WorldWideScience

Sample records for remote sensing imaging

  1. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  2. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  3. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  4. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  5. Image Fusion Technologies In Commercial Remote Sensing Packages

    OpenAIRE

    Al-Wassai, Firouz Abdullah; Kalyankar, N. V.

    2013-01-01

    Several remote sensing software packages are used to the explicit purpose of analyzing and visualizing remotely sensed data, with the developing of remote sensing sensor technologies from last ten years. Accord-ing to literature, the remote sensing is still the lack of software tools for effective information extraction from remote sensing data. So, this paper provides a state-of-art of multi-sensor image fusion technologies as well as review on the quality evaluation of the single image or f...

  6. Remote Sensing of Landscapes with Spectral Images

    Science.gov (United States)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  7. Image registration for remote sensing

    National Research Council Canada - National Science Library

    Le Moigne, Jacqueline; Netanyahu, Nathan S; Eastman, Roger D

    2011-01-01

    ... for environmental, political and basic science studies. The book brings together invited contributions by 36 distinguished researchers in the field to present a coherent and detailed overview of current research and practice in the application of image...

  8. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  9. Remote Sensing Image in the Application of Agricultural Tourism Planning

    Directory of Open Access Journals (Sweden)

    Guojing Fan

    2013-06-01

    Full Text Available This paper introduces the processing technology of high resolution remote sensing image, the specific making process of tourism map and different remote sensing data in the key application of tourism planning and so on. Remote sensing extracts agricultural tourism planning information, improving the scientificalness and operability of agricultural tourism planning. Therefore remote sensing image in the application of agricultural tourism planning will be the inevitable trend of tourism development.

  10. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  11. Parallelizing remote sensing image geometric correction

    OpenAIRE

    Bernabeu i Altayó, Gerard; Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius

    2012-01-01

    Remote sensing spatial, spectral, and temporal resolutions of images, acquired Les resolucions espacials, espectrals i temporals d'imatges de teledetecci ó, adquirides a una mida raonable, donen com a resultat imatges que es poden processar per a representar grans àrees de terreny amb un nivell de detall espacial que es Las resoluciones espaciales, espectrales y temporales de imágenes de teledetección, adquiridas a un tamaño razonable, dan como resultado imágenes que se pueden procesar ...

  12. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  13. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  14. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-10-22

    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  15. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2017-12-01

    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  16. Remote-sensing image encryption in hybrid domains

    Science.gov (United States)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  17. Remote sensing image segmentation based on Hadoop cloud platform

    Science.gov (United States)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  18. Study on edge-extraction of remote sensing image

    International Nuclear Information System (INIS)

    Wen Jianguang; Xiao Qing; Xu Huiping

    2005-01-01

    Image edge-extraction is an important step in image processing and recognition, and also a hot spot in science study. In this paper, based on primary methods of the remote sensing image edge-extraction, authors, for the first time, have proposed several elements which should be considered before processing. Then, the qualities of several methods in remote sensing image edge-extraction are systematically summarized. At last, taking Near Nasca area (Peru) as an example the edge-extraction of Magmatic Range is analysed. (authors)

  19. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  20. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  1. Watermarking techniques for electronic delivery of remote sensing images

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  2. Supervised Gaussian mixture model based remote sensing image ...

    African Journals Online (AJOL)

    Using the supervised classification technique, both simulated and empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm. For the purpose of validating the experiment, the resulting classified satellite image is compared with the ground truth data. For the simulated modelling, ...

  3. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    2007-01-01

    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  4. Kingfisher: a system for remote sensing image database management

    Science.gov (United States)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  5. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    Science.gov (United States)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  6. Probabilistic segmentation of remotely sensed images

    NARCIS (Netherlands)

    Gorte, B.

    1998-01-01

    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.

    Bayesian image

  7. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  8. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  9. Online Hashing for Scalable Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Peng Li

    2018-05-01

    Full Text Available Recently, hashing-based large-scale remote sensing (RS image retrieval has attracted much attention. Many new hashing algorithms have been developed and successfully applied to fast RS image retrieval tasks. However, there exists an important problem rarely addressed in the research literature of RS image hashing. The RS images are practically produced in a streaming manner in many real-world applications, which means the data distribution keeps changing over time. Most existing RS image hashing methods are batch-based models whose hash functions are learned once for all and kept fixed all the time. Therefore, the pre-trained hash functions might not fit the ever-growing new RS images. Moreover, the batch-based models have to load all the training images into memory for model learning, which consumes many computing and memory resources. To address the above deficiencies, we propose a new online hashing method, which learns and adapts its hashing functions with respect to the newly incoming RS images in terms of a novel online partial random learning scheme. Our hash model is updated in a sequential mode such that the representative power of the learned binary codes for RS images are improved accordingly. Moreover, benefiting from the online learning strategy, our proposed hashing approach is quite suitable for scalable real-world remote sensing image retrieval. Extensive experiments on two large-scale RS image databases under online setting demonstrated the efficacy and effectiveness of the proposed method.

  10. Airplane detection in remote sensing images using convolutional neural networks

    Science.gov (United States)

    Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei

    2018-03-01

    Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.

  11. Exploitation of commercial remote sensing images: reality ignored?

    Science.gov (United States)

    Allen, Paul C.

    1999-12-01

    The remote sensing market is on the verge of being awash in commercial high-resolution images. Market estimates are based on the growing numbers of planned commercial remote sensing electro-optical, radar, and hyperspectral satellites and aircraft. EarthWatch, Space Imaging, SPOT, and RDL among others are all working towards launch and service of one to five meter panchromatic or radar-imaging satellites. Additionally, new advances in digital air surveillance and reconnaissance systems, both manned and unmanned, are also expected to expand the geospatial customer base. Regardless of platform, image type, or location, each system promises images with some combination of increased resolution, greater spectral coverage, reduced turn-around time (request-to- delivery), and/or reduced image cost. For the most part, however, market estimates for these new sources focus on the raw digital images (from collection to the ground station) while ignoring the requirements for a processing and exploitation infrastructure comprised of exploitation tools, exploitation training, library systems, and image management systems. From this it would appear the commercial imaging community has failed to learn the hard lessons of national government experience choosing instead to ignore reality and replicate the bias of collection over processing and exploitation. While this trend may be not impact the small quantity users that exist today it will certainly adversely affect the mid- to large-sized users of the future.

  12. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  13. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  14. STANDARDIZING QUALITY ASSESSMENT OF FUSED REMOTELY SENSED IMAGES

    Directory of Open Access Journals (Sweden)

    C. Pohl

    2017-09-01

    Full Text Available The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  15. Standardizing Quality Assessment of Fused Remotely Sensed Images

    Science.gov (United States)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  16. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  17. Use of Openly Available Satellite Images for Remote Sensing Education

    Science.gov (United States)

    Wang, C.-K.

    2011-09-01

    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  18. Remote sensing image stitch using modified structure deformation

    Science.gov (United States)

    Pan, Ke-cheng; Chen, Jin-wei; Chen, Yueting; Feng, Huajun

    2012-10-01

    To stitch remote sensing images seamlessly without producing visual artifact which is caused by severe intensity discrepancy and structure misalignment, we modify the original structure deformation based stitching algorithm which have two main problems: Firstly, using Poisson equation to propagate deformation vectors leads to the change of the topological relationship between the key points and their surrounding pixels, which may bring in wrong image characteristics. Secondly, the diffusion area of the sparse matrix is too limited to rectify the global intensity discrepancy. To solve the first problem, we adopt Spring-Mass model and bring in external force to keep the topological relationship between key points and their surrounding pixels. We also apply tensor voting algorithm to achieve the global intensity corresponding curve of the two images to solve the second problem. Both simulated and experimental results show that our algorithm is faster and can reach better result than the original algorithm.

  19. Research on Remote Sensing Image Template Processing Based on Global Subdivision Theory

    OpenAIRE

    Xiong Delan; Du Genyuan

    2013-01-01

    Aiming at the questions of vast data, complex operation, and time consuming processing for remote sensing image, subdivision template was proposed based on global subdivision theory, which can set up high level of abstraction and generalization for remote sensing image. The paper emphatically discussed the model and structure of subdivision template, and put forward some new ideas for remote sensing image template processing, key technology and quickly applied demonstration. The research has ...

  20. SEARCHING REMOTELY SENSED IMAGES FOR MEANINGFUL NESTED GESTALTEN

    Directory of Open Access Journals (Sweden)

    E. Michaelsen

    2016-06-01

    Full Text Available Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed instances. This can be a very challenging combinatorial effort. The contribution at hand gives some tools and structures unfolding a finite and comparably small subset of the possible combinations. Yet, the intended Gestalten still are contained and found with high probability and moderate efforts. Experiments are made with images obtained from a virtual globe system, and use the SIFT method for extraction of the primitive Gestalten. Comparison is made with manually extracted ground-truth Gestalten salient to human observers.

  1. Searching Remotely Sensed Images for Meaningful Nested Gestalten

    Science.gov (United States)

    Michaelsen, E.; Muench, D.; Arens, M.

    2016-06-01

    Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed instances. This can be a very challenging combinatorial effort. The contribution at hand gives some tools and structures unfolding a finite and comparably small subset of the possible combinations. Yet, the intended Gestalten still are contained and found with high probability and moderate efforts. Experiments are made with images obtained from a virtual globe system, and use the SIFT method for extraction of the primitive Gestalten. Comparison is made with manually extracted ground-truth Gestalten salient to human observers.

  2. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  3. FRACTAL DIMENSION OF URBAN EXPANSION BASED ON REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    IACOB I. CIPRIAN

    2012-11-01

    Full Text Available Fractal Dimension of Urban Expansion Based on Remote Sensing Images: In Cluj-Napoca city the process of urbanization has been accelerated during the years and implication of local authorities reflects a relevant planning policy. A good urban planning framework should take into account the society demands and also it should satisfy the natural conditions of local environment. The expansion of antropic areas it can be approached by implication of 5D variables (time as a sequence of stages, space: with x, y, z and magnitude of phenomena into the process, which will allow us to analyse and extract the roughness of city shape. Thus, to improve the decision factor we take a different approach in this paper, looking at geometry and scale composition. Using the remote sensing (RS and GIS techniques we manage to extract a sequence of built-up areas (from 1980 to 2012 and used the result as an input for modelling the spatialtemporal changes of urban expansion and fractal theory to analysed the geometric features. Taking the time as a parameter we can observe behaviour and changes in urban landscape, this condition have been known as self-organized – a condition which in first stage the system was without any turbulence (before the antropic factor and during the time tend to approach chaotic behaviour (entropy state without causing an disequilibrium in the main system.

  4. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  5. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  6. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  7. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  8. A survey on object detection in optical remote sensing images

    Science.gov (United States)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  9. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  10. Study on fractal characteristics of remote sensing image in the typical volcanic uranium metallogenic areas

    International Nuclear Information System (INIS)

    Pan Wei; Ni Guoqiang; Li Hanbo

    2010-01-01

    Computing Methods of fractal dimension and multifractal spectrum about the remote sensing image are briefly introduced. The fractal method is used to study the characteristics of remote sensing images in Xiangshan and Yuhuashan volcanic uranium metallogenic areas in southern China. The research results indicate that the Xiangshan basin in which lots of volcanic uranium deposits occur,is of bigger fractal dimension based on remote sensing image texture than that of the Yuhuashan basin in which two uranium ore occurrences exist, and the multifractal spectrum in the Xiangshan basin obviously leans to less singularity index than in the Yuhuashan basin. The relation of the fractal dimension and multifractal singularity of remote sensing image to uranium metallogeny are discussed. The fractal dimension and multifractal singularity index of remote sensing image may be used to predict the volcanic uranium metallogenic areas. (authors)

  11. Geological remote sensing-evaluation of image data

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, H

    1977-01-01

    During the nationwide geothermal investigation program (Japan) begun in 1973, five districts were chosen for evaluation of the effectiveness and limitations of aerial thermography. Using thermal images of Ibusuki City and Yamakawa-cho, geothermal resource areas were detected and related fracture zones were established by combining the thermal imagery and geological maps. At Ibusuki City, it was determined that the heat source was the Ata caldera, and that a fracture system connecting it to Lake Ikeda provides a conduit for geothermal fluids. Image plotting of thermal anomalies in the Hachimantai geothermal field was found to be an effective method for monitoring variation in thermal activity. LANDSAT imagery was anlayzed and lineament systems were detected in the mountains of the Kanto district. Followup of LANDSAT data by mapping teams confirmed a fault which intersects the major Kamitsuna fault in that district. This successful use of remote sensing data is encouraging but it is possible to draw only limited conclusions from it at present. Further refinement of analytical techniques is required.

  12. Supervised remote sensing image classification: An example of a ...

    African Journals Online (AJOL)

    These conventional multi-class classifiers/algorithms are usually written in programming languages such as C, C++, and python. The objective of this research is to experiment the use of a binary classifier/algorithm for multi-class remote sensing task, implemented in MATLAB. MATLAB is a programming language just like C ...

  13. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  14. Subpixel level mapping of remotely sensed image using colorimetry

    Directory of Open Access Journals (Sweden)

    M. Suresh

    2018-04-01

    Full Text Available The problem of extracting proportion of classes present within a pixel has been a challenge for researchers for which already numerous methodologies have been developed but still saturation is far ahead, since still the methods accounting these mixed classes are not perfect and they would never be perfect until one can talk about one to one correspondence for each pixel and ground data, which is practically impossible. In this paper a step towards generation of new method for finding out mixed class proportions in a pixel on the basis of the mixing property of colors as per colorimetry. The methodology involves locating the class color of a mixed pixel on chromaticity diagram and then using contextual information mainly the location of neighboring pixels on chromaticity diagram to estimate the proportion of classes in the mixed pixel.Also the resampling method would be more accurate when accounting for sharp and exact boundaries. With the usage of contextual information can generate the resampled image containing only the colors which really exist. The process is simply accounting the fraction and then the number of pixels by multiplying the fraction by total number of pixels into which one pixel is splitted to get number of pixels of each color based on contextual information. Keywords: Subpixel classification, Remote sensing imagery, Colorimetric color space, Sampling and subpixel mapping

  15. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  16. Accurate estimation of motion blur parameters in noisy remote sensing image

    Science.gov (United States)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  17. Suppression of vegetation in LANDSAT ETM+ remote sensing images

    Science.gov (United States)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Vegetation cover is an impediment to the interpretation of multispectral remote sensing images for geological applications, especially in densely vegetated terrains. In order to enhance the underlying geological information in such terrains, it is desirable to suppress the reflectance component of vegetation. One form of spectral unmixing that has been successfully used for vegetation reflectance suppression in multispectral images is called "forced invariance". It is based on segregating components of the reflectance spectrum that are invariant with respect to a specific spectral index such as the NDVI. The forced invariance method uses algorithms such as software defoliation. However, the outputs of software defoliation are single channel data, which are not amenable to geological interpretations. Crippen and Blom (2001) proposed a new forced invariance algorithm that utilizes band statistics, rather than band ratios. The authors demonstrated the effectiveness of their algorithms on a LANDSAT TM scene from Nevada, USA, especially in open canopy areas in mixed and semi-arid terrains. In this presentation, we report the results of our experimentation with this algorithm on a densely to sparsely vegetated Landsat ETM+ scene. We selected a scene (Path 119, Row 39) acquired on 18th July, 2004. Two study areas located around the city of Hangzhou, eastern China were tested. One of them covers uninhabited hilly terrain characterized by low rugged topography, parts of the hills are densely vegetated; another one covers both inhabited urban areas and uninhabited hilly terrain, which is densely vegetated. Crippen and Blom's algorithm is implemented in the following sequential steps: (1) dark pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship between vegetation index and digital number (DN) values for each band; (4) calculation of a smooth best-fit curve for the above relationships; and finally, (5) selection of a target average DN

  18. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  19. Using optical remote sensing model to estimate oil slick thickness based on satellite image

    International Nuclear Information System (INIS)

    Lu, Y C; Tian, Q J; Lyu, C G; Fu, W X; Han, W C

    2014-01-01

    An optical remote sensing model has been established based on two-beam interference theory to estimate marine oil slick thickness. Extinction coefficient and normalized reflectance of oil are two important parts in this model. Extinction coefficient is an important inherent optical property and will not vary with the background reflectance changed. Normalized reflectance can be used to eliminate the background differences between in situ measured spectra and remotely sensing image. Therefore, marine oil slick thickness and area can be estimated and mapped based on optical remotely sensing image and extinction coefficient

  20. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  1. The mass remote sensing image data management based on Oracle InterMedia

    Science.gov (United States)

    Zhao, Xi'an; Shi, Shaowei

    2013-07-01

    With the development of remote sensing technology, getting the image data more and more, how to apply and manage the mass image data safely and efficiently has become an urgent problem to be solved. According to the methods and characteristics of the mass remote sensing image data management and application, this paper puts forward to a new method that takes Oracle Call Interface and Oracle InterMedia to store the image data, and then takes this component to realize the system function modules. Finally, it successfully takes the VC and Oracle InterMedia component to realize the image data storage and management.

  2. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  3. A fast combinatorial enhancement technique for earthquake damage identification based on remote sensing image

    Science.gov (United States)

    Dou, Aixia; Wang, Xiaoqing; Ding, Xiang; Du, Zecheng

    2010-11-01

    On the basis of the study on the enhancement methods of remote sensing images obtained after several earthquakes, the paper designed a new and optimized image enhancement model which was implemented by combining different single methods. The patterns of elementary model units and combined types of model were defined. Based on the enhancement model database, the algorithm of combinatorial model was brought out via C++ programming. The combined model was tested by processing the aerial remote sensing images obtained after 1976 Tangshan earthquake. It was proved that the definition and implementation of combined enhancement model can efficiently improve the ability and flexibility of image enhancement algorithm.

  4. A change detection method for remote sensing image based on LBP and SURF feature

    Science.gov (United States)

    Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun

    2018-04-01

    Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.

  5. Intelligent Detection of Structure from Remote Sensing Images Based on Deep Learning Method

    Science.gov (United States)

    Xin, L.

    2018-04-01

    Utilizing high-resolution remote sensing images for earth observation has become the common method of land use monitoring. It requires great human participation when dealing with traditional image interpretation, which is inefficient and difficult to guarantee the accuracy. At present, the artificial intelligent method such as deep learning has a large number of advantages in the aspect of image recognition. By means of a large amount of remote sensing image samples and deep neural network models, we can rapidly decipher the objects of interest such as buildings, etc. Whether in terms of efficiency or accuracy, deep learning method is more preponderant. This paper explains the research of deep learning method by a great mount of remote sensing image samples and verifies the feasibility of building extraction via experiments.

  6. Evidential analysis of difference images for change detection of multitemporal remote sensing images

    Science.gov (United States)

    Chen, Yin; Peng, Lijuan; Cremers, Armin B.

    2018-03-01

    In this article, we develop two methods for unsupervised change detection in multitemporal remote sensing images based on Dempster-Shafer's theory of evidence (DST). In most unsupervised change detection methods, the probability of difference image is assumed to be characterized by mixture models, whose parameters are estimated by the expectation maximization (EM) method. However, the main drawback of the EM method is that it does not consider spatial contextual information, which may entail rather noisy detection results with numerous spurious alarms. To remedy this, we firstly develop an evidence theory based EM method (EEM) which incorporates spatial contextual information in EM by iteratively fusing the belief assignments of neighboring pixels to the central pixel. Secondly, an evidential labeling method in the sense of maximizing a posteriori probability (MAP) is proposed in order to further enhance the detection result. It first uses the parameters estimated by EEM to initialize the class labels of a difference image. Then it iteratively fuses class conditional information and spatial contextual information, and updates labels and class parameters. Finally it converges to a fixed state which gives the detection result. A simulated image set and two real remote sensing data sets are used to evaluate the two evidential change detection methods. Experimental results show that the new evidential methods are comparable to other prevalent methods in terms of total error rate.

