensing anomaly zones of reducing alteration information similar with that in uranium deposit are interpreted in study area. On the basis of above study, these alteration anomaly information are further classified by using the advantage of ASTER data with multi-band in SWIR, the geological significance for alteration anomaly information is respectively discussed. As a result, alteration anomalies good for uranium prospecting are really selected, which provides some important information for uranium exploration in outland of Bashibulake uranium ore area. (authors)

  19. Applications of the three-dimensional air quality system to western U.S. air quality: IDEA, smog blog, smog stories, airquest, and the remote sensing information gateway.

    Science.gov (United States)

    Hoff, Raymond; Zhang, Hai; Jordan, Nikisa; Prados, Ana; Engel-Cox, Jill; Huff, Amy; Weber, Stephanie; Zell, Erica; Kondragunta, Shobha; Szykman, James; Johns, Brad; Dimmick, Fred; Wimmers, Anthony; Al-Saadi, Jay; Kittaka, Chieko

    2009-08-01

    A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near real time and archive the results for retrospective analyses. The main components of the system (Infusing satellite Data into Environmental Applications [IDEA], the U.S. Air Quality Weblog [Smog Blog], Smog Stories, U.S. Environmental Protection Agency's AIRQuest decision support system, and the Remote Sensing Information Gateway [RSIG]) are described, and the relationship of how data move from one system to another is outlined. To provide examples of how the results can be used to analyze specific pollution episodes, three events (two fires and one wintertime low planetary boundary layer haze) are discussed. Not all tools are useful at all times, and the limitations, including the sparsity of some data, the interference caused by overlying clouds, etc., are shown. Nevertheless, multiple sources of data help a state, local, or regional air quality analyst construct a more thorough picture of a daily air pollution situation than what one would obtain with only surface-based sensors.

  20. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  1. Toward interactive search in remote sensing imagery

    Science.gov (United States)

    Porter, Reid; Hush, Don; Harvey, Neal; Theiler, James

    2010-04-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  2. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  3. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  4. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  5. Retrieval operators of remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Shah, A.

    2014-01-01

    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  6. Freeware for GIS and Remote Sensing

    OpenAIRE

    Lena Halounová

    2007-01-01

    Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  7. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  8. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  9. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  10. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  11. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    Science.gov (United States)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  12. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  13. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  14. NASA's Indigenous Capacity Building Initiative: Balancing Traditional Knowledge and Existing Remote Sensing Training to Inform Management Decisions

    Science.gov (United States)

    McCullum, A. J. K.; Schmidt, C.; Palacios, S. L.; Ly, V.

    2017-12-01

    NASA's Indigenous Capacity Building Initiative is aimed to provide remote sensing training, mentoring, and research opportunities to the indigenous community. A key programmatic goal is the co-production of place-based trainings where participants have the opportunity to address specific natural resource research and management issues facing their tribal lands. Three primary strategies have been adopted to engage with our tribal partners, these include: (1) the use of existing tribal networks and conferences such as the National Tribal GIS Conference, (2) coordination with other federal agencies such as the Bureau of Indian Affairs (BIA) and tribal liaisons at regional Climate Science Centers, and (3) connecting with tribes directly. Regional partner visits with tribes, such as meetings with the Samish Indian Nation, are integral to cultivate trusting, collaborative, and sustained partnerships and an understanding of how Earth Observations can be applied to the unique set of challenges and goals each tribe faces. As the program continues to grow, we aim to increase our incorporation of Traditional Ecological Knowledge (TEK) into technical methods and to develop trainings tailored to thematic areas of interest to specific tribes. Engagement and feedback are encouraged to refine our approaches to increase capacity within the indigenous community to utilize NASA Earth Observations.

  15. Remote sensing application for property tax evaluation

    Science.gov (United States)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  16. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué

    2018-01-01

    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  17. Support for global science: Remote sensing's challenge

    Science.gov (United States)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  18. Domestic parking estimation using remotely sensed data

    Science.gov (United States)

    Ramzi, Ahmed

    2012-10-01

    Parking is an integral part of the traffic system everywhere. Provision of parking facilities to meet peak of demands parking in cities of millions is always a real challenge for traffic and transport experts. Parking demand is a function of population and car ownership which is obtained from traffic statistics. Parking supply in an area is the number of legal parking stalls available in that area. The traditional treatment of the parking studies utilizes data collected either directly from on street counting and inquiries or indirectly from local and national traffic censuses. Both methods consume time, efforts, and funds. Alternatively, it is reasonable to make use of the eventually available data based on remotely sensed data which might be flown for other purposes. The objective of this work is to develop a new approach based on utilization of integration of remotely sensed data, field measurements, censuses and traffic records of the studied area for studying domestic parking problems in residential areas especially in informal areas. Expected outcomes from the research project establish a methodology to manage the issue and to find the reasons caused the shortage in domestics and the solutions to overcome this problems.

  19. Remote Sensing Best Paper Award for the Year 2014

    OpenAIRE

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  20. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  1. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  2. Modeling of groundwater potential of the sub-basin of Siriri river, Sergipe state, Brazil, based on Geographic Information System and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Washington Franca Rocha

    2011-08-01

    Full Text Available The use of Geographic Information System (GIS and Remote Sensing for modeling groundwater potential give support for the analysis and decision-making processes about water resource management in watersheds. The objective of this work consisted in modeling the groundwater water potential of Siriri river sub-basin, Sergipe state, based on its natural environment (soil, land use, slope, drainage density, lineament density, rainfall and geology using Remote Sensing and Geographic Information System as an integration environment. The groundwater potential map was done using digital image processing procedures of ENVI 4.4 software and map algebra of ArcGIS 9.3®. The Analytical Hierarchy Method was used for modeling the weights definition of the different criteria (maps. Loads and weights of the different classes were assigned to each map according to their influence on the overall objective of the work. The integration of these maps in a GIS environment and the AHP technique application allowed the development of the groundwater potential map in five classes: very low, low, moderate, high, very high. The average flow rates of wells confirm the potential of aquifers Sapucari, Barriers and Maruim since they are the most exploited in this sub-basin, with average flows of 78,113 L/h, 19,332 L/h and 12,085 L/h, respectively.

  3. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing

    International Nuclear Information System (INIS)

    Yang Kun; Zhou Xiaonong; Yan Weian; Hang Derong; Steinmann, Peter

    2008-01-01

    Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr 6+ and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria

  4. Satellite Based Education and Training in Remote Sensing and Geo-Information AN E-Learning Approach to Meet the Growing Demands in India

    Science.gov (United States)

    Raju, P. L. N.; Gupta, P. K.

    2012-07-01

    One of the prime activities of Indian Space Research Organisation's (ISRO) Space Program is providing satellite communication services, viz., television broadcasting, mobile communication, cyclone disaster warning and rescue operations etc. so as to improve their economic conditions, disseminate technical / scientific knowledge to improve the agriculture production and education for rural people of India. ISRO, along with National Aeronautical and Space Administration (NASA) conducted experimental satellite communication project i.e. Satellite Instructional Television Experiment (SITE) using NASA's Advanced Telecommunication Satellite (i.e. ATS 6) with an objective to educate poor people of India via satellite broadcasting in 1975 and 1976, covering more than 2600 villages in six states of India and territories. Over the years India built communication satellites indigenously to meet the communication requirements of India. This has further lead to launch of an exclusive satellite from ISRO for educational purposes i.e. EDUSAT in 2004 through which rich audio-video content is transmitted / received, recreating virtual classes through interactivity. Indian Institute of Remote Sensing (IIRS) established in 1966, a premier institute in south East Asia in disseminating Remote Sensing (RS) and Geographical Information System (GIS), mainly focusing on contact based programs. But expanded the scope with satellite based Distance Learning Programs for Universities, utilizing the dedicated communication satellite i.e. EDUSAT in 2007. IIRS conducted successfully eight Distance Learning Programs in the last five years and training more than 6000 students mainly at postgraduate level from more than 60 universities /Institutions spread across India. IIRS obtained feedback and improved the programs on the continuous basis. Expanded the scope of IIRS outreach program to train user departments tailor made in any of the applications of Remote Sensing and Geoinformation, capacity

  5. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  6. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  7. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jining Yan

    2016-12-01

    Full Text Available With the arrival of the big data era in Earth observation, the remote sensing communities have accumulated a large amount of invaluable and irreplaceable data for global monitoring. These massive remote sensing data have enabled large-area and long-term series Earth observation, and have, in particular, made standard, automated product generation more popular. However, there is more than one type of data selection for producing a certain remote sensing product; no single remote sensor can cover such a large area at one time. Therefore, we should automatically select the best data source from redundant multisource remote sensing data, or select substitute data if data is lacking, during the generation of remote sensing products. However, the current data selection strategy mainly adopts the empirical model, and has a lack of theoretical support and quantitative analysis. Hence, comprehensively considering the spectral characteristics of ground objects and spectra differences of each remote sensor, by means of spectrum simulation and correlation analysis, we propose a suitability evaluation model for product generation. The model will enable us to obtain the Production Suitability Index (PSI of each remote sensing data. In order to validate the proposed model, two typical value-added information products, NDVI and NDWI, and two similar or complementary remote sensors, Landsat-OLI and HJ1A-CCD1, were chosen, and the verification experiments were performed. Through qualitative and quantitative analysis, the experimental results were consistent with our model calculation results, and strongly proved the validity of the suitability evaluation model. The proposed production suitability evaluation model could assist with standard, automated, serialized product generation. It will play an important role in one-station, value-added information services during the big data era of Earth observation.

