Sample records for remote sensing imagery

  1. Information mining in remote sensing imagery (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  2. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory


    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  3. Toward interactive search in remote sensing imagery (United States)

    Porter, Reid; Hush, Don; Harvey, Neal; Theiler, James


    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  4. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.


    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  5. Researching on the process of remote sensing video imagery (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  6. Crowdsourcing earthquake damage assessment using remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Stuart Gill


    Full Text Available This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN. The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a web-based interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.

  7. Regularization destriping of remote sensing imagery (United States)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle


    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  8. Remote sensing of ocean currents using ERTS imagery (United States)

    Maul, G. A.


    Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.

  9. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.


    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  10. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu


    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  11. Automated Verification of Spatial Resolution in Remotely Sensed Imagery (United States)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald


    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  12. Remotely Sensed Land Imagery and Access Systems: USGS Updates (United States)

    Lamb, R.; Pieschke, R.; Lemig, K.


    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has implemented a number of updates to its suite of remotely sensed products and distribution systems. These changes will greatly expand the availability, accessibility, and usability of the image products from USGS. As of late 2017, several new datasets are available for public download at no charge from USGS/EROS Center. These products include Multispectral Instrument (MSI) Level-1C data from the Sentinel-2B satellite, which was launched in March 2017. Along with Sentinel-2A, the Sentinel-2B images are now being distributed through USGS systems as part of a collaborative effort with the European Space Agency (ESA). The Sentinel-2 imagery is highly complementary to multispectral data collected by the USGS Landsat 7 and 8 satellites. With these two missions operating together, the potential local revisit rate can be reduced to 2-4 days. Another product addition is Resourcesat-2 data acquired over the United States by the Indian Space Research Organisation (ISRO). The Resourcesat-2 products from USGS consist of Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self-Scanning Sensor Three (LISS-3) images acquired August 2016 to present. In an effort to maximize future Landsat data interoperability, including time series analysis of the 45+ year archive, the reprocessing of Collection 1 for all historical Landsat Level 1 products is nearly complete. The USGS is now working on operational release of higher-level science products to support analysis of the Landsat archive at the pixel level. Major upgrades were also completed in 2017 for several USGS data discovery and access systems, including the LandsatLook Viewer ( and GloVis Tool ( Other options are now being developed to further enhance data access and overall user experience. These future options will be discussed and community feedback will be encouraged.

  13. Learning multiscale and deep representations for classifying remotely sensed imagery (United States)

    Zhao, Wenzhi; Du, Shihong


    It is widely agreed that spatial features can be combined with spectral properties for improving interpretation performances on very-high-resolution (VHR) images in urban areas. However, many existing methods for extracting spatial features can only generate low-level features and consider limited scales, leading to unpleasant classification results. In this study, multiscale convolutional neural network (MCNN) algorithm was presented to learn spatial-related deep features for hyperspectral remote imagery classification. Unlike traditional methods for extracting spatial features, the MCNN first transforms the original data sets into a pyramid structure containing spatial information at multiple scales, and then automatically extracts high-level spatial features using multiscale training data sets. Specifically, the MCNN has two merits: (1) high-level spatial features can be effectively learned by using the hierarchical learning structure and (2) multiscale learning scheme can capture contextual information at different scales. To evaluate the effectiveness of the proposed approach, the MCNN was applied to classify the well-known hyperspectral data sets and compared with traditional methods. The experimental results shown a significant increase in classification accuracies especially for urban areas.

  14. Teachers as Learners Examine Land-Use Change in the Local Environment Using Remote Sensing Imagery (United States)

    Klagges, Hope; Harbor, Jon; Shepardson, Daniel; Bell, Cheryl; Meyer, Jason; Burgess, Willie; Leuenberger, Ted


    In environmental science education, learners are exposed to earth phenomena that occur across a wide range of spatial and temporal scales. However, it is challenging for learners to grasp the significance of spatial and temporal change because they have limited perspectives of the Earth. Within the scientific community, remotely sensed imagery is…

  15. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)


    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  16. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery. (United States)

    Sánchez-Azofeifa, Arturo; Rivard, Benoit; Wright, Joseph; Feng, Ji-Lu; Li, Peijun; Chong, Mei Mei; Bohlman, Stephanie A


    Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.

  17. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo


    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  18. Ground-Based Correction of Remote-Sensing Spectral Imagery (United States)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander


    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  19. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters

    Directory of Open Access Journals (Sweden)

    Yongyang Xu


    Full Text Available Very high resolution (VHR remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.

  20. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process. (United States)

    Brooner, W. G.; Nichols, D. A.


    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  1. Remotely Sensed Imagery from USGS: Update on Products and Portals (United States)

    Lamb, R.; Lemig, K.


    The USGS Earth Resources Observation and Science (EROS) Center has recently implemented a number of additions and changes to its existing suite of products and user access systems. Together, these changes will enhance the accessibility, breadth, and usability of the remotely sensed image products and delivery mechanisms available from USGS. As of late 2016, several new image products are now available for public download at no charge from USGS/EROS Center. These new products include: (1) global Level 1T (precision terrain-corrected) products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), provided via NASA's Land Processes Distributed Active Archive Center (LP DAAC); and (2) Sentinel-2 Multispectral Instrument (MSI) products, available through a collaborative effort with the European Space Agency (ESA). Other new products are also planned to become available soon. In an effort to enable future scientific analysis of the full 40+ year Landsat archive, the USGS also introduced a new "Collection Management" strategy for all Landsat Level 1 products. This new archive and access schema involves quality-based tier designations that will support future time series analysis of the historic Landsat archive at the pixel level. Along with the quality tier designations, the USGS has also implemented a number of other Level 1 product improvements to support Landsat science applications, including: enhanced metadata, improved geometric processing, refined quality assessment information, and angle coefficient files. The full USGS Landsat archive is now being reprocessed in accordance with the new `Collection 1' specifications. Several USGS data access and visualization systems have also seen major upgrades. These user interfaces include a new version of the USGS LandsatLook Viewer which was released in Fall 2017 to provide enhanced functionality and Sentinel-2 visualization and access support. A beta release of the USGS Global Visualization Tool ("Glo

  2. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe


    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  3. A Neutral-Network-Fusion Architecture for Automatic Extraction of Oceanographic Features from Satellite Remote Sensing Imagery

    National Research Council Canada - National Science Library

    Askari, Farid


    This report describes an approach for automatic feature detection from fusion of remote sensing imagery using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence...

  4. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery. (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang


    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  5. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang


    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  6. Reduction of Topographic Effect for Curve Number Estimated from Remotely Sensed Imagery (United States)

    Zhang, Wen-Yan; Lin, Chao-Yuan


    The Soil Conservation Service Curve Number (SCS-CN) method is commonly used in hydrology to estimate direct runoff volume. The CN is the empirical parameter which corresponding to land use/land cover, hydrologic soil group and antecedent soil moisture condition. In large watersheds with complex topography, satellite remote sensing is the appropriate approach to acquire the land use change information. However, the topographic effect have been usually found in the remotely sensed imageries and resulted in land use classification. This research selected summer and winter scenes of Landsat-5 TM during 2008 to classified land use in Chen-You-Lan Watershed, Taiwan. The b-correction, the empirical topographic correction method, was applied to Landsat-5 TM data. Land use were categorized using K-mean classification into 4 groups i.e. forest, grassland, agriculture and river. Accuracy assessment of image classification was performed with national land use map. The results showed that after topographic correction, the overall accuracy of classification was increased from 68.0% to 74.5%. The average CN estimated from remotely sensed imagery decreased from 48.69 to 45.35 where the average CN estimated from national LULC map was 44.11. Therefore, the topographic correction method was recommended to normalize the topographic effect from the satellite remote sensing data before estimating the CN.

  7. Copyright protection of remote sensing imagery by means of digital watermarking (United States)

    Barni, Mauro; Bartolini, Franco; Cappellini, Vito; Magli, Enrico; Olmo, Gabriella; Zanini, R.


    The demand for remote sensing data has increased dramatically mainly due to the large number of possible applications capable to exploit remotely sensed data and images. As in many other fields, along with the increase of market potential and product diffusion, the need arises for some sort of protection of the image products from unauthorized use. Such a need is a very crucial one even because the Internet and other public/private networks have become preferred and effective means of data exchange. An important issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. Before applying watermarking techniques developed for multimedia applications to remote sensing applications, it is important that the requirements imposed by remote sensing imagery are carefully analyzed to investigate whether they are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: (1) assessment of the requirements imposed by the characteristics of remotely sensed images on watermark-based copyright protection; (2) discussion of a case study where the performance of two popular, state-of-the-art watermarking techniques are evaluated by the light of the requirements at the previous point.

  8. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response (United States)

    Jones, B. K.


    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  9. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery (United States)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang


    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  10. Offshore wind potential evaluation and remote sensing imagery; Evaluation du potentiel eolien offshore et imagerie satellitale

    Energy Technology Data Exchange (ETDEWEB)

    Fichaux, N.


    Offshore wind energy may help to contribute to the respect of the Kyoto objectives by Europe. It is a key issue to struggle against global change. To sit the future offshore wind parks, it is necessary to accurately evaluate the spatial repartition of the wind potential. We demonstrate that the offshore wind potential shall be represented by maps of wind statistics. As remote sensing is a tool for measuring space physical phenomena, we evaluate its potentialities for mapping wind statistics. Space-borne scatterometers enables the obtention of wind statistics, but far from our areas of interest and at low spatial resolution. Synthetic Aperture Radar (SAR) enables the computation of high resolution wind maps over our areas of interest, but are unsuitable to compute wind statistics. We define the mathematical framework of a statistical method. That method enables to take advantage of both scatterometer and SAR to compute maps of wind statistics at high spatial resolution over the areas of interest. It enables remote sensing to be used operationally to map the offshore wind potential. (author)

  11. The use of remote sensing imagery for environmental land use and flood hazard mapping (United States)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.


    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  12. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality? (United States)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  13. An efficient cloud detection method for high resolution remote sensing panchromatic imagery (United States)

    Li, Chaowei; Lin, Zaiping; Deng, Xinpu


    In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.

  14. Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Yuanxin Jia


    Full Text Available Land use is of great importance for urban planning, environmental monitoring, and transportation management. Several methods have been proposed to obtain land use maps of urban areas, and these can be classified into two categories: remote sensing methods and social sensing methods. However, remote sensing and social sensing approaches have specific disadvantages regarding the description of social and physical features, respectively. Therefore, an appropriate fusion strategy is vital for large-area land use mapping. To address this issue, we propose an efficient land use mapping method that combines remote sensing imagery (RSI and mobile phone positioning data (MPPD for large areas. We implemented this method in two steps. First, a support vector machine was adopted to classify the RSI and MPPD. Then, the two classification results were fused using a decision fusion strategy to generate the land use map. The proposed method was applied to a case study of the central area of Beijing. The experimental results show that the proposed method improved classification accuracy compared with that achieved using MPPD alone, validating the efficacy of this new approach for identifying land use. Based on the land use map and MPPD data, activity density in key zones during daytime and nighttime was analyzed to illustrate the volume and variation of people working and living across different regions.

  15. An Improved Rotation Forest for Multi-Feature Remote-Sensing Imagery Classification

    Directory of Open Access Journals (Sweden)

    Yingchang Xiu


    Full Text Available Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve land cover classification accuracy. However, sometimes it is difficult to utilize all the features efficiently. To enhance classification performance based on multi-feature imagery, an improved rotation forest, combining Principal Component Analysis (PCA and a boosting naïve Bayesian tree (NBTree, is proposed. First, feature extraction was carried out with PCA. The feature set was randomly split into several disjoint subsets; then, PCA was applied to each subset, and new training data for linear extracted features based on original training data were obtained. These steps were repeated several times. Second, based on the new training data, a boosting naïve Bayesian tree was constructed as the base classifier, which aims to achieve lower prediction error than a decision tree in the original rotation forest. At the classification phase, the improved rotation forest has two-layer voting. It first obtains several predictions through weighted voting in a boosting naïve Bayesian tree; then, the first-layer vote predicts by majority to obtain the final result. To examine the classification performance, the improved rotation forest was applied to multi-feature remote-sensing images, including MODIS Enhanced Vegetation Index (EVI imagery time series, MODIS Surface Reflectance products and ancillary data in Shandong Province for 2013. The EVI imagery time series was preprocessed using harmonic analysis of time series (HANTS to reduce the noise effects. The overall accuracy of the final classification result was 89.17%, and the Kappa coefficient was 0.71, which outperforms the original rotation forest and other classifier ensemble results, as well as the NASA land cover product. However, this new algorithm requires more computational time, meaning the efficiency needs to be further improved. Generally, the improved rotation forest has a potential advantage in

  16. Redefining nondiscriminatory access to remote sensing imagery and its impact on global transparency (United States)

    Aten, Michelle L.