  7. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  8. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    Science.gov (United States)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  9. End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    2018-01-01

    Full Text Available Airplane detection in remote sensing images remains a challenging problem due to the complexity of backgrounds. In recent years, with the development of deep learning, object detection has also obtained great breakthroughs. For object detection tasks in natural images, such as the PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning VOC (Visual Object Classes Challenge, the major trend of current development is to use a large amount of labeled classification data to pre-train the deep neural network as a base network, and then use a small amount of annotated detection data to fine-tune the network for detection. In this paper, we use object detection technology based on deep learning for airplane detection in remote sensing images. In addition to using some characteristics of remote sensing images, some new data augmentation techniques have been proposed. We also use transfer learning and adopt a single deep convolutional neural network and limited training samples to implement end-to-end trainable airplane detection. Classification and positioning are no longer divided into multistage tasks; end-to-end detection attempts to combine them for optimization, which ensures an optimal solution for the final stage. In our experiment, we use remote sensing images of airports collected from Google Earth. The experimental results show that the proposed algorithm is highly accurate and meaningful for remote sensing object detection.

  10. Ontology-based classification of remote sensing images using spectral rules

    Science.gov (United States)

    Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent

    2017-05-01

    Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.

  11. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  12. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    Science.gov (United States)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  13. Restoration of color in a remote sensing image and its quality evaluation

    Science.gov (United States)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe

    2003-09-01

    This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.

  14. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  15. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  16. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  17. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    Science.gov (United States)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory

  18. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    Science.gov (United States)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  19. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  20. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    Science.gov (United States)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  1. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  2. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  3. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks.

    Science.gov (United States)

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-04-26

    With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction.

  4. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  5. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  6. A review of parallel computing for large-scale remote sensing image mosaicking

    OpenAIRE

    Chen, Lajiao; Ma, Yan; Liu, Peng; Wei, Jingbo; Jie, Wei; He, Jijun

    2015-01-01

    Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further ...

  7. The Maximum Cross-Correlation approach to detecting translational motions from sequential remote-sensing images

    Science.gov (United States)

    Gao, J.; Lythe, M. B.

    1996-06-01

    This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.

  8. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

    Directory of Open Access Journals (Sweden)

    Xiaole Shen

    2015-09-01

    Full Text Available The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3 satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR algorithm, homomorphic filtering (HF-based algorithm, and wavelet transform-based MASK (WT-MASK algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.

  9. Reliable clarity automatic-evaluation method for optical remote sensing images

    Science.gov (United States)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  10. Use of the Brandley-Terry Model to Quantify Association in Remotely Sensed Images

    NARCIS (Netherlands)

    Stein, A.; Aryal, J.; Gort, G.

    2005-01-01

    Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the$kappa$-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is

  11. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks

    Science.gov (United States)

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-01-01

    Simple Summary The understanding of the spatio-temporal distribution of the species habitats would facilitate wildlife resource management and conservation efforts. Existing methods have poor performance due to the limited availability of training samples. More recently, location-aware sensors have been widely used to track animal movements. The aim of the study was to generate suitability maps of bar-head geese using movement data coupled with environmental parameters, such as remote sensing images and temperature data. Therefore, we modified a deep convolutional neural network for the multi-scale inputs. The results indicate that the proposed method can identify the areas with the dense goose species around Qinghai Lake. In addition, this approach might also be interesting for implementation in other species with different niche factors or in areas where biological survey data are scarce. Abstract With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results

  12. REMOTE SENSING IMAGE QUALITY ASSESSMENT EXPERIMENT WITH POST-PROCESSING

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2018-04-01

    Full Text Available This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  13. A Remote Sensing Image Fusion Method based on adaptive dictionary learning

    Science.gov (United States)

    He, Tongdi; Che, Zongxi

    2018-01-01

    This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.

  14. The separation-combination method of linear structures in remote sensing image interpretation and its application

    International Nuclear Information System (INIS)

    Liu Linqin

    1991-01-01

    The separation-combination method a new kind of analysis method of linear structures in remote sensing image interpretation is introduced taking northwestern Fujian as the example, its practical application is examined. The practice shows that application results not only reflect intensities of linear structures in overall directions at different locations, but also contribute to the zonation of linear structures and display their space distribution laws. Based on analyses of linear structures, it can provide more information concerning remote sensing on studies of regional mineralization laws and the guide to ore-finding combining with mineralization

  15. The Sample Size Influence in the Accuracy of the Image Classification of the Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomaz C. e C. da Costa

    2004-12-01

    Full Text Available Landuse/landcover maps produced by classification of remote sensing images incorporate uncertainty. This uncertainty is measured by accuracy indices using reference samples. The size of the reference sample is defined by approximation by a binomial function without the use of a pilot sample. This way the accuracy are not estimated, but fixed a priori. In case of divergency between the estimated and a priori accuracy the error of the sampling will deviate from the expected error. The size using pilot sample (theorically correct procedure justify when haven´t estimate of accuracy for work area, referent the product remote sensing utility.

  16. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  17. Image Processing Tools for Improved Visualization and Analysis of Remotely Sensed Images for Agriculture and Forest Classifications

    OpenAIRE

    SINHA G. R.

    2017-01-01

    This paper suggests Image Processing tools for improved visualization and better analysis of remotely sensed images. There are methods already available in literature for the purpose but the most important challenge among the limitations is lack of robustness. We propose an optimal method for image enhancement of the images using fuzzy based approaches and few optimization tools. The segmentation images subsequently obtained after de-noising will be classified into distinct information and th...

  18. Information Extraction of Tourist Geological Resources Based on 3d Visualization Remote Sensing Image

    Science.gov (United States)

    Wang, X.

    2018-04-01

    Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.

  19. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  20. Training Small Networks for Scene Classification of Remote Sensing Images via Knowledge Distillation

    Directory of Open Access Journals (Sweden)

    Guanzhou Chen

    2018-05-01

    Full Text Available Scene classification, aiming to identify the land-cover categories of remotely sensed image patches, is now a fundamental task in the remote sensing image analysis field. Deep-learning-model-based algorithms are widely applied in scene classification and achieve remarkable performance, but these high-level methods are computationally expensive and time-consuming. Consequently in this paper, we introduce a knowledge distillation framework, currently a mainstream model compression method, into remote sensing scene classification to improve the performance of smaller and shallower network models. Our knowledge distillation training method makes the high-temperature softmax output of a small and shallow student model match the large and deep teacher model. In our experiments, we evaluate knowledge distillation training method for remote sensing scene classification on four public datasets: AID dataset, UCMerced dataset, NWPU-RESISC dataset, and EuroSAT dataset. Results show that our proposed training method was effective and increased overall accuracy (3% in AID experiments, 5% in UCMerced experiments, 1% in NWPU-RESISC and EuroSAT experiments for small and shallow models. We further explored the performance of the student model on small and unbalanced datasets. Our findings indicate that knowledge distillation can improve the performance of small network models on datasets with lower spatial resolution images, numerous categories, as well as fewer training samples.

  1. CAPABILITIES OF REMOTE SENSING HYPERSPECTRAL IMAGES FOR THE DETECTION OF LEAD CONTAMINATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    A. A. Maliki

    2012-07-01

    Full Text Available Advances in remote sensing technologies are increasingly becoming more useful for resource, ecosystem and agricultural management applications to the extent that these techniques can now also be applied for monitoring of soil contamination and human health risk assessment. While, extensive previous studies have shown that Visible and Near Infrared Spectroscopy (VNIRS in the spectral range 400–2500 nm can be used to quantify various soil constituents simultaneously, the direct determination of metal concentrations by remote sensing and reflectance spectroscopy is not as well examined as other soil parameters. The application of VNIRS, including laboratory hyperpectral measurements, field spectrometer measurements or image spectroscopy, generally achieves a good prediction of metal concentrations when compared to traditional wet chemical methods and has the advantage of being relatively less expensive and faster, allowing chemical assessment of contamination in close to real time. Furthermore, imaging spectroscopy can potentially provide significantly more samples over a larger spatial extent than traditional ground sampling methods. Thus the development of remote sensing techniques (field based and either airborne or satellite hyperspectral imaging can support the monitoring and efficient mapping of metal contamination (in dust and soil for environmental and health impact assessment. This review is concerned with the application of remote sensing and reflectance spectroscopy to the detection of heavy metals and discusses how current methods could be applied for the quantification of Pb contaminated soil surrounding mines and smelters.

  2. REMOTE SENSING IMAGE CLASSIFICATION APPLIED TO THE FIRST NATIONAL GEOGRAPHICAL INFORMATION CENSUS OF CHINA

    Directory of Open Access Journals (Sweden)

    X. Yu

    2016-06-01

    Full Text Available Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC and Maximum Likelihood Classification Method (MLC in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  3. Criteria for the optimal selection of remote sensing optical images to map event landslides

    Science.gov (United States)

    Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2018-01-01

    Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.

  4. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  5. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.

  6. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  7. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  8. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  9. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  10. From Pixels to Geographic Objects in Remote Sensing Image Analysis

    NARCIS (Netherlands)

    Addink, E.A.; Van Coillie, Frieke M.B.; Jong, Steven M. de

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received

  11. a New Graduation Algorithm for Color Balance of Remote Sensing Image

    Science.gov (United States)

    Zhou, G.; Liu, X.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Pan, Q.

    2018-05-01

    In order to expand the field of view to obtain more data and information when doing research on remote sensing image, workers always need to mosaicking images together. However, the image after mosaic always has the large color differences and produces the gap line. This paper based on the graduation algorithm of tarigonometric function proposed a new algorithm of Two Quarter-rounds Curves (TQC). The paper uses the Gaussian filter to solve the program about the image color noise and the gap line. The paper used one of Greenland compiled data acquired in 1963 from Declassified Intelligence Photography Project (DISP) by ARGON KH-5 satellite, and used the photography of North Gulf, China, by Landsat satellite to experiment. The experimental results show that the proposed method has improved the accuracy of the results in two parts: on the one hand, for the large color differences remote sensing image will become more balanced. On the other hands, the remote sensing image will achieve more smooth transition.

  12. Towards a framework for agent-based image analysis of remote-sensing data.

    Science.gov (United States)

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  13. Fast Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method.

  14. Combining low level features and visual attributes for VHR remote sensing image classification

    Science.gov (United States)

    Zhao, Fumin; Sun, Hao; Liu, Shuai; Zhou, Shilin

    2015-12-01

    Semantic classification of very high resolution (VHR) remote sensing images is of great importance for land use or land cover investigation. A large number of approaches exploiting different kinds of low level feature have been proposed in the literature. Engineers are often frustrated by their conclusions and a systematic assessment of various low level features for VHR remote sensing image classification is needed. In this work, we firstly perform an extensive evaluation of eight features including HOG, dense SIFT, SSIM, GIST, Geo color, LBP, Texton and Tiny images for classification of three public available datasets. Secondly, we propose to transfer ground level scene attributes to remote sensing images. Thirdly, we combine both low-level features and mid-level visual attributes to further improve the classification performance. Experimental results demonstrate that i) Dene SIFT and HOG features are more robust than other features for VHR scene image description. ii) Visual attribute competes with a combination of low level features. iii) Multiple feature combination achieves the best performance under different settings.

  15. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Hou

    2016-08-01

    Full Text Available Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD methods have been developed to solve them by utilizing remote sensing (RS images. The advent of high resolution (HR remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC segmentation. Then, saliency and morphological building index (MBI extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF. Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  16. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    Science.gov (United States)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  17. Artificial intelligence for networks recognition in remote sensing images

    Science.gov (United States)

    Gilliot, Jean-Marc; Amat, Jean-Louis

    1993-12-01

    We describe here a knowledge-based system, NEXSYS (Nextwork EXtraction SYStem) which was designed for the recognition of communication networks in SPOT satellite images. NEXSYS is a frame-based system and uses a co-operative and distributed structure based on a blackboard architecture. Communication networks in SPOT images are composed of thin linear segments. Segments are extracted using mathematical morphology and a Hough transform. An intermediate image representation composed of geometric primitives is obtained. Then an expert module is able to process the segments at the symbolic level trying to recognize networks.

  18. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    Science.gov (United States)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  19. Multi sensor satellite imagers for commercial remote sensing

    Science.gov (United States)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  20. Uniform competency-based local feature extraction for remote sensing images

    Science.gov (United States)

    Sedaghat, Amin; Mohammadi, Nazila

    2018-01-01

    Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.

  1. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  2. Watermarking-based protection of remote sensing images: requirements and possible solutions

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Cappellini, Vito; Magli, Enrico; Olmo, Gabriella

    2001-12-01

    Earth observation missions have recently attracted ag rowing interest form the scientific and industrial communities, mainly due to the large number of possible applications capable to exploit remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products from non-authorized use. Such a need is a very crucial one even because the Internet and other public/private networks have become preferred means of data exchange. A crucial issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: i) assessment of the requirements imposed by the characteristics of remotely sensed images on watermark-based copyright protection ii) analysis of the state-of-the-art, and performance evaluation of existing algorithms in terms of the requirements at the previous point.

  3. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    Science.gov (United States)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  4. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  5. Review of high fidelity imaging spectrometer design for remote sensing

    Science.gov (United States)

    Mouroulis, Pantazis; Green, Robert O.

    2018-04-01

    We review the design and assessment techniques that underlie a number of successfully deployed space and airborne imaging spectrometers that have been demonstrated to achieve demanding specifications in terms of throughput and response uniformity. The principles are illustrated with telescope designs as well as spectrometer examples from the Offner and Dyson families. We also show how the design space can be extended with the use of freeform surfaces and provide additional design examples with grating as well as prism dispersive elements.

  6. Autonomous control systems: applications to remote sensing and image processing

    Science.gov (United States)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  7. The interpretation of remote sensing image on the stability of fault zone at HLW repository site

    International Nuclear Information System (INIS)

    Liu Linqing; Yu Yunxiang

    1994-01-01

    It is attempted to interpret the buried fault at the preselected HLW repository site in western Gansu province with a remote sensing image. The authors discuss the features of neotectonism of Shule River buried fault zone and its two sides in light of the remote sensing image, geomorphology, stream pattern, type and thickness difference of Quaternary sediments, and structural basin, etc.. The stability of Shule River fault zone is mainly dominated by the neotectonic movement pattern and strength of its two sides. Although there exist normal and differential vertical movements along it, their strengths are small. Therefore, this is a weakly-active passive fault zone. The east Beishan area north to Shule River fault zone is weakliest active and is considered as the target for further pre-selection for HLW repository site

  8. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    International Nuclear Information System (INIS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-01-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of ''different objects same image'' or ''different images same object'' affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and

  9. A tool for NDVI time series extraction from wide-swath remotely sensed images

    Science.gov (United States)

    Li, Zhishan; Shi, Runhe; Zhou, Cong

    2015-09-01

    Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.

  10. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    Science.gov (United States)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  11. Low-cost multispectral imaging for remote sensing of lettuce health

    Science.gov (United States)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (lettuce growers.

  12. Rangeland monitoring using remote sensing: comparison of cover estimates from field measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Ammon Boswell

    2017-01-01

    Full Text Available Rangeland monitoring is important for evaluating and assessing semi-arid plant communities. Remote sensing provides an effective tool for rapidly and accurately assessing rangeland vegetation and other surface attributes such as bare soil and rock. The purpose of this study was to evaluate the efficacy of remote sensing as a surrogate for field-based sampling techniques in detecting ground cover features (i.e., trees, shrubs, herbaceous cover, litter, surface, and comparing results with field-based measurements collected by the Utah Division of Wildlife Resources Range Trent Program. In the field, five 152 m long transects were used to sample plant, litter, rock, and bare-ground cover using the Daubenmire ocular estimate method. At the same location of each field plot, a 4-band (R,G,B,NIR, 25 cm pixel resolution, remotely sensed image was taken from a fixed-wing aircraft. Each image was spectrally classified producing 4 cover classes (tree, shrub, herbaceous, surface. No significant differences were detected between canopy cover collected remotely and in the field for tree (P = 0.652, shrub (P = 0.800, and herbaceous vegetation (P = 0.258. Surface cover was higher in field plots (P < 0.001, likely in response to the methods used to sample surface features by field crews. Accurately classifying vegetation and other features from remote sensed information can improve the efficiency of collecting vegetation and surface data. This information can also be used to improve data collection frequency for rangeland monitoring and to efficiently quantify ecological succession patterns.

  13. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  14. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  15. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  16. Reference Information Based Remote Sensing Image Reconstruction with Generalized Nonconvex Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-06-01

    Full Text Available Because of the contradiction between the spatial and temporal resolution of remote sensing images (RSI and quality loss in the process of acquisition, it is of great significance to reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference image-based reconstruction methods have great potential for higher reconstruction performance, while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing objective function incorporating a reference image as prior information is developed. We resort to the reference prior information inherent in interior and exterior data simultaneously to build a new generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the innovation of this paper consists of the following three respects: (1 we propose a nonconvex low-rank approximation for reconstructing RSI; (2 we inject reference prior information to overcome over smoothed edges and texture detail losses; (3 on this basis, we combine conjugate gradient algorithms and a single-value threshold (SVT simultaneously to solve the proposed algorithm. The performance of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR and preserves image details significantly compared to most of the current approaches without reference images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy inputs in a more unified framework.

  17. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  18. Contribution of non-negative matrix factorization to the classification of remote sensing images

    Science.gov (United States)

    Karoui, M. S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D.

    2008-10-01

    Remote sensing has become an unavoidable tool for better managing our environment, generally by realizing maps of land cover using classification techniques. The classification process requires some pre-processing, especially for data size reduction. The most usual technique is Principal Component Analysis. Another approach consists in regarding each pixel of the multispectral image as a mixture of pure elements contained in the observed area. Using Blind Source Separation (BSS) methods, one can hope to unmix each pixel and to perform the recognition of the classes constituting the observed scene. Our contribution consists in using Non-negative Matrix Factorization (NMF) combined with sparse coding as a solution to BSS, in order to generate new images (which are at least partly separated images) using HRV SPOT images from Oran area, Algeria). These images are then used as inputs of a supervised classifier integrating textural information. The results of classifications of these "separated" images show a clear improvement (correct pixel classification rate improved by more than 20%) compared to classification of initial (i.e. non separated) images. These results show the contribution of NMF as an attractive pre-processing for classification of multispectral remote sensing imagery.

  19. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Shunping Ji

    2018-01-01

    Full Text Available This study describes a novel three-dimensional (3D convolutional neural networks (CNN based method that automatically classifies crops from spatio-temporal remote sensing images. First, 3D kernel is designed according to the structure of multi-spectral multi-temporal remote sensing data. Secondly, the 3D CNN framework with fine-tuned parameters is designed for training 3D crop samples and learning spatio-temporal discriminative representations, with the full crop growth cycles being preserved. In addition, we introduce an active learning strategy to the CNN model to improve labelling accuracy up to a required threshold with the most efficiency. Finally, experiments are carried out to test the advantage of the 3D CNN, in comparison to the two-dimensional (2D CNN and other conventional methods. Our experiments show that the 3D CNN is especially suitable in characterizing the dynamics of crop growth and outperformed the other mainstream methods.