  9. Remote sensing terminology: past experience and recent needs

    Science.gov (United States)

    Kancheva, Rumiana

    2013-10-01

    Terminology is a key issue for a better understanding among people using various languages. Terminology accuracy is essential during all phases of international cooperation. It is crucial to keep up with the latest quantitative and qualitative developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have wide and ever extending applications in various domains of human activity. The importance of the correct use of remote sensing terms refers not only to people working in this field but also to experts in many disciplines who handle remote sensing data and information products. The paper is devoted to terminology issues that refer to all aspects of remote sensing research and application areas. The attention is drawn on the recent needs and peculiarities of compiling specialized dictionaries in the subject area of remote sensing. Details are presented about the work in progress on the preparation of an English-Bulgarian dictionary of remote sensing terms focusing on Earth observations and geoinformation science. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. Any interest in cooperation and initiating of suchlike collaborative multilingual projects is welcome and highly appreciated.

  10. Multiscale and Multitemporal Urban Remote Sensing

    Science.gov (United States)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  11. Remote Sensing and Geographic Information Systems (GIS Contribution to the Inventory of Infrastructure Susceptible to Earthquake and Flooding Hazards in North-Eastern Greece

    Directory of Open Access Journals (Sweden)

    Ioanna Papadopoulou

    2012-09-01

    Full Text Available For civil protection reasons there is a strong need to improve the inventory of areas that are more vulnerable to earthquake ground motions or to earthquake-related secondary effects, such as landslides, liquefaction or soil amplifications. The use of remote sensing and Geographic Information Systems (GIS methods along with the related geo-databases can assist local and national authorities to be better prepared and organized. Remote sensing and GIS techniques are investigated in north-eastern Greece in order to contribute to the systematic, standardized inventory of those areas that are more susceptible to earthquake ground motions, to earthquake-related secondary effects and to tsunami-waves. Knowing areas with aggregated occurrence of causal (“negative” factors influencing earthquake shock and, thus, the damage intensity, this knowledge can be integrated into disaster preparedness and mitigation measurements. The evaluation of satellite imageries, digital topographic data and open source geodata contributes to the acquisition of the specific tectonic, geologic and geomorphologic settings influencing local site conditions in an area and, thus, estimate possible damage to be suffered.

  12. TRACKING FARM MANAGEMENT PRACTICES WITH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. P. Stals

    2017-11-01

    Full Text Available Earth observation (EO data is effective in monitoring agricultural cropping activity over large areas. An example of such an application is the GeoTerraImage crop type classification for the South African Crop Estimates Committee (CEC. The satellite based classification of crop types in South Africa provides a large scale, spatial and historical record of agricultural practices in the main crop growing areas. The results from these classifications provides data for the analysis of trends over time, in order to extract valuable information that can aid decision making in the agricultural sector. Crop cultivation practices change over time as farmers adapt to demand, exchange rate and new technology. Through the use of remote sensing, grain crop types have been identified at field level since 2008, providing a historical data set of cropping activity for the three most important grain producing provinces of Mpumalanga, Freestate and North West province in South Africa. This historical information allows the analysis of farm management practices to identify changes and trends in crop rotation and irrigation practices. Analysis of crop type classification over time highlighted practices such as: frequency of cultivation of the same crop on a field, intensified cultivation on centre pivot irrigated fields with double cropping of a winter grain followed by a summer grain in the same year and increasing cultivation of certain types of crops over time such as soyabeans. All these practices can be analysed in a quantitative spatial and temporal manner through the use of the remote sensing based crop type classifications.

  13. Radar remote sensing to support tropical forest management

    NARCIS (Netherlands)

    Sanden, van der J.J.

    1997-01-01

    This text describes an investigation into the potential of radar remote sensing for application to tropical forest management. The information content of various radar images is compared and assessed with regard to the information requirements of parties involved in tropical forest

  14. Monitoring Shoreline Change using Remote Sensing and GIS: A ...

    African Journals Online (AJOL)

    Key words: remote sensing, geographic information system (GIS), aerial photographs, shoreline change. Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality.

  15. Photogrammetry and remote sensing education subjects

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  16. Remote Sensing of Landslides—A Review

    Directory of Open Access Journals (Sweden)

    Chaoying Zhao

    2018-02-01

    Full Text Available Triggered by earthquakes, rainfall, or anthropogenic activities, landslides represent widespread and problematic geohazards worldwide. In recent years, multiple remote sensing techniques, including synthetic aperture radar, optical, and light detection and ranging measurements from spaceborne, airborne, and ground-based platforms, have been widely applied for the analysis of landslide processes. Current techniques include landslide detection, inventory mapping, surface deformation monitoring, trigger factor analysis and mechanism inversion. In addition, landslide susceptibility modelling, hazard assessment, and risk evaluation can be further analyzed using a synergic fusion of multiple remote sensing data and other factors affecting landslides. We summarize the 19 articles collected in this special issue of Remote Sensing of Landslide, in the terms of data, methods and applications used in the papers.

  17. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  18. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    2016-06-01

    Full Text Available Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

  19. Remote sensing education and Internet/World Wide Web technology

    Science.gov (United States)

    Griffith, J.A.; Egbert, S.L.

    2001-01-01

    Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.

  20. Remote-sensing image encryption in hybrid domains

    Science.gov (United States)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  3. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  4. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  5. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  6. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  7. Remote sensing strategies for global resource exploration and environmental management

    Science.gov (United States)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  8. Identifying Geographic Areas at Risk of Soil-transmitted Helminthes Infection Using Remote Sensing and Geographical Information Systems: Boaco, Nicaragua as a Case Study

    Science.gov (United States)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Parajon, David G.; Rickman, Douglas L.; Luvall, Jeffrey; Estes, Sue; Podest, Erika

    2011-01-01

    Several types of intestinal nematodes, that can infect humans and specially school-age children living in poverty, develop part of their life cycle in soil. Presence and survival of these parasites in the soil depend on given environmental characteristics like temperature and moisture that can be inferred with remote sensing (RS) technology. Prevalence of diseases caused by these parasitic worms can be controlled and even eradicated with anthelmintic drug treatments and sanitation improvement. Reliable and updated identification of geographic areas at risk is required to implement effective public health programs; to calculate amount of drug required and to distribute funding for sanitation projects. RS technology and geographical information systems (GIS) will be used to analyze for associations between in situ prevalence and remotely sensed data in order to establish RS proxies of environmental parameters that indicate the presence of these parasits. In situ data on helminthisasis will be overlaid over an ecological map derived from RS data using ARC Map 9.3 (ESRI). Temperature, vegetation, and distance to bodies of water will be inferred using data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat TM and ETM+. Elevation will be estimated with data from The Shuttle Radar Topography Mission (SRTM). Prevalence and intensity of infections are determined by parasitological survey (Kato Katz) of children enrolled in rural schools in Boaco, Nicaragua, in the communities of El Roblar, Cumaica Norte, Malacatoya 1, and Malacatoya 2). This study will demonstrate the importance of an integrated GIS/RS approach to define clusters and areas at risk. Such information will help to the implementation of time and cost efficient control programs and sanitation efforts.

  9. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    Directory of Open Access Journals (Sweden)

    Ni Huang

    Full Text Available To examine the method for estimating the spatial patterns of soil respiration (Rs in agricultural ecosystems using remote sensing and geographical information system (GIS, Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI, canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2 s(-1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  10. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    Science.gov (United States)

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  11. Water Column Correction for Coral Reef Studies by Remote Sensing

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  12. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli

    2014-09-01

    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  13. Remote Sensing Open Access Journal: Increasing Impact through Quality Publications

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2014-08-01

    Full Text Available Remote Sensing, an open access journal (http://www.mdpi.com/journal/remotesensing has grown at rapid pace since its first publication five years ago, and has acquired a strong reputation. It is a “pathfinder” being the first open access journal in remote sensing. For those academics who were used to waiting a year or two for their peer-reviewed scientific work to be reviewed, revised, edited, and published, Remote Sensing offers a publication time frame that is unheard of (in most cases, less than four months. However, we do this after multiple peer-reviews, multiple revisions, much editorial scrutiny and decision-making, and professional editing by an editorial office before a paper is published online in our tight time frame, bringing a paradigm shift in scientific publication. As a result, there has been a swift increase in submissions of higher and higher quality manuscripts from the best authors and institutes working on Remote Sensing, Geographic Information Systems (GIS, Global Navigation Satellite System (GNSS, GIScience, and all related geospatial science and technologies from around the world. The purpose of this editorial is to update everyone interested in Remote Sensing on the progress made over the last year, and provide an outline of our vision for the immediate future. [...

  14. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  15. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  16. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  17. Forest biodiversity and its assessment by remote sensing

    International Nuclear Information System (INIS)

    Innes, J.L.; Koch, B.

    1998-01-01

    Several international conventions and agreements have stressed the importance of the assessment of forest biodiversity. However, the methods by which such assessments can be made remain unclear. Remote sensing represents an important tool for looking at ecosystem diversity and various structural aspects of individual ecosystems. It provides a means to make assessments across several different spatial scales, and is also critical for assessments of changes in ecosystem pattern over time. Many different forms of remote sensing are available. While lately the emphasis on laser scanner and synthetic aperture radar data has increased, most work to date has used photographs and digital optical imagery, primarily from airborne and spaceborne platforms. These provide the opportunity to assess different phenomena from the landscape to the stand scale. Remote sensing provides the most efficient tool available for determining landscape-scale elements of forest biodiversity, such as the relative proportion of matrix and patches and their physical arrangement. At intermediate scales, remote sensing provides an ideal tool for evaluating the presence of corridors and the nature of edges. At the stand scale, remote sensing technologies are likely to deliver an increasing amount of information about the structural attributes of forest stands, such as the nature of the canopy surface, the presence of layering within the canopy and presence of (very) coarse woody debris on the forest floor. Given the rate of development in the technology, even greater usage is likely in the future. (author)

  18. Remote sensing of environmental pollution on teesside

    NARCIS (Netherlands)

    van Genderen, J.L.

    1974-01-01

    A preliminary reconnaissance is being carried out to study the methods and procedures most useful for the detection of vegetation stress resulting from the various forms of environmental pollution, in the industrial area of Teesside, NE England, by means of a multiband remote sensing programme.

  19. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  20. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  1. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  2. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  3. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  4. Applications of quantitative remote sensing to hydrology

    NARCIS (Netherlands)

    Su, Z.; Troch, P.A.A.