    Global transparency is founded on the Open Skies philosophy and its precept of non-discriminatory access. Global transparency implies that anyone can have anytime, anyplace access to a wide-array of remotely sensed imagery. The custom of non-discriminatory access requires that datasets of interest must be affordable, usable, and obtainable in a timely fashion devoid of political, economic or technical obstacles. Thus, an assessment of the correlation between the availability of satellite imagery and changes in governmental policies, pricing fluctuations of data, and advances in technology is critical to assessing the viability of global transparency. The Open Skies philosophy was originally proposed at the 1955 Geneva Summit to advocate mutually beneficial aerial reconnaissance missions over the USSR and the US as a verification tool for arms control and non-proliferation agreements. However, due to Cold War tensions, this philosophy and the custom of non-discriminatory were not widely adopted in the civilian remote sensing community until the commissioning of the Landsat Program in 1972. Since this time, commercial high-resolution satellites have drastically changed the circumstances on which the fundamental tenets of this philosophy are based. Since the successful launch of the first of this satellite class, the IKONOS satellite, high-resolution imagery is now available to non-US governments and an unlimited set of non-state actors. As more advanced capabilities are added to the growing assortment of remote sensing satellites, the reality of global transparency will rapidly evolve. This assessment includes an overview of historical precedents and a brief explanation of relevant US policy decisions that define non-discriminatory access with respect to US government and US based corporate assets. It also presents the dynamics of the political, economic, and technical barriers that may dictate or influence the remote sensing community's access to satellite data. In

  17. Advanced Remote Sensing Research (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna


    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  18. Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery

    International Nuclear Information System (INIS)

    Xue, C J; Dong, Q; Ma, W X


    Using the long term marine remote sensing imagery, we develop an object-oriented spatial-temporal association rules mining framework to explore the association rules mining among marine environmental elements. Within the framework, two key issues are addressed. They are how to effectively deal with the related lattices and how to reduce the related dimensions? To deal with the first key issues, this paper develops an object-oriented method for abstracting marine sensitive objects from raster pixels and for representing them with a quadruple. To deal with the second key issues, by embedding the mutual information theory, we construct the direct association pattern tree to reduce the related elements at the first step, and then the Apriori algorithm is used to discover the spatio-temporal associated rules. Finally, Pacific Ocean is taken as a research area and multi- marine remote sensing imagery in recent three decades is used as a case study. The results show that the object-oriented spatio-temporal association rules mining can acquire the associated relationships not only among marine environmental elements in same region, also among the different regions. In addition, the information from association rules mining is much more expressive and informative in space and time than traditional spatio-temporal analysis

  19. Joint Multi-scale Convolution Neural Network for Scene Classification of High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    ZHENG Zhuo


    Full Text Available High resolution remote sensing imagery scene classification is important for automatic complex scene recognition, which is the key technology for military and disaster relief, etc. In this paper, we propose a novel joint multi-scale convolution neural network (JMCNN method using a limited amount of image data for high resolution remote sensing imagery scene classification. Different from traditional convolutional neural network, the proposed JMCNN is an end-to-end training model with joint enhanced high-level feature representation, which includes multi-channel feature extractor, joint multi-scale feature fusion and Softmax classifier. Multi-channel and scale convolutional extractors are used to extract scene middle features, firstly. Then, in order to achieve enhanced high-level feature representation in a limit dataset, joint multi-scale feature fusion is proposed to combine multi-channel and scale features using two feature fusions. Finally, enhanced high-level feature representation can be used for classification by Softmax. Experiments were conducted using two limit public UCM and SIRI datasets. Compared to state-of-the-art methods, the JMCNN achieved improved performance and great robustness with average accuracies of 89.3% and 88.3% on the two datasets.

  20. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen


    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  1. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)



    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  2. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Qingling Zhang


    Full Text Available Urban areas play a very important role in global climate change. There is increasing need to understand global urban areas with sufficient spatial details for global climate change mitigation. Remote sensing imagery, such as medium resolution Landsat daytime multispectral imagery and coarse resolution Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS nighttime light imagery, has provided a powerful tool for characterizing and mapping cities, with advantages and disadvantages. Here we propose a framework to merge cloud and cloud shadow-free Landsat Normalized Difference Vegetation Index (NDVI composite and DMSP/OLS Night Time Light (NTL to characterize global urban areas at a 30 m resolution, through a Normalized Difference Urban Index (NDUI to make full use of them while minimizing their limitations. We modify the maximum NDVI value multi-date image compositing method to generate the cloud and cloud shadow-free Landsat NDVI composite, which is critical for generating a global NDUI. Evaluation results show the NDUI can effectively increase the separability between urban areas and bare lands as well as farmland, capturing large scale urban extents and, at the same time, providing sufficient spatial details inside urban areas. With advanced cloud computing facilities and the open Landsat data archives available, NDUI has the potential for global studies at the 30 m scale.

  3. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques (United States)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng


    classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.

  4. A Modified FCM Classifier Constrained by Conditional Random Field Model for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    WANG Shaoyu


    Full Text Available Remote sensing imagery has abundant spatial correlation information, but traditional pixel-based clustering algorithms don't take the spatial information into account, therefore the results are often not good. To this issue, a modified FCM classifier constrained by conditional random field model is proposed. Adjacent pixels' priori classified information will have a constraint on the classification of the center pixel, thus extracting spatial correlation information. Spectral information and spatial correlation information are considered at the same time when clustering based on second order conditional random field. What's more, the global optimal inference of pixel's classified posterior probability can be get using loopy belief propagation. The experiment shows that the proposed algorithm can effectively maintain the shape feature of the object, and the classification accuracy is higher than traditional algorithms.

  5. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final) (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  6. Fuzzy AutoEncode Based Cloud Detection for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Zhenfeng Shao


    Full Text Available Cloud detection of remote sensing imagery is quite challenging due to the influence of complicated underlying surfaces and the variety of cloud types. Currently, most of the methods mainly rely on prior knowledge to extract features artificially for cloud detection. However, these features may not be able to accurately represent the cloud characteristics under complex environment. In this paper, we adopt an innovative model named Fuzzy Autoencode Model (FAEM to integrate the feature learning ability of stacked autoencode networks and the detection ability of fuzzy function for highly accurate cloud detection on remote sensing imagery. Our proposed method begins by selecting and fusing spectral, texture, and structure information. Thereafter, the proposed technique established a FAEM to learn the deep discriminative features from a great deal of selected information. Finally, the learned features are mapped to the corresponding cloud density map with a fuzzy function. To demonstrate the effectiveness of the proposed method, 172 Landsat ETM+ images and 25 GF-1 images with different spatial resolutions are used in this paper. For the convenience of accuracy assessment, ground truth data are manually outlined. Results show that the average RER (ratio of right rate and error rate on Landsat images is greater than 29, while the average RER of Support Vector Machine (SVM is 21.8 and Random Forest (RF is 23. The results on GF-1 images exhibit similar performance as Landsat images with the average RER of 25.9, which is much higher than the results of SVM and RF. Compared to traditional methods, our technique has attained higher average cloud detection accuracy for either different spatial resolutions or various land surfaces.

  7. A review and analysis of neural networks for classification of remotely sensed multispectral imagery (United States)

    Paola, Justin D.; Schowengerdt, Robert A.


    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.


    Directory of Open Access Journals (Sweden)

    Y. Zhang


    Full Text Available Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary’s C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM for the classification of multi-features (e.g. the spectral feature and spatial correlation feature. In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  9. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Haiyan Gu


    Full Text Available Remote sensing (RS image segmentation is an essential step in geographic object-based image analysis (GEOBIA to ultimately derive “meaningful objects”. While many segmentation methods exist, most of them are not efficient for large data sets. Thus, the goal of this research is to develop an efficient parallel multi-scale segmentation method for RS imagery by combining graph theory and the fractal net evolution approach (FNEA. Specifically, a minimum spanning tree (MST algorithm in graph theory is proposed to be combined with a minimum heterogeneity rule (MHR algorithm that is used in FNEA. The MST algorithm is used for the initial segmentation while the MHR algorithm is used for object merging. An efficient implementation of the segmentation strategy is presented using data partition and the “reverse searching-forward processing” chain based on message passing interface (MPI parallel technology. Segmentation results of the proposed method using images from multiple sensors (airborne, SPECIM AISA EAGLE II, WorldView-2, RADARSAT-2 and different selected landscapes (residential/industrial, residential/agriculture covering four test sites indicated its efficiency in accuracy and speed. We conclude that the proposed method is applicable and efficient for the segmentation of a variety of RS imagery (airborne optical, satellite optical, SAR, high-spectral, while the accuracy is comparable with that of the FNEA method.

  10. Object-based vegetation classification with high resolution remote sensing imagery (United States)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  11. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn


    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  12. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure (United States)

    Abdelrahim, Mohamed Mahmoud Hosny


    times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)

  13. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F


    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  14. Modelling population distribution using remote sensing imagery and location-based data (United States)

    Song, J.; Prishchepov, A. V.


    Detailed spatial distribution of population density is essential for city studies such as urban planning, environmental pollution and city emergency, even estimate pressure on the environment and human exposure and risks to health. However, most of the researches used census data as the detailed dynamic population distribution are difficult to acquire, especially in microscale research. This research describes a method using remote sensing imagery and location-based data to model population distribution at the function zone level. Firstly, urban functional zones within a city were mapped by high-resolution remote sensing images and POIs. The workflow of functional zones extraction includes five parts: (1) Urban land use classification. (2) Segmenting images in built-up area. (3) Identification of functional segments by POIs. (4) Identification of functional blocks by functional segmentation and weight coefficients. (5) Assessing accuracy by validation points. The result showed as Fig.1. Secondly, we applied ordinary least square and geographically weighted regression to assess spatial nonstationary relationship between light digital number (DN) and population density of sampling points. The two methods were employed to predict the population distribution over the research area. The R²of GWR model were in the order of 0.7 and typically showed significant variations over the region than traditional OLS model. The result showed as Fig.2.Validation with sampling points of population density demonstrated that the result predicted by the GWR model correlated well with light value. The result showed as Fig.3. Results showed: (1) Population density is not linear correlated with light brightness using global model. (2) VIIRS night-time light data could estimate population density integrating functional zones at city level. (3) GWR is a robust model to map population distribution, the adjusted R2 of corresponding GWR models were higher than the optimal OLS models

  15. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu


    Full Text Available Learning efficient image representations is at the core of the scene classification task of remote sensing imagery. The existing methods for solving the scene classification task, based on either feature coding approaches with low-level hand-engineered features or unsupervised feature learning, can only generate mid-level image features with limited representative ability, which essentially prevents them from achieving better performance. Recently, the deep convolutional neural networks (CNNs, which are hierarchical architectures trained on large-scale datasets, have shown astounding performance in object recognition and detection. However, it is still not clear how to use these deep convolutional neural networks for high-resolution remote sensing (HRRS scene classification. In this paper, we investigate how to transfer features from these successfully pre-trained CNNs for HRRS scene classification. We propose two scenarios for generating image features via extracting CNN features from different layers. In the first scenario, the activation vectors extracted from fully-connected layers are regarded as the final image features; in the second scenario, we extract dense features from the last convolutional layer at multiple scales and then encode the dense features into global image features through commonly used feature coding approaches. Extensive experiments on two public scene classification datasets demonstrate that the image features obtained by the two proposed scenarios, even with a simple linear classifier, can result in remarkable performance and improve the state-of-the-art by a significant margin. The results reveal that the features from pre-trained CNNs generalize well to HRRS datasets and are more expressive than the low- and mid-level features. Moreover, we tentatively combine features extracted from different CNN models for better performance.

  16. Fast Binary Coding for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu


    Full Text Available Scene classification of high-resolution remote sensing (HRRS imagery is an important task in the intelligent processing of remote sensing images and has attracted much attention in recent years. Although the existing scene classification methods, e.g., the bag-of-words (BOW model and its variants, can achieve acceptable performance, these approaches strongly rely on the extraction of local features and the complicated coding strategy, which are usually time consuming and demand much expert effort. In this paper, we propose a fast binary coding (FBC method, to effectively generate efficient discriminative scene representations of HRRS images. The main idea is inspired by the unsupervised feature learning technique and the binary feature descriptions. More precisely, equipped with the unsupervised feature learning technique, we first learn a set of optimal “filters” from large quantities of randomly-sampled image patches and then obtain feature maps by convolving the image scene with the learned filters. After binarizing the feature maps, we perform a simple hashing step to convert the binary-valued feature map to the integer-valued feature map. Finally, statistical histograms computed on the integer-valued feature map are used as global feature representations of the scenes of HRRS images, similar to the conventional BOW model. The analysis of the algorithm complexity and experiments on HRRS image datasets demonstrate that, in contrast with existing scene classification approaches, the proposed FBC has much faster computational speed and achieves comparable classification performance. In addition, we also propose two extensions to FBC, i.e., the spatial co-occurrence matrix and different visual saliency maps, for further improving its final classification accuracy.

  17. Operational Use of Remote Sensing within USDA (United States)

    Bethel, Glenn R.


    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.


    Directory of Open Access Journals (Sweden)

    X. Ning


    To resolve the above-mentioned registration difficulties, a parallel and adaptive uniform-distributed registration method for CE-1 lunar remote sensed imagery is proposed in this paper. Based on 6 pairs of randomly selected images, both the standard SIFT algorithm and the parallel and adaptive uniform-distributed registration method were executed, the versatility and effectiveness were assessed. The experimental results indicate that: by applying the parallel and adaptive uniform-distributed registration method, the efficiency of CE-1 lunar remote sensed imagery registration were increased dramatically. Therefore, the proposed method in the paper could acquire uniform-distributed registration results more effectively, the registration difficulties including difficult to obtain results, time-consuming, non-uniform distribution could be successfully solved.

  19. The Inylchek Glacier in Kyrgyzstan, Central Asia: Insight on Surface Kinematics from Optical Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Mohamad Nobakht


    Full Text Available Mountain chains of Central Asia host a large number of glaciated areas that provide critical water supplies to the semi-arid populated foothills and lowlands of this region. Spatio-temporal variations of glacier flows are a key indicator of the impact of climate change on water resources as the glaciers react sensitively to climate. Satellite remote sensing using optical imagery is an efficient method for studying ice-velocity fields on mountain glaciers. In this study, temporal and spatial changes in surface velocity associated with the Inylchek glacier in Kyrgyzstan are investigated. We present a detailed map for the kinematics of the Inylchek glacier obtained by cross-correlation analysis of Landsat images, acquired between 2000 and 2011, and a set of ASTER images covering the time period between 2001 and 2007. Our results indicate a high-velocity region in the elevated part of the glacier, moving up to a rate of about 0.5 m/day. Time series analysis of optical data reveals some annual variations in the mean surface velocity of the Inylchek during 2000–2011. In particular, our findings suggest an opposite trend between periods of the northward glacial flow in Proletarskyi and Zvezdochka glacier, and the rate of westward motion observed for the main stream of the Inylchek.

  20. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.


    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  1. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking (United States)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.


    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  2. Calculating Viewing Angles Pixel by Pixel in Optical Remote Sensing Satellite Imagery Using the Rational Function Model


    Kai Xu; Guo Zhang; Qingjun Zhang; Deren Li


    In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and ge...