  20. The orthorectified technology for UAV aerial remote sensing image based on the Programmable GPU

    International Nuclear Information System (INIS)

    Jin, Liu; Ying-cheng, Li; De-long, Li; Chang-sheng, Teng; Wen-hao, Zhang

    2014-01-01

    Considering the time requirements of the disaster emergency aerial remote sensing data acquisition and processing, this paper introduced the GPU parallel processing in orthorectification algorithm. Meanwhile, our experiments verified the correctness and feasibility of CUDA parallel processing algorithm, and the algorithm can effectively solve the problem of calculation large, time-consuming for ortho rectification process, realized fast processing of UAV airborne remote sensing image orthorectification based on GPU. The experimental results indicate that using the assumption of same accuracy of proposed method with CPU, the processing time is reduced obviously, maximum acceleration can reach more than 12 times, which greatly enhances the emergency surveying and mapping processing of rapid reaction rate, and has a broad application

  1. Effective Sequential Classifier Training for SVM-Based Multitemporal Remote Sensing Image Classification

    Science.gov (United States)

    Guo, Yiqing; Jia, Xiuping; Paull, David

    2018-06-01

    The explosive availability of remote sensing images has challenged supervised classification algorithms such as Support Vector Machines (SVM), as training samples tend to be highly limited due to the expensive and laborious task of ground truthing. The temporal correlation and spectral similarity between multitemporal images have opened up an opportunity to alleviate this problem. In this study, a SVM-based Sequential Classifier Training (SCT-SVM) approach is proposed for multitemporal remote sensing image classification. The approach leverages the classifiers of previous images to reduce the required number of training samples for the classifier training of an incoming image. For each incoming image, a rough classifier is firstly predicted based on the temporal trend of a set of previous classifiers. The predicted classifier is then fine-tuned into a more accurate position with current training samples. This approach can be applied progressively to sequential image data, with only a small number of training samples being required from each image. Experiments were conducted with Sentinel-2A multitemporal data over an agricultural area in Australia. Results showed that the proposed SCT-SVM achieved better classification accuracies compared with two state-of-the-art model transfer algorithms. When training data are insufficient, the overall classification accuracy of the incoming image was improved from 76.18% to 94.02% with the proposed SCT-SVM, compared with those obtained without the assistance from previous images. These results demonstrate that the leverage of a priori information from previous images can provide advantageous assistance for later images in multitemporal image classification.

  2. Ship Detection and Classification on Optical Remote Sensing Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Liu Ying

    2017-01-01

    Full Text Available Ship detection and classification is critical for national maritime security and national defense. Although some SAR (Synthetic Aperture Radar image-based ship detection approaches have been proposed and used, they are not able to satisfy the requirement of real-world applications as the number of SAR sensors is limited, the resolution is low, and the revisit cycle is long. As massive optical remote sensing images of high resolution are available, ship detection and classification on theses images is becoming a promising technique, and has attracted great attention on applications including maritime security and traffic control. Some digital image processing methods have been proposed to detect ships in optical remote sensing images, but most of them face difficulty in terms of accuracy, performance and complexity. Recently, an autoencoder-based deep neural network with extreme learning machine was proposed, but it cannot meet the requirement of real-world applications as it only works with simple and small-scaled data sets. Therefore, in this paper, we propose a novel ship detection and classification approach which utilizes deep convolutional neural network (CNN as the ship classifier. The performance of our proposed ship detection and classification approach was evaluated on a set of images downloaded from Google Earth at the resolution 0.5m. 99% detection accuracy and 95% classification accuracy were achieved. In model training, 75× speedup is achieved on 1 Nvidia Titanx GPU.

  3. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  4. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  5. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    Science.gov (United States)

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  6. Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Jingbo Wei

    2016-12-01

    Full Text Available Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods.

  7. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SENSOR CORRECTION AND RADIOMETRIC CALIBRATION OF A 6-BAND MULTISPECTRAL IMAGING SENSOR FOR UAV REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. Kelcey

    2012-07-01

    Full Text Available The increased availability of unmanned aerial vehicles (UAVs has resulted in their frequent adoption for a growing range of remote sensing tasks which include precision agriculture, vegetation surveying and fine-scale topographic mapping. The development and utilisation of UAV platforms requires broad technical skills covering the three major facets of remote sensing: data acquisition, data post-processing, and image analysis. In this study, UAV image data acquired by a miniature 6-band multispectral imaging sensor was corrected and calibrated using practical image-based data post-processing techniques. Data correction techniques included dark offset subtraction to reduce sensor noise, flat-field derived per-pixel look-up-tables to correct vignetting, and implementation of the Brown- Conrady model to correct lens distortion. Radiometric calibration was conducted with an image-based empirical line model using pseudo-invariant features (PIFs. Sensor corrections and radiometric calibration improve the quality of the data, aiding quantitative analysis and generating consistency with other calibrated datasets.

  9. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  10. A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features

    Directory of Open Access Journals (Sweden)

    LEI Xiaoqi

    2016-02-01

    Full Text Available Road extraction from high-resolution remote sensing image is an important and difficult task.Since remote sensing images include complicated information,the methods that extract roads by spectral,texture and linear features have certain limitations.Also,many methods need human-intervention to get the road seeds(semi-automatic extraction,which have the great human-dependence and low efficiency.The road-extraction method,which uses the image segmentation based on principle of local gray consistency and integration shape features,is proposed in this paper.Firstly,the image is segmented,and then the linear and curve roads are obtained by using several object shape features,so the method that just only extract linear roads are rectified.Secondly,the step of road extraction is carried out based on the region growth,the road seeds are automatic selected and the road network is extracted.Finally,the extracted roads are regulated by combining the edge information.In experiments,the images that including the better gray uniform of road and the worse illuminated of road surface were chosen,and the results prove that the method of this study is promising.

  11. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  12. The ship edge feature detection based on high and low threshold for remote sensing image

    Science.gov (United States)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  13. A patch-based convolutional neural network for remote sensing image classification.

    Science.gov (United States)

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  15. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    Science.gov (United States)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  16. Texture-based classification for characterizing regions on remote sensing images

    Science.gov (United States)

    Borne, Frédéric; Viennois, Gaëlle

    2017-07-01

    Remote sensing classification methods mostly use only the physical properties of pixels or complex texture indexes but do not lead to recommendation for practical applications. Our objective was to design a texture-based method, called the Paysages A PRIori method (PAPRI), which works both at pixel and neighborhood level and which can handle different spatial scales of analysis. The aim was to stay close to the logic of a human expert and to deal with co-occurrences in a more efficient way than other methods. The PAPRI method is pixelwise and based on a comparison of statistical and spatial reference properties provided by the expert with local properties computed in varying size windows centered on the pixel. A specific distance is computed for different windows around the pixel and a local minimum leads to choosing the class in which the pixel is to be placed. The PAPRI method brings a significant improvement in classification quality for different kinds of images, including aerial, lidar, high-resolution satellite images as well as texture images from the Brodatz and Vistex databases. This work shows the importance of texture analysis in understanding remote sensing images and for future developments.

  17. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    Science.gov (United States)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  18. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    Science.gov (United States)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  19. The microcomputer workstation - An alternate hardware architecture for remotely sensed image analysis

    Science.gov (United States)

    Erickson, W. K.; Hofman, L. B.; Donovan, W. E.

    1984-01-01

    Difficulties regarding the digital image analysis of remotely sensed imagery can arise in connection with the extensive calculations required. In the past, an expensive large to medium mainframe computer system was needed for performing these calculations. For image-processing applications smaller minicomputer-based systems are now used by many organizations. The costs for such systems are still in the range from $100K to $300K. Recently, as a result of new developments, the use of low-cost microcomputers for image processing and display systems appeared to have become feasible. These developments are related to the advent of the 16-bit microprocessor and the concept of the microcomputer workstation. Earlier 8-bit microcomputer-based image processing systems are briefly examined, and a computer workstation architecture is discussed. Attention is given to a microcomputer workstation developed by Stanford University, and the design and implementation of a workstation network.

  20. Fusion of remote sensing images based on pyramid decomposition with Baldwinian Clonal Selection Optimization

    Science.gov (United States)

    Jin, Haiyan; Xing, Bei; Wang, Lei; Wang, Yanyan

    2015-11-01

    In this paper, we put forward a novel fusion method for remote sensing images based on the contrast pyramid (CP) using the Baldwinian Clonal Selection Algorithm (BCSA), referred to as CPBCSA. Compared with classical methods based on the transform domain, the method proposed in this paper adopts an improved heuristic evolutionary algorithm, wherein the clonal selection algorithm includes Baldwinian learning. In the process of image fusion, BCSA automatically adjusts the fusion coefficients of different sub-bands decomposed by CP according to the value of the fitness function. BCSA also adaptively controls the optimal search direction of the coefficients and accelerates the convergence rate of the algorithm. Finally, the fusion images are obtained via weighted integration of the optimal fusion coefficients and CP reconstruction. Our experiments show that the proposed method outperforms existing methods in terms of both visual effect and objective evaluation criteria, and the fused images are more suitable for human visual or machine perception.

  1. Matching of Remote Sensing Images with Complex Background Variations via Siamese Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Haiqing He

    2018-02-01

    Full Text Available Feature-based matching methods have been widely used in remote sensing image matching given their capability to achieve excellent performance despite image geometric and radiometric distortions. However, most of the feature-based methods are unreliable for complex background variations, because the gradient or other image grayscale information used to construct the feature descriptor is sensitive to image background variations. Recently, deep learning-based methods have been proven suitable for high-level feature representation and comparison in image matching. Inspired by the progresses made in deep learning, a new technical framework for remote sensing image matching based on the Siamese convolutional neural network is presented in this paper. First, a Siamese-type network architecture is designed to simultaneously learn the features and the corresponding similarity metric from labeled training examples of matching and non-matching true-color patch pairs. In the proposed network, two streams of convolutional and pooling layers sharing identical weights are arranged without the manually designed features. The number of convolutional layers is determined based on the factors that affect image matching. The sigmoid function is employed to compute the matching and non-matching probabilities in the output layer. Second, a gridding sub-pixel Harris algorithm is used to obtain the accurate localization of candidate matches. Third, a Gaussian pyramid coupling quadtree is adopted to gradually narrow down the searching space of the candidate matches, and multiscale patches are compared synchronously. Subsequently, a similarity measure based on the output of the sigmoid is adopted to find the initial matches. Finally, the random sample consensus algorithm and the whole-to-local quadratic polynomial constraints are used to remove false matches. In the experiments, different types of satellite datasets, such as ZY3, GF1, IKONOS, and Google Earth images

  2. Passive millimeter wave imaging and spectroscopy system for terrestrial remote sensing

    Science.gov (United States)

    Gopalsami, Nachappa; Liao, Shaolin; Koehl, Eugene R.; Elmer, Thomas W.; Heifetz, Alexander; Chien, Hual-Te; Raptis, Apostolos C.

    2010-04-01

    We have built a passive millimeter wave imaging and spectroscopy system with a 15-channel filter bank in the 146-154 GHz band for terrestrial remote sensing. We had built the spectroscopy system first and have now retrofitted an imaging element to it as a single pixel imager. The imaging element consisted of a 15-cm-diameter imaging lens fed to a corrugated scalar horn. Image acquisition is carried out by scanning the lens with a 2-axis translation stage. A LabVIEW-based software program integrates the imaging and spectroscopy systems with online display of spectroscopic information while the system scans each pixel position. The software also allows for integrating the image intensity of all 15 channels to increase the signal-to-noise ratio by a factor of ~4 relative to single channel image. The integrated imaging and spectroscopy system produces essentially 4-D data in which spatial data are along 2 dimensions, spectral data are in the 3rd dimension, and time is the 4th dimension. The system performance was tested by collecting imaging and spectral data with a 7.5-cm-diameter and 1m long gas cell in which test chemicals were introduced against a liquid nitrogen background.

  3. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  4. Assessment of Sampling Approaches for Remote Sensing Image Classification in the Iranian Playa Margins

    Science.gov (United States)

    Kazem Alavipanah, Seyed

    There are some problems in soil salinity studies based upon remotely sensed data: 1-spectral world is full of ambiguity and therefore soil reflectance can not be attributed to a single soil property such as salinity, 2) soil surface conditions as a function of time and space is a complex phenomena, 3) vegetation with a dynamic biological nature may create some problems in the study of soil salinity. Due to these problems the first question which may arise is how to overcome or minimise these problems. In this study we hypothesised that different sources of data, well established sampling plan and optimum approach could be useful. In order to choose representative training sites in the Iranian playa margins, to define the spectral and informational classes and to overcome some problems encountered in the variation within the field, the following attempts were made: 1) Principal Component Analysis (PCA) in order: a) to determine the most important variables, b) to understand the Landsat satellite images and the most informative components, 2) the photomorphic unit (PMU) consideration and interpretation; 3) study of salt accumulation and salt distribution in the soil profile, 4) use of several forms of field data, such as geologic, geomorphologic and soil information; 6) confirmation of field data and land cover types with farmers and the members of the team. The results led us to find at suitable approaches with a high and acceptable image classification accuracy and image interpretation. KEY WORDS; Photo Morphic Unit, Pprincipal Ccomponent Analysis, Soil Salinity, Field Work, Remote Sensing

  5. A research of road centerline extraction algorithm from high resolution remote sensing images

    Science.gov (United States)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  6. Distortion correction algorithm for UAV remote sensing image based on CUDA

    International Nuclear Information System (INIS)

    Wenhao, Zhang; Yingcheng, Li; Delong, Li; Changsheng, Teng; Jin, Liu

    2014-01-01

    In China, natural disasters are characterized by wide distribution, severe destruction and high impact range, and they cause significant property damage and casualties every year. Following a disaster, timely and accurate acquisition of geospatial information can provide an important basis for disaster assessment, emergency relief, and reconstruction. In recent years, Unmanned Aerial Vehicle (UAV) remote sensing systems have played an important role in major natural disasters, with UAVs becoming an important technique of obtaining disaster information. UAV is equipped with a non-metric digital camera with lens distortion, resulting in larger geometric deformation for acquired images, and affecting the accuracy of subsequent processing. The slow speed of the traditional CPU-based distortion correction algorithm cannot meet the requirements of disaster emergencies. Therefore, we propose a Compute Unified Device Architecture (CUDA)-based image distortion correction algorithm for UAV remote sensing, which takes advantage of the powerful parallel processing capability of the GPU, greatly improving the efficiency of distortion correction. Our experiments show that, compared with traditional CPU algorithms and regardless of image loading and saving times, the maximum acceleration ratio using our proposed algorithm reaches 58 times that using the traditional algorithm. Thus, data processing time can be reduced by one to two hours, thereby considerably improving disaster emergency response capability

  7. Automated training site selection for large-area remote-sensing image analysis

    Science.gov (United States)

    McCaffrey, Thomas M.; Franklin, Steven E.

    1993-11-01

    A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.

  8. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  9. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  10. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  11. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  12. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  13. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  14. Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection, Window Selection, and Histogram Specification

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhao

    2018-04-01

    Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration

  15. A robust anomaly based change detection method for time-series remote sensing images

    Science.gov (United States)

    Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao

    2014-03-01

    Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.

  16. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  17. A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations

    DEFF Research Database (Denmark)

    Rogge, Derek; Bachmann, Martin; Rivard, Benoit

    2014-01-01

    Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally...... distinct signal sources composing a given hyperspectral scene is generally much less than the number of spectral bands. Determining eigenvectors dominated by signal variance as opposed to noise is a difficult task. Problems also arise in using these transformations on large images, multiple flight...... and spectral subsampling to the data, which is accomplished by deriving a limited set of eigenvectors for spatially contiguous subsets. These subset eigenvectors are compiled together to form a new noise reduced data set, which is subsequently used to derive a set of global orthogonal eigenvectors. Data from...

  18. Automatic registration of remote sensing images based on SIFT and fuzzy block matching for change detection

    Directory of Open Access Journals (Sweden)

    Cai Guo-Rong

    2011-10-01

    Full Text Available This paper presents an automated image registration approach to detecting changes in multi-temporal remote sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT and has two phases. The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, Structured Local Binary Haar Pattern (SLBHP combined with a fuzzy similarity measure is then used to build a new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more effective in dealing with scale, rotation and illumination changes.

  19. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  20. A New Fusion Technique of Remote Sensing Images for Land Use/Cover

    Institute of Scientific and Technical Information of China (English)

    WU Lian-Xi; SUN Bo; ZHOU Sheng-Lu; HUANG Shu-E; ZHAO Qi-Guo

    2004-01-01

    In China,accelerating industrialization and urbanization following high-speed economic development and population increases have greatly impacted land use/cover changes,making it imperative to obtain accurate and up to date information on changes so as to evaluate their environmental effects. The major purpose of this study was to develop a new method to fuse lower spatial resolution multispectral satellite images with higher spatial resolution panchromatic ones to assist in land use/cover mapping. An algorithm of a new fusion method known as edge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets of different spectral ranges. The results showed that the EEIM image was quite similar in color to lower resolution multispectral images,and the fused product was better able to preserve spectral information. Thus,compared to conventional approaches,the spectral distortion of the fused images was markedly reduced. Therefore,the EEIM fusion method could be utilized to fuse remote sensing data from the same or different sensors,including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.

  1. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  2. Ship detection in optical remote sensing images based on deep convolutional neural networks

    Science.gov (United States)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen

    2017-10-01

    Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.

  3. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  4. On the possibility of auroral remote sensing with the Viking ultraviolet imager

    International Nuclear Information System (INIS)

    Steele, D.P.; McEwen, D.J.; Murphree, J.S.

    1992-01-01

    An investigation was carried out to assess the value of ultraviolet auroral images for remote sensing of electron precipitation. The authors compared auroral images, obtained by both cameras of the Viking Ultraviolet Imager during April and early May 1986, with simultaneous measurements of electron precipitation from the DMSP F7 and HiLat satellites at low altitudes above the auroral zone. The electron data were averaged over the image pixels and were used to normalize the imager signals to unit electron energy flux. The resulting quantity, here termed the effective sensitivity, showed large scatter about the mean values for both cameras that tended to mask any energy dependence except a decrease at electron energies above 6 keV. The mean effective sensitivities were 11.3 ± 1.1 digitization numbers (DN)/(erg cm -2 s -1 ) for the Lyman-Birge-Hopfield (LBH) camera and 15.9 ± 2.5 DN/(erg cm -2 s -1 ) for the 1304 camera. The signal ratio in simultaneous images from both cameras was insensitive to electron energy in the two cases examined, consistent with the weak energy dependences of the effective sensitivities. Unusually high LBH camera effective sensitivities of 45-60 DN/(erg cm -2 s -1 ) were obtained during several orbits on May 2 and 3. They conclude that images from either Viking camera may be used to infer the instantaneous distribution of electron energy deposition, with roughly 50% accuracy

  5. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  6. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  7. A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification

    International Nuclear Information System (INIS)

    Liu, Q J; Jing, L H; Wang, L M; Lin, Q Z

    2014-01-01

    Support Vector Machine (SVM) has been proved to be suitable for classification of remote sensing image and proposed to overcome the Hughes phenomenon. Hyper-spectral sensors are intrinsically designed to discriminate among a broad range of land cover classes which may lead to high computational time in SVM mutil-class algorithms. Model selection for SVM involving kernel and the margin parameter values selection which is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyper-spectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, particle swarm algorithm is introduced to the optimal selection of SVM (PSSVM) kernel parameter σ and margin parameter C to improve the modelling efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for evaluating the novel PSSVM, as well as traditional SVM classifier with general Grid-Search cross-validation method (GSSVM). And then, evaluation indexes including SVM model training time, classification Overall Accuracy (OA) and Kappa index of both PSSVM and GSSVM are all analyzed quantitatively. It is demonstrated that OA of PSSVM on test samples and whole image are 85% and 82%, the differences with that of GSSVM are both within 0.08% respectively. And Kappa indexes reach 0.82 and 0.77, the differences with that of GSSVM are both within 0.001. While the modelling time of PSSVM can be only 1/10 of that of GSSVM, and the modelling. Therefore, PSSVM is an fast and accurate algorithm for hyper-spectral image classification and is superior to GSSVM

  8. Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images

    Directory of Open Access Journals (Sweden)

    Evlyn Márcia Leão de Moraes Novo

    2013-12-01

    Full Text Available This work proposes a trophic state index based on the remote sensing retrieval of chlorophyll-α concentration. For that, in situ Bidirectional Reflectance Factor (BRF data acquired in the Ibitinga reservoir were resampled to match Landsat/TM spectral simulated bands (TM_sim bands and used to run linear correlation with concurrent measurements of chlorophyll-α concentration. Monte Carlo simulation was then applied to select the most suitable model relating chlorophyll-α concentration and simulated TM/Landsat reflectance. TM4_sim/TM3_sim ratio provided the best model with a R2 value of 0.78. The model was then inverted to create a look-up-table (LUT relating TM4_sim/TM3_sim ratio intervals to chlorophyll-α concentration trophic state classes covering the entire range measured in the reservoir. Atmospheric corrected Landsat TM images converted to surface reflectance were then used to generate a TM4/TM3 ratio image. The ratio image frequency distribution encompassed the range of TM4_sim/TM3_sim ratio indicating agreement between in situ and satellite data and supporting the use of satellite data to map chlorophyll- concentration trophic state distribution in the reservoir. Based on that, the LUT was applied to a Landsat/TM ratio image to map the spatial distribution of chlorophyll- trophic state classes in Ibitinga reservoir. Despite the stochastic selection of TM4_sim/TM3_sim ratio as the best input variable for modeling the chlorophyll-α concentration, it has a physical basis: high concentration of phytoplankton increases the reflectance in the near-infrared (TM4 and decreases the reflectance in the red (TM3. The band ratio, therefore, enhances the relationship between chlorophyll- concentration and remotely sensed reflectance.