    2003-01-01

    In order to quantify the rates of the exchanges of energy and matter among hydrosphere, biosphere and atmosphere, quantitative description of land surface processes by means of measurements at different scales are essential. Quantitative remote sensing plays an important role in this respect. The

  5. Integrated remotely sensed datasets for disaster management

    Science.gov (United States)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  6. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  7. Semiconductor laser technology for remote sensing experiments

    Science.gov (United States)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  8. SATELLITE BASED EDUCATION AND TRAINING IN REMOTE SENSING AND GEO-INFORMATION: AN E-LEARNING APPROACH TO MEET THE GROWING DEMANDS IN INDIA

    Directory of Open Access Journals (Sweden)

    P. L. N. Raju

    2012-07-01

    Full Text Available One of the prime activities of Indian Space Research Organisation's (ISRO Space Program is providing satellite communication services, viz., television broadcasting, mobile communication, cyclone disaster warning and rescue operations etc. so as to improve their economic conditions, disseminate technical / scientific knowledge to improve the agriculture production and education for rural people of India. ISRO, along with National Aeronautical and Space Administration (NASA conducted experimental satellite communication project i.e. Satellite Instructional Television Experiment (SITE using NASA’s Advanced Telecommunication Satellite (i.e. ATS 6 with an objective to educate poor people of India via satellite broadcasting in 1975 and 1976, covering more than 2600 villages in six states of India and territories. Over the years India built communication satellites indigenously to meet the communication requirements of India. This has further lead to launch of an exclusive satellite from ISRO for educational purposes i.e. EDUSAT in 2004 through which rich audio-video content is transmitted / received, recreating virtual classes through interactivity. Indian Institute of Remote Sensing (IIRS established in 1966, a premier institute in south East Asia in disseminating Remote Sensing (RS and Geographical Information System (GIS, mainly focusing on contact based programs. But expanded the scope with satellite based Distance Learning Programs for Universities, utilizing the dedicated communication satellite i.e. EDUSAT in 2007. IIRS conducted successfully eight Distance Learning Programs in the last five years and training more than 6000 students mainly at postgraduate level from more than 60 universities /Institutions spread across India. IIRS obtained feedback and improved the programs on the continuous basis. Expanded the scope of IIRS outreach program to train user departments tailor made in any of the applications of Remote Sensing and

  9. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  10. Nasa's Land Remote Sensing Plans for the 1980's

    Science.gov (United States)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  11. Quantitative interpretation of great lakes remote sensing data

    International Nuclear Information System (INIS)

    Shook, D.F.; Salzman, J.; Svehla, R.A.; Gedney, R.T.

    1980-01-01

    Remote sensing has been applied in the past to the surveillance of Great Lakes water quality, but it has been only partially successful because of the completely empirical approach taken in relating the multispectral scanning data at visible and near-infrared wavelengths to water parameters. Any remote sensing approach using water color information must take into account (1) the existence of many different organic and inorganic species throughtout the Greak Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial (inter- and interlake as well as vertical) variations in types and concentrations of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which clearly show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported

  12. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  13. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  14. Spatial Analysis of Political Capital Citation Using Remote Sensing ...

    African Journals Online (AJOL)

    Spatial Analysis of Political Capital Citation Using Remote Sensing and GIS; A Case Study of Lokoja. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, ...

  15. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  16. Science informed water resources decision-making: Examples using remote sensing observations in East Africa, the Lower Mekong Basin and the western United States

    Science.gov (United States)

    Granger, S. L.; Andreadis, K.; Das, N.; Farr, T. G.; Ines, A. V. M.; Jayasinghe, S.; Jones, C. E.; Melton, F. S.; Ndungu, L. W.; Lai-Norling, J.; Painter, T. H.

    2017-12-01

    Across the globe, planners and decision makers are often hampered by organizational and data silos and/or a lack of historic data or scant in situ observations on which to base policy and action plans. The end result is a complex interaction of responsibilities, legal frameworks, and stakeholder needs guided by uncertain information that is essentially bounded by how climate extremes are defined and characterized. Because of the importance of water, considerable resources in the developing and developed world are invested in data and tools for managing water. However, the existing paradigm of water management around the world faces significant challenges including inadequate funding to install, maintain or upgrade monitoring networks, lack of resources to integrate new science and data sources into existing tools, and demands for improved spatial coverage of observations. Add to this, a changing hydrology that is so complex it requires measurements and analyses that have never been done before. Interest in applying remote sensing science and observations into the decision making process is growing the world over, but in order to succeed, it is essential to form partnerships with stakeholder organizations and decision makers at the outset. In this talk, we describe examples of succesful decision-maker and science partnering based on projects that apply remote sensing science and observations in East Africa and the Lower Mekong Basin supported by the SERVIR Initiative, a joint United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA) program, and projects in the western United States supported by NASA's Jet Propulsion Laboratory and the Western Water Applications Office (WWAO). All of these examples have benefitted from strong, committed partnerships with end user agencies. Best practices and lessons learned in connecting science to decision making amongst these examples are explored.

  17. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  18. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  19. Mapping Water Use and Drought with Satellite Remote Sensing

    OpenAIRE

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  20. Opportunities for Increasing Societal Value of Remote Sensing Data ...

    African Journals Online (AJOL)

    Opportunities for Increasing Societal Value of Remote Sensing Data in South Africa's Strategic Development Priorities: A Review. ... Despite the enormous capital required to fund remote sensing initiatives, governments ... HOW TO USE AJOL.

  1. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.

  2. Forest structural assessment using remote sensing technologies: an ...

    African Journals Online (AJOL)

    -Natal and MONDI Business Paper have recently embarked on a remote sensing cooperative. The primary focus of this cooperative is to explore the potential benefits associated with using remote sensing for forestry-related activities.

  3. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2012-10-01

    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  4. Economic optimization and evolutionary programming when using remote sensing data

    OpenAIRE

    Shamin Roman; Alberto Gabriel Enrike; Uryngaliyeva Ayzhana; Semenov Aleksandr

    2018-01-01

    The article considers the issues of optimizing the use of remote sensing data. Built a mathematical model to describe the economic effect of the use of remote sensing data. It is shown that this model is incorrect optimisation task. Given a numerical method of solving this problem. Also discusses how to optimize organizational structure by using genetic algorithm based on remote sensing. The methods considered allow the use of remote sensing data in an optimal way. The proposed mathematical m...

  5. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)

    2009-07-01

    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  6. Advanced and applied remote sensing of environmental conditions

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  7. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  8. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  9. History and future of remote sensing technology and education

    Science.gov (United States)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  10. The economic value of remote sensing information: a case study of agricultural production and groundwater vulnerability using applied environmental science and hydrogeospatial methods

    Science.gov (United States)

    Forney, W.; Bernknopf, R. L.; Mishra, S.; Raunikar, R. P.

    2011-12-01

    William M. Forney1*, Richard L. Bernknopf1, Shruti K. Mishra2, Ronald P. Raunikar1. 1=Western Geographic Science Center, US Geological Survey, Menlo Park, California. 2=Contractor, Western Geographic Science Center, US Geological Survey, Menlo Park, California *=Contact author, wforney@usgs.gov, 650-329-4237. Does remote sensing information provide economic benefits to society and can those benefits be valued? Can resource management and policy be better informed by coupling past and present earth observations with groundwater nitrate measurements? Using an integrated assessment approach, the USGS's research applies an established conceptual framework to answer these questions as well as estimate the value of information (VOI) for remote sensing imagery. The approach uses moderate resolution land imagery (MRLI) data from the Landsat and Advanced Wide Field Sensor satellites that has been classified by the National Agricultural Statistics Service into the Cropland Data Layer (CDL). Within the constraint of the US Environmental Protection Agency's public health threshold for potable groundwater resources, we model the relationship between a population of the CDL's land uses and the evolution of nitrate (NO3-) contamination of aquifers in a case study region in northeastern Iowa. Using source data from the Iowa Department of Natural Resources and the USGS's National Water Quality Assessment Program, the approach uses multi-scaled, environmental science models to address dynamic, biophysical process models of nitrogen fate and transport at specific sites (wells) and at landscape scale (35 counties) in order to assess groundwater vulnerability. In addition to the ecosystem service of potable groundwater, this effort focuses on particular agricultural goods and land uses: corn, soybeans and livestock manure management. Results of this four-year study will be presented, including: 1) the integrated models of the assessment approach, 2) mapping the range of vulnerabilities

  11. Application of remote sensing in aquatic ecosystems

    Science.gov (United States)

    Yousef, Foad

    I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll alpha and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.

  12. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  13. Review of oil spill remote sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Longhenry, Ryan

    2018-06-13

    The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.

  15. The 1997 remote sensing mission to Kazakhstan

    International Nuclear Information System (INIS)

    Steinmaus, K.; Robert, B.; Berezin, S.A.

    1997-01-01

    In June and July of 1997, the US Department of Energy, in cooperation with the Republic of Kazakhstan Ministry of Science - Academy of Science conducted a remote sensing mission to Kazakhstan. The mission was conducted as a technology demonstration under a Memorandum of Understanding between the United States Department of Energy and the Republic of Kazakhstan's Ministry of science - Academy of Science. The mission was performed using a US Navy P-3 Orion aircraft and imaging capabilities developed by the Department of Energy's Office of Non-proliferation and National Security. The imaging capabilities consisted of two imaging pods - a synthetic aperture radar (SAR) pod and a multi sensor imaging pod (MSI). Seven experiments were conducted to demonstrate how remote sensing can be used to support city planning, land cover mapping, mineral exploration, and non-proliferation monitoring. Results of the mission will be presented

  16. Surveillance and remote sensing: ITOPF participation

    International Nuclear Information System (INIS)

    Nichols, J.A.