  3. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  4. Deep Salient Feature Based Anti-Noise Transfer Network for Scene Classification of Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Xi Gong


    Full Text Available Remote sensing (RS scene classification is important for RS imagery semantic interpretation. Although tremendous strides have been made in RS scene classification, one of the remaining open challenges is recognizing RS scenes in low quality variance (e.g., various scales and noises. This paper proposes a deep salient feature based anti-noise transfer network (DSFATN method that effectively enhances and explores the high-level features for RS scene classification in different scales and noise conditions. In DSFATN, a novel discriminative deep salient feature (DSF is introduced by saliency-guided DSF extraction, which conducts a patch-based visual saliency (PBVS algorithm using “visual attention” mechanisms to guide pre-trained CNNs for producing the discriminative high-level features. Then, an anti-noise network is proposed to learn and enhance the robust and anti-noise structure information of RS scene by directly propagating the label information to fully-connected layers. A joint loss is used to minimize the anti-noise network by integrating anti-noise constraint and a softmax classification loss. The proposed network architecture can be easily trained with a limited amount of training data. The experiments conducted on three different scale RS scene datasets show that the DSFATN method has achieved excellent performance and great robustness in different scales and noise conditions. It obtains classification accuracy of 98.25%, 98.46%, and 98.80%, respectively, on the UC Merced Land Use Dataset (UCM, the Google image dataset of SIRI-WHU, and the SAT-6 dataset, advancing the state-of-the-art substantially.

  5. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications (United States)

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean


    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.


    Directory of Open Access Journals (Sweden)

    G. Palubinskas


    Full Text Available Model based analysis or explicit definition/listing of all models/assumptions used in the derivation of a pan-sharpening method allows us to understand the rationale or properties of existing methods and shows a way for a proper usage or proposal/selection of new methods ‘better’ satisfying the needs of a particular application. Most existing pan-sharpening methods are based mainly on the two models/assumptions: spectral consistency for high resolution multispectral data (physical relationship between multispectral and panchromatic data in a high resolution scale and spatial consistency for multispectral data (so-called Wald’s protocol first property or relationship between multispectral data in different resolution scales. Two methods, one based on a linear unmixing model and another one based on spatial unmixing, are described/proposed/modified which respect models assumed and thus can produce correct or physically justified fusion results. Earlier mentioned property ‘better’ should be measurable quantitatively, e.g. by means of so-called quality measures. The difficulty of a quality assessment task in multi-resolution image fusion or pan-sharpening is that a reference image is missing. Existing measures or so-called protocols are still not satisfactory because quite often the rationale or assumptions used are not valid or not fulfilled. From a model based view it follows naturally that a quality assessment measure can be defined as a combination of error model residuals using common or general models assumed in all fusion methods. Thus in this paper a comparison of the two earlier proposed/modified pan-sharpening methods is performed. Preliminary experiments based on visual analysis are carried out in the urban area of Munich city for optical remote sensing multispectral data and panchromatic imagery of the WorldView-2 satellite sensor.

  7. Multi-Probe Based Artificial DNA Encoding and Matching Classifier for Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Ke Wu


    Full Text Available In recent years, a novel matching classification strategy inspired by the artificial deoxyribonucleic acid (DNA technology has been proposed for hyperspectral remote sensing imagery. Such a method can describe brightness and shape information of a spectrum by encoding the spectral curve into a DNA strand, providing a more comprehensive way for spectral similarity comparison. However, it suffers from two problems: data volume is amplified when all of the bands participate in the encoding procedure and full-band comparison degrades the importance of bands carrying key information. In this paper, a new multi-probe based artificial DNA encoding and matching (MADEM method is proposed. In this method, spectral signatures are first transformed into DNA code words with a spectral feature encoding operation. After that, multiple probes for interesting classes are extracted to represent the specific fragments of DNA strands. During the course of spectral matching, the different probes are compared to obtain the similarity of different types of land covers. By computing the absolute vector distance (AVD between different probes of an unclassified spectrum and the typical DNA code words from the database, the class property of each pixel is set as the minimum distance class. The main benefit of this strategy is that the risk of redundant bands can be deeply reduced and critical spectral discrepancies can be enlarged. Two hyperspectral image datasets were tested. Comparing with the other classification methods, the overall accuracy can be improved from 1.22% to 10.09% and 1.19% to 15.87%, respectively. Furthermore, the kappa coefficient can be improved from 2.05% to 15.29% and 1.35% to 19.59%, respectively. This demonstrated that the proposed algorithm outperformed other traditional classification methods.

  8. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei


    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  9. Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery (United States)

    Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco


    Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from

  10. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LIN Xiangguo


    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.

  11. Estimating actual evapotranspiration from remote sensing imagery using R: the package 'TriangleMethod'. (United States)

    Gampe, David; Huber García, Verena; Marzahn, Philip; Ludwig, Ralf


    Actual evaporation (Eta) is an essential variable to assess water availability, drought risk and food security, among others. Measurements of Eta are however limited to a small footprint, hampering a spatially explicit analysis and application and are very often not available at all. To overcome the problem of data scarcity, Eta can be assessed by various remote sensing approaches such as the Triangle Method (Jiang & Islam, 1999). Here, Eta is estimated by using the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). In this study, the R-package 'TriangleMethod' was compiled to efficiently perform the calculations of NDVI and processing LST to finally derive Eta from the applied data set. The package contains all necessary calculation steps and allows easy processing of a large data base of remote sensing images. By default, the parameterization for the Landsat TM and ETM+ sensors are implemented, however, the algorithms can be easily extended to additional sensors. The auxiliary variables required to estimate Eta with this method, such as elevation, solar radiation and air temperature at the overpassing time, can be processed as gridded information to allow for a better representation of the study area. The package was successfully applied in various studies in Spain, Palestine, Costa Rica and Canada.

  12. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation (United States)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong


    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  13. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land]. (United States)

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong


    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities.

  14. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea


    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  15. Introduction to remote sensing

    CERN Document Server

    Campbell, James B


    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  16. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields (United States)

    Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang


    The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process

  17. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models (United States)

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen


    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  18. Looking back to inform the future: The role of cognition in forest disturbance characterization from remote sensing imagery (United States)

    Bianchetti, Raechel Anne

    Remotely sensed images have become a ubiquitous part of our daily lives. From novice users, aiding in search and rescue missions using tools such as TomNod, to trained analysts, synthesizing disparate data to address complex problems like climate change, imagery has become central to geospatial problem solving. Expert image analysts are continually faced with rapidly developing sensor technologies and software systems. In response to these cognitively demanding environments, expert analysts develop specialized knowledge and analytic skills to address increasingly complex problems. This study identifies the knowledge, skills, and analytic goals of expert image analysts tasked with identification of land cover and land use change. Analysts participating in this research are currently working as part of a national level analysis of land use change, and are well versed with the use of TimeSync, forest science, and image analysis. The results of this study benefit current analysts as it improves their awareness of their mental processes used during the image interpretation process. The study also can be generalized to understand the types of knowledge and visual cues that analysts use when reasoning with imagery for purposes beyond land use change studies. Here a Cognitive Task Analysis framework is used to organize evidence from qualitative knowledge elicitation methods for characterizing the cognitive aspects of the TimeSync image analysis process. Using a combination of content analysis, diagramming, semi-structured interviews, and observation, the study highlights the perceptual and cognitive elements of expert remote sensing interpretation. Results show that image analysts perform several standard cognitive processes, but flexibly employ these processes in response to various contextual cues. Expert image analysts' ability to think flexibly during their analysis process was directly related to their amount of image analysis experience. Additionally, results show


    Directory of Open Access Journals (Sweden)

    X. Han


    Full Text Available Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE. Convolution mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE algorithm was validated by two common hyperspectral imagery (HSI datasets – Pavia University dataset and the Kennedy Space Centre (KSC dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods.

  20. An Evaluation of Fractal Surface Measurement Methods for Characterizing Landscape Complexity from Remote-Sensing Imagery (United States)

    Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)


    The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.

  1. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    Full Text Available Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1 images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization with convenience.

  2. A New Tool for Intelligent Parallel Processing of Radar/SAR Remotely Sensed Imagery

    Directory of Open Access Journals (Sweden)

    A. Castillo Atoche


    Full Text Available A novel parallel tool for large-scale image enhancement/reconstruction and postprocessing of radar/SAR sensor systems is addressed. The proposed parallel tool performs the following intelligent processing steps: image formation, for the application of different system-level effects of image degradation with a particular remote sensing (RS system and simulation of random noising effects, enhancement/reconstruction by employing nonparametric robust high-resolution techniques, and image postprocessing using the fuzzy anisotropic diffusion technique which incorporates a better edge-preserving noise removal effect and faster diffusion process. This innovative tool allows the processing of high-resolution images provided with different radar/SAR sensor systems as required by RS endusers for environmental monitoring, risk prevention, and resource management. To verify the performance implementation of the proposed parallel framework, the processing steps are developed and specifically tested on graphic processing units (GPU, achieving considerable speedups compared to the serial version of the same techniques implemented in C language.

  3. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta

    Directory of Open Access Journals (Sweden)

    E. Farg


    Full Text Available Traditional methods for center pivot evaluation depend on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient of uniformity (CU of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heerman and Hein (1968 modified equation for center pivot evaluation. Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI in addition to land surface temperature. Results of the statistical analysis showed that the collected water depth in catchment cans is also highly correlated negatively with NDVI. On the other hand water, depth was positively correlated with NDWI and LST. Multi-linear regression analysis using stepwise selection method was applied to estimate and map the water depth distribution. The results showed R2 and adjusted R2 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

  4. Applications of Environmental Remote Sensing by HJ-1C SAR Imageries

    Directory of Open Access Journals (Sweden)

    Tian Wei


    Full Text Available The HJ-1C satellite was successfully launched in November 19, 2012. The HJ-1C and HJ-1A/1B satellites, which were launched in September 06, 2008, constitute the “2+1” small satellite constellation for environmental and disaster monitoring. This study focuses on the analysis and evaluation of the satellite performance with respect to environmental remote sensing, including land use interpretation, land cover classification, oil spill identification, retrieval of sea waves, and monitoring of coastal mariculture. The data used in this study cover the city of Beijing and the sea of the Fujian Province. Nine HJ-1C satellite images (level-2, S band, VV Pol, strip mode, 5 m resolution from December 2012 to January 2013 are used. The conclusions are as follows: (1 the HJ-1C SAR images can be used to manually identify farmland, woodland, roads, rivers, urban construction, and rural residential areas; (2 the accuracy of the automatic land cover classification increased significantly when the HJ-1C SAR and HJ-1B CCD fusion images are used; (3 the HJ-1C satellite can be used to identify oil spills, to invert wave parameters, and to extract information regarding inshore aquaculture.

  5. Modelling of light pollution in suburban areas using remotely sensed imagery and GIS. (United States)

    Chalkias, C; Petrakis, M; Psiloglou, B; Lianou, M


    This paper describes a methodology for modelling light pollution using geographical information systems (GIS) and remote sensing (RS) technology. The proposed approach attempts to address the issue of environmental assessment in sensitive suburban areas. The modern way of life in developing countries is conductive to environmental degradation in urban and suburban areas. One specific parameter for this degradation is light pollution due to intense artificial night lighting. This paper aims to assess this parameter for the Athens metropolitan area, using modern analytical and data capturing technologies. For this purpose, night-time satellite images and analogue maps have been used in order to create the spatial database of the GIS for the study area. Using GIS advanced analytical functionality, visibility analysis was implemented. The outputs for this analysis are a series of maps reflecting direct and indirect light pollution around the city of Athens. Direct light pollution corresponds to optical contact with artificial night light sources, while indirect light pollution corresponds to optical contact with the sky glow above the city. Additionally, the assessment of light pollution in different periods allows for dynamic evaluation of the phenomenon. The case study demonstrates high levels of light pollution in Athens suburban areas and its increase over the last decade.

  6. An Alternative Approach of Coastal Sea-Level Observation from Remote Sensing Imageries (United States)

    Peng, H. Y.; Tseng, K. H.; Chung-Yen, K.; Lin, T. H.; Liao, W. H.; Chen, C. F.


    Coastal sea level can be observed as waterline changes along a coastal digital elevation model (DEM). However, most global DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM with 30 m resolution, provide limited coverage over coastal area due to the impermeability of radar signal over water and the lack of low-tide coincidence. Therefore, we aim to extend to coverage of SRTM DEM for the determination of intertidal zone and to monitor sea-level changes along the entire coastline of Taiwan (>1200km). We firstly collect historical cloud-free images since the 1980s, including Landsat series, SPOT series and Sentinel-2, and then calculate the Modified Normalized Difference Water Index (MNDWI) to identify water pixels. After computing water appearance probability of each pixel, it is converted into actual elevation by introducing the DTU10 tide model for high tide and low tide boundaries. A coastal DEM of intertidal zone is reconstructed and the accuracy is at 50 cm level as compared with in situ DEM built by an unmanned aerial vehicle (UAV). Finally, we use this product to define the up-to-date intertidal zone and estimate sea-level changes by using remote sensing snapshots.