  9. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    Science.gov (United States)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  10. Singularity Analysis: a powerful image processing tool in remote sensing of the oceans

    Science.gov (United States)

    Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.

    2012-04-01

    The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.

  11. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    Science.gov (United States)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  12. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  13. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  14. VIIRSN Level-3 Standard Mapped Image, Remote Sensing Reflectance at 671 nm, 8 Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Remote sensing reflectance (671 nm) data from the NPP-suomi spacecraft. Measurements are gathered by the VIIRS instrument carried aboard...

  15. Mapping of leptospirosis risk factor based on remote sensing image in Tembalang, Semarang City, Central Java

    Directory of Open Access Journals (Sweden)

    Sunaryo Sunaryo

    2012-09-01

    Full Text Available AbstrakLatar belakang: Leptospirosis merupakan penyakit zoonosis yang disebabkan oleh bakteri leptospira dan menular kepada manusia melalui kontak dengan urine hewan dan lingkungan yang terkontaminasi bakteri leptospira. Kecamatan Tembalang merupakan daerah endemis leptospirosis selama tiga tahun terakhir. Tujuan penelitian ini mengkaji kegunaan citra penginderaan jauh untuk pemetaan faktor risiko lingkungan leptospirosis.Metode: Penelitian ini menggunakan cara potong lintang, subyek sebanyak 246 dipetakan dengan GPS. Dengan program ArcGis 9.2 kasus leptospirosis ditumpang susun dengan citra Quickbird, kemudian dilakukan interpretasi kenampakan visual, dan dilakukan digitasi layar untuk identifi kasi faktor risiko secara visual.Hasil: Berdasarkan visualisasi digital diperoleh data bahwa kasus leptospirosis tahun 2009 terbanyak tersebar membentuk klaster di wilayah Tembalang dengan indeks jarak terdekat 0,009 km, sedangkan indeks jarak terjauh 18 km. Kasus lebih banyak ditemukan pada anak-anak dan remaja laki-laki, secara temporal kasus meningkat pada musim kemarau, antara bulan Juli dan Agustus. Hasil interpretasi visual dan digitasi diperoleh peta penggunaan lahan, badan air, pemukiman, area luasan banjir, kerapatan vegetasi dan ketinggian tempat.Kesimpulan: Citra penginderaan jauh resolusi spasial tinggi sangat baik untuk pemetaan faktor risiko leptospirosis. Sebaran kasus leptospirosis membentuk klaster di wilayah Tembalang, kasus didominasi anakanakdan remaja laki-laki. (Health Science Indones 2012;1:45-50Kata kunci: citra penginderaan jauh, leptospirosis, Tembalang AbstractBackground: Leptospirosis is a zoonotic disease, caused by leptospira bacteria and transmitted to human by contact though contaminated animal urine and environment. Tembalang Sub District is endemic area ofleptospirosis and increased at last three years. The aim of this research was to study the ability and usefulness of image remote sensing for mapping as distribution

  16. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  17. DE-STRIPING FOR TDICCD REMOTE SENSING IMAGE BASED ON STATISTICAL FEATURES OF HISTOGRAM

    Directory of Open Access Journals (Sweden)

    H.-T. Gao

    2016-06-01

    Full Text Available Aim to striping noise brought by non-uniform response of remote sensing TDI CCD, a novel de-striping method based on statistical features of image histogram is put forward. By analysing the distribution of histograms,the centroid of histogram is selected to be an eigenvalue representing uniformity of ground objects,histogrammic centroid of whole image and each pixels are calculated first,the differences between them are regard as rough correction coefficients, then in order to avoid the sensitivity caused by single parameter and considering the strong continuity and pertinence of ground objects between two adjacent pixels,correlation coefficient of the histograms is introduces to reflect the similarities between them,fine correction coefficient is obtained by searching around the rough correction coefficient,additionally,in view of the influence of bright cloud on histogram,an automatic cloud detection based on multi-feature including grey level,texture,fractal dimension and edge is used to pre-process image.Two 0-level panchromatic images of SJ-9A satellite with obvious strip noise are processed by proposed method to evaluate the performance, results show that the visual quality of images are improved because the strip noise is entirely removed,we quantitatively analyse the result by calculating the non-uniformity ,which has reached about 1% and is better than histogram matching method.

  18. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  19. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  20. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  1. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    Science.gov (United States)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  2. a Coarse-To Model for Airplane Detection from Large Remote Sensing Images Using Saliency Modle and Deep Learning

    Science.gov (United States)

    Song, Z. N.; Sui, H. G.

    2018-04-01

    High resolution remote sensing images are bearing the important strategic information, especially finding some time-sensitive-targets quickly, like airplanes, ships, and cars. Most of time the problem firstly we face is how to rapidly judge whether a particular target is included in a large random remote sensing image, instead of detecting them on a given image. The problem of time-sensitive-targets target finding in a huge image is a great challenge: 1) Complex background leads to high loss and false alarms in tiny object detection in a large-scale images. 2) Unlike traditional image retrieval, what we need to do is not just compare the similarity of image blocks, but quickly find specific targets in a huge image. In this paper, taking the target of airplane as an example, presents an effective method for searching aircraft targets in large scale optical remote sensing images. Firstly, we used an improved visual attention model utilizes salience detection and line segment detector to quickly locate suspected regions in a large and complicated remote sensing image. Then for each region, without region proposal method, a single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation is adopted to search small airplane objects. Unlike sliding window and region proposal-based techniques, we can do entire image (region) during training and test time so it implicitly encodes contextual information about classes as well as their appearance. Experimental results show the proposed method is quickly identify airplanes in large-scale images.

  3. A COARSE-TO-FINE MODEL FOR AIRPLANE DETECTION FROM LARGE REMOTE SENSING IMAGES USING SALIENCY MODLE AND DEEP LEARNING

    Directory of Open Access Journals (Sweden)

    Z. N. Song

    2018-04-01

    Full Text Available High resolution remote sensing images are bearing the important strategic information, especially finding some time-sensitive-targets quickly, like airplanes, ships, and cars. Most of time the problem firstly we face is how to rapidly judge whether a particular target is included in a large random remote sensing image, instead of detecting them on a given image. The problem of time-sensitive-targets target finding in a huge image is a great challenge: 1 Complex background leads to high loss and false alarms in tiny object detection in a large-scale images. 2 Unlike traditional image retrieval, what we need to do is not just compare the similarity of image blocks, but quickly find specific targets in a huge image. In this paper, taking the target of airplane as an example, presents an effective method for searching aircraft targets in large scale optical remote sensing images. Firstly, we used an improved visual attention model utilizes salience detection and line segment detector to quickly locate suspected regions in a large and complicated remote sensing image. Then for each region, without region proposal method, a single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation is adopted to search small airplane objects. Unlike sliding window and region proposal-based techniques, we can do entire image (region during training and test time so it implicitly encodes contextual information about classes as well as their appearance. Experimental results show the proposed method is quickly identify airplanes in large-scale images.

  4. ℓ1/2-norm regularized nonnegative low-rank and sparse affinity graph for remote sensing image segmentation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yiming; Su, Nan

    2016-10-01

    Segmentation of real-world remote sensing images is a challenge due to the complex texture information with high heterogeneity. Thus, graph-based image segmentation methods have been attracting great attention in the field of remote sensing. However, most of the traditional graph-based approaches fail to capture the intrinsic structure of the feature space and are sensitive to noises. A ℓ-norm regularization-based graph segmentation method is proposed to segment remote sensing images. First, we use the occlusion of the random texture model (ORTM) to extract the local histogram features. Then, a ℓ-norm regularized low-rank and sparse representation (LNNLRS) is implemented to construct a ℓ-regularized nonnegative low-rank and sparse graph (LNNLRS-graph), by the union of feature subspaces. Moreover, the LNNLRS-graph has a high ability to discriminate the manifold intrinsic structure of highly homogeneous texture information. Meanwhile, the LNNLRS representation takes advantage of the low-rank and sparse characteristics to remove the noises and corrupted data. Last, we introduce the LNNLRS-graph into the graph regularization nonnegative matrix factorization to enhance the segmentation accuracy. The experimental results using remote sensing images show that when compared to five state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  5. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  6. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  7. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  8. STUDY ON MODELING AND VISUALIZING THE POSITIONAL UNCERTAINTY OF REMOTE SENSING IMAGE

    Directory of Open Access Journals (Sweden)

    W. Jiao

    2016-06-01

    Full Text Available It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs of control points. It is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.

  9. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  10. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  11. Multi-Scale Residual Convolutional Neural Network for Haze Removal of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2018-06-01

    Full Text Available Haze removal is a pre-processing step that operates on at-sensor radiance data prior to the physically based image correction step to enhance hazy imagery visually. Most current haze removal methods focus on point-to-point operations and utilize information in the spectral domain, without taking consideration of the multi-scale spatial information of haze. In this paper, we propose a multi-scale residual convolutional neural network (MRCNN for haze removal of remote sensing images. MRCNN utilizes 3D convolutional kernels to extract spatial–spectral correlation information and abstract features from surrounding neighborhoods for haze transmission estimation. It takes advantage of dilated convolution to aggregate multi-scale contextual information for the purpose of improving its prediction accuracy. Meanwhile, residual learning is utilized to avoid the loss of weak information while deepening the network. Our experiments indicate that MRCNN performs accurately, achieving an extremely low validation error and testing error. The haze removal results of several scenes of Landsat 8 Operational Land Imager (OLI data show that the visibility of the dehazed images is significantly improved, and the color of recovered surface is consistent with the actual scene. Quantitative analysis proves that the dehazed results of MRCNN are superior to the traditional methods and other networks. Additionally, a comparison to haze-free data illustrates the spectral consistency after haze removal and reveals the changes in the vegetation index.

  12. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  13. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  14. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  15. Saliency-Guided Change Detection of Remotely Sensed Images Using Random Forest

    Science.gov (United States)

    Feng, W.; Sui, H.; Chen, X.

    2018-04-01

    Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.

  16. SALIENCY-GUIDED CHANGE DETECTION OF REMOTELY SENSED IMAGES USING RANDOM FOREST

    Directory of Open Access Journals (Sweden)

    W. Feng

    2018-04-01

    Full Text Available Studies based on object-based image analysis (OBIA representing the paradigm shift in change detection (CD have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF, as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA. Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3 multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.

  17. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    Science.gov (United States)

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  18. Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields

    Directory of Open Access Journals (Sweden)

    Teerapong Panboonyuen

    2017-07-01

    Full Text Available Object segmentation of remotely-sensed aerial (or very-high resolution, VHS images and satellite (or high-resolution, HR images, has been applied to many application domains, especially in road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts at applying the deep convolutional neural network (DCNN to extract roads from remote sensing images have been made; however, the accuracy is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road extraction of remote sensing images by applying landscape metrics (LMs and conditional random fields (CRFs. To improve the DCNN, a modern activation function called the exponential linear unit (ELU, is employed in our network, resulting in a higher number of, and yet more accurate, extracted roads. To further reduce falsely classified road objects, a solution based on an adoption of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as the Thailand Earth Observation System (THEOS satellite imagery data sets. The results showed that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique, on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F 1 .

  19. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image

    OpenAIRE

    Wang, Jianhua; Qin, Qiming; Zhao, Jianghua; Ye, Xin; Feng, Xiao; Qin, Xuebin; Yang, Xiucheng

    2015-01-01

    Road damage detection and assessment from high-resolution remote sensing image is critical for natural disaster investigation and disaster relief. In a disaster context, the pairing of pre-disaster and post-disaster road data for change detection and assessment is difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster data (i.e., remote sensing imagery or vector map) are hard to obtain. In this study, a knowledge-based method for ...

  20. FAST OCCLUSION AND SHADOW DETECTION FOR HIGH RESOLUTION REMOTE SENSING IMAGE COMBINED WITH LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    X. Hu

    2012-08-01

    Full Text Available The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU is much more powerful than central processing unit (CPU. We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.

  1. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].

    Science.gov (United States)

    Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong

    2013-03-01

    Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.

  2. Fast Occlusion and Shadow Detection for High Resolution Remote Sensing Image Combined with LIDAR Point Cloud

    Science.gov (United States)

    Hu, X.; Li, X.

    2012-08-01

    The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM) directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU) is much more powerful than central processing unit (CPU). We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.

  3. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  4. Multilayer Markov Random Field models for change detection in optical remote sensing images

    Science.gov (United States)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  5. The Analysis of Tree Species Distribution Information Extraction and Landscape Pattern Based on Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Yi Zeng

    2017-08-01

    Full Text Available The forest ecosystem is the largest land vegetation type, which plays the role of unreplacement with its unique value. And in the landscape scale, the research on forest landscape pattern has become the current hot spot, wherein the study of forest canopy structure is very important. They determines the process and the strength of forests energy flow, which influences the adjustments of ecosystem for climate and species diversity to some extent. The extraction of influencing factors of canopy structure and the analysis of the vegetation distribution pattern are especially important. To solve the problems, remote sensing technology, which is superior to other technical means because of its fine timeliness and large-scale monitoring, is applied to the study. Taking Lingkong Mountain as the study area, the paper uses the remote sensing image to analyze the forest distribution pattern and obtains the spatial characteristics of canopy structure distribution, and DEM data are as the basic data to extract the influencing factors of canopy structure. In this paper, pattern of trees distribution is further analyzed by using terrain parameters, spatial analysis tools and surface processes quantitative simulation. The Hydrological Analysis tool is used to build distributed hydrological model, and corresponding algorithm is applied to determine surface water flow path, rivers network and basin boundary. Results show that forest vegetation distribution of dominant tree species present plaque on the landscape scale and their distribution have spatial heterogeneity which is related to terrain factors closely. After the overlay analysis of aspect, slope and forest distribution pattern respectively, the most suitable area for stand growth and the better living condition are obtained.

  6. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  7. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  8. Tile-Based Semisupervised Classification of Large-Scale VHR Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haikel Alhichri

    2018-01-01

    Full Text Available This paper deals with the problem of the classification of large-scale very high-resolution (VHR remote sensing (RS images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class. Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.

  9. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dealing with missing data in remote sensing images within land and crop classification

    Science.gov (United States)

    Skakun, Sergii; Kussul, Nataliia; Basarab, Ruslan

    Optical remote sensing images from space provide valuable data for environmental monitoring, disaster management [1], agriculture mapping [2], so forth. In many cases, a time-series of satellite images is used to discriminate or estimate particular land parameters. One of the factors that influence the efficiency of satellite imagery is the presence of clouds. This leads to the occurrence of missing data that need to be addressed. Numerous approaches have been proposed to fill in missing data (or gaps) and can be categorized into inpainting-based, multispectral-based, and multitemporal-based. In [3], ancillary MODIS data are utilized for filling gaps and predicting Landsat data. In this paper we propose to use self-organizing Kohonen maps (SOMs) for missing data restoration in time-series of satellite imagery. Such approach was previously used for MODIS data [4], but applying this approach for finer spatial resolution data such as Sentinel-2 and Landsat-8 represents a challenge. Moreover, data for training the SOMs are selected manually in [4] that complicates the use of the method in an automatic mode. SOM is a type of artificial neural network that is trained using unsupervised learning to produce a discretised representation of the input space of the training samples, called a map. The map seeks to preserve the topological properties of the input space. The reconstruction of satellite images is performed for each spectral band separately, i.e. a separate SOM is trained for each spectral band. Pixels that have no missing values in the time-series are selected for training. Selecting the number of training pixels represent a trade-off, in particular increasing the number of training samples will lead to the increased time of SOM training while increasing the quality of restoration. Also, training data sets should be selected automatically. As such, we propose to select training samples on a regular grid of pixels. Therefore, the SOM seeks to project a large number

  11. A Region-Based GeneSIS Segmentation Algorithm for the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Stelios K. Mylonas

    2015-03-01

    Full Text Available This paper proposes an object-based segmentation/classification scheme for remotely sensed images, based on a novel variant of the recently proposed Genetic Sequential Image Segmentation (GeneSIS algorithm. GeneSIS segments the image in an iterative manner, whereby at each iteration a single object is extracted via a genetic-based object extraction algorithm. Contrary to the previous pixel-based GeneSIS where the candidate objects to be extracted were evaluated through the fuzzy content of their included pixels, in the newly developed region-based GeneSIS algorithm, a watershed-driven fine segmentation map is initially obtained from the original image, which serves as the basis for the forthcoming GeneSIS segmentation. Furthermore, in order to enhance the spatial search capabilities, we introduce a more descriptive encoding scheme in the object extraction algorithm, where the structural search modules are represented by polygonal shapes. Our objectives in the new framework are posed as follows: enhance the flexibility of the algorithm in extracting more flexible object shapes, assure high level classification accuracies, and reduce the execution time of the segmentation, while at the same time preserving all the inherent attributes of the GeneSIS approach. Finally, exploiting the inherent attribute of GeneSIS to produce multiple segmentations, we also propose two segmentation fusion schemes that operate on the ensemble of segmentations generated by GeneSIS. Our approaches are tested on an urban and two agricultural images. The results show that region-based GeneSIS has considerably lower computational demands compared to the pixel-based one. Furthermore, the suggested methods achieve higher classification accuracies and good segmentation maps compared to a series of existing algorithms.

  12. Effective spatial database support for acquiring spatial information from remote sensing images

    Science.gov (United States)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  13. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    Science.gov (United States)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  14. Targets Mask U-Net for Wind Turbines Detection in Remote Sensing Images

    Science.gov (United States)

    Han, M.; Wang, H.; Wang, G.; Liu, Y.

    2018-04-01

    To detect wind turbines precisely and quickly in very high resolution remote sensing images (VHRRSI) we propose target mask U-Net. This convolution neural network (CNN), which is carefully designed to be a wide-field detector, models the pixel class assignment to wind turbines and their context information. The shadow, which is the context information of the target in this study, has been regarded as part of a wind turbine instance. We have trained the target mask U-Net on training dataset, which is composed of down sampled image blocks and instance mask blocks. Some post-processes have been integrated to eliminate wrong spots and produce bounding boxes of wind turbine instances. The evaluation metrics prove the reliability and effectiveness of our method for the average F1-score of our detection method is up to 0.97. The comparison of detection accuracy and time consuming with the weakly supervised targets detection method based on CNN illustrates the superiority of our method.