    1992-01-01

    Although the Federation does not sponsor or undertake surveillance and remote sensing research and development projects, it is a potential user of remote sensing equipment when responding to oil spills. Indeed, the Federation has already made use of suitably equipped aircraft on a number of occasions in Europe. Several countries in north west Europe, viz. France, Germany, Netherlands, Norway, Sweden and the U.K., operate aircraft fitted with broadly similar systems comprising side-looking airborne radar (SLAR), infra-red line scanners (IRLS) and ultra-violet line scanners (UVLS). These aircraft are used routinely for the detection of operational discharges of oil from ships in violation of the International Convention on the Prevention of Pollution from Ships 73/78 (MARPOL 73/78)

  17. Upgraded airborne scanner for commercial remote sensing

    Science.gov (United States)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  18. An Overview of GNSS Remote Sensing

    Science.gov (United States)

    2014-08-27

    Aplicaciones Cientificas-C (SAC-C) satellites. CHAMP provided 8 years of radio oc- cultation data consisting of around 440,000 measurements from February...applications, various modifi- cations of terrestrial receivers are required, including hardware and software modifications to enhance surviv- ability in a...Dop- pler shifts. On the other hand, special hardware and software is required to support non-navigation remote sensing applications in space, such

  19. Remote Sensing using Signals of Opportunity

    OpenAIRE

    Yertay, Alibek; Garrison, James L

    2013-01-01

    Today, there are more than eight thousand satellites in space. Therefore, Radio Frequency (RF) signals broadcast from satellites can be accessed from almost every point on the earth. There will be number of satellites available at most points on earth with different frequency bands. These satellite signals can be used for remote sensing, therefore software that visualizes footprints of satellites and shows characteristics of every satellite available at any point would be useful in determinin...

  20. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  1. Integrated remotely sensed datasets for disaster management

    OpenAIRE

    McCarthy, Tim; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-01-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North...

  2. NASA Remote Sensing Data for Epidemiological Studies

    Science.gov (United States)

    Maynard, Nancy G.; Vicente, G. A.

    2002-01-01

    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  3. Remote sensing for oil spill detection and response

    International Nuclear Information System (INIS)

    Engelhardt, F.R.

    1999-01-01

    This paper focuses on the use of remote sensing for marine oil spill detection and response. The surveillance and monitoring of discharges, and the main elements of effective surveillance are discussed. Tactical emergency response and the requirements for selecting a suitable remote sensing approach, airborne remote sensing systems, and the integration of satellite and airborne imaging are examined. Specifications of satellite surveillance systems potentially usable for oil spill detection, and specifications of airborne remote sensing systems suitable for oil spill detection, monitoring and supplemental actions are tabulated, and a schema of integrated satellite-airborne remote sensing (ISARS) is presented. (UK)

  4. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures

    Directory of Open Access Journals (Sweden)

    Tomaž Podobnikar

    2012-03-01

    Full Text Available The detection of peaks (summits as the upper parts of mountains and the delineation of their shape is commonly confirmed by inspections carried out by mountaineers. In this study the complex task of peak detection and shape delineation is solved by autometric methodological procedures, more precisely, by developing relatively simple but innovative image-processing and spatial-analysis techniques (e.g., developing inventive variables using an annular moving window in remote sensing and GIS domains. The techniques have been integrated into automated morphometric methodological procedures. The concepts of peaks and their shapes (sharp, blunt, oblong, circular and conical were parameterized based on topographic and morphologic criteria. A geomorphologically high quality DEM was used as a fundamental dataset. The results, detected peaks with delineated shapes, have been integratively enriched with numerous independent datasets (e.g., with triangulated spot heights and information (e.g., etymological information, and mountaineering criteria have been implemented to improve the judgments. This holistic approach has proved the applicability of both highly standardized and universal parameters for the geomorphologically diverse Kamnik Alps case study area. Possible applications of this research are numerous, e.g., a comprehensive quality control of DEM or significantly improved models for the spatial planning proposes.

  5. Remote Sensing of Landscapes with Spectral Images

    Science.gov (United States)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  6. Ambiguity of Quality in Remote Sensing Data

    Science.gov (United States)

    Lynnes, Christopher; Leptoukh, Greg

    2010-01-01

    This slide presentation reviews some of the issues in quality of remote sensing data. Data "quality" is used in several different contexts in remote sensing data, with quite different meanings. At the pixel level, quality typically refers to a quality control process exercised by the processing algorithm, not an explicit declaration of accuracy or precision. File level quality is usually a statistical summary of the pixel-level quality but is of doubtful use for scenes covering large areal extents. Quality at the dataset or product level, on the other hand, usually refers to how accurately the dataset is believed to represent the physical quantities it purports to measure. This assessment often bears but an indirect relationship at best to pixel level quality. In addition to ambiguity at different levels of granularity, ambiguity is endemic within levels. Pixel-level quality terms vary widely, as do recommendations for use of these flags. At the dataset/product level, quality for low-resolution gridded products is often extrapolated from validation campaigns using high spatial resolution swath data, a suspect practice at best. Making use of quality at all levels is complicated by the dependence on application needs. We will present examples of the various meanings of quality in remote sensing data and possible ways forward toward a more unified and usable quality framework.

  7. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  8. Hyperspectral remote sensing of plant pigments.

    Science.gov (United States)

    Blackburn, George Alan

    2007-01-01

    The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.

  9. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo

    2011-01-01

    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  10. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  11. The use of remote sensing for landslide studies in Europe

    Science.gov (United States)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  12. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    João Viana

    2017-11-01

    Full Text Available A mixed methods bibliometric analysis was performed to ascertain the characteristic of scientific literature published in a 10-year period (2007–2016 regarding the application of remote sensing data in human health. A search was performed on the Scopus database, followed by manual revision using synthesis studies’ techniques, requiring the authors to sort through more than 8000 medical concepts to create the query, and to manually select relevant papers from over 2000 documents. From the initial 2752 papers identified, 520 articles were selected for analysis, showing that the United States ranked first, with a total of 250 (48.1% of the total documents, followed by France and the United Kingdom, with 67 (12.9% of the total and 54 (10.4% of the total documents, respectively. When considering authorship, the top three authors were Vounatsou P (22 articles, Utzinger J (19 articles, and Vignolles C (13 articles. Regarding disease-specific keywords, malaria, dengue, and schistosomiasis were the most frequent keywords, occurring 142, 34, and 24 times, respectively. For some infectious diseases and other highly pathogenic or emerging infectious diseases, remote sensing has become a very powerful instrument. Also, several studies relate different environmental factors retrieved by remote sensing data with other diseases, such as asthma exacerbations. Health-related remote sensing publications are increasing and this paper highlights the importance of these related technologies toward better information and, ideally, better provision of healthcare. On the other hand, this paper provides an overall picture of the state of the research regarding the application of remote sensing data in human health and identifies the most active stakeholders e.g., authors and institutions in the field, informing possible new collaboration research groups.

  13. Remote Sensing Applications to Water Quality Management in Florida

    Science.gov (United States)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  14. Using remote sensing to predict earthquake impacts

    Science.gov (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  15. REMOTE SENSING DATA FUSION TO DETECT ILLICIT CROPS AND UNAUTHORIZED AIRSTRIPS

    OpenAIRE

    Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.

    2018-01-01

    Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote se...

  16. Remote Sensing Combined with Field Spectroscopy for the Detection and Monitoring of Heavy Metal Contamination from Informal E-waste Recycling

    Science.gov (United States)

    Friedlander, L. R.; Garb, Y.

    2017-12-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts

  17. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    Science.gov (United States)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and

  18. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    Science.gov (United States)

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  19. Analysis, Assessment and Modeling of The Urban Growth in Greater Muscat, Sultanate of Oman, Using Geographical Information Systems and Remote Sensing

    International Nuclear Information System (INIS)

    Al-Awadhi, T.

    2008-01-01

    Muscat Governorate is the main governorate in the Sultanate of Oman and at the same time, it is the capital of the country. The urban of Muscat expanded on the area rapidly. So, the process of the growth, the controlling factors and the side problems which become apparent need to be highlighted. In order to determine the urban growth between 1960 and 2003, multi data sources and techniques have been used under a GIS environment. This research aims to measure and to model the urban expansion of Muscat Governorate using the combined technologies of Geographical Information Systems (GIS) and Remote Sensing (RS). Based on the detailed datasets and knowledge of historical land use maps attempts were made to simulate future growth patterns of the city. The outcome of this exercise was the design of six urban growth maps covering the years 1960, 1970, 1980, 1990, 2000 and 2003. The results show that the total urban expansion reached more than 650% between 1960 and 2003, with an annual growth rate of approximately 20%. A combination of human and physical factors controlled this rapid growth. The paper discusses also the current urban problems resulting from this rapid growth as well as its future spatial trends

  20. Detection and mapping of mountain pine beetle red attack: Matching information needs with appropriate remotely sensed data

    Science.gov (United States)

    M. A. Wulder; J. C. White; B. J. Bentz

    2005-01-01

    Estimates of the location and extent of the red attack stage of mountain pine beetle (Dentroctonus ponderosae Hopkins) infestations are critical for forest management. The degree of spatial and temporal precision required for these estimates varies according to the management objectives and the nature of the infestation. This paper outlines a hierarchy of information...

  1. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  2. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    Science.gov (United States)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  3. Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing

    Science.gov (United States)

    Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.

    2014-01-01

    The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…

  4. Technology development and application research of remote sensing in uranium geological prospecting

    International Nuclear Information System (INIS)

    Liu Dechang; Dong Xiuzhen; Wang Zitao

    2012-01-01

    From the application, the concept, the theory study and application effect, this article discusses technology development and application research of remote sensing in uranium geological prospecting. The prospecting way from 'information prospecting' to 'theoretical prospecting' to 'simulated prospecting' to 'technology prospecting' with remote sensing is provided and achieved significant prospecting effect. (authors)

  5. Remote sensing procurement package: A technical guide for state and local governments

    Science.gov (United States)

    1981-01-01

    The guide provides the tools and techniques for procuring remote sensing products and services. It is written for administrators, procurement officials and line agency staff who are directly involved in identifying information needs; defining remote sensing project requirements; soliciting and evaluating contract responses and negotiating, awarding, and administering contracts.