  7. Comparison of winter wheat growth with multi-temporal remote sensing imagery

    International Nuclear Information System (INIS)

    Xiaoyu, Song; Bei, Cui; Guijun, Yang; Haikuan, Feng


    Leaf area index (LAI) is an important index for crop growth monitoring. This paper focused on estimation of winter wheat LAI dynamics in different growth stages based on Landsat TM data. In order to retrieve wheat LAI from remote sensing data, LAI measurements were initiated when Landsat satellite pass over the study region. Three Landsat5 TM images were acquired on April 15, May 17, and June 2, 2009, corresponding to jointing stage, flowering stage and milking stage of wheat. LAI was measured at each stage in thirty wheat fields distributed in Beijing suburb. Based on the TM images, spectral indices including NDVI, MSAVI, SAVI, RDVI, SR, ISR, MSR and NLI were calculated. Univariate correlation analysis was then conducted between LAI data and corresponding TM spectral variables. The analysis results indicated that TM ISR on April 15, TM Band4 on May17, and TM ISR on June 2 were very significantly correlated with LAI, and the coefficient values were 0.736, 0.548 and 0.493, respectively. LAI map of winter wheat for whole study area was produced based on optimal non-linear correlation models. The three LAI maps were used to winter wheat growth analysis and comparison of different growth stages. Study results indicated that from April 15 to May 17, LAI value for 14.88% of winter wheat fields (9131ha) increased less than 1, 64.43 % (39421 ha) increased between 1 to 2, 20.67 % (12685 ha) increased more than 2. LAI decreased from May 17 to June 2. 45.34% of winter wheat fields (27828 ha) decreased less than1, 45.20 % (27738 ha) decreased between 1 to 2, 9.33% (5725.42 ha) decreased more than 2


    Directory of Open Access Journals (Sweden)

    O. Alhusain


    Full Text Available Tripoli, the capital city of Libya is going through significant and integrated development process, this development is expected to continue in the next few decades. The Libyan authorities have put it as their goal to develop Tripoli to an important metropolis in North Africa. To achieve this goal, they identified goals for the city's future development in all human, economic, cultural, touristic, and nonetheless infrastructure levels. On the infrastructure development level, among other things, they have identified the development of public transportation as one of the important development priorities. At present, public transportation in Tripoli is carried out by a limited capacity bus network alongside of individual transportation. However, movement in the city is characterized mainly by individual transportation with all its disadvantages such as traffic jams, significant air pollution with both carbon monoxide and dust, and lack of parking space. The Libyan authorities wisely opted for an efficient, modern, and environment friendly solution for public transportation, this was to plan a complex Metro Network as the backbone of public transportation in the city, and to develop and integrate the bus network and other means of transportation to be in harmony with the planned Metro network. The Metro network is planned to provide convenient connections to Tripoli International Airport and to the planned Railway station. They plan to build a system of Park and Ride (P+R facilities at suitable locations along the Metro lines. This paper will present in details the planned Metro Network, some of the applied technological solutions, the importance of applying remote sensing and GIS technologies in different planning phases, and problems and benefits associated with the use of multi-temporal-, multi-format spatial data in the whole network planning phase.

  9. Planning Tripoli Metro Network by the Use of Remote Sensing Imagery (United States)

    Alhusain, O.; Engedy, Gy.; Milady, A.; Paulini, L.; Soos, G.


    Tripoli, the capital city of Libya is going through significant and integrated development process, this development is expected to continue in the next few decades. The Libyan authorities have put it as their goal to develop Tripoli to an important metropolis in North Africa. To achieve this goal, they identified goals for the city's future development in all human, economic, cultural, touristic, and nonetheless infrastructure levels. On the infrastructure development level, among other things, they have identified the development of public transportation as one of the important development priorities. At present, public transportation in Tripoli is carried out by a limited capacity bus network alongside of individual transportation. However, movement in the city is characterized mainly by individual transportation with all its disadvantages such as traffic jams, significant air pollution with both carbon monoxide and dust, and lack of parking space. The Libyan authorities wisely opted for an efficient, modern, and environment friendly solution for public transportation, this was to plan a complex Metro Network as the backbone of public transportation in the city, and to develop and integrate the bus network and other means of transportation to be in harmony with the planned Metro network. The Metro network is planned to provide convenient connections to Tripoli International Airport and to the planned Railway station. They plan to build a system of Park and Ride (P+R) facilities at suitable locations along the Metro lines. This paper will present in details the planned Metro Network, some of the applied technological solutions, the importance of applying remote sensing and GIS technologies in different planning phases, and problems and benefits associated with the use of multi-temporal-, multi-format spatial data in the whole network planning phase.

  10. Infrastructure assessment for disaster management using multi-sensor and multi-temporal remote sensing imagery

    DEFF Research Database (Denmark)

    Butenuth, Matthias; Frey, Daniel; Nielsen, Allan Aasbjerg


    In this paper, a new assessment system is presented to evaluate infrastructure objects such as roads after natural disasters in near-realtime. A particular aim is the exploitation of multi-sensorial and multi-temporal imagery together with further {GIS-}data in a comprehensive assessment framewor...

  11. Using remote sensing imagery and GIS to identify land cover and land use within Ceahlau Massif (Romania

    Directory of Open Access Journals (Sweden)



    Full Text Available Using remote sensing imagery and GIS to identify land cover and land use within Ceahlău Massif (Romania. In this study we considerer land cover and land use asessment within Ceahlău Massif (Romania using satellite imagery and GIS . To achieve this goal, we used a Landsat 7 ETM + satellite image, which was processed using specialized software in analyzing satellite images and GIS software in several stages:  Downloading, importing and layer stack of all spectral bands composing satellite image;  Establishment of areas of interest for each category of land cover and land use, which were digitized on - screen and for which spectral signatures characteristics were established;  Supervised image classification using Maximum Likelihood Method;  Importing the resulting m ap (raster in GIS environment and creating the final land cover/land use map for Ceahlău Massif. In the study area we identified nine land cover/land use classes: deciduous forests, mixed forests, coniferous forests, secondary grasslands, subalpine vegeta tion, alpine meadows, agricultural land, lakes and built area. By analizing the spatial distribution of these classes, it was found that forests are the best represented class, occupying an area of 188.4 km² (56.4% of total, followed by secondary grassl and, which occupies an area of 68.2 km² (20.4% of total, lakes (26.6 km² or 7.98% of total and agricultural land (16.1 km² or 4.86%

  12. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao


    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  13. Use of artificial neural networks and geographic objects for classifying remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Pedro Resende Silva


    Full Text Available The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives were defined: 1 to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and temporal information, 2 to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for capturing the effects of seasonality, and 3 to classify data using Artificial Neural Networks. Using MODIS time series and forest inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy values for native classes, the study showed the importance of a well-structured database for classification and the importance of suitable image segmentation to meet specific purposes.

  14. An Improved Algorithm Based on Minimum Spanning Tree for Multi-scale Segmentation of Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LI Hui


    Full Text Available As the basis of object-oriented information extraction from remote sensing imagery,image segmentation using multiple image features,exploiting spatial context information, and by a multi-scale approach are currently the research focuses. Using an optimization approach of the graph theory, an improved multi-scale image segmentation method is proposed. In this method, the image is applied with a coherent enhancement anisotropic diffusion filter followed by a minimum spanning tree segmentation approach, and the resulting segments are merged with reference to a minimum heterogeneity criterion.The heterogeneity criterion is defined as a function of the spectral characteristics and shape parameters of segments. The purpose of the merging step is to realize the multi-scale image segmentation. Tested on two images, the proposed method was visually and quantitatively compared with the segmentation method employed in the eCognition software. The results show that the proposed method is effective and outperforms the latter on areas with subtle spectral differences.

  15. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery (United States)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya


    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  16. Object-oriented Method of Hierarchical Urban Building Extraction from High-resolution Remote-Sensing Imagery

    Directory of Open Access Journals (Sweden)

    TAO Chao


    Full Text Available An automatic urban building extraction method for high-resolution remote-sensing imagery,which combines building segmentation based on neighbor total variations with object-oriented analysis,is presented in this paper. Aimed at different extraction complexity from various buildings in the segmented image,a hierarchical building extraction strategy with multi-feature fusion is adopted. Firstly,we extract some rectangle buildings which remain intact after segmentation through shape analysis. Secondly,in order to ensure each candidate building target to be independent,multidirectional morphological road-filtering algorithm is designed which can separate buildings from the neighboring roads with similar spectrum. Finally,we take the extracted buildings and the excluded non-buildings as samples to establish probability model respectively,and Bayesian discriminating classifier is used for making judgment of the other candidate building objects to get the ultimate extraction result. The experimental results have shown that the approach is able to detect buildings with different structure and spectral features in the same image. The results of performance evaluation also support the robustness and precision of the approach developed.

  17. Automated Spatio-Temporal Analysis of Remotely Sensed Imagery for Water Resources Management (United States)

    Bahr, Thomas


    Since 2012, the state of California faces an extreme drought, which impacts water supply in many ways. Advanced remote sensing is an important technology to better assess water resources, monitor drought conditions and water supplies, plan for drought response and mitigation, and measure drought impacts. In the present case study latest time series analysis capabilities are used to examine surface water in reservoirs located along the western flank of the Sierra Nevada region of California. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. A time series from Landsat images (L-5 TM, L-7 ETM+, L-8 OLI) of the AOI was obtained for 1999 to 2015 (October acquisitions). Downloaded from the USGS EarthExplorer web site, they already were georeferenced to a UTM Zone 10N (WGS-84) coordinate system. ENVITasks were used to pre-process the Landsat images as follows: • Triangulation based gap-filling for the SLC-off Landsat-7 ETM+ images. • Spatial subsetting to the same geographic extent. • Radiometric correction to top-of-atmosphere (TOA) reflectance. • Atmospheric correction using QUAC®, which determines atmospheric correction parameters directly from the observed pixel spectra in a scene, without ancillary information. Spatio-temporal analysis was executed with the following tasks: • Creation of Modified Normalized Difference Water Index images (MNDWI, Xu 2006) to enhance open water features while suppressing noise from built-up land, vegetation, and soil. • Threshold based classification of the water index images to extract the water features. • Classification aggregation as a post-classification cleanup process. • Export of the respective water classes to vector layers for further evaluation in a GIS. • Animation of the classification series and export to

  18. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu


    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  19. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins. (United States)

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan


    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  20. The theory precision analyse of RFM localization of satellite remote sensing imagery (United States)

    Zhang, Jianqing; Xv, Biao


    The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.

  1. Remote Sensing

    Indian Academy of Sciences (India)

    up to - 0.9 p,m) and dynamic range, non-amenability to digital processing ... ing systems used in space to get the imagery of the Earth telemetered .... by the satellites and are recorded on to magnetic media using ... Let us illustrate this process.

  2. A fully automatic tool to perform accurate flood mapping by merging remote sensing imagery and ancillary data (United States)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco; Pasquariello, Guido


    describing the dynamics of each analysed event, combining time series of images, acquired by different sensors, with ancillary information. Some experiments have been performed by combining multi-temporal SAR intensity images, InSAR coherence and optical data, with geomorphic and other ground information. The tool has been tested on different flood events occurred in the Basilicata region (Italy) during the last years, showing good capabilities of identification of a large area interested by the flood phenomenon, partially overcoming the obstacle constituted by the presence of scattering/coherence classes corresponding to different land cover types, which respond differently to the presence of water and to inundation evolution [1] A. Refice et al, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 7, pp. 2711-2722, 2014. [2] L. Pulvirenti et al., IEEE Trans. Geosci. Rem. Sens., Vol. PP, pp. 1- 13, 2015. [3] A. D'Addabbo et al., "A Bayesian Network for Flood Detection combining SAR Imagery and Ancillary Data," IEEE Trans. Geosci. Rem. Sens., in press.

  3. Remote Sensing of Residue Management in Farms using Landsat 8 Sensor Imagery

    Directory of Open Access Journals (Sweden)

    M. A Rostami


    Full Text Available Introduction Preserving of crop residues in the field surface after harvesting crops, making difficult farm operations. The farmers for getting rid of crop residues always choose the easiest way, i.e. burning. Burning is one of the common disposal methods for wheat and corn straw in some region of the world. Present study was aimed to investigate the accurate methods for monitoring of residue management after wheat harvesting. With this vision, the potential of Landsat 8 sensor was evaluated for monitoring of residue burning, using satellite spectral indices and Linear Spectral Unmixing Analysis. For this purpose, correlation of ground data with satellite spectral indices and LSUA data were tested by linear regression. Materials and Methods In this study we considered 12 farms where remained plants were burned, 12 green farm, 12 bare farms and 12 farms with full crop residue cover were considered. Spatial coordinates of experimental fields recorded with a GPS and fields map were drawn using ArcGissoftware, version of 10.1. In this study,t wo methods were used to separate burned fields from other farms including Satellite Spectral Indices and Linear Spectral unmixing analysis. In this study, multispectral landsat 8 image was acquired over 2015 year. Landsat 8 products are delivered to the customer as radiometric, sensor, and geometric corrections. Image pixels are unique to Landsat 8 data, and should not be directly compared to imagery from other sensors. Therefore, DN value must be converted to radiance value in order to change the radiance to the reflectance, which is useful when performing spectral analysis techniques, such as transformations, band ratios and the Normalized Difference Vegetation Index (NDVI, etc. In this study, a number of spectral indices and Linear Spectral Unmixing Analysis data were imported/extracted from Landsat 8 image. All satellite image data were analyzed by ENVI software package. The spectral indices used in this

  4. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources (United States)

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker


    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  5. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P


    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  6. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape? (United States)

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy


    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  7. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model]. (United States)

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long


    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  8. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery (United States)

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.


    data range among sensors. Of greatest interest to many programs is a hysteresis in the relationship between turbidity and SSC, attributed to temporal variation of particle size distribution (Landers and Sturm, 2013; Uhrich et al., 2014). This phenomenon causes increased uncertainty in regression-estimated values of SSC, due to changes in nephelometric reflectance off the varying grain sizes in suspension (Uhrich et al., 2014). Here, we assess the feasibility and application of close-range remote sensing to quantify SSC and particle size distribution of a disturbed, and highly-turbid, river system. We use a consumer-grade digital camera to acquire imagery of the river surface and a depth-integrating sampler to collect concurrent suspended-sediment samples. We then develop two empirical linear regression models to relate image spectral information to concentrations of fine sediment (clay to silt) and total suspended sediment. Before presenting our regression model development, we briefly summarize each data-acquisition method.

  9. Multisource Remote Sensing Imagery Fusion Scheme Based on Bidimensional Empirical Mode Decomposition (BEMD and Its Application to the Extraction of Bamboo Forest

    Directory of Open Access Journals (Sweden)

    Guang Liu


    Full Text Available Most bamboo forests grow in humid climates in low-latitude tropical or subtropical monsoon areas, and they are generally located in hilly areas. Bamboo trunks are very straight and smooth, which means that bamboo forests have low structural diversity. These features are beneficial to synthetic aperture radar (SAR microwave penetration and they provide special information in SAR imagery. However, some factors (e.g., foreshortening can compromise the interpretation of SAR imagery. The fusion of SAR and optical imagery is considered an effective method with which to obtain information on ground objects. However, most relevant research has been based on two types of remote sensing image. This paper proposes a new fusion scheme, which combines three types of image simultaneously, based on two fusion methods: bidimensional empirical mode decomposition (BEMD and the Gram-Schmidt transform. The fusion of panchromatic and multispectral images based on the Gram-Schmidt transform can enhance spatial resolution while retaining multispectral information. BEMD is an adaptive decomposition method that has been applied widely in the analysis of nonlinear signals and to the nonstable signal of SAR. The fusion of SAR imagery with fused panchromatic and multispectral imagery using BEMD is based on the frequency information of the images. It was established that the proposed fusion scheme is an effective remote sensing image interpretation method, and that the value of entropy and the spatial frequency of the fused images were improved in comparison with other techniques such as the discrete wavelet, à-trous, and non-subsampled contourlet transform methods. Compared with the original image, information entropy of the fusion image based on BEMD improves about 0.13–0.38. Compared with the other three methods it improves about 0.06–0.12. The average gradient of BEMD is 4%–6% greater than for other methods. BEMD maintains spatial frequency 3.2–4.0 higher than

  10. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.