  15. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  16. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Zhiyong Lv

    2018-03-01

    Full Text Available In recent decades, land cover change detection (LCCD using very high-spatial resolution (VHR remote sensing images has been a major research topic. However, VHR remote sensing images usually lead to a large amount of noises in spectra, thereby reducing the reliability of the detected results. To solve this problem, this study proposes an object-based expectation maximization (OBEM post-processing approach for enhancing raw LCCD results. OBEM defines a refinement of the labeling in a detected map to enhance its raw detection accuracies. Current mainstream change detection (preprocessing techniques concentrate on proposing a change magnitude measurement or considering image spatial features to obtain a change detection map. The proposed OBEM approach is a new solution to enhance change detection accuracy by refining the raw result. Post-processing approaches can achieve competitive accuracies to the preprocessing methods, but in a direct and succinct manner. The proposed OBEM post-processing method synthetically considers multi-scale segmentation and expectation maximum algorithms to refine the raw change detection result. Then, the influence of the scale of segmentation on the LCCD accuracy of the proposed OBEM is investigated. Four pairs of remote sensing images, one of two pairs (aerial image with 0.5 m/pixel resolution which depict two landslide sites on Landtau Island, Hong Kong, China, are used in the experiments to evaluate the effectiveness of the proposed approach. In addition, the proposed approach is applied, and validated by two case studies, LCCD in Tianjin City China (SPOT-5 satellite image with 2.5 m/pixel resolution and Mexico forest fire case (Landsat TM images with 30 m/pixel resolution, respectively. Quantitative evaluations show that the proposed OBEM post-processing approach can achieve better performance and higher accuracies than several commonly used preprocessing methods. To the best of the authors’ knowledge, this type

  17. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  18. Introducing two Random Forest based methods for cloud detection in remote sensing images

    Science.gov (United States)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The

  19. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  20. Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools

    Science.gov (United States)

    As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...

  1. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    Science.gov (United States)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  2. Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution Remote Sense Imagery: A Coastal Area Case Study

    Directory of Open Access Journals (Sweden)

    Helingjie Huang

    2017-03-01

    Full Text Available Image interpretation is a major topic in the remote sensing community. With the increasing acquisition of high spatial resolution (HSR remotely sensed images, incorporating geographic object-based image analysis (GEOBIA is becoming an important sub-discipline for improving remote sensing applications. The idea of integrating the human ability to understand images inspires research related to introducing expert knowledge into image object–based interpretation. The relevant work involved three parts: (1 identification and formalization of domain knowledge; (2 image segmentation and feature extraction; and (3 matching image objects with geographic concepts. This paper presents a novel way that combines multi-scaled segmented image objects with geographic concepts to express context in an ontology-guided image interpretation. Spectral features and geometric features of a single object are extracted after segmentation and topological relationships are also used in the interpretation. Web ontology language–query language (OWL-QL formalize domain knowledge. Then the interpretation matching procedure is implemented by the OWL-QL query-answering. Compared with a supervised classification, which does not consider context, the proposed method validates two HSR images of coastal areas in China. Both the number of interpreted classes increased (19 classes over 10 classes in Case 1 and 12 classes over seven in Case 2, and the overall accuracy improved (0.77 over 0.55 in Case 1 and 0.86 over 0.65 in Case 2. The additional context of the image objects improved accuracy during image classification. The proposed approach shows the pivotal role of ontology for knowledge-guided interpretation.

  3. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  4. Geospatial Analysis Using Remote Sensing Images: Case Studies of Zonguldak Test Field

    Science.gov (United States)

    Bayık, Çağlar; Topan, Hüseyin; Özendi, Mustafa; Oruç, Murat; Cam, Ali; Abdikan, Saygın

    2016-06-01

    Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey), the Universities, ESA, Airbus DS, ERSDAC (Japan) and Jülich Research Centre (Germany).

  5. GEOSPATIAL ANALYSIS USING REMOTE SENSING IMAGES: CASE STUDIES OF ZONGULDAK TEST FIELD

    Directory of Open Access Journals (Sweden)

    Ç. Bayık

    2016-06-01

    Full Text Available Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey, the Universities, ESA, Airbus DS, ERSDAC (Japan and Jülich Research Centre (Germany.

  6. Fusing Multiscale Charts into 3D ENC Systems Based on Underwater Topography and Remote Sensing Image

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2015-01-01

    Full Text Available The purpose of this study is to propose an approach to fuse multiscale charts into three-dimensional (3D electronic navigational chart (ENC systems based on underwater topography and remote sensing image. This is the first time that the fusion of multiscale standard ENCs in the 3D ENC system has been studied. First, a view-dependent visualization technology is presented for the determination of the display condition of a chart. Second, a map sheet processing method is described for dealing with the map sheet splice problem. A process order called “3D order” is designed to adapt to the characteristics of the chart. A map sheet clipping process is described to deal with the overlap between the adjacent map sheets. And our strategy for map sheet splice is proposed. Third, the rendering method for ENC objects in the 3D ENC system is introduced. Fourth, our picking-up method for ENC objects is proposed. Finally, we implement the above methods in our system: automotive intelligent chart (AIC 3D electronic chart display and information systems (ECDIS. And our method can handle the fusion problem well.

  7. Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation.

    Science.gov (United States)

    Shen, Liang; Huang, Xiaotao; Fan, Chongyi

    2018-05-01

    Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm.

  8. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    Science.gov (United States)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  9. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    Science.gov (United States)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  10. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    Full Text Available A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST of the change algorithms is applied to calculate the probability of change for a particular location. CEST

  11. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  12. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  13. Retrieval operators of remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Shah, A.

    2014-01-01

    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  14. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.

    2003-01-01

    Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving

  15. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    Science.gov (United States)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  16. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  17. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  18. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  19. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  20. Study on the Coastline Change of Jiaozhou Bay Based on High Resolution Remote Sensing Image

    Science.gov (United States)

    Zhu, H.; Xing, B.; Ni, S.; Wei, P.

    2018-05-01

    In recent years, with the rapid development of the Jiaozhou Bay area of Qingdao, the influence of human activities on the coastline of Jiaozhou Bay is becoming more and more serious. Based on the high resolution remote sensing image data of 10 periods from 2001 to 2017 in the Jiaozhou Bay area, and combined with the data of on-the-spot survey and expert knowledge, this paper have completed the interpretation and extraction of coastline data of each year, and analyzed the distribution, size, rate of change, and trend of the increase and decrease of the coastal area of Jiaozhou Bay in different time periods, combined with the economic construction and the marine hydrodynamic environment of the region to analyze the reasons for the change of the coastline of Jiaozhou Bay. The results show that the increase and reduction of the coastal area of Jiaozhou Bay was mainly affected by human activities such as sea reclamation and marine aquaculture, resulting in a gradual change in the rate of increase and decrease with human development. For coastal advance part,2001-2013, the average increase rate on the coastal area of Jiaozhou Bay was 2.30 km2/a, showing a trend of rapid growth, 2013-2017 the average increase rate of 0.53 km2/a, and the growth rate slowed down. For coastal retreat part, 2001-2013, the average decrease rate was 2.58 × 10-3 km2/a. 2013-2014, the decrease rate reached a peak value of 1.11 km2/a. 2014-2017, the average decrease rate was 0.14 km2/a. The decrease rate shows a trend of increasing first and then slowing down.

  1. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  2. The Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring remotely sensed data from a tethered balloon

    Science.gov (United States)

    Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.

    2006-01-01

    We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.

  3. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  4. Freeware for GIS and Remote Sensing

    OpenAIRE

    Lena Halounová

    2007-01-01

    Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  5. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  6. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    Science.gov (United States)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  7. Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    ZHANG Zhiqiang

    2018-01-01

    Full Text Available Timely and accurate change detection of buildings provides important information for urban planning and management.Accompanying with the rapid development of satellite remote sensing technology,detecting building changes from high-resolution remote sensing images have received wide attention.Given that pixel-based methods of change detection often lead to low accuracy while object-based methods are complicated for uses,this research proposes a method that combines pixel-based and object-based methods for detecting building changes from high-resolution remote sensing images.First,based on the multiple features extracted from the high-resolution images,a random forest classifier is applied to detect changed building at the pixel level.Then,a segmentation method is applied to segement the post-phase remote sensing image and to get post-phase image objects.Finally,both changed building at the pixel level and post-phase image objects are fused to recognize the changed building objects.Multi-temporal QuickBird images are used as experiment data for building change detection with high-resolution remote sensing images,the results indicate that the proposed method could reduce the influence of environmental difference,such as light intensity and view angle,on building change detection,and effectively improve the accuracies of building change detection.

  8. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images.

    Science.gov (United States)

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-06-22

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.

  9. Detection and Monitoring of E-Waste Contamination through Remote Sensing and Image Analysis

    Science.gov (United States)

    Garb, Yaakov; Friedlander, Lonia

    2015-04-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams, and also one of the more problematic, as this end-of-life product contains precious metals mixed with and embedded in a variety of low value and potentially harmful plastic and other materials. This combination creates a powerful incentive for informal value chains that transport, extract from, and dispose of e-waste materials in far-ranging and unregulated ways, and especially in settings where regulation and livelihood alternatives are sparse, most notably in areas of India, China, and Africa. E-waste processing is known to release a variety of contaminants, such as heavy metals and persistent organic pollutants, including flame retardants, dioxins and furans. In several sites, where the livelihoods of entire communities are dependent on e-waste processing, the resulting contaminants have been demonstrated to enter the hydrological system and food chain and have serious health and ecological effects. In this paper we demonstrate for the first time the usefulness of multi-spectral remote sensing imagery to detect and monitor the release and possibly the dispersal of heavy metal contaminants released in e-waste processing. While similar techniques have been used for prospecting or for studying heavy metal contamination from mining and large industrial facilities, we suggest that these techniques are of particular value in detecting contamination from the more dispersed, shifting, and ad-hoc kinds of release typical of e-waste processing. Given the increased resolution and decreased price of multi-spectral imagery, such techniques may offer a remarkably cost-effective and rapidly responsive means of assessing and monitoring this kind of contamination. We will describe the geochemical and multi-spectral image-processing principles underlying our approach, and show how we have applied these to an area in which we have a detailed, multi-temporal, spatially referenced, and ground

  10. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  11. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  12. [Object-oriented remote sensing image classification in epidemiological studies of visceral leishmaniasis in urban areas].

    Science.gov (United States)

    Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa

    2014-08-01

    This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.

  13. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  14. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  15. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  16. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  17. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  18. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Science.gov (United States)

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  19. Texture Retrieval from VHR Optical Remote Sensed Images Using the Local Extrema Descriptor with Application to Vineyard Parcel Detection

    Directory of Open Access Journals (Sweden)

    Minh-Tan Pham

    2016-04-01

    Full Text Available In this article, we develop a novel method for the detection of vineyard parcels in agricultural landscapes based on very high resolution (VHR optical remote sensing images. Our objective is to perform texture-based image retrieval and supervised classification algorithms. To do that, the local textural and structural features inside each image are taken into account to measure its similarity to other images. In fact, VHR images usually involve a variety of local textures and structures that may verify a weak stationarity hypothesis. Hence, an approach only based on characteristic points, not on all pixels of the image, is supposed to be relevant. This work proposes to construct the local extrema-based descriptor (LED by using the local maximum and local minimum pixels extracted from the image. The LED descriptor is formed based on the radiometric, geometric and gradient features from these local extrema. We first exploit the proposed LED descriptor for the retrieval task to evaluate its performance on texture discrimination. Then, it is embedded into a supervised classification framework to detect vine parcels using VHR satellite images. Experiments performed on VHR panchromatic PLEIADES image data prove the effectiveness of the proposed strategy. Compared to state-of-the-art methods, an enhancement of about 7% in retrieval rate is achieved. For the detection task, about 90% of vineyards are correctly detected.

  20. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  1. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  2. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  3. A novel airport extraction model based on saliency region detection for high spatial resolution remote sensing images

    Science.gov (United States)

    Lv, Wen; Zhang, Libao; Zhu, Yongchun

    2017-06-01

    The airport is one of the most crucial traffic facilities in military and civil fields. Automatic airport extraction in high spatial resolution remote sensing images has many applications such as regional planning and military reconnaissance. Traditional airport extraction strategies usually base on prior knowledge and locate the airport target by template matching and classification, which will cause high computation complexity and large costs of computing resources for high spatial resolution remote sensing images. In this paper, we propose a novel automatic airport extraction model based on saliency region detection, airport runway extraction and adaptive threshold segmentation. In saliency region detection, we choose frequency-tuned (FT) model for computing airport saliency using low level features of color and luminance that is easy and fast to implement and can provide full-resolution saliency maps. In airport runway extraction, Hough transform is adopted to count the number of parallel line segments. In adaptive threshold segmentation, the Otsu threshold segmentation algorithm is proposed to obtain more accurate airport regions. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and shows good performance in the extraction of the airport.

  4. Remote sensing for oil spill detection and response

    International Nuclear Information System (INIS)

    Engelhardt, F.R.

    1999-01-01

    This paper focuses on the use of remote sensing for marine oil spill detection and response. The surveillance and monitoring of discharges, and the main elements of effective surveillance are discussed. Tactical emergency response and the requirements for selecting a suitable remote sensing approach, airborne remote sensing systems, and the integration of satellite and airborne imaging are examined. Specifications of satellite surveillance systems potentially usable for oil spill detection, and specifications of airborne remote sensing systems suitable for oil spill detection, monitoring and supplemental actions are tabulated, and a schema of integrated satellite-airborne remote sensing (ISARS) is presented. (UK)

  5. Remote sensing programs and courses in engineering and water resources

    Science.gov (United States)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  6. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  7. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  8. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    Science.gov (United States)

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  9. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  10. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  11. The Application of Chinese High-Spatial Remote Sensing Satellite Image in Land Law Enforcement Information Extraction

    Science.gov (United States)

    Wang, N.; Yang, R.

    2018-04-01

    Chinese high -resolution (HR) remote sensing satellites have made huge leap in the past decade. Commercial satellite datasets, such as GF-1, GF-2 and ZY-3 images, the panchromatic images (PAN) resolution of them are 2 m, 1 m and 2.1 m and the multispectral images (MS) resolution are 8 m, 4 m, 5.8 m respectively have been emerged in recent years. Chinese HR satellite imagery has been free downloaded for public welfare purposes using. Local government began to employ more professional technician to improve traditional land management technology. This paper focused on analysing the actual requirements of the applications in government land law enforcement in Guangxi Autonomous Region. 66 counties in Guangxi Autonomous Region were selected for illegal land utilization spot extraction with fusion Chinese HR images. The procedure contains: A. Defines illegal land utilization spot type. B. Data collection, GF-1, GF-2, and ZY-3 datasets were acquired in the first half year of 2016 and other auxiliary data were collected in 2015. C. Batch process, HR images were collected for batch preprocessing through ENVI/IDL tool. D. Illegal land utilization spot extraction by visual interpretation. E. Obtaining attribute data with ArcGIS Geoprocessor (GP) model. F. Thematic mapping and surveying. Through analysing 42 counties results, law enforcement officials found 1092 illegal land using spots and 16 suspicious illegal mining spots. The results show that Chinese HR satellite images have great potential for feature information extraction and the processing procedure appears robust.

  12. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images

    Science.gov (United States)

    Riordan, B.; Verbyla, D.; McGuire, A.D.

    2006-01-01

    Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased potential evapotranspiration, and permafrost warming. Research from the Seward Peninsula and Kenai Peninsula has demonstrated a substantial landscape-level trend in the reduction of surface water and number of closed-basin ponds. We investigated whether this drying trend occurred at nine other regions throughout Alaska. One study region was from the Arctic Coastal Plain where depp permafrost occurs continuously across the landscape. The other eight study regions were from the boreal forest regions where discontinuous permafrost occurs. Mean annual precipitation across the study regions ranged from 100 to over 700 min yr-1. We used remotely sensed imagery from the 1950s to 2002 to inventory over 10,000 closed-basin ponds from at least three periods from this time span. We found a reduction in the area and number of shallow, closed-basin ponds for all boreal regions. In contrast, the Arctic Coastal Plain region had negligible change in the area of closed-basin ponds. Since the 1950s, surface water area of closed-basin ponds included in this analysis decreased by 31 to 4 percent, and the total number of closed-basin ponds surveyed within each study region decreased from 54 to 5 percent. There was a significant increasing trend in annual mean temperature and potential evapotranspiration since the 1950s for all study regions. There was no significant trend in annual precipitation during the same period. The regional trend of shrinking ponds may be due to increased drainage as permafrost warms, or increased evapotranspiration during a warmer and extended growing season. Copyright 2006 by the American Geophysical Union.

  13. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  14. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  15. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  16. Experiment Design Regularization-Based Hardware/Software Codesign for Real-Time Enhanced Imaging in Uncertain Remote Sensing Environment

    Directory of Open Access Journals (Sweden)

    Castillo Atoche A

    2010-01-01

    Full Text Available A new aggregated Hardware/Software (HW/SW codesign approach to optimization of the digital signal processing techniques for enhanced imaging with real-world uncertain remote sensing (RS data based on the concept of descriptive experiment design regularization (DEDR is addressed. We consider the applications of the developed approach to typical single-look synthetic aperture radar (SAR imaging systems operating in the real-world uncertain RS scenarios. The software design is aimed at the algorithmic-level decrease of the computational load of the large-scale SAR image enhancement tasks. The innovative algorithmic idea is to incorporate into the DEDR-optimized fixed-point iterative reconstruction/enhancement procedure the convex convergence enforcement regularization via constructing the proper multilevel projections onto convex sets (POCS in the solution domain. The hardware design is performed via systolic array computing based on a Xilinx Field Programmable Gate Array (FPGA XC4VSX35-10ff668 and is aimed at implementing the unified DEDR-POCS image enhancement/reconstruction procedures in a computationally efficient multi-level parallel fashion that meets the (near real-time image processing requirements. Finally, we comment on the simulation results indicative of the significantly increased performance efficiency both in resolution enhancement and in computational complexity reduction metrics gained with the proposed aggregated HW/SW co-design approach.

  17. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  18. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  19. PHOTOGRAMMETRY – REMOTE SENSING AND GEOINFORMATION

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2012-07-01

    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  20. Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis

    Science.gov (United States)

    Addink, Elisabeth A.; Van Coillie, Frieke M. B.; De Jong, Steven M.

    2012-04-01

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerable attention over the past 15 years for analyzing and interpreting remote sensing imagery. In contrast to traditional image analysis, GEOBIA works more like the human eye-brain combination does. The latter uses the object's color (spectral information), size, texture, shape and occurrence to other image objects to interpret and analyze what we see. GEOBIA starts by segmenting the image grouping together pixels into objects and next uses a wide range of object properties to classify the objects or to extract object's properties from the image. Significant advances and improvements in image analysis and interpretation are made thanks to GEOBIA. In June 2010 the third conference on GEOBIA took place at the Ghent University after successful previous meetings in Calgary (2008) and Salzburg (2006). This special issue presents a selection of the 2010 conference papers that are worked out as full research papers for JAG. The papers cover GEOBIA applications as well as innovative methods and techniques. The topics range from vegetation mapping, forest parameter estimation, tree crown identification, urban mapping, land cover change, feature selection methods and the effects of image compression on segmentation. From the original 94 conference papers, 26 full research manuscripts were submitted; nine papers were selected and are presented in this special issue. Selection was done on the basis of quality and topic of the studies. The next GEOBIA conference will take place in Rio de Janeiro from 7 to 9 May 2012 where we hope to welcome even more scientists working in the field of GEOBIA.