  6. Needs Assessment for the Use of NASA Remote Sensing Data for Regulatory Water Quality

    Science.gov (United States)

    Spiering, Bruce; Underwood, Lauren

    2010-01-01

    This slide presentation reviews the assessment of the needs that NASA can use for the remote sensing of water quality. The goal of this project is to provide information for decision-making activities (water quality standards) using remotely sensed/satellite based water quality data from MODIS and Landsat data.

  7. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  8. Analysis of Association Between Remotely Sensed (RS) Data and Soil Transmitted Helminthes Infection Using Geographical Information Systems (GIS): Boaco, Nicaragua

    Science.gov (United States)

    MorenoMadrinan, Max J.; Al-Hamdan, Mohammad Z.; Parajon, David G.; Rickman, Douglas L.; Luvall, Jeffrey; Podest, Erika; Parajon, Laura C.; Martinez, Roberto A.; Estes, Sue

    2011-01-01

    Soil-transmitted helminths are intestinal nematodes that can infect all members of a population but specially school-age children living in poverty. Infection can be significantly reversed with anthelmintic drug treatments and sanitation improvement. Implementation of effective public health programs requires reliable and updated information to identify areas at higher risk and to calculate amount of drug required. Geo-referenced in situ prevalence data will be overlaid over an ecological map derived from RS data using ARC Map 9.3 (ESRI). Prevalence data and RS data matching at the same geographical location will be analyzed for correlation and those variables from RS data that better correlate with prevalence will be included in a multivariate regression model. Temperature, vegetation, and distance to bodies of water will be inferred using data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat TM and ETM+. Elevation will be estimated with data from The Shuttle Radar Topography Mission (SRTM). Prevalence and intensity of infections are determined by parasitological survey (Kato Katz) of children enrolled in rural schools in Boaco, Nicaragua, in the communities of El Roblar, Cumaica Norte, Malacatoya 1, and Malacatoya 2). This study will demonstrate the importance of an integrated GIS/RS approach to define sampling clusters without the need for any ground-based survey. Such information is invaluable to identify areas of high risk and to geographically target control programs that maximize cost-effectiveness and sanitation efforts.

  9. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Z. Hou

    2018-04-01

    Full Text Available This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  10. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    Science.gov (United States)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  11. An overview of ecological monitoring based on geographic information system (GIS) and remote sensing (RS) technology in China

    Science.gov (United States)

    Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan

    2017-11-01

    Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.

  12. Remote sensing data in Rangeland assessment and monitoring

    International Nuclear Information System (INIS)

    Hamid, Amna Ahmed; Ali, Mohamed M.

    1999-01-01

    The main objective of the paper is to illustrate the potential of remote sensing data in the study and monitoring of environmental changes in western Sudan where considerable part of the area is under rangeland use. Data from NOAA satellite AVHRR sensor as well as thematic mapper Tm was used to assess the environment of the area during 1982-1997. The AVHRR data was processed into vegetation index (NDVI) images. Image analysis and classification was done using image display and analysis (IDA) GIS method to study vegetation condition in time series. The obtained information from field observations. The result showed high correlation between the information the work concluded the followings: NDVI images and thematic mapper data proved to be efficient in environment change analysis. NOAA AVHRR satellite data can provide an early-warning indicator of an approaching disaster. Remote sensing integrated into a GIS can contribute effectively to improve land management through better understanding of environment variability.(Author)

  13. Use of passive microwave remote sensing to monitor soil moisture

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y.

    1998-01-01

    Surface soil moisture is a key variable to describe the water and energy exchanges at the land surface/atmosphere interface. However, soil moisture is highly variable both spatially and temporally. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition (on a daily basis) and at regional scale (∼ 10 km). This paper reviews the various methods for remote sensing of soil moisture from microwave radiometric systems. Potential applications from both airborne and spatial observations are discussed in the fields of agronomy, hydrology and meteorology. Emphasis in this paper is given to relatively new aspects of microwave techniques and of temporal soil moisture information analysis. In particular, the aperture synthesis technique allows us now to a address the soil moisture information needs on a global basis, from space instruments. (author) [fr

  14. Monitoring and Assessment of Saltwater Intrusion using Geographic Information Systems (GIS), Remote Sensing and Geophysical measurements of Guimaras Island, Philippines

    Science.gov (United States)

    Hernandez, B. C. B.

    2015-12-01

    Degrading groundwater quality due to saltwater intrusion is one of the key challenges affecting many island aquifers. These islands hold limited capacity for groundwater storage and highly dependent on recharge due to precipitation. But its ease of use, natural storage and accessibility make it more vulnerable to exploitation and more susceptible to encroachment from its surrounding oceanic waters. Estimating the extent of saltwater intrusion and the state of groundwater resources are important in predicting and managing water supply options for the community. In Guimaras island, central Philippines, increasing settlements, agriculture and tourism are causing stresses on its groundwater resource. Indications of saltwater intrusion have already been found at various coastal areas in the island. A Geographic Information Systems (GIS)-based approach using the GALDIT index was carried out. This includes six parameters assessing the seawater intrusion vulnerability of each hydrogeologic setting: Groundwater occurrence, Aquifer hydraulic conductivity, Groundwater Level above sea, Distance to shore, Impact of existing intrusion and Thickness of Aquifer. To further determine the extent of intrusion, Landsat images of various thematic layers were stacked and processed for unsupervised classification and electrical resistivity tomography using a 28-electrode system with array lengths of 150 and 300 meters was conducted. The GIS index showed where the vulnerable areas are located, while the geophysical measurements and images revealed extent of seawater encroachment along the monitoring wells. These results are further confirmed by the measurements collected from the monitoring wells. This study presents baseline information on the state of groundwater resources and increase understanding of saltwater intrusion dynamics in island ecosystems by providing a guideline for better water resource management in the Philippines.

  15. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  16. CRESTA : consortium on remote sensing of freight flows in congested border crossings and work zones.

    Science.gov (United States)

    2011-03-01

    "The objectives of this project were to develop and demonstrate the use of remote sensing and : geospatial information technologies to provide useful information for applications related to : the times trucks incur in various activities (activity...

  17. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  18. Soil erosion assessment using geographical information system (GIS) and remote sensing (RS) study from Ankara-Guvenc Basin, Turkey.

    Science.gov (United States)

    Dengiz, Orhan; Yakupoglu, Tugrul; Baskan, Oguz

    2009-05-01

    The objective of this research was to assess vulnerable soil erosion risk with qualitative approach using GIS in Ankara-Guvenc Basin. The study area is located about 44 km north of Ankara and covers 17.5 km2. The selected theme layers of this model include topographic factor, soil factors (depth, texture, impermeable horizon) and land use. Slope layer and land use-land cover data were prepared by using DEM and Landsat-TM satellite image. According to land use classification, the most common land use type and land cover are rangeland (50.5%) then, rainfed (36.4%), week forest land (3.2%), irrigated land (0.7%) and other various lands (rock out crop and lake) (9.2%). Each land characteristic is also considered as a thematic layer in geographical information systems (GIS) process. After combination of the layers, soil erosion risk map was produced. The results showed that 44.4% of the study area is at high soil erosion risk, whereas 42% of the study area is insignificantly and slightly susceptible to erosion risk. In addition, it was found that only 12.6% of the total area is moderately susceptible to erosion risk. Furthermore, conservation land management measures were also suggested for moderate, high and very high erosion risk areas in Ankara-Guvenc Basin.

  19. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  20. USDOE Remote Sensing Laboratory multisensor surveys

    International Nuclear Information System (INIS)

    Tinney, L.; Christel, L.; Clark, H.; Mackey, H.

    1996-01-01

    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and routine environmental assessments of nuclear facilities. The unique suite of equipment used by RSL for multisensor surveys of nuclear facilities include gamma radiation sensors, mapping quality aerial cameras, video cameras, thermal imagers, and multispectral scanners. Results for RSL multisensor surveys that have been conducted at the Savannah River Site (SRS) located in South Carolina are presented

  1. Remote sensing and communications in random media

    Science.gov (United States)

    Papanicolaou, George

    2003-04-01

    Reliable, high-capacity communications in scattering media can be effectively established with some basic remote sensing techniques involving time reversal. I will formulate these problems and discuss the various mathematical approaches that can be used for analysis. It turns out that stochastic analysis plays an important role and, in some cases, gives very satisfactory results. One such result is the spectacular increase in communications capacity in a richly scattering environment. I will end with a discussion of applications and computational issues that arise in the realistic simulation of communication systems.

  2. Parallelizing remote sensing image geometric correction

    OpenAIRE

    Bernabeu i Altayó, Gerard; Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius

    2012-01-01

    Remote sensing spatial, spectral, and temporal resolutions of images, acquired Les resolucions espacials, espectrals i temporals d'imatges de teledetecci ó, adquirides a una mida raonable, donen com a resultat imatges que es poden processar per a representar grans àrees de terreny amb un nivell de detall espacial que es Las resoluciones espaciales, espectrales y temporales de imágenes de teledetección, adquiridas a un tamaño razonable, dan como resultado imágenes que se pueden procesar ...

  3. Application of remote sensing to environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Handley, J F

    1980-01-01

    The contribution of remote sensing to environmental management procedures at the sub-regional scale is examined in relation to the County Structure environmental management plan for Merseyside County, England. The various seasons, scales and emulsions used for aerial photography in the county are indicated, and results of aerial surveys of the distribution of derelict and despoiled land and of natural environments are presented and compared with ground surveys. The use of color infrared and panchromatic aerial photographs indicating areas of environmental stress and land use in the formulation, implementation and monitoring of environmental management activities is then discussed.

  4. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  5. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  6. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  7. Remote sensing programs and courses in engineering and water resources

    Science.gov (United States)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  8. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  9. Preface to: Pan Ocean Remote Sensing Conference (PORSEC)

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.; Brown, R.; Shenoi, S.S.C.; Joseph, G.