    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  11. Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution Remote Sense Imagery: A Coastal Area Case Study

    Directory of Open Access Journals (Sweden)

    Helingjie Huang


    Full Text Available Image interpretation is a major topic in the remote sensing community. With the increasing acquisition of high spatial resolution (HSR remotely sensed images, incorporating geographic object-based image analysis (GEOBIA is becoming an important sub-discipline for improving remote sensing applications. The idea of integrating the human ability to understand images inspires research related to introducing expert knowledge into image object–based interpretation. The relevant work involved three parts: (1 identification and formalization of domain knowledge; (2 image segmentation and feature extraction; and (3 matching image objects with geographic concepts. This paper presents a novel way that combines multi-scaled segmented image objects with geographic concepts to express context in an ontology-guided image interpretation. Spectral features and geometric features of a single object are extracted after segmentation and topological relationships are also used in the interpretation. Web ontology language–query language (OWL-QL formalize domain knowledge. Then the interpretation matching procedure is implemented by the OWL-QL query-answering. Compared with a supervised classification, which does not consider context, the proposed method validates two HSR images of coastal areas in China. Both the number of interpreted classes increased (19 classes over 10 classes in Case 1 and 12 classes over seven in Case 2, and the overall accuracy improved (0.77 over 0.55 in Case 1 and 0.86 over 0.65 in Case 2. The additional context of the image objects improved accuracy during image classification. The proposed approach shows the pivotal role of ontology for knowledge-guided interpretation.

  12. A Residential Area Extraction Method for High Resolution Remote Sensing Imagery by Using Visual Saliency and Perceptual Organization

    Directory of Open Access Journals (Sweden)

    CHEN Yixiang


    Full Text Available Inspired by human visual cognitive mechanism,a method of residential area extraction from high-resolution remote sensing images was proposed based on visual saliency and perceptual organization. Firstly,the data field theory of cognitive physics was introduced to model the visual saliency and the candidate residential areas were produced by adaptive thresholding. Then,the exact residential areas were obtained and refined by perceptual organization based on the high-frequency features of multi-scale wavelet transform. Finally,the validity of the proposed method was verified by experiments conducted on ZY-3 and Quickbird image data sets.


    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  14. Optical Remote Sensing Laboratory (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  15. Supervised Classification of Agricultural Land Cover Using a Modified k-NN Technique (MNN and Landsat Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Karsten Schulz


    Full Text Available Nearest neighbor techniques are commonly used in remote sensing, pattern recognition and statistics to classify objects into a predefined number of categories based on a given set of predictors. These techniques are especially useful for highly nonlinear relationship between the variables. In most studies the distance measure is adopted a priori. In contrast we propose a general procedure to find an adaptive metric that combines a local variance reducing technique and a linear embedding of the observation space into an appropriate Euclidean space. To illustrate the application of this technique, two agricultural land cover classifications using mono-temporal and multi-temporal Landsat scenes are presented. The results of the study, compared with standard approaches used in remote sensing such as maximum likelihood (ML or k-Nearest Neighbor (k-NN indicate substantial improvement with regard to the overall accuracy and the cardinality of the calibration data set. Also, using MNN in a soft/fuzzy classification framework demonstrated to be a very useful tool in order to derive critical areas that need some further attention and investment concerning additional calibration data.

  16. The dog and cat population on Maio Island, Cape Verde: characterisation and prediction based on household survey and remotely sensed imagery. (United States)

    Lopes Antunes, Ana Carolina; Ducheyne, Els; Bryssinckx, Ward; Vieira, Sara; Malta, Manuel; Vaz, Yolanda; Nunes, Telmo; Mintiens, Koen


    The objective was to estimate and characterise the dog and cat population on Maio Island, Cape Verde. Remotely sensed imagery was used to document the number of houses across the island and a household survey was carried out in six administrative areas recording the location of each animal using a global positioning system instrument. Linear statistical models were applied to predict the dog and cat populations based on the number of houses found and according to various levels of data aggregation. In the surveyed localities, a total of 457 dogs and 306 cats were found. The majority of animals had owners and only a few had free access to outdoor activities. The estimated population size was 531 dogs [95% confidence interval (CI): 453-609] and 354 cats (95% CI: 275-431). Stray animals were not a concern on the island in contrast to the rest of the country.

  17. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael


    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  18. Optimization Approach for Multi-scale Segmentation of Remotely Sensed Imagery under k-means Clustering Guidance

    Directory of Open Access Journals (Sweden)

    WANG Huixian


    Full Text Available In order to adapt different scale land cover segmentation, an optimized approach under the guidance of k-means clustering for multi-scale segmentation is proposed. At first, small scale segmentation and k-means clustering are used to process the original images; then the result of k-means clustering is used to guide objects merging procedure, in which Otsu threshold method is used to automatically select the impact factor of k-means clustering; finally we obtain the segmentation results which are applicable to different scale objects. FNEA method is taken for an example and segmentation experiments are done using a simulated image and a real remote sensing image from GeoEye-1 satellite, qualitative and quantitative evaluation demonstrates that the proposed method can obtain high quality segmentation results.

  19. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery. (United States)

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi


    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

  20. BisQue: cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery (United States)

    Fedorov, D.; Miller, R. J.; Kvilekval, K. G.; Doheny, B.; Sampson, S.; Manjunath, B. S.


    Logistical and financial limitations of underwater operations are inherent in marine science, including biodiversity observation. Imagery is a promising way to address these challenges, but the diversity of organisms thwarts simple automated analysis. Recent developments in computer vision methods, such as convolutional neural networks (CNN), are promising for automated classification and detection tasks but are typically very computationally expensive and require extensive training on large datasets. Therefore, managing and connecting distributed computation, large storage and human annotations of diverse marine datasets is crucial for effective application of these methods. BisQue is a cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery and associated data. Designed to hide the complexity of distributed storage, large computational clusters, diversity of data formats and inhomogeneous computational environments behind a user friendly web-based interface, BisQue is built around an idea of flexible and hierarchical annotations defined by the user. Such textual and graphical annotations can describe captured attributes and the relationships between data elements. Annotations are powerful enough to describe cells in fluorescent 4D images, fish species in underwater videos and kelp beds in aerial imagery. Presently we are developing BisQue-based analysis modules for automated identification of benthic marine organisms. Recent experiments with drop-out and CNN based classification of several thousand annotated underwater images demonstrated an overall accuracy above 70% for the 15 best performing species and above 85% for the top 5 species. Based on these promising results, we have extended bisque with a CNN-based classification system allowing continuous training on user-provided data.

  1. Identifying Potential Areas of Human Zika Infection in the City of Los Angeles, California by Use of Remote Sensing Imagery (United States)

    Lee, J.


    As of April 2017, California is the third most prevalent state on the United States for Zika Infection and Southern California has an ever growing population of Aedes mosquitos. Zika is a disease which poses a significant risk to humans and other mammals due to its effects on pregnancy. This emerging disease is highly contagious due to its spread of infection primarily by Aedes aegypti mosquitos. Aedes mosquitos are able to breed in small rain collecting containers which allow the species to persevere in urban and semi urban environments. We hope to identify potential areas with risk of human infection within Los Angeles and its surrounding areas. This study integrates remote sensing, GIS, statistical, and environmental techniques to study favorable habitats for this particular species of mosquitos and their larvae. The study of the geographic and landscape factors which promote the larvae development allow for the disease spread to be analyzed and modeled. There are several goals in the development of this study. These include the coordination of statistical data with local epidemiology departments, identify workflows to improve efficiency, create models which can be utilized for disease prevention, and identify geographic risk factors for the spread of Zika.

  2. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo


    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  3. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection. (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo


    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  4. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra


    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  5. Remote Sensing Information Gateway (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  6. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore


    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  7. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth


    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... be expected from remote sensing imagery and the provided information shall help to better anticipate problems that will be encountered when acquiring, analyzing and interpreting remote sensing data. Beyond remote sensing, it may be a good point of departure for a large group of scientists with a diverse...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...

  8. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features (United States)

    Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian


    In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.

  9. Radar Remote Sensing (United States)

    Rosen, Paul A.


    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  10. Use of remotely sensed imagery to map Sudden Oak Death (Phytophthora ramorum) in the Santa Cruz Mountains (United States)

    Gillis, Trinka

    This project sought a method to map Sudden Oak Death distribution in the Santa Cruz Mountains of California, a coastal mountain range and one of the locations where this disease was first observed. The project researched a method to identify forest affected by SOD using 30 m multi-spectral Landsat satellite imagery to classify tree mortality at the canopy-level throughout the study area, and applied that method to a time series of data to show pattern of spread. A successful methodology would be of interest to scientists trying to identify areas which escaped disease contagion, environmentalists attempting to quantify damage, and land managers evaluating the health of their forests. The more we can learn about the disease, the more chance we have to prevent further spread and damage to existing wild lands. The primary data source for this research was springtime Landsat Climate Data Record surface reflectance data. Non-forest areas were masked out using data produced by the National Land Cover Database and supplemental land cover classification from the Landsat 2011 Climate Data Record image. Areas with other known causes of tree death, as identified by Fire and Resource Assessment Program fire perimeter polygons, and US Department of Agriculture Forest Health Monitoring Program Aerial Detection Survey polygons, were also masked out. Within the remaining forested study area, manually-created points were classified based on the land cover contained by the corresponding Landsat 2011 pixel. These were used to extract value ranges from the Landsat bands and calculated vegetation indices. The range and index which best differentiated healthy from dead trees, SWIR/NIR, was applied to each Landsat scene in the time series to map tree mortality. Results Validation Points, classified using Google Earth high-resolution aerial imagery, were created to evaluate the accuracy of the mapping methodology for the 2011 data.

  11. Using Very High Resolution Remotely Sensed Imagery to Estimate Agricultural Production: A comparison of food insecure and secure growing areas in Kenya (United States)

    Grace, K.; Husak, G. J.; Bogle, S.


    Determining the amount of food produced in a food insecure, isolated, subsistence farming community can be used to help identify households or communities who may be in need of additional food resources. Measuring annual food production in developing countries, much less at a sub-national level, is complicated by lack of data. It can be difficult and costly to access all of the farming households engaged in subsistence farming. However, recent research has focused on the use of remotely sensed data to aid in the estimation of area under cultivation and because food production is the measure of yield (production per hectare) multiplied by area (number of hectares), we can use the area measure to reduce uncertainty in food production estimates. One strategy for estimating cultivated area relies on a fairly time intensive manual interpretation of very high resolution data. Due to the availability of very high resolution data it is possible to construct estimates of cultivated area, even in communities where fields are small. While this strategy has been used to effectively estimate cultivated area in a timely manner, questions remain about the spatial and temporal generalizability of this approach. The purpose of this paper is to produce and compare estimates of cultivated area in two very different agricultural areas of Kenya, a highly food insecure country in East Africa, during two different agricultural seasons. The areas selected represent two different livelihood zones: a marginal growing area where poor farmers rely on inconsistent rainfall and a lush growing area near the mountainous region of the middle-West area of the country where rainfall is consistent and therefore more suited to cultivation. The overarching goal is to determine the effectiveness of very high resolution remotely sensed imagery in calculating estimates of cultivated area in areas where food production strategies are different. Additionally the results of this research will explore the

  12. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)


    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  13. Section summary: Remote sensing (United States)

    Belinda Arunarwati Margono


    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  14. Use of Openly Available Satellite Images for Remote Sensing Education (United States)

    Wang, C.-K.


    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  15. Population dynamics throughout the urban context: A case study in sub-Saharan Africa utilizing remotely sensed imagery and GIS (United States)

    Benza, Magdalena

    The characteristics of places where people live and work play an important role in explaining complex social, political, economic and demographic processes. In sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments inhabited by people with a wide variety of lifestyles. This research examines how spatial patterns of land cover in a southern portion of the West African country of Ghana are associated with particular characteristics of family organization and reproduction decisions. Satellite imagery and landscape metrics are used to create an urban context definition based on landscape patterns using a gradient approach. Census data are used to estimate fertility levels and household structure, and the association between urban context, household composition and fertility levels is modeled through OLS regression, spatial autoregressive models and geographically weighted regression. Results indicate that there are significant differences in fertility levels between different urban contexts, with below average fertility levels found in the most urbanized end of the urban context definition and above average fertility levels found on the opposite end. The spatial patterns identified in the association between urban context and fertility levels indicate that, within the city areas with lower fertility have significant impacts on the reproductive levels of adjacent neighborhoods. Findings also indicate that there are clear patterns that link urban context to living arrangements and fertility levels. Female- and single-headed households are associated with below average fertility levels, a result that connects dropping fertility levels with the spread of smaller nuclear households in developing countries. At the same time, larger extended family households are linked to below average fertility levels for highly clustered areas, a finding that points to the prevalence of extended family housing in the West African city.

  16. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia


    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  17. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd


    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  18. Monitoring of "all-weather" evapotranspiration using optical and passive microwave remote sensing imagery over the River Source Region in Southwest China (United States)

    Ma, Y.; Liu, S.


    Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.

  19. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V


    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  20. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A


    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  1. National Satellite Land Remote Sensing Data Archive (United States)

    Faundeen, John L.; Longhenry, Ryan


    The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.

  2. Remote Sensing and the Earth. (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  3. Integrated remotely sensed datasets for disaster management


    McCarthy, Tim; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart


    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North...

  4. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  5. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  6. Remote Sensing and Imaging Physics (United States)


    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  7. Geological remote sensing (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek


    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  8. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.


    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  9. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)


    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  10. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.


    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  11. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.