  1. Cluster Validity Classification Approaches Based on Geometric Probability and Application in the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    LI Jian-Wei

    2014-08-01

    Full Text Available On the basis of the cluster validity function based on geometric probability in literature [1, 2], propose a cluster analysis method based on geometric probability to process large amount of data in rectangular area. The basic idea is top-down stepwise refinement, firstly categories then subcategories. On all clustering levels, use the cluster validity function based on geometric probability firstly, determine clusters and the gathering direction, then determine the center of clustering and the border of clusters. Through TM remote sensing image classification examples, compare with the supervision and unsupervised classification in ERDAS and the cluster analysis method based on geometric probability in two-dimensional square which is proposed in literature 2. Results show that the proposed method can significantly improve the classification accuracy.

  2. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  3. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  4. The 1997 remote sensing mission to Kazakhstan

    International Nuclear Information System (INIS)

    Steinmaus, K.; Robert, B.; Berezin, S.A.

    1997-01-01

    In June and July of 1997, the US Department of Energy, in cooperation with the Republic of Kazakhstan Ministry of Science - Academy of Science conducted a remote sensing mission to Kazakhstan. The mission was conducted as a technology demonstration under a Memorandum of Understanding between the United States Department of Energy and the Republic of Kazakhstan's Ministry of science - Academy of Science. The mission was performed using a US Navy P-3 Orion aircraft and imaging capabilities developed by the Department of Energy's Office of Non-proliferation and National Security. The imaging capabilities consisted of two imaging pods - a synthetic aperture radar (SAR) pod and a multi sensor imaging pod (MSI). Seven experiments were conducted to demonstrate how remote sensing can be used to support city planning, land cover mapping, mineral exploration, and non-proliferation monitoring. Results of the mission will be presented

  5. Remote Sensing Image Analysis Without Expert Knowledge - A Web-Based Classification Tool On Top of Taverna Workflow Management System

    Science.gov (United States)

    Selsam, Peter; Schwartze, Christian

    2016-10-01

    Providing software solutions via internet has been known for quite some time and is now an increasing trend marketed as "software as a service". A lot of business units accept the new methods and streamlined IT strategies by offering web-based infrastructures for external software usage - but geospatial applications featuring very specialized services or functionalities on demand are still rare. Originally applied in desktop environments, the ILMSimage tool for remote sensing image analysis and classification was modified in its communicating structures and enabled for running on a high-power server and benefiting from Tavema software. On top, a GIS-like and web-based user interface guides the user through the different steps in ILMSimage. ILMSimage combines object oriented image segmentation with pattern recognition features. Basic image elements form a construction set to model for large image objects with diverse and complex appearance. There is no need for the user to set up detailed object definitions. Training is done by delineating one or more typical examples (templates) of the desired object using a simple vector polygon. The template can be large and does not need to be homogeneous. The template is completely independent from the segmentation. The object definition is done completely by the software.

  6. STUDY ON REMOTE SENSING IMAGE CHARACTERISTICS OF ECOLOGICAL LAND: CASE STUDY OF ORIGINAL ECOLOGICAL LAND IN THE YELLOW RIVER DELTA

    Directory of Open Access Journals (Sweden)

    G. Q. An

    2018-04-01

    Full Text Available Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  7. Study on Remote Sensing Image Characteristics of Ecological Land: Case Study of Original Ecological Land in the Yellow River Delta

    Science.gov (United States)

    An, G. Q.

    2018-04-01

    Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  8. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren

    2015-06-01

    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  9. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  10. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  11. Ecological Sensitivity Evaluation of Tourist Region Based on Remote Sensing Image - Taking Chaohu Lake Area as a Case Study

    Science.gov (United States)

    Lin, Y.; Li, W. J.; Yu, J.; Wu, C. Z.

    2018-04-01

    Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine) classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland. Through the eco-sensitivity analysis of

  12. ECOLOGICAL SENSITIVITY EVALUATION OF TOURIST REGION BASED ON REMOTE SENSING IMAGE – TAKING CHAOHU LAKE AREA AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-04-01

    Full Text Available Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland

  13. Urban Boundary Extraction and Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: a Case Study of China's Provincial

    Science.gov (United States)

    Wang, H.; Ning, X.; Zhang, H.; Liu, Y.; Yu, F.

    2018-04-01

    Urban boundary is an important indicator for urban sprawl analysis. However, methods of urban boundary extraction were inconsistent, and construction land or urban impervious surfaces was usually used to represent urban areas with coarse-resolution images, resulting in lower precision and incomparable urban boundary products. To solve above problems, a semi-automatic method of urban boundary extraction was proposed by using high-resolution image and geographic information data. Urban landscape and form characteristics, geographical knowledge were combined to generate a series of standardized rules for urban boundary extraction. Urban boundaries of China's 31 provincial capitals in year 2000, 2005, 2010 and 2015 were extracted with above-mentioned method. Compared with other two open urban boundary products, accuracy of urban boundary in this study was the highest. Urban boundary, together with other thematic data, were integrated to measure and analyse urban sprawl. Results showed that China's provincial capitals had undergone a rapid urbanization from year 2000 to 2015, with the area change from 6520 square kilometres to 12398 square kilometres. Urban area of provincial capital had a remarkable region difference and a high degree of concentration. Urban land became more intensive in general. Urban sprawl rate showed inharmonious with population growth rate. About sixty percent of the new urban areas came from cultivated land. The paper provided a consistent method of urban boundary extraction and urban sprawl measurement using high-resolution remote sensing images. The result of urban sprawl of China's provincial capital provided valuable urbanization information for government and public.

  14. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2017-09-01

    Full Text Available Ship detection by Unmanned Airborne Vehicles (UAVs and satellites plays an important role in a spectrum of related military and civil applications. To improve the detection efficiency, accuracy, and speed, a novel ship detection method from coarse to fine is presented. Ship targets are viewed as uncommon regions in the sea background caused by the differences in colors, textures, shapes, or other factors. Inspired by this fact, a global saliency model is constructed based on high-frequency coefficients of the multi-scale and multi-direction wavelet decomposition, which can characterize different feature information from edge to texture of the input image. To further reduce the false alarms, a new and effective multi-level discrimination method is designed based on the improved entropy and pixel distribution, which is robust against the interferences introduced by islands, coastlines, clouds, and shadows. The experimental results on optical remote sensing images validate that the presented saliency model outperforms the comparative models in terms of the area under the receiver operating characteristic curves core and the accuracy in the images with different sizes. After the target identification, the locations and the number of the ships in various sizes and colors can be detected accurately and fast with high robustness.

  15. An Unsupervised Algorithm for Change Detection in Hyperspectral Remote Sensing Data Using Synthetically Fused Images and Derivative Spectral Profiles

    Directory of Open Access Journals (Sweden)

    Youkyung Han

    2017-01-01

    Full Text Available Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface. However, dissimilar radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors, we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised change-detection algorithms.

  16. Operational Use of Remote Sensing within USDA

    Science.gov (United States)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  17. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  18. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  19. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  20. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used. Remotely sensed .... growing stock in Tahno range of Dehradun Forest Division. Okhandiara (2008) .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral signatures to ...

  1. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  2. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  3. Study the impact of rainfall on the United Arab Emirates dams using remote sensing and image processing techniques

    Science.gov (United States)

    Al Marzouqi, Fatima A.; Al Besher, Shaikha A.; Al Mansoori, Saeed H.

    2017-10-01

    The United Arab Emirates (UAE) has given great attention to the environment and sustainable development through applications of best practices of global standards that ensure optimal investment in natural resources. Since the UAE is located in an arid region which is known as dry, sandy and get a small amount of rainfall, thus the water resources are limited and accordingly, the government has initiated an integrated water resources management (IWRM) strategy to meet the increasing demands of water. Dams are considered as one of the important strategies that are suitable for this arid region. An event of rainfall if between heavy to severe in a short duration could cause flash floods and damages to population centers and areas of agriculture nearby. To prevent that from happening, several dams and barriers were built to protect human life and infrastructure. Besides contribution to enhance the water resources and use them optimally to irrigate the growing agricultural areas across the country. Geographically, most of the dams were located in the northern and eastern part of the UAE, around mountainous areas. This study aims to monitor the changes that occurred to five dams of the north-eastern region of the UAE during 2015 and 2016 through the use of remote sensing technology of optical images captured by "DubaiSat-2". The segmentation approach utilized in this study is based on a band ratio technique called Normalized Difference Water Index (NDWI). The experimental results revealed that the proposed approach is efficient in detecting dams from multispectral satellite images.

  4. STUDY ON LANDSLIDE DISASTER EXTRACTION METHOD BASED ON SPACEBORNE SAR REMOTE SENSING IMAGES – TAKE ALOS PALSAR FOR AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    D. Xue

    2018-04-01

    Full Text Available In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  5. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    Full Text Available Objective and effective image quality assessment (IQA is directly related to the application of optical remote sensing images (ORSI. In this study, a new IQA method of standardizing the target object recognition rate (ORR is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  6. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    Science.gov (United States)

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  7. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products

    Science.gov (United States)

    Driver, J. M.

    1982-01-01

    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  8. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)

    2009-07-01

    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  9. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  10. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  11. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  12. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  13. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  14. Characteristics of the gravel size and potassium in the Ejin Alluvial Fan from remote sensing images and stratigraphic section

    International Nuclear Information System (INIS)

    Zhang, Lu; Guo, Huadong; Wang, Qinjun

    2014-01-01

    The Ejin Alluvial Fan (EAF), located in the north-west of China, is an important recorder of both paleoclimatic and tectonic information of the north margin of the Qinghai-Tibet Plateau. Remote sensing technics, including optical and microwave sensors, have been the key spatial observation tools to extract the surface information related to the paleoenvironment. In this paper, the gravel size and chemical element potassium K distributions of the EAF were obtained from RadarSat-2 Synthetic Aperture Radar (SAR) data and LandSat TM optical data, respectively. In addition, the stratigraphic section of the EAF was established and the corresponding geological information in the vertical direction with different periods was obtained. Combining the geological survey information and surface distribution information, it can be concluded as follows. 1) The EAF covers an area of above 30,000 km 2 and may be the largest arid and semi-arid alluvial fan in the world based on the remote sensing survey. 2) Some surface parameters which are related to the paleoenvironmental change can be obtained from remote sensing data, such as the gravel size and potassium K parameters. 3) The forming process of the EAF and the corresponding environments will be understood deeply, combining the paleoenvironmental related parameters derived from remote sensing data and the geologic survey data

  15. Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection, Journal of Applied Remote Sensing Vol.3

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu

    2009-01-01

    In the southeastern United States, most wildland fires are of low intensity. A substantial number of these fires cannot be detected by the MODIS contextual algorithm. To improve the accuracy of fire detection for this region, the remote-sensed characteristics of these fires have to be...

  16. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  17. Texture Segmentation Based on Wavelet and Kohonen Network for Remotely Sensed Images

    NARCIS (Netherlands)

    Chen, Z.; Feng, T.J.; Feng, T.J.; Houkes, Z.

    1999-01-01

    In this paper, an approach based on wavelet decomposition and Kohonen's self-organizing map is developed for image segmentation. After performing the 2D wavelet transform of image, some features are extracted for texture segmentation, and the Kohonen neural network is used to accomplish feature

  18. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    Science.gov (United States)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  19. Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager

    Directory of Open Access Journals (Sweden)

    J. Bruce Rafert

    2015-05-01

    Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.

  20. [Constructing images and territories: thinking on the visuality and materiality of remote sensing].

    Science.gov (United States)

    Monteiro, Marko

    2015-01-01

    This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.

  1. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    Science.gov (United States)

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  2. An Integrated Photogrammetric and Spatial Database Management System for Producing Fully Structured Data Using Aerial and Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Farshid Farnood Ahmadi

    2009-03-01

    Full Text Available 3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs; direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS is presented.

  3. Assessment of Vegetation Variation on Primarily Creation Zones of the Dust Storms Around the Euphrates Using Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jamil Amanollahi

    2012-06-01

    Full Text Available Recently, period frequency and effect domain of the dust storms that enter Iran from Iraq have increased. In this study, in addition to detecting the creation zones of the dust storms, the effect of vegetation cover variation on their creation was investigated using remote sensing. Moderate resolution image Spectroradiometer (MODIS and Landsat Thematic Mapper (TM5 have been utilized to identify the primarily creation zones of the dust storms and to assess the vegetation cover variation, respectively. Vegetation cover variation was studied using Normalized Differences Vegetation Index (NDVI obtained from band 3 and band 4 of the Landsate satellite. The results showed that the surrounding area of the Euphrates in Syria, the desert in the vicinity of this river in Iraq, including the deserts of Alanbar Province, and the north deserts of Saudi Arabia are the primarily creation zones of the dust storms entering west and south west of Iran. The results of NDVI showed that excluding the deserts in the border of Syria and Iraq, the area with very weak vegetation cover have increased between 2.44% and 20.65% from 1991 to 2009. In the meanwhile, the retention pound surface areas in the south deserts of Syria as well as the deserts in its border with Iraq have decreased 6320 and 4397 hectares, respectively. As it can be concluded from the findings, one of the main environmental parameters initiating these dust storms is the decrease in the vegetation cover in their primarily creation zones.

  4. Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jihui Tu

    2017-04-01

    Full Text Available The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-use variation at the semantic level. In this paper, a novel method is proposed for detecting damaged building regions based on semantic scene change in a visual Bag-of-Words model. Pre- and post-disaster scene change in building regions are represented by a uniform visual codebook frequency. The scene change of damaged and non-damaged building regions is discriminated using the Support Vector Machine (SVM classifier. An evaluation of experimental results, for a selected study site of the Longtou hill town of Yunnan, China, which was heavily damaged in the Ludian earthquake of 14 March 2013, shows that this method is feasible and effective for detecting damaged building regions. For the experiments, WorldView-2 optical imagery and aerial imagery is used.

  5. Debris-flows scale predictions based on basin spatial parameters calculated from Remote Sensing images in Wenchuan earthquake area

    International Nuclear Information System (INIS)

    Zhang, Huaizhen; Chi, Tianhe; Liu, Tianyue; Wang, Wei; Yang, Lina; Zhao, Yuan; Shao, Jing; Yao, Xiaojing; Fan, Jianrong

    2014-01-01

    Debris flow is a common hazard in the Wenchuan earthquake area. Collapse and Landslide Regions (CLR), caused by earthquakes, could be located from Remote Sensing images. CLR are the direct material source regions for debris flow. The Spatial Distribution of Collapse and Landslide Regions (SDCLR) strongly impact debris-flow formation. In order to depict SDCLR, we referred to Strahler's Hypsometric analysis method and developed 3 functional models to depict SDCLR quantitatively. These models mainly depict SDCLR relative to altitude, basin mouth and main gullies of debris flow. We used the integral of functions as the spatial parameters of SDCLR and these parameters were employed during the process of debris-flows scale predictions. Grouping-occurring debris-flows triggered by the rainstorm, which occurred on September 24th 2008 in Beichuan County, Sichuan province China, were selected to build the empirical equations for debris-flows scale predictions. Given the existing data, only debris-flows runout zone parameters (Max. runout distance L and Lateral width B) were estimated in this paper. The results indicate that the predicted results were more accurate when the spatial parameters were used. Accordingly, we suggest spatial parameters of SDCLR should be considered in the process of debris-flows scale prediction and proposed several strategies to prevent debris flow in the future

  6. Estimation of urban surface water at subpixel level from neighborhood pixels using multispectral remote sensing image (Conference Presentation)

    Science.gov (United States)

    Xie, Huan; Luo, Xin; Xu, Xiong; Wang, Chen; Pan, Haiyan; Tong, Xiaohua; Liu, Shijie

    2016-10-01

    Water body is a fundamental element in urban ecosystems and water mapping is critical for urban and landscape planning and management. As remote sensing has increasingly been used for water mapping in rural areas, this spatially explicit approach applied in urban area is also a challenging work due to the water bodies mainly distributed in a small size and the spectral confusion widely exists between water and complex features in the urban environment. Water index is the most common method for water extraction at pixel level, and spectral mixture analysis (SMA) has been widely employed in analyzing urban environment at subpixel level recently. In this paper, we introduce an automatic subpixel water mapping method in urban areas using multispectral remote sensing data. The objectives of this research consist of: (1) developing an automatic land-water mixed pixels extraction technique by water index; (2) deriving the most representative endmembers of water and land by utilizing neighboring water pixels and adaptive iterative optimal neighboring land pixel for respectively; (3) applying a linear unmixing model for subpixel water fraction estimation. Specifically, to automatically extract land-water pixels, the locally weighted scatter plot smoothing is firstly used to the original histogram curve of WI image . And then the Ostu threshold is derived as the start point to select land-water pixels based on histogram of the WI image with the land threshold and water threshold determination through the slopes of histogram curve . Based on the previous process at pixel level, the image is divided into three parts: water pixels, land pixels, and mixed land-water pixels. Then the spectral mixture analysis (SMA) is applied to land-water mixed pixels for water fraction estimation at subpixel level. With the assumption that the endmember signature of a target pixel should be more similar to adjacent pixels due to spatial dependence, the endmember of water and land are determined

  7. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    Science.gov (United States)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic

  8. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Gat, N.; Subramanian, S. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States); Toomarian, N. [Jet Propulsion Lab., Pasadena, CA (United States)

    1996-12-31

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  9. Knowledge-driven information mining in remote-sensing image archives

    Science.gov (United States)

    Datcu, M.; Seidel, K.; D'Elia, S.; Marchetti, P. G.

    2002-05-01

    Users in all domains require information or information-related services that are focused, concise, reliable, low cost and timely and which are provided in forms and formats compatible with the user's own activities. In the current Earth Observation (EO) scenario, the archiving centres generally only offer data, images and other "low level" products. The user's needs are being only partially satisfied by a number of, usually small, value-adding companies applying time-consuming (mostly manual) and expensive processes relying on the knowledge of experts to extract information from those data or images.

  10. Remote sensing characterization of the Animas River watershed, southwestern Colorado, by AVIRIS imaging spectroscopy

    Science.gov (United States)

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.

    2005-01-01

    Visible-wavelength and near-infrared image cubes of the Animas River watershed in southwestern Colorado have been acquired by the Jet Propulsion Laboratory's Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) instrument and processed using the U.S. Geological Survey Tetracorder v3.6a2 implementation. The Tetracorder expert system utilizes a spectral reference library containing more than 400 laboratory and field spectra of end-member minerals, mineral mixtures, vegetation, manmade materials, atmospheric gases, and additional substances to generate maps of mineralogy, vegetation, snow, and other material distributions. Major iron-bearing, clay, mica, carbonate, sulfate, and other minerals were identified, among which are several minerals associated with acid rock drainage, including pyrite, jarosite, alunite, and goethite. Distributions of minerals such as calcite and chlorite indicate a relationship between acid-neutralizing assemblages and stream geochemistry within the watershed. Images denoting material distributions throughout the watershed have been orthorectified against digital terrain models to produce georeferenced image files suitable for inclusion in Geographic Information System databases. Results of this study are of use to land managers, stakeholders, and researchers interested in understanding a number of characteristics of the Animas River watershed.

  11. Aerosol remote sensing over the ocean using MSG-SEVIRI visible images

    NARCIS (Netherlands)

    Bennouna, Y.S.; Leeuw, G. de; Piazzola, J.; Kusmierczyk‐Michulec, J.T.

    2009-01-01

    With its observational frequency of 15 minutes, the Meteosat Second Generation (MSG) geostationary satellite offers a great potential to monitor aerosol transport using Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) data. To explore this potential, an algorithm for the retrieval of aerosol

  12. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    Science.gov (United States)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  13. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  14. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images

    Science.gov (United States)

    Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing

    2016-10-01

    Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.