    Conference (PORSEC), earlier known as the Paci c Ocean Remote Sensing Conference (PORSEC), was formed in 1992 to provide a venue for international cooperation in the increasingly important area of remote sensing of the ocean. Many countries that border... and ocean dynamics, and modeling with satellite sensor (mainly microwave) data. Some of the presentations are of regional interest, while others will nd an audience beyond the satellite remote sensing community. These rst results through their simple...

  10. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  11. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  12. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren

    2015-06-01

    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  13. Remote sensing applied in uranium exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.

    1985-01-01

    A research project, aiming at investigation the use of remote sensing in uranium exploration, has been accomplished on data from South Greenland. During the project, analyses have been done on pure remote sensing data (Landsat MSS) and on integrated data of various types, including geochemical, aeromagnetic, radiometric and geological data in addition to the MSS data. Ratioing, factor analysis and discriminant analysis were used for enhancement of colour anomalies which correspond to oxidation zones. Some of the anomalies coincide with U and Nb mineralizations. Lineaments were mapped visually from photoprints, digitized and analysed statistically. A sinusoidal model could be applied to the general directional frequency distribution and was used to define ten classes of significant directions. Three of these directions were of major geological significance. Thus some of the major alkaline intrusions are situated at the intersections of some of the lineaments, a particular NE-SW trending lineament coincides with a geochemical boundary and pitchblende occurrences may be related to a WNW-ESE direction. The various types of data set were brought onto format of the Landsat images and collected in a data base. Representing three different types of data (Landsat MSS-band 7, aeromagnetic data and the geochemical Fe-content of stream sediments) on basis of intensity, hue and saturation revealed new features among which can be mentioned a possible indication of a subsurface continuation of one of the major alkaline intrusions. (author)

  14. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  15. Satellite remote sensing in epidemiological studies.

    Science.gov (United States)

    Sorek-Hamer, Meytar; Just, Allan C; Kloog, Itai

    2016-04-01

    Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.

  16. Land remote sensing commercialization: A status report

    Science.gov (United States)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  17. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  18. Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips

    Science.gov (United States)

    Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.

    2018-04-01

    Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.

  19. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  20. Land cover's refined classification based on multi source of remote sensing information fusion: a case study of national geographic conditions census in China

    Science.gov (United States)

    Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin

    2018-03-01

    The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.

  1. Remote Sensing:From Trained Professionals to General Public

    Directory of Open Access Journals (Sweden)

    SHAN Jie

    2017-10-01

    Full Text Available Influenced by the growing popularity of smart phones and the rapid development of open science, remote sensing is being developed and applied more by general public than by trained professionals. This trend is mainly embodied in the democratized data collection, democratized data processing and democratized data usage. This paper discusses and analyzes the three aforementioned characteristics, introduces some recent representative work and progress. It also lists numerous international open data processing tools, including photogrammetry processing, laser scanning processing, machine learning, and spatial information management. In addition, the article makes a detailed description of the benefits of open data, and lists a number of global data programs and experimental data sets for scientific research. At the end of this paper, it is pointed out that the democratization of remote sensing will not only produce great economic benefits, but also bring about great social benefits, and finally change the landscape of industry and the life style of people.

  2. Physics teaching by infrared remote sensing of vegetation

    Science.gov (United States)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund

    2018-05-01

    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  3. On the coupled use of eddy covariance, sap flow sensors and remote sensing information for Evapotranspiration estimates in a typical heterogeneous Mediterranean ecosystem.

    Science.gov (United States)

    Corona, R.; Montaldo, N.

    2017-12-01

    Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and

  4. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  5. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    Science.gov (United States)

    Brakenridge, G. Robert

    1997-01-01

    Changes in the frequency and magnitude of extreme meteorological events are associated with changing environmental means. Such events are important in human affairs, and can also be investigated by orbital remote sensing. During the course of this project, we applied ERS-1, ERS-2, Radarsat, and an airborne sensor (AIRSAR-TOPSAR) to measure flood extents, flood water surface profiles, and flood depths. We established a World Wide Web site (the Dartmouth Flood Observatory) for publishing remote sensing-based maps of contemporary floods worldwide; this is also an online "active archive" that presently constitutes the only global compilation of extreme flood events. We prepared an article for EOS concerning SAR imaging of the Mississippi Valley flood; an article for the International Journal of Remote Sensing on measurement of a river flood wave using ERS-2, began work on an article (since completed and published) on the Flood Observatory for a Geoscience Information Society Proceedings volume, and presented lectures at several Geol. Soc. of America Natl. Meetings, an Assoc. of Amer. Geographers Natl. Meeting, and a Binghamton Geomorphology Symposium (all on SAR remote sensing of the Mississippi Valley flood). We expanded in-house modeling capabilities by installing the latest version of the Army Corps of Engineers RMA two-dimensional hydraulics software and BYU Engineering Graphics Lab's Surface Water Modeling System (finite elements based pre- and post-processors for RMA work) and also added watershed modeling software. We are presently comparing the results of the 2-d flow models with SAR image data. The grant also supported several important upgrades of pc-based remote sensing infrastructure at Dartmouth. During work on this grant, we collaborated with several workers at the U.S. Army Corps of Engineers, Remote Sensing/GIS laboratory (for flood inundation mapping and modeling; particularly of the Illinois River using the AIRSAR/TOPSAR/ERS-2 combined data), with Dr

  6. Leveraging of remote sensing and GIS on mapping in urban and regional planning applications

    International Nuclear Information System (INIS)

    Noor, Norzailawati Mohd; Abdullah, Alias; Rosni, Nur Aulia

    2014-01-01

    While remote sensing applications represent a major though still underused source of urban data, the proposed combination between remote sensing and Geo-information System (GIS) in urban and regional planning is not fully explored. In order to measure changes in land use, the need of platform in monitoring, recording, and predicting the changes is necessary for planners and developers. In advance technology of mapping process, remote sensing and GIS as tools for urban planning are already recognised. But, due to lack of implementation and awareness about the benefits of these tools, these terms look unusual. Therefore, this paper reviews the history of remote sensing and GIS in urban applications, technical skills and the challenges, and future development of remote sensing and GIS especially for urban development particularly in developing countries

  7. Remote sensing and eLearning 2.0 for school education

    Science.gov (United States)

    Voss, Kerstin; Goetzke, Roland; Hodam, Henryk

    2010-10-01

    The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.

  8. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  9. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    Science.gov (United States)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  10. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  11. Laser long-range remote-sensing program experimental results

    Science.gov (United States)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  12. The benefits of remote sensing for energy policy

    International Nuclear Information System (INIS)

    Sen, A.

    2004-01-01

    A strong remote sensing regime is a necessary component of any contemporary national or international energy policy. Energy is essential to the functioning of modem industrial society, and as such it is the responsibility of governments to produce sound national energy policies in order to ensure stable economic growth, ecologically responsible use of energy resources and the health and safety of citizens. Comprehensive, accurate and timely remote sensing data can aid decision making on energy matters in several areas. This paper looks at the benefits that can be realized in resource exploration, weather forecasting and environmental monitoring. Improvements in the technology of remote sensing platforms would be of great value to buyers of energy, sellers of energy and the environment. Furthermore, the utility of such information could be enhanced by efforts of government agencies to communicate it more effectively to the end-user. National energy policies should thus include investments not only in satellite system hardware to collect data, but also in the services required to interpret and distribute the data. (author)

  13. Long-range strategy for remote sensing: an integrated supersystem

    Science.gov (United States)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  14. Remote Sensing for Mineral Exploration in Central Portugal

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel

    2017-09-01

    Full Text Available Central Portugal is well known for the existence of Sn-W and Au-Ag mineral occurrences primarily associated with hydrothermal processes. Despite the economic and strategic importance of such occurrences, the detailed geology of this particular region is poorly known and there is an obvious absence of geological mapping at an adequate scale. Remote sensing techniques were used in order to increase current geological knowledge of the Góis–Castanheira de Pêra area (600 km2 and to guide future exploration stages by targeting and prioritising potential locations. Digital image processing algorithms, such as Red, Green, Blue (RGB colour composites, digital spatial filters, band ratios and Principal Components Analysis, were applied to Landsat 8 imagery and elevation data. Lineaments were extracted relying on geological photointerpretation criteria, allowing the identification of new geological–structural elements. Fieldwork was carried out in order to validate the remote sensing interpretations. Integration of remote sensing data with other information sources led to the definition of locations possibly suitable for hosting Sn-W and Au-Ag mineral occurrences. These areas were ranked according to their mineral potential. Targeting the most promising locations resulted in a reduction to less than 10% of the original study area (50.5 km2.

  15. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  16. Benefits to world agriculture through remote sensing

    Science.gov (United States)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  17. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  18. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  19. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  20. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  1. Data Fusion for Earth Science Remote Sensing

    Science.gov (United States)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  2. Evaluation of Airborne Remote Sensing Techniques for Predicting the Distribution of Energetic Compounds on Impact Areas

    National Research Council Canada - National Science Library

    Graves, Mark R; Dove, Linda P; Jenkins, Thomas F; Bigl, Susan; Walsh, Marianne E; Hewitt, Alan D; Lambert, Dennis; Perron, Nancy; Ramsey, Charles; Gamey, Jeff; Beard, Les; Doll, William E; Magoun, Dale

    2007-01-01

    .... Remote sensing and geographic information system (GIS) technologies were utilized to assist in the development of enhanced sampling strategies to better predict the landscape-scale distribution of energetic compounds...

  3. Kent mixture model for classification of remote sensing data on spherical manifolds

    CSIR Research Space (South Africa)

    Lunga, D

    2011-10-01

    Full Text Available Modern remote sensing imaging sensor technology provides detailed spectral and spatial information that enables precise analysis of land cover usage. From a research point of view, traditional widely used statistical models are often limited...

  4. A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2

    Science.gov (United States)

    2018-02-02

    The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...