    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  12. The Potential of AI Techniques for Remote Sensing (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.


    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  13. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing (United States)

    Chirayath, Ved


    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  14. Integrated remotely sensed datasets for disaster management (United States)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart


    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  15. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  16. Semantic risk estimation of suspected minefields based on spatial relationships analysis of minefield indicators from multi-level remote sensing imagery (United States)

    Chan, Jonathan Cheung-Wai; Sahli, Hichem; Wang, Yuhang


    This paper presents semantic risk estimation of suspected minefields using spatial relationships of minefield indicators extracted from multi-level remote sensing. Both satellite image and pyramidal airborne acquisitions from 900m to 30m flying heights with resolutions from 1m to 2cm resolutions are used for identification of minefield indicators. R-Histogram [1] is a quantitative representation of spatial relationship between two objects in an image. Eight spatial relationships can be generated: 1) LEFT OF, 2) RIGHT OF, 3) ABOVE, 4) BELOW, 5) NEAR, 6) FAR, 7) INSIDE, 8) OUTSIDE. R-Histogram semantics are first generated from selected indicators and metrics such as topological proximity and directional relationships are trained for soft classification of risk index (normalized as 0-1). We presented a framework of how semantic metadata generated from remote sensing images are used in risk estimation. The resultant risk index identified seven out of twelve mine accidents occurred at high risk region. More importantly, comparison with ground truth obtained after mine clearance show that three out of the four identified pattern minefields falls into the area estimated at very high risk. A parcel-based per-field risk estimation can also be easily generated to show the usefulness of the risk index.

  17. Mississippi Sound Remote Sensing Study (United States)

    Atwell, B. H.


    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  18. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring. (United States)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre


    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  19. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  20. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)


    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  1. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N


    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  2. Remote sensing for vineyard management (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.


    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  3. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao


    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  4. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.


    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  5. Data management and dissemination challenges for commercial remote sensing (United States)

    Straeter, Terry A.


    Looking toward 2000, the ways by which commercial satellite imagery and imagery products are managed by the various remote sensing companies will be dictated by financial considerations, not technical feasibility. In the convergence of technologies that will shape the commercial companies in 2000, the most influential will likely be electronic commerce via the Internet. This paper discusses the character of these combined forces and speculates on how the industry might respond.

  6. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor

    International Nuclear Information System (INIS)

    Jensen, J.R.; Hodgson, M.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.


    This research summarizes the utility of remote sensing for mapping both local (SRP) and regional wetlands including: stream delta areas, using aircraft multispectral scanner (MSS) imagery and large scale aerial photography; the SRP river swamp, using aircraft MSS and LANDSAT thematic mapper imagery; the Savannah River watershed, using LANDSAT MSS Imagery

  7. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech


    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  8. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren


    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  9. Remote Sensing of Environmental Pollution (United States)

    North, G. W.


    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  10. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.


    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  11. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.


    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  12. Photogrammetry - Remote Sensing and Geoinformation (United States)

    Lazaridou, M. A.; Patmio, E. N.


    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  13. A review of hyperspectral remote sensing and its application in ...

    African Journals Online (AJOL)

    Multispectral imagery has been used as the data source for water and land observational remote sensing from airborne and satellite systems since the early 1960s. Over the past two decades, advances in sensor technology have made it possible for the collection of several hundred spectral bands. This is commonly ...

  14. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  15. Spatial and temporal remote sensing data fusion for vegetation monitoring (United States)

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  16. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo


    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  17. Unmanned aerial systems for photogrammetry and remote sensing: A review


    Colomina, Ismael; Molina, Pere


    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  18. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  19. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.


    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  20. Remote sensing and vegetation mapping in South Africa

    Directory of Open Access Journals (Sweden)

    M. L. Jarman


    Full Text Available The kinds of imagery, types of data and general relationships between scale of study, scale of mapping and scale of remote sensing products that are appropriate to the South African situation for visual and digital analysis are presented. The type of remote sensing product and processing, the type of field exercise appropriate to each, and the purpose of producing maps at each scale are discussed. Lack of repetitive imagery to date has not allowed for the full investigation of monitoring potential and careful planning at national level is needed to ensure availability of imagery for monitoring purposes. Map production processes which are rapid and accurate should be utilized. An integrated approach to vegetation mapping and surveying, which incorporates the best features of both visual and digital processing, is recommended for use.

  1. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić


    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  2. Remote Sensing of Water Pollution (United States)

    White, P. G.


    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  3. Satellite Remote Sensing: Aerosol Measurements (United States)

    Kahn, Ralph A.


    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  4. Theme issue ;State-of-the-art in photogrammetry, remote sensing and spatial information science; (United States)

    Heipke, Christian; Madden, Marguerite; Li, Zhilin; Dowman, Ian


    Over the past few years, photogrammetry, remote sensing and spatial information science have witnessed great changes in virtually every stage of information from imagery. Indeed, we have seen, for example, a sharply increased interest in unmanned aerial vehicles,


    This presentation will document the use of historical imagery, GIS, photogrammetry and hyperspectral remote sensing in locating and removing chemical weapons such as Mustard Gas, Phosgene, Ricin, and Lewisite from the environment and establishing a risk assessment methodology for...

  6. Coral reef remote sensing a guide for mapping, monitoring and management

    CERN Document Server

    Goodman, James A; Phinn, Stuart R


    This book offers a multi-level examination of remote-sensing technologies for mapping and monitoring coral reef ecosystems, ranging from satellite and airborne imagery to ship-based observation. Includes examples of practical applications of the technologies.

  7. Remote Sensing Best Paper Award 2013


    Prasad Thenkabail


    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  8. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.


    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires


    Directory of Open Access Journals (Sweden)

    Á. Barsi


    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  10. Accuracy Dimensions in Remote Sensing (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.


    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  11. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.


    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  12. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A


    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  13. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J


    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  14. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Garvin, J.B.; Schnetzler, C.; Grieve, R.A.F.


    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  15. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S


    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 Middle atmosphere dynamics and thermal structure: comparative studies from...

  16. Remote Sensing Information Science Research (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin


    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  17. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others


    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  18. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia


    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  19. Remote sensing inputs to water demand modeling (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.


    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  20. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou


    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  1. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.


    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  2. The application of remote sensing to the development and formulation of hydrologic planning models (United States)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.


    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  3. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research (United States)

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.


    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.

  4. Remote Sensing Wind and Wind Shear System. (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  5. Remote Sensing and Reflectance Profiling in Entomology. (United States)

    Nansen, Christian; Elliott, Norman


    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  6. Characterisation of recently retrieved aerial photographs of Ethiopia (1935-1941) and their fusion with current remotely sensed imagery for retrospective geomorphological analysis (United States)

    Nyssen, Jan; Gebremeskel, Gezahegne; Mohamed, Sultan; Petrie, Gordon; Seghers, Valérie; Meles Hadgu, Kiros; De Maeyer, Philippe; Haile, Mitiku; Frankl, Amaury


    8281 assemblages of aerial photographs (APs) acquired by the 7a Sezione Topocartografica during the Italian occupation of Ethiopia (1935-1941) have recently been discovered, scanned and organised. The oldest APs of the country that are known so far were taken in the period 1958-1964. The APs of the 1930s were analysed for their technical characteristics, scale, flight lines, coverage, use in topographic mapping, and potential future uses. The APs over Ethiopia in 1935-1941 are presented as assemblages on approx. 50 cm x 20 cm cardboard tiles, each holding a label, one nadir-pointing photograph flanked by two low-oblique photographs and one high-oblique photograph. The four APs were exposed simultaneously and were taken across the flight line; the high-oblique photograph is presented alternatively at left and at right; there is approx. 60% overlap between subsequent sets of APs. One of Santoni's glass plate multi-cameras was used, with focal length of 178 mm, flight height at 4000-4500 m a.s.l., which results in an approximate scale of 1:11 500 for the central photograph and 1:16 000 to 1:18 000 for the low-oblique APs. The surveyors oriented themselves with maps of Ethiopia at 1:400 000 scale, compiled in 1934. The flights present a dense AP coverage of Northern Ethiopia, where they were acquired in the context of upcoming battles with the Ethiopian army. Several flights preceded the later advance of the Italian army southwards towards the capital Addis Ababa. Further flights took place in central Ethiopia for civilian purposes. As of 1936, the APs were used to prepare highly detailed topographic maps at 1:100 000 scale. These APs (1935-1941) together with APs of 1958-1964, 1994 and recent high-resolution satellite imagery are currently being used in spatially explicit change studies of land cover, land management and (hydro)geomorphology in Ethiopia over a time span of almost 80 years, the first results of which will be presented.

  7. Basic Remote Sensing Investigations for Beach Reconnaissance. (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  8. LWIR Microgrid Polarimeter for Remote Sensing Studies (United States)


    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  9. Data Quality in Remote Sensing (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.


    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  10. Taiwan's second remote sensing satellite (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin


    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  11. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul


    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  12. Textbooks and technical references for remote sensing (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.


    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  13. Remote Sensing Plant Stress Using Combined Fluorescence and Reflectance Measurements for Early Detection of Defoliants within the Battlefield Environment (United States)


    Sensing Imagery, Instituto de Agricultura Sostenible, Córdoba, Spain Young, D.R. 2007. Leaf to landscape in a barrier island environment.” Workshop...on Vegetation Stress Detection with Remote Sensing Imagery, Instituto de Agricultura Sostenible, Córdoba, Spain Young, D.R. and J.C. Naumann. 2007

  14. Water Column Correction for Coral Reef Studies by Remote Sensing (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton


    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  15. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli


    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  16. Water column correction for coral reef studies by remote sensing. (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton


    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  17. Remote sensing education and Internet/World Wide Web technology (United States)

    Griffith, J.A.; Egbert, S.L.


    Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.

  18. Forest biodiversity and its assessment by remote sensing

    International Nuclear Information System (INIS)

    Innes, J.L.; Koch, B.


    Several international conventions and agreements have stressed the importance of the assessment of forest biodiversity. However, the methods by which such assessments can be made remain unclear. Remote sensing represents an important tool for looking at ecosystem diversity and various structural aspects of individual ecosystems. It provides a means to make assessments across several different spatial scales, and is also critical for assessments of changes in ecosystem pattern over time. Many different forms of remote sensing are available. While lately the emphasis on laser scanner and synthetic aperture radar data has increased, most work to date has used photographs and digital optical imagery, primarily from airborne and spaceborne platforms. These provide the opportunity to assess different phenomena from the landscape to the stand scale. Remote sensing provides the most efficient tool available for determining landscape-scale elements of forest biodiversity, such as the relative proportion of matrix and patches and their physical arrangement. At intermediate scales, remote sensing provides an ideal tool for evaluating the presence of corridors and the nature of edges. At the stand scale, remote sensing technologies are likely to deliver an increasing amount of information about the structural attributes of forest stands, such as the nature of the canopy surface, the presence of layering within the canopy and presence of (very) coarse woody debris on the forest floor. Given the rate of development in the technology, even greater usage is likely in the future. (author)

  19. Remote sensing for wind power potential: a prospector's handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.


    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  20. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall


    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  1. Remote sensing of the biosphere (United States)


    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  2. Lunar remote sensing and measurements (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.


    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  3. Energy and remote sensing applications (United States)

    Summers, R. A.; Smith, W. L.; Short, N. M.


    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  4. Remote Sensing of Ocean Color (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  5. Remote Sensing Applications to Water Quality Management in Florida (United States)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.


    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  6. Project THEMIS: A Center for Remote Sensing. (United States)

    This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.

  7. Advanced and applied remote sensing of environmental conditions (United States)

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.


    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  8. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V


    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  9. Application of remote sensing in aquatic ecosystems (United States)

    Yousef, Foad

    I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll alpha and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.

  10. Autonomous Coral Reef Survey in Support of Remote Sensing

    Directory of Open Access Journals (Sweden)

    Steven G. Ackleson


    Full Text Available An autonomous surface vehicle instrumented with optical and acoustical sensors was deployed in Kane'ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of coral reef reflectance with minimal human presence. The data represented a wide range in bottom type, water depth, and illumination and supported more thorough investigations of remote sensing methods for identifying and mapping shallow reef features. The in situ data were used to compute spectral bottom reflectance and remote sensing reflectance, Rrs,λ, as a function of water depth and benthic features. The signals were used to distinguish between live coral and uncolonized sediment within the depth range of the measurements (2.5–5 m. In situRrs, λ were found to compare well with remotely sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS, deployed on an aircraft at high altitude. Cloud cover and in situ sensor orientation were found to have minimal impact on in situRrs, λ, suggesting that valid reflectance data may be collected using autonomous surveys even when atmospheric conditions are not favorable for remote sensing operations. The use of reflectance in the red and near infrared portions of the spectrum, expressed as the red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass, including coral symbionts and turf algae. The REHλ signal from live coral was detected in Kane'ohe Bay to a depth of approximately 4 m with in situ measurements. A remote sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery of the entire bay and was found to reveal areas of shallow, dense coral and algal cover. The peak wavelength of REHλ decreased with increasing water depth, indicating that a more complete examination of the red edge signal may potentially yield a remote sensing approach to simultaneously estimate vegetative biomass and bathymetry in shallow water.

  11. DARLA: Data Assimilation and Remote Sensing for Littoral Applications (United States)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.


    the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.

  12. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty (United States)

    Katharine White; Jennifer Pontius; Paul Schaberg


    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  13. Environmental assessment of coal waste mounds in Japan using remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A J; Gotoh, K; Aoyama, K; Aoki, S [Louisiana State University, Baton Rouge, LA (United States). Department of Geography and Anthropology


    Focuses on the application of remote sensing techniques to the study of coal waste mounds. The situation at the coal waste mounds in Fukuoka, Japan is cited. Guidelines on film parameters, photographic keys and tasks required to inventory, monitor and manage coal waste mounds in Japan are addressed. Application of photogrammetry, remote sensing, aerial photography and satellite imagery techniques in monitoring spoil banks is reviewed. Applicability of the techniques is discussed. 24 refs.

  14. Applications of ecological concepts and remote sensing technologies in archaeological site reconnaissance (United States)

    Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel


    The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.