  15. Multiscale registration of remote sensing image using robust SIFT features in Steerable-Domain

    Directory of Open Access Journals (Sweden)

    Xiangzeng Liu

    2011-12-01

    Full Text Available This paper proposes a multiscale registration technique using robust Scale Invariant Feature Transform (SIFT features in Steerable-Domain, which can deal with the large variations of scale, rotation and illumination between images. First, a new robust SIFT descriptor is presented, which is invariant under affine transformation. Then, an adaptive similarity measure is developed according to the robust SIFT descriptor and the adaptive normalized cross correlation of feature point’s neighborhood. Finally, the corresponding feature points can be determined by the adaptive similarity measure in Steerable-Domain of the two input images, and the final refined transformation parameters determined by using gradual optimization are adopted to achieve the registration results. Quantitative comparisons of our algorithm with the related methods show a significant improvement in the presence of large scale, rotation changes, and illumination contrast. The effectiveness of the proposed method is demonstrated by the experimental results.

  16. Different approaches for the texture classification of a remote sensing image bank

    Science.gov (United States)

    Durand, Philippe; Brunet, Gerard; Ghorbanzadeh, Dariush; Jaupi, Luan

    2018-04-01

    In this paper, we summarize and compare two different approaches used by the authors, to classify different natural textures. The first approach, which is simple and inexpensive in computing time, uses a data bank image and an expert system able to classify different textures from a number of rules established by discipline specialists. The second method uses the same database and a neural networks approach.

  17. A method to incorporate uncertainty in the classification of remote sensing images

    OpenAIRE

    Gonçalves, Luísa M. S.; Fonte, Cidália C.; Júlio, Eduardo N. B. S.; Caetano, Mario

    2009-01-01

    The aim of this paper is to investigate if the incorporation of the uncertainty associated with the classification of surface elements into the classification of landscape units (LUs) increases the results accuracy. To this end, a hybrid classification method is developed, including uncertainty information in the classification of very high spatial resolution multi-spectral satellite images, to obtain a map of LUs. The developed classification methodology includes the following...

  18. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  19. NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image

    Science.gov (United States)

    Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George

    2008-01-01

    The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.

  20. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  1. Integrated ancillary and remote sensing data for land use ...

    African Journals Online (AJOL)

    Full Name

    The application of GMM to remote sensing image classification ... A . The boundary that has a Mahalanobis distance to the centre ... yields the Baye's theorem: ..... bands were extracted using the layer properties tool and visualised in MATLAB ...

  2. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Longhenry, Ryan

    2018-06-13

    The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.

  3. Upgraded airborne scanner for commercial remote sensing

    Science.gov (United States)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  4. Image Quality Modeling and Characterization of Nyquist Sampled Framing Systems with Operational Considerations for Remote Sensing

    Science.gov (United States)

    Garma, Rey Jan D.

    The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.

  5. Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Meghan Halabisky

    2011-10-01

    Full Text Available Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes. Landsat imagery has historically been used for per-pixel driven land use/land cover (LULC classifications, but the spatial resolution limits our ability to map small urban features. In such cases, hyperspatial resolution imagery such as aerial or satellite imagery with a resolution of 1 meter or below is preferred. Object-based image analysis (OBIA allows for use of additional variables such as texture, shape, context, and other cognitive information provided by the image analyst to segment and classify image features, and thus, improve classifications. As part of this research we created LULC classifications for a pilot study area in Seattle, WA, USA, using OBIA techniques and freely available public aerial photography. We analyzed the differences in accuracies which can be achieved with OBIA using multispectral and true-color imagery. We also compared our results to a satellite based OBIA LULC and discussed the implications of per-pixel driven vs. OBIA-driven field sampling campaigns. We demonstrated that the OBIA approach can generate good and repeatable LULC classifications suitable for tree cover assessment in urban areas. Another important finding is that spectral content appeared to be more important than spatial detail of hyperspatial data when it comes to an OBIA-driven LULC.

  6. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  7. A Remote Sensing Survey of Deepwater Port Group on Yangtze River Delta

    National Research Council Canada - National Science Library

    Lou, Dong; Zhiu, Bingjian; Zhu, Yingbo

    2005-01-01

    ...+, SPOT, ESR- 2SAR and NOAA-AVHRR remote sensing data as well as other general data. TM/ETM+ and SPOT remote sensing images were used to obtain the information about port conditions, shoreline types and storage fields...

  8. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing

    Science.gov (United States)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj

    2014-10-01

    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also

  9. Classification of Large-Scale Remote Sensing Images for Automatic Identification of Health Hazards: Smoke Detection Using an Autologistic Regression Classifier.

    Science.gov (United States)

    Wolters, Mark A; Dean, C B

    2017-01-01

    Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression model, which may be viewed as a spatial extension of logistic regression. The method includes a novel and simple approach to parameter estimation that makes it well suited to handling the large and high-dimensional datasets arising from satellite-borne instruments. The methodology is demonstrated on both simulated images and a real application to the identification of forest fire smoke.

  10. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  11. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  12. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    2014-01-01

    the bands needed for atmospheric correction. Spectral definition files for AVIRIS, HYDICE, HYMAP, HYPERION, CASI, and AISA sensors are included as...Satellite Visible Imagery – A Review.” In Lecture Notes on Coastal and Estuarine Studies, edited by R. T. Barber, N. K. Mooers, M. J. Bowman, and B...In Proceedings of SPIE Coastal Ocean Remote Sensing, edited by Robert J. Frouin, ZhongPing Lee, Vol. 6680, 668013-1-668013-9. doi:10.1117/12.736845

  13. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  14. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake

    Directory of Open Access Journals (Sweden)

    Shuai Xie

    2016-09-01

    Full Text Available Remote sensing (RS images play a significant role in disaster emergency response. Web2.0 changes the way data are created, making it possible for the public to participate in scientific issues. In this paper, an experiment is designed to evaluate the reliability of crowdsourcing buildings collapse assessment in the early time after an earthquake based on aerial remote sensing image. The procedure of RS data pre-processing and crowdsourcing data collection is presented. A probabilistic model including maximum likelihood estimation (MLE, Bayes’ theorem and expectation-maximization (EM algorithm are applied to quantitatively estimate the individual error-rate and “ground truth” according to multiple participants’ assessment results. An experimental area of Yushu earthquake is provided to present the results contributed by participants. Following the results, some discussion is provided regarding accuracy and variation among participants. The features of buildings labeled as the same damage type are found highly consistent. This suggests that the building damage assessment contributed by crowdsourcing can be treated as reliable samples. This study shows potential for a rapid building collapse assessment through crowdsourcing and quantitatively inferring “ground truth” according to crowdsourcing data in the early time after the earthquake based on aerial remote sensing image.

  15. Assessing Potential Algal Blooms in a Shallow Fluvial Lake by Combining Hydrodynamic Modelling and Remote-Sensed Images

    Directory of Open Access Journals (Sweden)

    Monica Pinardi

    2015-04-01

    Full Text Available Shallow fluvial lakes are dynamic ecosystems shaped by physical and biological factors and characterized by the coexistence of phytoplankton and macrophytes. Due to multiple interplaying factors, understanding the distribution of phytoplankton in fluvial lakes is a complex but fundamental issue, in the context of increasing eutrophication, climate change, and multiple water uses. We analyze the distribution of phytoplankton by combining remotely sensed maps of chlorophyll-a with a hydrodynamic model in a dammed fluvial lake (Mantua Superior Lake, Northern Italy. The numerical simulation of different conditions shows that the main hydrodynamic effects which influence algal distribution are related to the combined effect of advection due to wind forces and local currents, as well as to the presence of large gyres which induce recirculation and stagnation regions, favoring phytoplankton accumulation. Therefore, the general characters of the phytoplankton horizontal patchiness can be inferred from the results of the hydrodynamic model. Conversely, hyperspectral remote-sensing products can be used to validate this model, as they provide chlorophyll-a distribution maps. The integration of ecological, hydraulic, and remote-sensing techniques may therefore help the monitoring and protection of inland water quality, with important improvements in management actions by policy makers.

  16. Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification.

    Science.gov (United States)

    Ayanu, Yohannes; Conrad, Christopher; Jentsch, Anke; Koellner, Thomas

    2015-01-01

    The worldwide demand for food has been increasing due to the rapidly growing global population, and agricultural lands have increased in extent to produce more food crops. The pattern of cropland varies among different regions depending on the traditional knowledge of farmers and availability of uncultivated land. Satellite images can be used to map cropland in open areas but have limitations for detecting undergrowth inside forests. Classification results are often biased and need to be supplemented with field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed percentage cover of land use/land cover classes, and topographic and location parameters. The most influential factors were identified using Boosted Regression Trees and used to map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements, and distance to national park were found to be the most influential factors determining undercover cropland area. When there is very high demand for growing food crops, constrained under restricted rights for clearing forest, cultivation could take place within forests as an undercover. Further research on the impact of undercover cropland on ecosystem services and challenges in sustainable management is thus essential.

  17. Remote Sensing Images to Detect Soy Plantations in the Amazon Biome—The Soy Moratorium Initiative

    Directory of Open Access Journals (Sweden)

    Leandro Fabiani

    2012-05-01

    Full Text Available The Soy Moratorium is an initiative to reduce deforestation rates in the Amazon biome based on the hypothesis that soy is a deforestation driver. Soy planted in opened areas after July 24th, 2006 cannot be commercialized by the associated companies to the Brazilian Association of Vegetable Oil Industries (ABIOVE and the National Association of Cereal Exporters (ANEC, which represent about 90% of the Brazilian soy market. The objective of this work is to present the evaluation of the fourth year of monitoring new soy plantations within the Soy Moratorium context. With the use of satellite images from the MODIS sensor, together with aerial survey, it was possible to identify 147 polygons with new soy plantations on 11,698 ha. This soy area represents 0.39% of the of the total deforested area during the moratorium, in the three soy producing states of the Amazon biome, and 0.6% of the cultivated soy area in the Amazon biome, indicating that soy is currently a minor deforestation driver. The quantitative geospatial information provided by an effective monitoring approach is paramount to the implementation of a governance process required to establish an equitable balance between environmental protection and agricultural production.

  18. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  19. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  20. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  1. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  2. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  3. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  4. On reduction of risks in UXO and mine detection using remote sensing systems and related synthetic image simulation

    Science.gov (United States)

    Bostater, Charles R., Jr.

    2005-06-01

    It is important to understand remote sensing systems and associated platforms in the context of autonomous or semi-autonomous designs for (robotic & mechatronics) that may be affect the motion control or stabilization aspects of the imagery, scan lines or fixed points scanned. This need can be most easily conceived as being related to the reduction of risks associated with false detection as well as the risks associated with hardware and software failure and risks associated with the actual operation of sensor and platform in dangerous environments. Thus safety is ultimately our concern when it comes to risk assessment. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems and (d) creation of synthetic signatures obtained for detection of targets in the aquatic environment. New systems - sensing systems as well as autonomous or semiautonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons as well as for demining and UXO detection. These same systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring and surveillance.

  5. Multi-source remote sensing data management system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun; Lu Donghua; Zhang Donghui; Wu Wenhuan

    2014-01-01

    In this thesis, the author explored multi-source management problems of remote sensing data. The main idea is to use the mosaic dataset model, and the ways of an integreted display of image and its interpretation. Based on ArcGIS and IMINT feature knowledge platform, the author used the C# and other programming tools for development work, so as to design and implement multi-source remote sensing data management system function module which is able to simply, conveniently and efficiently manage multi-source remote sensing data. (authors)

  6. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  7. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  8. USDOE Remote Sensing Laboratory multisensor surveys

    International Nuclear Information System (INIS)

    Tinney, L.; Christel, L.; Clark, H.; Mackey, H.

    1996-01-01

    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and routine environmental assessments of nuclear facilities. The unique suite of equipment used by RSL for multisensor surveys of nuclear facilities include gamma radiation sensors, mapping quality aerial cameras, video cameras, thermal imagers, and multispectral scanners. Results for RSL multisensor surveys that have been conducted at the Savannah River Site (SRS) located in South Carolina are presented

  9. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  10. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  11. Energy and remote sensing applications

    Science.gov (United States)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  12. History of Alibek Glacier based on Earth remote sensing images, bioindication and cosmogenic isopotes (14С and 10Be

    Directory of Open Access Journals (Sweden)

    I. S. Bushueva

    2015-01-01

    Full Text Available In this article we present the reconstruction of fluctuations of Alibek valley glacier situated in the Teberda valley, Western Caucasus. The former positions of glacier of the past 120 years were reconstructed basing on the old photographs of 1904, 1921, remote sensing data of 1955, 1987, 2007, 2008 and 2012, plans created in 20th century. Since the middle of 20th century Alibek Glacier decreased by 650 m in length and by 0,67 km2 in area and its tongue has risen by 110 m.

  13. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  14. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    Science.gov (United States)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  15. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  16. Project THEMIS: A Center for Remote Sensing.

    Science.gov (United States)

    This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.

  17. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  18. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA. Part 1: Introduction

    Directory of Open Access Journals (Sweden)

    Andrea Baraldi

    2012-09-01

    Full Text Available According to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA systems and three-stage iterative geographic object-oriented image analysis (GEOOIA systems, where GEOOIA/GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accuracy, efficiency, robustness, scalability and timeliness of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO guidelines, this methodological work is split into two parts. The present first paper provides a multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT analysis of the GEOBIA/GEOOIA approaches that augments similar analyses proposed in recent years. In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS image understanding system (RS-IUS, from sub-symbolic statistical model-based (inductive image segmentation to symbolic physical model-based (deductive image preliminary classification. Hence, a symbolic deductive pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the second part of this work a novel hybrid (combined deductive and inductive RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a computational theory (system design; (b information/knowledge representation; (c algorithm design; and (d implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time Satellite Image Automatic Mapper™ (SIAM™ is selected from existing literature. To the best of these authors’ knowledge, this is the first time a

  19. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  20. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth

    2012-01-01

    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... be expected from remote sensing imagery and the provided information shall help to better anticipate problems that will be encountered when acquiring, analyzing and interpreting remote sensing data. Beyond remote sensing, it may be a good point of departure for a large group of scientists with a diverse...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...

  1. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  2. Remote Sensing: The View from Above. Know Your Environment.

    Science.gov (United States)

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  3. [Changes of wetland landscape pattern in Dayang River Estuary based on high-resolution remote sensing image].

    Science.gov (United States)

    Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan

    2011-07-01

    Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.

  4. Integration of Remote Sensing Technology Using Sentinel-2A Satellite images For Fertilization and Water Pollution Analysis in Estuaries Inlet of Semarang Eastern Flood Canal

    Directory of Open Access Journals (Sweden)

    Subiyanto Sawitri

    2018-01-01

    Full Text Available One of the waters that has been contaminated by industrial waste and domestic waste is the waters in estuaries inlet of Semarang Eastern Flood Canal which is the estuary of the river system, which passes through the eastern city of Semarang which is dense with residential and industrial. So it is necessary to have information about the assessment of water quality in Estuaries Inlet of Semarang Eastern Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Sentinel-2A Satellite images. In this research there are 3 algorithms that will be used in determining the content of chlorophyll a, and for determining TSS. Image accuracy test is done to find out how far the image can give information about Chlorophyll-a and TSS in the waters. The results of the image accuracy test will be compared with the value of chlorophyll-a and TSS that have been tested through laboratory analysis. The result of this research is the distribution map of chlorophyll-a and TSS content in the waters.

  5. Integration of Remote Sensing Technology Using Sentinel-2A Satellite images For Fertilization and Water Pollution Analysis in Estuaries Inlet of Semarang Eastern Flood Canal

    Science.gov (United States)

    Subiyanto, Sawitri; Ramadhanis, Zainab; Baktiar, Aditya Hafidh

    2018-02-01

    One of the waters that has been contaminated by industrial waste and domestic waste is the waters in estuaries inlet of Semarang Eastern Flood Canal which is the estuary of the river system, which passes through the eastern city of Semarang which is dense with residential and industrial. So it is necessary to have information about the assessment of water quality in Estuaries Inlet of Semarang Eastern Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Sentinel-2A Satellite images. In this research there are 3 algorithms that will be used in determining the content of chlorophyll a, and for determining TSS. Image accuracy test is done to find out how far the image can give information about Chlorophyll-a and TSS in the waters. The results of the image accuracy test will be compared with the value of chlorophyll-a and TSS that have been tested through laboratory analysis. The result of this research is the distribution map of chlorophyll-a and TSS content in the waters.

  6. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia

    2017-12-01

    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  7. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    Science.gov (United States)

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  8. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  9. Contribution of multi-temporal remote sensing images to characterize landslide slip surface ‒ Application to the La Clapière landslide (France

    Directory of Open Access Journals (Sweden)

    B. Casson

    2005-01-01

    Full Text Available Landslide activity is partly controlled by the geometry of the slip surface. This activity is traduced at the surface by displacements and topographic variations. Consequently, multi-temporal remote sensing images can be used in order to characterize the geometry of landslide slip surface and its spatial and temporal evolution. Differential Digital Elevation Models (DEMs are obtained by subtracting two DEMs of different years. A method of multi-temporal images correlation allows to generate displacement maps that can be interpreted in terms of velocity and direction of movements. These data are then used to characterize qualitatively the geometry of the slip surface of the la Clapière landslide (French Southern Alps. Distribution of displacement vectors and of topographic variations are in accordance with a curved slip surface, characterizing a preferential rotational behaviour of this landslide. On the other hand, a spatial and temporal evolution of the geometry of the slip surface is pointed out. Indeed, a propagation of the slip surface under the Iglière bar, in the W part of the landslide, is suspected and can be linked to the acceleration of the landslide in 1987. This study shows the high potential of multi-temporal remote sensing images for slip surface characterization. Although this method could not replace in situ investigations, it can really help to well distribute geophysical profiles or boreholes on unstable areas.

  10. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  11. The Identification of Land Utilization in Coastal Reclamation Areas in Tianjin Using High Resolution Remote Sensing Images

    Science.gov (United States)

    Meng, Y.; Cao, Y.; Tian, H.; Han, Z.

    2018-04-01

    In recent decades, land reclamation activities have been developed rapidly in Chinese coastal regions, especially in Bohai Bay. The land reclamation areas can effectively alleviate the contradiction between land resources shortage and human needs, but some idle lands that left unused after the government making approval the usage of sea areas are also supposed to pay attention to. Due to the particular features of land coverage identification in large regions, traditional monitoring approaches are unable to perfectly meet the needs of effectively and quickly land use classification. In this paper, Gaofen-1 remotely sensed satellite imagery data together with sea area usage ownership data were used to identify the land use classifications and find out the idle land resources. It can be seen from the result that most of the land use types and idle land resources can be identified precisely.

  12. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  13. Integrated Gis-remote sensing processing applied to vegetation ...

    African Journals Online (AJOL)

    A remotely sensed digital image of SPOT by its linear enhancement on a large memory, high speed, and digital electronic computer revealed from false colour composite that vegetation is expressed as red. Further processing of SPOT digital image for arithmetic banding of Normalized Differential Vegetation Index (NDVI) ...

  14. Remote sensing applied in uranium exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.

    1985-01-01

    A research project, aiming at investigation the use of remote sensing in uranium exploration, has been accomplished on data from South Greenland. During the project, analyses have been done on pure remote sensing data (Landsat MSS) and on integrated data of various types, including geochemical, aeromagnetic, radiometric and geological data in addition to the MSS data. Ratioing, factor analysis and discriminant analysis were used for enhancement of colour anomalies which correspond to oxidation zones. Some of the anomalies coincide with U and Nb mineralizations. Lineaments were mapped visually from photoprints, digitized and analysed statistically. A sinusoidal model could be applied to the general directional frequency distribution and was used to define ten classes of significant directions. Three of these directions were of major geological significance. Thus some of the major alkaline intrusions are situated at the intersections of some of the lineaments, a particular NE-SW trending lineament coincides with a geochemical boundary and pitchblende occurrences may be related to a WNW-ESE direction. The various types of data set were brought onto format of the Landsat images and collected in a data base. Representing three different types of data (Landsat MSS-band 7, aeromagnetic data and the geochemical Fe-content of stream sediments) on basis of intensity, hue and saturation revealed new features among which can be mentioned a possible indication of a subsurface continuation of one of the major alkaline intrusions. (author)

  15. PAN SHARPENING QUALITY INVESTIGATION OF TURKISH IN-OPERATION REMOTE SENSING SATELLITES: APPLICATIONS WITH RASAT AND GÖKTÜRK-2 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ozendi

    2016-10-01

    The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC, Root Mean Square Error (RMSE, Relative Average Spectral Error (RASE, Spectral Angle Mapper (SAM and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas by a group of operators who are experienced in remote sensing imagery.