  5. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-10-22

    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  6. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    Dozier J 1989a Remote sensing of snow in the visible and near-infrared wavelengths; In: Theory and Applications of. Optical Remote Sensing (ed.) Asrar G (New York: John. Wiley and Sons), pp. 527–547. Dozier J 1989b Spectral signature of alpine snow cover from the Landsat Thematic Mapper; Rem. Sens. Environ. 28.

  7. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  8. Recent developments in remote sensing for coastal and marine applications

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2017-01-01

    Full Text Available at the coast is that it is in a permanent state of change. Remote sensing, whether from orbiting (space-borne) or air-borne platforms, can greatly assist in the task of monitoring coastal environments. In particular, remote sensing enables simultaneous or near...

  9. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  10. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  11. Potential benefits of remote sensing: Theoretical framework and empirical estimate

    Science.gov (United States)

    Eisgruber, L. M.

    1972-01-01

    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  12. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  13. Remote Sensing Data Visualization, Fusion and Analysis via Giovanni

    Science.gov (United States)

    Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.

    2007-01-01

    We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.

  14. The potential of remote sensing technology for the detection and ...

    African Journals Online (AJOL)

    Internationally, a number of studies have successfully used remote sensing technology to monitor forest damage. Remote sensing technology allows for instantaneous methods of assessments whereby ground assessments would be impossible on a regular basis. This paper provides an overview of how advances in ...

  15. Remote sensing and change detection in rangelands | Palmer ...

    African Journals Online (AJOL)

    To most land managers, remote sensing has remained illusive, seldom allowing the manager to use it to its full potential. In contrast, the policy maker, backed by GIS laboratories and remote sensing specialists, is confronted by plausible scenarios of degradation and transformation. After intervening, he is seldom active long ...

  16. Remote Sensing by Satellite for Environmental Education: A Survey and a Proposal for Teaching at Upper Secondary and University Level.

    Science.gov (United States)

    Bosler, Ulrich

    Knowledge of the environment has grown to such an extent that information technology (IT) is essential to make sense of the available data. An example of this is remote sensing by satellite. In recent years this field has grown in importance and remote sensing is used for a range of uses including the automatic survey of wheat yields in North…

  17. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    Science.gov (United States)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  18. Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data

    Science.gov (United States)

    2011-09-30

    Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215

  19. Use of Openly Available Satellite Images for Remote Sensing Education

    Science.gov (United States)

    Wang, C.-K.

    2011-09-01

    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  20. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France

    1979-02-01

    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  1. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    Science.gov (United States)

    Stryker, Timothy

    sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping

  2. Determination of Temporal Change Land Use / Land Cover Using Remote Sensing and Geographic Information System Techniques the Central District of Samsun (1984-2011

    Directory of Open Access Journals (Sweden)

    Orhan DENGİZ

    2014-03-01

    Full Text Available In our day natural resources fall short against endless human needs and increasing population. It is required for lands which are the leading natural resources to be used and planned according to natural environment potential. This study was conducted in Central district of Samsun province covered about 341 km2 and located between the latitudes 41° 25‟ 52”- 41° 12‟ 22” to 41° 42‟ 34” to north and longitudes 36° 09‟ 52”-36° 24‟ 31” east. Determination of land use efficiency of district selected for this study using satellite image and GIS was aimed. For this purpose the data of General Directorate of Rural Services which belongs to 1984 year, ASTER satellite images which belongs to 2005 and 2011 years and topographic maps were used. For performing calculations in ENVI 5.0v software unclassified classification applied and four main classes were formed. For determining the unclassified classes as classified the field work applied. The result of the classification forest, pasture, farm lands and non agricultural areas were determined as land use-land covers. For determining land use efficiency analog data were digitized and transferred to GIS database. Land use types and land use capability classes of 1984 year converted raster data by using GIS. Land use types of 1993, land use types of 2005 and 2011 and land use capability classes were compared. As the result of the comparison urbanization and unintended use increased in I., II. and III. class lands. In 1984 agricultural land has 24313.76 ha while, this amount decreased to 10120.96 ha in 2005 and 6960.69 ha in 2011. On the other hand, while non-agricultural area was 1893.36 in 1984, this area increased to 6301.66 ha in 2005 and 7917.73 ha in 2011. In addition, this study showed that to determine and to monitory for large areas‟ land cover and land use trend, remote sensing and geographic information system techniques have important role to generate accoriance and fast

  3. Kingfisher: a system for remote sensing image database management

    Science.gov (United States)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  4. The function of remote sensing in support of environmental policy

    OpenAIRE

    de Leeuw, Jan; Georgiadou, P.Y.; Georgiadou, Yola; Kerle, Norman; de Gier, Alfred; Inoue, Yoshio; Ferwerda, Jelle; Smies, Maarten; Narantuya, Davaa

    2010-01-01

    Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1), there is apparently lit...

  5. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  6. Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination

    International Nuclear Information System (INIS)

    Wickham, J.; Chesley, M.; Lancaster, J.; Mouat, D.

    1993-01-01

    Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI's obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics

  7. Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination

    Energy Technology Data Exchange (ETDEWEB)

    Wickham, J.; Chesley, M.; Lancaster, J.; Mouat, D.

    1993-01-01

    Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI`s obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics.

  8. Improving the extraction of crisis information in the context of flood, fire, and landslide rapid mapping using SAR and optical remote sensing data

    Science.gov (United States)

    Martinis, Sandro; Clandillon, Stephen; Twele, André; Huber, Claire; Plank, Simon; Maxant, Jérôme; Cao, Wenxi; Caspard, Mathilde; May, Stéphane

    2016-04-01

    Optical and radar satellite remote sensing have proven to provide essential crisis information in case of natural disasters, humanitarian relief activities and civil security issues in a growing number of cases through mechanisms such as the Copernicus Emergency Management Service (EMS) of the European Commission or the International Charter 'Space and Major Disasters'. The aforementioned programs and initiatives make use of satellite-based rapid mapping services aimed at delivering reliable and accurate crisis information after natural hazards. Although these services are increasingly operational, they need to be continuously updated and improved through research and development (R&D) activities. The principal objective of ASAPTERRA (Advancing SAR and Optical Methods for Rapid Mapping), the ESA-funded R&D project being described here, is to improve, automate and, hence, speed-up geo-information extraction procedures in the context of natural hazards response. This is performed through the development, implementation, testing and validation of novel image processing methods using optical and Synthetic Aperture Radar (SAR) data. The methods are mainly developed based on data of the German radar satellites TerraSAR-X and TanDEM-X, the French satellite missions Pléiades-1A/1B as well as the ESA missions Sentinel-1/2 with the aim to better characterize the potential and limitations of these sensors and their synergy. The resulting algorithms and techniques are evaluated in real case applications during rapid mapping activities. The project is focussed on three types of natural hazards: floods, landslides and fires. Within this presentation an overview of the main methodological developments in each topic is given and demonstrated in selected test areas. The following developments are presented in the context of flood mapping: a fully automated Sentinel-1 based processing chain for detecting open flood surfaces, a method for the improved detection of flooded vegetation

  9. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  10. Operational programs in forest management and priority in the utilization of remote sensing

    Science.gov (United States)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  11. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  12. Remote sensing sensors and applications in environmental resources mapping and modeling

    Science.gov (United States)

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  13. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  14. Slovenian experience in applicability of remote sensing data in hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, A; Vidmar, A; Petan, S; Brilly, M [University of Ljubljana, Faculty of Civil and Geodetic Engineering, Chair of Hydrology and Hydraulic Engineering, Hajdrihova 28, Ljubljana (Slovenia)], E-mail: mbrillygg@uni-lj.si

    2008-11-01

    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.

  15. Slovenian experience in applicability of remote sensing data in hydrology

    International Nuclear Information System (INIS)

    Horvat, A; Vidmar, A; Petan, S; Brilly, M

    2008-01-01

    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.

  16. Educational activities of remote sensing archaeology (Conference Presentation)

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  17. Human and remote sensing data to investigate the frontiers of urbanization in the south of Mexico City

    OpenAIRE

    Rodriguez Lopez, Juan Miguel; Heider, Katharina; Scheffran, J?rgen

    2016-01-01

    The data presented here were originally collected for the article “Frontiers of Urbanization: Identifying and Explaining Urbanization Hot Spots in the South of Mexico City Using Human and Remote Sensing” (Rodriguez et al. 2017) [4]. They were divided into three databases (remote sensing, human sensing, and census information), using a multi-method approach with the goal of analyzing the impact of urbanization on protected areas in southern Mexico City. The remote sensing database was prepared...

  18. A Review of Oil Spill Remote Sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl E

    2017-12-30

    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.

  19. Environmental remote sensing for the petroleum industry

    International Nuclear Information System (INIS)

    Baker, R.N.