  15. First European Workshop on 'Remote sensing in mineral exploration'

    International Nuclear Information System (INIS)

    Van Wambeke, L.; Sanderson, D.J.; Dolan, J.M.


    The First European Workshop on 'Remote sensing in mineral exploration' organized by the Commission of the European Communities in February 1985 took stock of the results obtained within the European Community on the application of remote sensing techniques in exploration. The papers presented in this publication are essentially based on data obtained with the first generation of satellites and some airborne experiments. Important progress in data processing and interpretation has been made in the EEC since 1979 and is continuing to be made. The main aim is to provide the EC mining industry with a new tool for exploration. Significant results have already been obtained with the EEC playing an important role in the promotion of this relatively new technique. The main R and D trend is towards an integration of multidata sets (remote sensing, geochemical, geophysical and other data) to improve the methodology for delineating new targets in exploration. Another general trend is the participation of mining companies in remote sensing experiments. Further improvement for exploration is expected in the near future with the thematic mapper and the spot imageries as well as new airborne sensors

  16. Watermarking techniques for electronic delivery of remote sensing images (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella


    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  17. Unmanned aerial systems for photogrammetry and remote sensing: A review (United States)

    Colomina, I.; Molina, P.


    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  18. The use of remote sensing for landslide studies in Europe (United States)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola


    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  19. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation (United States)


    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  20. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management (United States)

    Tucker, Compton; Puma, Michael


    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  1. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)


    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  2. National Satellite Land Remote Sensing Data Archive (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.


    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  3. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan


    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  4. NOAA Coastal Mapping Remote Sensing Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  5. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin


    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  6. Comprehensive, integrated, remote sensing at DOE sites

    International Nuclear Information System (INIS)

    Lackey, J.G.; Burson, Z.G.


    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective of the program is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided, at present, consist of the following: large format aerial photography, video from aerial platforms, multispectral scanning, and airborne nuclear radiometric surveys. Implementation of the CIRS Program by EG and G Energy Measurements, Inc. began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in this summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis

  7. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.


    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  8. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni


    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  9. Archimedean Witness: The Application of Remote Sensing as an Aid to Human Rights Prosecutions (United States)

    Walker, James Robin

    The 21st century has seen a significant increase in the use of remote sensing technology in the international human rights arena for the purposes of documenting crimes against humanity. The nexus between remote sensing, human rights activism, and international criminal prosecutions sits at a significant crossroads within geographic thought, calling attention to the epistemological and geopolitical implications that stem from the "view from nowhere" afforded by satellite imagery. Therefore, this thesis is divided into three sections. The first looks at the geographical questions raised by the expansion of remote sensing use in the context of international activism. The second explores the complications inherent in the presentation of remote sensing data as evidence of war crimes. Building upon the first two, the third section is a case study in alternate forms of analysis, aimed at expanding the utility of remote sensing data in international criminal prosecutions.

  10. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.


    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  11. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová


    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  12. Retrieval operators of remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Shah, A.


    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  13. Freeware for GIS and Remote Sensing


    Lena Halounová


    Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  14. Slovenian experience in applicability of remote sensing data in hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, A; Vidmar, A; Petan, S; Brilly, M [University of Ljubljana, Faculty of Civil and Geodetic Engineering, Chair of Hydrology and Hydraulic Engineering, Hajdrihova 28, Ljubljana (Slovenia)], E-mail:


    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.

  15. Slovenian experience in applicability of remote sensing data in hydrology

    International Nuclear Information System (INIS)

    Horvat, A; Vidmar, A; Petan, S; Brilly, M


    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.


    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  17. Using remote sensing to predict earthquake impacts (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia


    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  18. Remote Sensing Best Paper Award for the Year 2014


    Prasad Thenkabail


    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  19. Tunnel-Site Selection by Remote Sensing Techniques (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  20. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.


    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  1. Sensing our Environment: Remote sensing in a physics classroom (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit


    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  2. Remote sensing and conservation of isolated indigenous villages in Amazonia. (United States)

    Walker, Robert S; Hamilton, Marcus J; Groth, Aaron A


    The vast forests on the border between Brazil and Peru harbour a number of indigenous groups that have limited contact with the outside world. Accurate estimates of population sizes and village areas are essential to begin assessing the immediate conservation needs of such isolated groups. In contrast to overflights and encounters on the ground, remote sensing with satellite imagery offers a safe, inexpensive, non-invasive and systematic approach to provide demographic and land-use information for isolated peoples. Satellite imagery can also be used to understand the growth of isolated villages over time. There are five isolated villages in the headwaters of the Envira River confirmed by overflights that are visible with recent satellite imagery further confirming their locations and allowing measurement of their cleared gardens, village areas and thatch roofed houses. These isolated villages appear to have population densities that are an order of magnitude higher than averages for other Brazilian indigenous villages. Here, we report on initial results of a remote surveillance programme designed to monitor movements and assess the demographic health of isolated peoples as a means to better mitigate against external threats to their long-term survival.

  3. Current NASA Earth Remote Sensing Observations (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide


    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  4. Multiscale and Multitemporal Urban Remote Sensing (United States)

    Mesev, V.


    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  5. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang


    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  6. Image Fusion Technologies In Commercial Remote Sensing Packages


    Al-Wassai, Firouz Abdullah; Kalyankar, N. V.


    Several remote sensing software packages are used to the explicit purpose of analyzing and visualizing remotely sensed data, with the developing of remote sensing sensor technologies from last ten years. Accord-ing to literature, the remote sensing is still the lack of software tools for effective information extraction from remote sensing data. So, this paper provides a state-of-art of multi-sensor image fusion technologies as well as review on the quality evaluation of the single image or f...

  7. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes


    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  8. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet


    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  9. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc


    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).


    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou


    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  11. Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools (United States)

    As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...

  12. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

    CSIR Research Space (South Africa)

    Cho, Moses A


    Full Text Available the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new...

  13. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M


    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  14. Performing and updating an inventory of Oregon's expanding irrigated agricultural lands utilizing remote sensing technology (United States)

    Hall, M. J.


    An inventory technique based upon using remote sensing technology, interpreting both high altitude aerial photography and LANDSAT multispectral scanner imagery, is discussed. It is noted that once the final land use inventory maps of irrigated agricultural lands are available and approximately scaled they may be overlaid directly onto either multispectral scanner or return beam vidicon prints, thereby providing an inexpensive updating procedure.

  15. Potential for boom-mounted remote sensing applications in seedling quality monitoring (United States)

    Robert F. Keefe; Jan U. H. Eitel; Daniel S. Long; Anthony S. Davis; Paul Gessler; Alistair M. S. Smith


    Remotely sensed aerial and satellite sensor imagery is widely used for classification of vegetation structure and health on industrial and public lands. More intensively than at any other time in the life of a planted tree, its health and status will be maintained and monitored while under culture in a bareroot or container nursery. As a case in point, inventories to...

  16. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments (United States)

    Jungho Im; John R. Jensen; Mark Coleman; Eric. Nelson


    Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...

  17. An overview of passive remote sensing for post-fire monitoring

    Directory of Open Access Journals (Sweden)


    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and HR (Landsat 7, Spot HVR and VHR satellite imagery (Ikonos, Quickbird, Spot 5 is currently sought as a highly viable option for the post-fire monitoring.

  18. Remote Sensing for Mineral Exploration in Central Portugal

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel


    Full Text Available Central Portugal is well known for the existence of Sn-W and Au-Ag mineral occurrences primarily associated with hydrothermal processes. Despite the economic and strategic importance of such occurrences, the detailed geology of this particular region is poorly known and there is an obvious absence of geological mapping at an adequate scale. Remote sensing techniques were used in order to increase current geological knowledge of the Góis–Castanheira de Pêra area (600 km2 and to guide future exploration stages by targeting and prioritising potential locations. Digital image processing algorithms, such as Red, Green, Blue (RGB colour composites, digital spatial filters, band ratios and Principal Components Analysis, were applied to Landsat 8 imagery and elevation data. Lineaments were extracted relying on geological photointerpretation criteria, allowing the identification of new geological–structural elements. Fieldwork was carried out in order to validate the remote sensing interpretations. Integration of remote sensing data with other information sources led to the definition of locations possibly suitable for hosting Sn-W and Au-Ag mineral occurrences. These areas were ranked according to their mineral potential. Targeting the most promising locations resulted in a reduction to less than 10% of the original study area (50.5 km2.

  19. Multi- and hyperspectral remote sensing of tropical marine benthic habitats (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  20. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing (United States)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.


    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  1. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota (United States)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.


    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  2. Photogrammetry and remote sensing education subjects (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.


    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  3. Remote Sensing of Landslides—A Review

    Directory of Open Access Journals (Sweden)

    Chaoying Zhao


    Full Text Available Triggered by earthquakes, rainfall, or anthropogenic activities, landslides represent widespread and problematic geohazards worldwide. In recent years, multiple remote sensing techniques, including synthetic aperture radar, optical, and light detection and ranging measurements from spaceborne, airborne, and ground-based platforms, have been widely applied for the analysis of landslide processes. Current techniques include landslide detection, inventory mapping, surface deformation monitoring, trigger factor analysis and mechanism inversion. In addition, landslide susceptibility modelling, hazard assessment, and risk evaluation can be further analyzed using a synergic fusion of multiple remote sensing data and other factors affecting landslides. We summarize the 19 articles collected in this special issue of Remote Sensing of Landslide, in the terms of data, methods and applications used in the papers.

  4. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir


    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  5. Remote sensing of land surface phenology (United States)

    Meier, G.A.; Brown, Jesslyn F.


    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at

  6. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia


    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  7. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay


    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  8. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  9. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S


    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  10. Monitoring water quality by remote sensing (United States)

    Brown, R. L. (Principal Investigator)


    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  11. Remote sensing investigations at a hazardous-waste landfill (United States)

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.


    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  12. Kite Aerial Photography as a Tool for Remote Sensing (United States)

    Sallee, Jeff; Meier, Lesley R.


    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  13. Remotely Sensed, catchment scale, estimations of flow resistance (United States)

    Carbonneau, P.; Dugdale, S. J.


    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  14. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria (United States)

    Stumpf, Rick P; Davis, Timothy W.; Wynne, Timothy T.; Graham, Jennifer L.; Loftin, Keith A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A.


    Using satellite imagery to quantify the spatial patterns of cyanobacterial toxins has several challenges. These challenges include the need for surrogate pigments – since cyanotoxins cannot be directly detected by remote sensing, the variability in the relationship between the pigments and cyanotoxins – especially microcystins (MC), and the lack of standardization of the various measurement methods. A dual-model strategy can provide an approach to address these challenges. One model uses either chlorophyll-a (Chl-a) or phycocyanin (PC) collected in situ as a surrogate to estimate the MC concentration. The other uses a remote sensing algorithm to estimate the concentration of the surrogate pigment. Where blooms are mixtures of cyanobacteria and eukaryotic algae, PC should be the preferred surrogate to Chl-a. Where cyanobacteria dominate, Chl-a is a better surrogate than PC for remote sensing. Phycocyanin is less sensitive to detection by optical remote sensing, it is less frequently measured, PC laboratory methods are still not standardized, and PC has greater intracellular variability. Either pigment should not be presumed to have a fixed relationship with MC for any water body. The MC-pigment relationship can be valid over weeks, but have considerable intra- and inter-annual variability due to changes in the amount of MC produced relative to cyanobacterial biomass. To detect pigments by satellite, three classes of algorithms (analytic, semi-analytic, and derivative) have been used. Analytical and semi-analytical algorithms are more sensitive but less robust than derivatives because they depend on accurate atmospheric correction; as a result derivatives are more commonly used. Derivatives can estimate Chl-a concentration, and research suggests they can detect and possibly quantify PC. Derivative algorithms, however, need to be standardized in order to evaluate the reproducibility of parameterizations between lakes. A strategy for producing useful estimates

  15. Bringing an ecological view of change to Landsat-based remote sensing (United States)

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe


    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  16. Remote sensing of environmental pollution on teesside

    NARCIS (Netherlands)

    van Genderen, J.L.


    A preliminary reconnaissance is being carried out to study the methods and procedures most useful for the detection of vegetation stress resulting from the various forms of environmental pollution, in the industrial area of Teesside, NE England, by means of a multiband remote sensing programme.

  17. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants (United States)

    Li, Z.; Zhang, Y.; Hong, J.


    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  18. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul


    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  19. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)


    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  20. Satellite Remote Sensing for Monitoring and Assessment (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...


    Directory of Open Access Journals (Sweden)

    Z. Li


    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  2. Applications of quantitative remote sensing to hydrology

    NARCIS (Netherlands)

    Su, Z.; Troch, P.A.A.


    In order to quantify the rates of the exchanges of energy and matter among hydrosphere, biosphere and atmosphere, quantitative description of land surface processes by means of measurements at different scales are essential. Quantitative remote sensing plays an important role in this respect. The

  3. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  4. Semiconductor laser technology for remote sensing experiments (United States)

    Katz, Joseph


    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  5. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  6. Remote optical stethoscope and optomyography sensing device (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev


    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  7. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R


    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  8. Mapping Water Use and Drought with Satellite Remote Sensing


    Anderson, Martha


    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  9. Opportunities for Increasing Societal Value of Remote Sensing Data ...

    African Journals Online (AJOL)

    Opportunities for Increasing Societal Value of Remote Sensing Data in South Africa's Strategic Development Priorities: A Review. ... Despite the enormous capital required to fund remote sensing initiatives, governments ... HOW TO USE AJOL.

  10. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.

  11. Forest structural assessment using remote sensing technologies: an ...

    African Journals Online (AJOL)

    -Natal and MONDI Business Paper have recently embarked on a remote sensing cooperative. The primary focus of this cooperative is to explore the potential benefits associated with using remote sensing for forestry-related activities.

  12. Remote sensing using MIMO systems (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D


    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  13. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification (United States)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard


    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  14. Remote Sensing Image in the Application of Agricultural Tourism Planning

    Directory of Open Access Journals (Sweden)

    Guojing Fan


    Full Text Available This paper introduces the processing technology of high resolution remote sensing image, the specific making process of tourism map and different remote sensing data in the key application of tourism planning and so on. Remote sensing extracts agricultural tourism planning information, improving the scientificalness and operability of agricultural tourism planning. Therefore remote sensing image in the application of agricultural tourism planning will be the inevitable trend of tourism development.