  16. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  17. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  18. NOAA Coastal Mapping Remote Sensing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  19. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  20. Comprehensive, integrated, remote sensing at DOE sites

    International Nuclear Information System (INIS)

    Lackey, J.G.; Burson, Z.G.

    1985-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective of the program is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided, at present, consist of the following: large format aerial photography, video from aerial platforms, multispectral scanning, and airborne nuclear radiometric surveys. Implementation of the CIRS Program by EG and G Energy Measurements, Inc. began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in this summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis

  1. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  2. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  3. Remote sensing: a tool for park planning and management

    Science.gov (United States)

    Draeger, William C.; Pettinger, Lawrence R.

    1981-01-01

    Remote sensing may be defined as the science of imaging or measuring objects from a distance. More commonly, however, the term is used in reference to the acquisition and use of photographs, photo-like images, and other data acquired from aircraft and satellites. Thus, remote sensing includes the use of such diverse materials as photographs taken by hand from a light aircraft, conventional aerial photographs obtained with a precision mapping camera, satellite images acquired with sophisticated scanning devices, radar images, and magnetic and gravimetric data that may not even be in image form. Remotely sensed images may be color or black and white, can vary in scale from those that cover only a few hectares of the earth's surface to those that cover tens of thousands of square kilometers, and they may be interpreted visually or with the assistance of computer systems. This article attempts to describe several of the commonly available types of remotely sensed data, to discuss approaches to data analysis, and to demonstrate (with image examples) typical applications that might interest managers of parks and natural areas.

  4. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  5. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  6. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  7. Methods of training the graduate level and professional geologist in remote sensing technology

    Science.gov (United States)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  8. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    2016-06-01

    Full Text Available Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

  9. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    Science.gov (United States)

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  10. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  11. Optical registration of spaceborne low light remote sensing camera

    Science.gov (United States)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  12. Remote Sensing Best Paper Award for the Year 2014

    OpenAIRE

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  13. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  14. 1999 IEEE international geoscience and remote sensing symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The theme of IGARSS'99, ``Remote Sensing of the System Earth--A Challenge for the 21st Century,'' shows how earth observation based on satellite remote sensing can significantly contribute to the future study of the environment and the changes it is undergoing, whether from natural causes or human activities. The wide range of topics offers an interdisciplinary approach and suggests integrated techniques and theory in remote sensing are essential for modeling and understanding the environment. Topics covered include: new instrumentation and future systems; high resolution SAR/InSAR; earth system science educational initiative; data fusion; radar sensing of ice sheets; image processing techniques; clouds and ice particles; internal waves; natural hazards and disaster monitoring; advanced passive and active sensors and sensor calibration; radar assessment of rain, oil spills and natural slicks; data standards and distribution; and vegetation monitoring using BRDF approaches.

  15. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  16. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  17. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  18. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  19. Multiscale and Multitemporal Urban Remote Sensing

    Science.gov (United States)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  20. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2018-01-01

    Full Text Available Ship detection has been playing a significant role in the field of remote sensing for a long time, but it is still full of challenges. The main limitations of traditional ship detection methods usually lie in the complexity of application scenarios, the difficulty of intensive object detection, and the redundancy of the detection region. In order to solve these problems above, we propose a framework called Rotation Dense Feature Pyramid Networks (R-DFPN which can effectively detect ships in different scenes including ocean and port. Specifically, we put forward the Dense Feature Pyramid Network (DFPN, which is aimed at solving problems resulting from the narrow width of the ship. Compared with previous multiscale detectors such as Feature Pyramid Network (FPN, DFPN builds high-level semantic feature-maps for all scales by means of dense connections, through which feature propagation is enhanced and feature reuse is encouraged. Additionally, in the case of ship rotation and dense arrangement, we design a rotation anchor strategy to predict the minimum circumscribed rectangle of the object so as to reduce the redundant detection region and improve the recall. Furthermore, we also propose multiscale region of interest (ROI Align for the purpose of maintaining the completeness of the semantic and spatial information. Experiments based on remote sensing images from Google Earth for ship detection show that our detection method based on R-DFPN representation has state-of-the-art performance.

  1. Assessing degradation across a land-use gradient in the Kruger National Park area using advanced remote sensing modalities

    CSIR Research Space (South Africa)

    Van Aardt, JAN

    2011-01-01

    Full Text Available relatively novel remote sensing approaches, namely imaging spectroscopy (hyperspectral remote sensing) and light detection and ranging (lidar), have the potential to alleviate this constraint. Specifically, the Carnegie Airborne Observatory, a state...

  2. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  3. TRACKING FARM MANAGEMENT PRACTICES WITH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. P. Stals

    2017-11-01

    Full Text Available Earth observation (EO data is effective in monitoring agricultural cropping activity over large areas. An example of such an application is the GeoTerraImage crop type classification for the South African Crop Estimates Committee (CEC. The satellite based classification of crop types in South Africa provides a large scale, spatial and historical record of agricultural practices in the main crop growing areas. The results from these classifications provides data for the analysis of trends over time, in order to extract valuable information that can aid decision making in the agricultural sector. Crop cultivation practices change over time as farmers adapt to demand, exchange rate and new technology. Through the use of remote sensing, grain crop types have been identified at field level since 2008, providing a historical data set of cropping activity for the three most important grain producing provinces of Mpumalanga, Freestate and North West province in South Africa. This historical information allows the analysis of farm management practices to identify changes and trends in crop rotation and irrigation practices. Analysis of crop type classification over time highlighted practices such as: frequency of cultivation of the same crop on a field, intensified cultivation on centre pivot irrigated fields with double cropping of a winter grain followed by a summer grain in the same year and increasing cultivation of certain types of crops over time such as soyabeans. All these practices can be analysed in a quantitative spatial and temporal manner through the use of the remote sensing based crop type classifications.

  4. Potential to monitor plant stress using remote sensing tools

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-01-01

    Full Text Available simple ratio indices were selected for mapping leaf water potential and leaf N for wet and dry season using RapidEye data. We conclude that remote sensing images can be applied for the long term vegetation monitoring for future biodiversity conservation...

  5. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests

    Science.gov (United States)

    Kimberly M. Carlson; Gregory P. Asner; R. Flint Hughes; Rebecca Ostertag; Roberta E. Martin

    2007-01-01

    Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawaii. Hyperspectral signatures spanning...

  6. Microwave interferometric radiometry in remote sensing: An invited historical review

    DEFF Research Database (Denmark)

    Martin-Neira, M.; LeVine, D. M.; Kerr, Y.

    2014-01-01

    The launch of the Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009 marked a milestone in remote sensing for it was the first time a radiometer capable of acquiring wide field of view images at every single snapshot, a unique feature of the synthetic aperture technique, made...

  7. Radar remote sensing to support tropical forest management

    NARCIS (Netherlands)

    Sanden, van der J.J.

    1997-01-01

    This text describes an investigation into the potential of radar remote sensing for application to tropical forest management. The information content of various radar images is compared and assessed with regard to the information requirements of parties involved in tropical forest

  8. Spatial and temporal remote sensing data fusion for vegetation monitoring

    Science.gov (United States)

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  9. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  10. Automatic Tracking Of Remote Sensing Precipitation Data Using Genetic Algorithm Image Registration Based Automatic Morphing: September 1999 Storm Floyd Case Study

    Science.gov (United States)

    Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.

    U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms ­ Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD

  11. New discovery in study of remote sensing image characteristics at sandstone-type uranium deposits in China and its important significance

    International Nuclear Information System (INIS)

    Liu Dechang; Huang Xianfang; Ye Fawang

    2004-01-01

    Sandstone-type uranium deposit now is one of main targets in uranium prospecting in China. During the prospecting, the study is often emphasized on those ore-controlling factors such as the lithology and lithofacies of ore-hosting strata. While the ore-controlling factor of fault structure is usually neglected. By means of systematic research on remote sensing image features of sandstone-type uranium deposits, it is found that fault structure is always present at most main sandstone-type uranium ore districts. Based on above research achievements characteristics of ore-controlling fault and its ore-controlling role are analysed and a new metallogenetic model--'structural-geochemical barrier model' is put forward. Finally, the difference between the sturctural-geochemical barrier model and traditional interlayer oxidation zone front model is elaborated and its important significance is discussed. (authors)

  12. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    Science.gov (United States)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  13. Photogrammetry and remote sensing education subjects

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  14. Remote Sensing of Landslides—A Review

    Directory of Open Access Journals (Sweden)

    Chaoying Zhao

    2018-02-01

    Full Text Available Triggered by earthquakes, rainfall, or anthropogenic activities, landslides represent widespread and problematic geohazards worldwide. In recent years, multiple remote sensing techniques, including synthetic aperture radar, optical, and light detection and ranging measurements from spaceborne, airborne, and ground-based platforms, have been widely applied for the analysis of landslide processes. Current techniques include landslide detection, inventory mapping, surface deformation monitoring, trigger factor analysis and mechanism inversion. In addition, landslide susceptibility modelling, hazard assessment, and risk evaluation can be further analyzed using a synergic fusion of multiple remote sensing data and other factors affecting landslides. We summarize the 19 articles collected in this special issue of Remote Sensing of Landslide, in the terms of data, methods and applications used in the papers.

  15. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  16. Remote sensing education and Internet/World Wide Web technology

    Science.gov (United States)

    Griffith, J.A.; Egbert, S.L.

    2001-01-01

    Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.

  17. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.

  18. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  19. Monitoring and evaluating recovery from natural disasters using remote sensing - towards creating guidelines on the use of satellite images in the context of disaster recovery

    Science.gov (United States)

    Saito, K.; Brown, D.; Spence, R.; Chenvidyakarn, T.; Adams, B.; Bevington, J.; Platt, S.; Chuenpagdee, R.; Juntarashote, K.; Khan, A.

    2009-04-01

    The use of high-resolution optical satellite images is being investigated for evaluating and monitoring recovery after natural disasters. Funded by EPSRC, UK, the aim of the RECOVERY project is to develop indicators of recovery that can exploit the wealth of data now available, including those from satellite imagery, internet-based statistics and advanced field survey techniques. The final output will be a set of guidelines that suggests how remote sensing can be used to help monitor and evaluate the recovery process after natural disasters. The final guideline that will be produced at the end of the two year project, which started in February 2008, will be freely available to aid agencies and anyone that is interested. Currently there is no agreed standard approach for evaluating the effectiveness of recovery aid, although international frameworks such as PDNA (Post-Disaster Needs Assessment, United Nations Development Program, European Commission and World Bank) is currently being developed, and TRIAMS (Tsunami Recovery and Impact Assessment and Monitoring System, by UNDP and WHO) is being implemented to monitor the recovery from the Indian Ocean Tsunami. The RECOVERY project consists of three phases. Phase 1 was completed by September 2008 and focused on user needs survey, developing the recovery indicators and satellite image data identification/acquisition. The user needs survey was conducted to identify whether there were any indicators that the aid community would like to see prioritised. The survey result suggested that most indicators are equally important. Based on this result and also referring to the TRIAMS framework, a comprehensive list of indicators were developed which belong to six large categories, i.e. housing, infrastructure, services, livelihood, environment, social/security, risk reduction. For the RECOVERY project, two case study sites have been identified, i.e. the village of Baan Nam Khem on the west coast of Thailand, which was heavily

  20. Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 2. [application and processing of remotely sensed data

    Science.gov (United States)

    1977-01-01

    Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.

  1. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, Jesslyn F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  2. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  3. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  4. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  5. Autonomous Coral Reef Survey in Support of Remote Sensing

    Directory of Open Access Journals (Sweden)

    Steven G. Ackleson

    2017-10-01

    Full Text Available An autonomous surface vehicle instrumented with optical and acoustical sensors was deployed in Kane'ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of coral reef reflectance with minimal human presence. The data represented a wide range in bottom type, water depth, and illumination and supported more thorough investigations of remote sensing methods for identifying and mapping shallow reef features. The in situ data were used to compute spectral bottom reflectance and remote sensing reflectance, Rrs,λ, as a function of water depth and benthic features. The signals were used to distinguish between live coral and uncolonized sediment within the depth range of the measurements (2.5–5 m. In situRrs, λ were found to compare well with remotely sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS, deployed on an aircraft at high altitude. Cloud cover and in situ sensor orientation were found to have minimal impact on in situRrs, λ, suggesting that valid reflectance data may be collected using autonomous surveys even when atmospheric conditions are not favorable for remote sensing operations. The use of reflectance in the red and near infrared portions of the spectrum, expressed as the red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass, including coral symbionts and turf algae. The REHλ signal from live coral was detected in Kane'ohe Bay to a depth of approximately 4 m with in situ measurements. A remote sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery of the entire bay and was found to reveal areas of shallow, dense coral and algal cover. The peak wavelength of REHλ decreased with increasing water depth, indicating that a more complete examination of the red edge signal may potentially yield a remote sensing approach to simultaneously estimate vegetative biomass and bathymetry in shallow water.

  6. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  7. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  8. Remote sensing data in Rangeland assessment and monitoring

    International Nuclear Information System (INIS)

    Hamid, Amna Ahmed; Ali, Mohamed M.

    1999-01-01

    The main objective of the paper is to illustrate the potential of remote sensing data in the study and monitoring of environmental changes in western Sudan where considerable part of the area is under rangeland use. Data from NOAA satellite AVHRR sensor as well as thematic mapper Tm was used to assess the environment of the area during 1982-1997. The AVHRR data was processed into vegetation index (NDVI) images. Image analysis and classification was done using image display and analysis (IDA) GIS method to study vegetation condition in time series. The obtained information from field observations. The result showed high correlation between the information the work concluded the followings: NDVI images and thematic mapper data proved to be efficient in environment change analysis. NOAA AVHRR satellite data can provide an early-warning indicator of an approaching disaster. Remote sensing integrated into a GIS can contribute effectively to improve land management through better understanding of environment variability.(Author)

  9. A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates

    Directory of Open Access Journals (Sweden)

    Ying Cai

    2012-09-01

    Full Text Available In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT, the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3% and overall (92.0%–93.1% accuracies. Our

  10. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  11. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Science.gov (United States)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  12. Remote Sensing for Inland Water Quality Monitoring: A U.S. Army Corps of Engineers Perspective

    Science.gov (United States)

    2011-10-01

    remote sensing has experienced an increasing role in water quality studies, largely due to technological advances, including instrument/sensor and algorithm/image processing improvements. The primary strength of remote sensing over traditional techniques includes the ability to provide a synoptic view of water quality for more effective monitoring of spatial and temporal variation. In addition, remote sensing offers capabilities for viewing water quality in multiple waterbodies over a large region at one time, a more

  13. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  14. A Generic Procedure for BRDF Normalization of Remotely Sensed Data

    Energy Technology Data Exchange (ETDEWEB)

    D. Yuan

    2003-04-01

    A generic procedure for Bidirectional Reflectance Distribution Function (BRDF) normalization for airborne multispectral images has been developed and implemented as an add-on module of ENVI at the U.S. Department of Energy's Remote Sensing Laboratory. The main advantage of this procedure is that it does not require multiple image acquisitions over the same area for establishing empirical BRDF functions.

  15. Remote sensing of environmental pollution on teesside

    NARCIS (Netherlands)

    van Genderen, J.L.

    1974-01-01

    A preliminary reconnaissance is being carried out to study the methods and procedures most useful for the detection of vegetation stress resulting from the various forms of environmental pollution, in the industrial area of Teesside, NE England, by means of a multiband remote sensing programme.

  16. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  17. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  18. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  19. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  20. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  1. Applications of quantitative remote sensing to hydrology

    NARCIS (Netherlands)

    Su, Z.; Troch, P.A.A.

    2003-01-01

    In order to quantify the rates of the exchanges of energy and matter among hydrosphere, biosphere and atmosphere, quantitative description of land surface processes by means of measurements at different scales are essential. Quantitative remote sensing plays an important role in this respect. The

  2. Integrated remotely sensed datasets for disaster management

    Science.gov (United States)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  3. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  4. Semiconductor laser technology for remote sensing experiments

    Science.gov (United States)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  5. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  6. Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM images, example of the Imilchil-Tounfite area (Central High Atlas, Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Alaoui, H. El; Moujahid, El; Ibouh, H.; Bachnou, A.; Babram, M. Ait; Harti, A. EI

    2016-07-01

    The use of remote sensing, in this research, can be summarized in mapping and statistical studies of lineaments on the satellites images of the Jurassic outcrops in the Imilchil-Tounfite area, Central High Atlas of Morocco. This is to apply various manual techniques for extracting lineaments from Landsat TM image. Analytical techniques used in this work are: the principal component analysis (PCA) applied to selective bands of the visible and infrared, which allows creating new images with better visual interpretation. Directional filters N0°, N45°, N90°, and N135° with a 5×5 matrix were used to enhance lineaments in the corresponding perpendicular directions, and therefore to obtain a good discrimination of those structures. Preliminary results highlight a dominant geological fracturing trending ENE/WSW with 52% of the total lineaments, a second fracture trending is WNW/ESE at 23%, a third fracture series trending NE/SW with 20% and finally, a minor series of fractures trending NW/SE with 5% of the total lineaments. Distribution and statistical relationship, between fractures and the affected surface on the one hand and the fracture length on the other hand, shows a network of well-structured fractures. The final lineament map constitutes a contribution to complete the geology and assisting the mining and hydrogeological prospection, in the Imilchil-Tounfite area. (Author)

  7. A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2

    Science.gov (United States)

    2018-02-02

    The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...

  8. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  9. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    International Nuclear Information System (INIS)

    Morelli, Marco; Masini, Andrea; Ruffini, Fabrizio; Potenza, Marco Alberto Carlo

    2015-01-01

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  10. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Marco, E-mail: marco.morelli1@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy); Masini, Andrea, E-mail: andrea.masini@flyby.it [Flyby S.r.l., Via Puini 97, 57128 Livorno (Italy); Ruffini, Fabrizio, E-mail: fabrizio.ruffini@i-em.eu [i-EM S.r.l., Via Lampredi 45, 57121 Livorno (Italy); Potenza, Marco Alberto Carlo, E-mail: marco.potenza@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-04-15

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  11. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  12. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  13. Development and testing of an inexpensive remote sensing package

    International Nuclear Information System (INIS)

    Brown, H.M.; Goodman, R.H.; Markov, A.B.; Hudema, H.

    1998-01-01

    A remote sensing system using the latest technology in ultraviolet and infrared cameras was developed to assist emergency responders in identifying and documenting an oil spill. The system was designed to be rapidly mounted in an aircraft. In addition to real-time image display and near real-time image analysis capabilities, the remote sensing system can store data acquired during a mission. Captured images can be transmitted by fax onto a notebook computer and stored after assessment and annotation. The system is cheaper and more portable than any previously available systems. The system was successfully tested in an oil spill in a wave basin and also during aircraft flights during the 1997 North Sea dispersant trials. 7 refs., 4 figs

  14. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  15. Mapping Water Use and Drought with Satellite Remote Sensing

    OpenAIRE

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  16. Opportunities for Increasing Societal Value of Remote Sensing Data ...

    African Journals Online (AJOL)

    Opportunities for Increasing Societal Value of Remote Sensing Data in South Africa's Strategic Development Priorities: A Review. ... Despite the enormous capital required to fund remote sensing initiatives, governments ... HOW TO USE AJOL.

  17. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.