    1991-01-01

    Remote sensing techniques developed for exploration programs can often be used to address environmental issues facing the petroleum industry. While this industry becomes increasingly more environmentally conscious, budgets remain tight, requiring any technology used in environmental applications to be cost effective, widely available and reliable. In this paper a three-fold analysis of environmental issues facing the petroleum industry concludes: major areas of concern included environmental mapping natural habitats, surface cover, change through time, pollution monitoring (hazardous wastes, oil seeps and spills on and offshore), earth hazards assessment, baseline studies, facilities sitting and crisis response. options matrices were developed plotting current and near future RS technology vs environmental concerns, and each sensor/platform combination subjectively evaluated to determine which combination could best address the problem. While presently available RS technology (both airborne and spaceborne) has significant capability toward environmental mapping, hazards detection and other concerns, the anticipated launches of ERS-1, JERS-1, Landsat-6 and other systems will provide environmentally useful data available today only from relatively expensive and local airborne surveys. Low altitude airborne surveys and ground/sea truth will continue to be critical to any quantitative studies

  20. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  1. Development of airborne remote sensing data assimilation system

    International Nuclear Information System (INIS)

    Gudu, B R; Bi, H Y; Wang, H Y; Qin, S X; Ma, J W

    2014-01-01

    In this paper, an airborne remote sensing data assimilation system for China Airborne Remote Sensing System is introduced. This data assimilation system is composed of a land surface model, data assimilation algorithms, observation data and fundamental parameters forcing the land surface model. In this data assimilation system, Variable Infiltration Capacity hydrologic model is selected as the land surface model, which also serves as the main framework of the system. Three-dimensional variation algorithm, four-dimensional variation algorithms, ensemble Kalman filter and Particle filter algorithms are integrated in this system. Observation data includes ground observations and remotely sensed data. The fundamental forcing parameters include soil parameters, vegetation parameters and the meteorological data

  2. Multi-source remote sensing data management system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun; Lu Donghua; Zhang Donghui; Wu Wenhuan

    2014-01-01

    In this thesis, the author explored multi-source management problems of remote sensing data. The main idea is to use the mosaic dataset model, and the ways of an integreted display of image and its interpretation. Based on ArcGIS and IMINT feature knowledge platform, the author used the C# and other programming tools for development work, so as to design and implement multi-source remote sensing data management system function module which is able to simply, conveniently and efficiently manage multi-source remote sensing data. (authors)

  3. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  4. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  5. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  6. Developing Integrated Remote Sensing and Geographical Information Sciences Procedures to Assess Impacts of Climate Variations on Spatio-Temporal Distribution of Mangroves

    Science.gov (United States)

    Qaisar, Maha

    2016-07-01

    Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70

  7. Future opportunities and challenges in remote sensing of drought

    Science.gov (United States)

    Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt; Wardlow, Brian D.; Anderson, Martha C.; Verdin, James P.

    2012-01-01

    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and

  8. Remote Sensing Terminology in a Global and Knowledge-Based World

    Science.gov (United States)

    Kancheva, Rumiana

    The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy

  9. Developing Particle Emission Inventories Using Remote Sensing (PEIRS)

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A.; Schwartz, Joel; Lyapustin, Alexei I.; Di, Qian; Koutrakis, Petros

    2016-01-01

    Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  10. The Improvement of Land Cover Classification by Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Liya Sun

    2015-06-01

    Full Text Available Land cover classification has been widely investigated in remote sensing for agricultural, ecological and hydrological applications. Landsat images with multispectral bands are commonly used to study the numerous classification methods in order to improve the classification accuracy. Thermal remote sensing provides valuable information to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated by the ground-truth reference data considering the three level classification scheme from COoRdination of INformation on the Environment (CORINE using the 10-fold cross validation method. The accuracy assessment showed that compared to the visible and near infrared (VIS/NIR bands, the time series of thermal images alone can produce comparatively reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category and provides the best classified results with all seven bands for the time series of Landsat TM images.

  11. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  12. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    Science.gov (United States)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  13. Professional Development in Remote Sensing for Community College Instructors

    Science.gov (United States)

    Allen, J. E.; Cruz, C.

    2014-11-01

    The ingredients for the highly successful, ongoing educator professional development program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" came into place in 2006 when representatives of public and private organizations convened a two-day workshop at the National Science Foundation (NSF) to explore issues around integrating remote sensing with Geographic Information Systems (GIS) instruction at two-year (community and Tribal) colleges. The results of that 2006 workshop informed the shape of a grant proposal, and two phases of iGETT-RS were funded by NSF's Advanced Technological Education Program (NSF DUE #0703185, 2007-2011, and NSF DUE #1205069, 2012-2015). 76 GIS instructors from all over the country have been served. Each of them has spent 18 months on the project, participating in monthly webinars and two Summer Institutes, and creating their own integrated geospatial exercises for the classroom. The project will be completed in June 2015. As the external evaluator for iGETT expressed it, the impact on participating instructors "can only be described as transformative." This paper describes how iGETT came about, how it was designed and implemented, how it affected participants and their programs, and what has been learned by the project staff about delivering professional development in geospatial technologies for workforce preparedness.

  14. Use of Remote Sensing Products for the SERVIR Project

    Science.gov (United States)

    Policelli, Frederick S.

    2010-01-01

    The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.

  15. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jiayin Liu

    2017-06-01

    Full Text Available Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC, which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF, which is estimated by Kernel Density Estimation (KDE with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  16. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    Science.gov (United States)

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  17. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  18. Structural mapping based on potential field and remote sensing data ...

    Indian Academy of Sciences (India)

    Swarnapriya Chowdari

    2017-08-31

    Aug 31, 2017 ... to comprehend the tectonic development of the ... software for the analysis and interpretation of G– .... The application of remote sensing for mapping ..... Pf1 and Pf2 show profile locations adopted for joint G–M modelling.

  19. and remote sensing for multi-temporal analysis of sand ...

    African Journals Online (AJOL)

    dalel

    remote sensing techniques particularly those referring to change detection. This kind of ... Technol. depending on many factors in relation to climate conditions, nature .... geomorphologic position make it a perfect wind corridor. (Chahbani ...

  20. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... technology provides an efficient avenue of assessment of biomass content of any area. ... use data, can be integrated into GIS together with results from remote sensing analysis ...

  1. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  2. Quantitative remote sensing in thermal infrared theory and applications

    CERN Document Server

    Tang, Huajun

    2014-01-01

    This comprehensive technical overview of the core theory of thermal remote sensing and its applications in hydrology, agriculture, and forestry includes a host of illuminating examples and covers everything from the basics to likely future trends in the field.

  3. Remote sensing monitoring the spatio-temporal changes of ...

    Indian Academy of Sciences (India)

    Xiaoming Cao

    2017-06-16

    Jun 16, 2017 ... mainly focused on the models established by the remote sensing data in .... Page 5 of 16 58. Organization (WMO) World Weather Watch Pro- gram. ...... the disorder of urban sprawl would bring decreased vegetation cover and ...

  4. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  5. Decision tree approach for classification of remotely sensed satellite

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  6. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus; Fisher, Joshua B.; Skidmore, Andrew K.

    2015-01-01

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales

  7. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  8. Conditional Estimation of Vector Patterns in Remote Sensing and GIS

    National Research Council Canada - National Science Library

    Masuch, J

    1999-01-01

    .... This effort is cooperatively conducted with the professional researchers at the Remote Sensing GIS Center of the US Army Cold Regions Research and Engineering Laboratory in Hanover, New Hampshire...

  9. Integrated ancillary and remote sensing data for land use ...

    African Journals Online (AJOL)

    Full Name

    The application of GMM to remote sensing image classification ... A . The boundary that has a Mahalanobis distance to the centre ... yields the Baye's theorem: ..... bands were extracted using the layer properties tool and visualised in MATLAB ...

  10. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2017-12-01

    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  11. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  12. 348 A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT ...

    African Journals Online (AJOL)

    Osondu

    A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT OF DEFORESTATION IN ... This study measured and analyzed deforestation in Uyo and examined the possible effects of the ..... the Burkill technique, (1985, 1994, 1995, 1997.

  13. Use of Remote Sensing for Decision Support in Africa

    Science.gov (United States)

    Policelli, Frederick S.

    2007-01-01

    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  14. Blending the most fundamental Remote-Sensing principles (RS ...

    African Journals Online (AJOL)

    Blending the most fundamental Remote-Sensing principles (RS) with the most functional spatial knowledge (GIS) with the objective of the determination of the accident-prone palms and points (case study: Tehran-Hamadan Highway on Saveh Superhighway)

  15. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  16. Mid infrared lasers for remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Brian M., E-mail: brian.m.walsh@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Lee, Hyung R. [National Institute of Aerospace, Hampton, VA 23666 (United States); Barnes, Norman P. [Science Systems and Applications, Inc., Hampton, VA 23666 (United States)

    2016-01-15

    To accurately measure the concentrations of atmospheric gasses, especially the gasses with low concentrations, strong absorption features must be accessed. Each molecular species or constituent has characteristic mid-infrared absorption features by which either column content or range resolved concentrations can be measured. Because of these characteristic absorption features the mid infrared spectral region is known as the fingerprint region. However, as noted by the Decadal Survey, mid-infrared solid-state lasers needed for DIAL systems are not available. The primary reason is associated with short upper laser level lifetimes of mid infrared transitions. Energy gaps between the energy levels that produce mid-infrared laser transitions are small, promoting rapid nonradiative quenching. Nonradiative quenching is a multiphonon process, the more phonons needed, the smaller the effect. More low energy phonons are required to span an energy gap than high energy phonons. Thus, low energy phonon materials have less nonradiative quenching compared to high energy phonon materials. Common laser materials, such as oxides like YAG, are high phonon energy materials, while fluorides, chlorides and bromides are low phonon materials. Work at NASA Langley is focused on a systematic search for novel lanthanide-doped mid-infrared solid-state lasers using both quantum mechanical models (theoretical) and spectroscopy (experimental) techniques. Only the best candidates are chosen for laser studies. The capabilities of modeling materials, experimental challenges, material properties, spectroscopy, and prospects for lanthanide-doped mid-infrared solid-state laser devices will be presented. - Highlights: • We discuss mid infrared lasers and laser materials. • We discuss applications to remote sensing. • We survey the lanthanide ions in low phonon materials for potential. • We present examples of praseodymium mid infrared spectroscopy and laser design.

  17. Remote Sensing and Quantization of Analog Sensors

    Science.gov (United States)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  18. Applications of airborne remote sensing in atmospheric sciences research

    Science.gov (United States)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  19. The Potential of AI Techniques for Remote Sensing

    Science.gov (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.

    1984-01-01

    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  20. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    2017-03-01

    at reasonable logistical or financial costs . Remote sensing provides an attractive alternative. We discuss the range of different sensors that are...DARLA: Data Assimilation and Remote Sensing for Littoral Applications Final Report Award Number: N000141010932 Andrew T. Jessup Chris Chickadel...20. Radermacher, M., M. Wengrove, J. V. de Vries, and R. Holman (2014), Applicability of video-derived bathymetry estimates to nearshore current