  15. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie


    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  16. Economic optimization and evolutionary programming when using remote sensing data


    Shamin Roman; Alberto Gabriel Enrike; Uryngaliyeva Ayzhana; Semenov Aleksandr


    The article considers the issues of optimizing the use of remote sensing data. Built a mathematical model to describe the economic effect of the use of remote sensing data. It is shown that this model is incorrect optimisation task. Given a numerical method of solving this problem. Also discusses how to optimize organizational structure by using genetic algorithm based on remote sensing. The methods considered allow the use of remote sensing data in an optimal way. The proposed mathematical m...

  17. Annotated bibliography of remote sensing methods for monitoring desertification (United States)

    Walker, A.S.; Robinove, Charles J.


    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  18. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG


    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  19. History and future of remote sensing technology and education (United States)

    Colwell, R. N.


    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  20. The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS) (United States)

    Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.


    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency

  1. Geometric registration of remotely sensed data with SAMIR (United States)

    Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto


    The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.

  2. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.


    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  3. Review of oil spill remote sensing. (United States)

    Fingas, Merv; Brown, Carl


    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The 1997 remote sensing mission to Kazakhstan

    International Nuclear Information System (INIS)

    Steinmaus, K.; Robert, B.; Berezin, S.A.


    In June and July of 1997, the US Department of Energy, in cooperation with the Republic of Kazakhstan Ministry of Science - Academy of Science conducted a remote sensing mission to Kazakhstan. The mission was conducted as a technology demonstration under a Memorandum of Understanding between the United States Department of Energy and the Republic of Kazakhstan's Ministry of science - Academy of Science. The mission was performed using a US Navy P-3 Orion aircraft and imaging capabilities developed by the Department of Energy's Office of Non-proliferation and National Security. The imaging capabilities consisted of two imaging pods - a synthetic aperture radar (SAR) pod and a multi sensor imaging pod (MSI). Seven experiments were conducted to demonstrate how remote sensing can be used to support city planning, land cover mapping, mineral exploration, and non-proliferation monitoring. Results of the mission will be presented

  5. Surveillance and remote sensing: ITOPF participation

    International Nuclear Information System (INIS)

    Nichols, J.A.


    Although the Federation does not sponsor or undertake surveillance and remote sensing research and development projects, it is a potential user of remote sensing equipment when responding to oil spills. Indeed, the Federation has already made use of suitably equipped aircraft on a number of occasions in Europe. Several countries in north west Europe, viz. France, Germany, Netherlands, Norway, Sweden and the U.K., operate aircraft fitted with broadly similar systems comprising side-looking airborne radar (SLAR), infra-red line scanners (IRLS) and ultra-violet line scanners (UVLS). These aircraft are used routinely for the detection of operational discharges of oil from ships in violation of the International Convention on the Prevention of Pollution from Ships 73/78 (MARPOL 73/78)

  6. Upgraded airborne scanner for commercial remote sensing (United States)

    Chang, Sheng-Huei; Rubin, Tod D.


    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  7. High resolution remote sensing of water surface patterns (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.


    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  8. Recent Advances in Maya Studies Using Remotely Sensed Data (United States)

    Sever, Tom; Irwin, Daniel; Arnold, James E. (Technical Monitor)


    The Peten region of northern Guatemala is one of the last places on earth where major archeological sites remain to be discovered. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper and IKONOS satellite and airborne Star3i radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as cities, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the baJos, which are seasonally flooded swamps that cover over 40% of the land surface. The use of bajos for farming has been a source of debate within the professional community for many years. But the recent detection and verification of cultural features within the bajo system by our research team are providing conclusive evidence that the ancient Maya had adapted well to wetland environments from the earliest times and utilized them until the time of the Maya collapse. The combination of water management and bajo farming is an important resource for the future of the current inhabitants who are experiencing rapid population growth. Remote sensing imagery is also demonstrating that in the Preclassic period (600 BC- AD 250), the Maya had already achieved a high organizational level as evidenced by the construction of massive temples and an elaborate inter-connecting roadway system. Although they experienced several setbacks such as droughts and hurricanes, the Maya nevertheless managed the delicate forest ecosystem successfully for several centuries. However, around AD 800, something happened to the Maya to cause their rapid decline and eventual disappearance from the region. The evidence indicates that at this time there was increased climatic dryness, extensive deforestation, overpopulation, and widespread warfare. This raises a

  9. New Directions in Land Remote Sensing Policy and International Cooperation (United States)

    Stryker, Timothy


    Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing

  10. An Overview of GNSS Remote Sensing (United States)


    Aplicaciones Cientificas-C (SAC-C) satellites. CHAMP provided 8 years of radio oc- cultation data consisting of around 440,000 measurements from February...applications, various modifi- cations of terrestrial receivers are required, including hardware and software modifications to enhance surviv- ability in a...Dop- pler shifts. On the other hand, special hardware and software is required to support non-navigation remote sensing applications in space, such

  11. Remote Sensing using Signals of Opportunity


    Yertay, Alibek; Garrison, James L


    Today, there are more than eight thousand satellites in space. Therefore, Radio Frequency (RF) signals broadcast from satellites can be accessed from almost every point on the earth. There will be number of satellites available at most points on earth with different frequency bands. These satellite signals can be used for remote sensing, therefore software that visualizes footprints of satellites and shows characteristics of every satellite available at any point would be useful in determinin...

  12. Mesoscale Modeling, Forecasting and Remote Sensing Research. (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  13. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.


    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015

  14. Geologic remote sensing study of the Hayden pass-Orient Mine Area, Northern Sangre de Cristo Mountains, Colorado (United States)

    Wychgram, D. C.


    Remote sensor data from a NASA Convair 990 radar flight and Mission 101 and 105 have been interpreted and evaluated. Based on interpretation of the remote sensor data, a geologic map has been prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives one indication of the usefulness and reliability of the remote sensor data. Color and color infrared photography provided the largest amount of valuable information. Multiband photography was of lesser value and side-looking radar imagery provided no new information that was not available on small scale photography. Thermal scanner imagery proved to be a very specialized remote sensing tool that should be applied to areas of low relief and sparse vegetation where geologic features produce known or suspected thermal contrast. Low sun angle photography may be a good alternative to side-looking radar imagery but must be flown with critical timing.

  15. Remote sensing for oil spill detection and response

    International Nuclear Information System (INIS)

    Engelhardt, F.R.


    This paper focuses on the use of remote sensing for marine oil spill detection and response. The surveillance and monitoring of discharges, and the main elements of effective surveillance are discussed. Tactical emergency response and the requirements for selecting a suitable remote sensing approach, airborne remote sensing systems, and the integration of satellite and airborne imaging are examined. Specifications of satellite surveillance systems potentially usable for oil spill detection, and specifications of airborne remote sensing systems suitable for oil spill detection, monitoring and supplemental actions are tabulated, and a schema of integrated satellite-airborne remote sensing (ISARS) is presented. (UK)

  16. Remote Sensing of Landscapes with Spectral Images (United States)

    Adams, John B.; Gillespie, Alan R.


    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images ( Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  17. Ambiguity of Quality in Remote Sensing Data (United States)

    Lynnes, Christopher; Leptoukh, Greg


    This slide presentation reviews some of the issues in quality of remote sensing data. Data "quality" is used in several different contexts in remote sensing data, with quite different meanings. At the pixel level, quality typically refers to a quality control process exercised by the processing algorithm, not an explicit declaration of accuracy or precision. File level quality is usually a statistical summary of the pixel-level quality but is of doubtful use for scenes covering large areal extents. Quality at the dataset or product level, on the other hand, usually refers to how accurately the dataset is believed to represent the physical quantities it purports to measure. This assessment often bears but an indirect relationship at best to pixel level quality. In addition to ambiguity at different levels of granularity, ambiguity is endemic within levels. Pixel-level quality terms vary widely, as do recommendations for use of these flags. At the dataset/product level, quality for low-resolution gridded products is often extrapolated from validation campaigns using high spatial resolution swath data, a suspect practice at best. Making use of quality at all levels is complicated by the dependence on application needs. We will present examples of the various meanings of quality in remote sensing data and possible ways forward toward a more unified and usable quality framework.

  18. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)


    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  19. Hyperspectral remote sensing of plant pigments. (United States)

    Blackburn, George Alan


    The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.

  20. Analysis of remote sensing data for evaluation of vegetation resources (United States)


    Research has centered around: (1) completion of a study on the use of remote sensing techniques as an aid to multiple use management; (2) determination of the information transfer at various image resolution levels for wildland areas; and (3) determination of the value of small scale multiband, multidate photography for the analysis of vegetation resources. In addition, a substantial effort was made to upgrade the automatic image classification and spectral signature acquisition capabilities of the laboratory. It was found that: (1) Remote sensing techniques should be useful in multiple use management to provide a first-cut analysis of an area. (2) Imagery with 400-500 feet ground resolvable distance (GRD), such as that expected from ERTS-1, should allow discriminations to be made between woody vegetation, grassland, and water bodies with approximately 80% accuracy. (3) Barley and wheat acreages in Maricopa County, Arizona could be estimated with acceptable accuracies using small scale multiband, multidate photography. Sampling errors for acreages of wheat, barley, small grains (wheat and barley combined), and all cropland were 13%, 11%, 8% and 3% respectively.

  1. Open Access Data in Polar and Cryospheric Remote Sensing

    Directory of Open Access Journals (Sweden)

    Allen Pope


    Full Text Available This paper aims to introduce the main types and sources of remotely sensed data that are freely available and have cryospheric applications. We describe aerial and satellite photography, satellite-borne visible, near-infrared and thermal infrared sensors, synthetic aperture radar, passive microwave imagers and active microwave scatterometers. We consider the availability and practical utility of archival data, dating back in some cases to the 1920s for aerial photography and the 1960s for satellite imagery, the data that are being collected today and the prospects for future data collection; in all cases, with a focus on data that are openly accessible. Derived data products are increasingly available, and we give examples of such products of particular value in polar and cryospheric research. We also discuss the availability and applicability of free and, where possible, open-source software tools for reading and processing remotely sensed data. The paper concludes with a discussion of open data access within polar and cryospheric sciences, considering trends in data discoverability, access, sharing and use.

  2. Remote sensing techniques in monitoring areas affected by forest fire (United States)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.


    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  3. Autonomous target recognition using remotely sensed surface vibration measurements (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.


    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  4. NOAA Emergency Response Imagery (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is in response to natural disasters. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The majority...

  5. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    International Nuclear Information System (INIS)

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby


    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile

  6. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jenna, E-mail:; Ustin, Susan; Sandoval-Solis, Samuel; O' Geen, Anthony Toby


    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile.

  7. Study on the construction of multi-dimensional Remote Sensing feature space for hydrological drought

    International Nuclear Information System (INIS)

    Xiang, Daxiang; Tan, Debao; Wen, Xiongfei; Shen, Shaohong; Li, Zhe; Cui, Yuanlai


    Hydrological drought refers to an abnormal water shortage caused by precipitation and surface water shortages or a groundwater imbalance. Hydrological drought is reflected in a drop of surface water, decrease of vegetation productivity, increase of temperature difference between day and night and so on. Remote sensing permits the observation of surface water, vegetation, temperature and other information from a macro perspective. This paper analyzes the correlation relationship and differentiation of both remote sensing and surface measured indicators, after the selection and extraction a series of representative remote sensing characteristic parameters according to the spectral characterization of surface features in remote sensing imagery, such as vegetation index, surface temperature and surface water from HJ-1A/B CCD/IRS data. Finally, multi-dimensional remote sensing features such as hydrological drought are built on a intelligent collaborative model. Further, for the Dong-ting lake area, two drought events are analyzed for verification of multi-dimensional features using remote sensing data with different phases and field observation data. The experiments results proved that multi-dimensional features are a good method for hydrological drought

  8. The contribution of remote sensing to an understanding of the geology of Gabon

    International Nuclear Information System (INIS)

    Bassot, J.P.


    A major remote-sensing operation involving radar imagery and airbone magnetism and spectrometry has been successfully conducted in Gabon. The three methods used give complementary results. Lateral radar imagery and radiometry (U, K, Th) have supplied much new information on the Upper and Lower Proterozoic, but in areas affected by intense peneplanation and lateritisation they are less effective. Conversely, Airbone magnetism gives a deeper vision into the ground: particularly it revealed that the extent of greenstone belts had been significantly underestimated on existing geological maps. In addition, the trends in these belts have given a new insight into late Archaean tectonics in northern Gabon [fr

  9. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao


    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  10. Field calibration and validation of remote-sensing surveys (United States)

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher


    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  11. Geomorphometry through remote sensing and GIS for watershed management

    International Nuclear Information System (INIS)

    Venkateswarlu, P.; Reddy, M.A.; Gokhale, K.V.G.K.


    Application of remote sensing and GIS for effective determination of the quantitative description of drainage basin geometry for watershed management prioritization forms the theme of this paper. In the present study, each of the eight sub watersheds of Racherla watershed of Prakasam (District) Andhra Pradesh, have been studied in terms of the morphometric parameters -stream length, bifurcation ratio, length ratio, drainage density, stream frequency, texture ratio, form factor area, perimeter, circularity ratio, elongation ratio and sediment yield index. The prioritization of the eight sub watersheds is carried out considering morphometry and sediment yield index. Using IRS IC satellite imagery, a computerized database is created availing ARC / INFO software. The initial drainage map prepared from the survey of India toposheets was later unified with satellite imagery. The prioritization of sub sheds based on morphometry compared with sediment yield prioritization and found nearly same for the study area. The information obtained from all the thematic map is integrated and action plan is suggested for land and water resources development on a sustainable basis. (author)

  12. Oil spill remote sensing flights around Vancouver Island

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.E.; Fingas, M.F.; Marois, R. [Environment Canada, Ottawa, ON (Canada)


    A large number of oiled seabirds are found on beaches and shorelines in Canada each year. Although there are several programs in place to detect high-volume oily bilge dumping incidents, the sensors used in many surveillance procedures are not capable of detecting suspected chronic low-volume disposal of contaminated waste waters by ships. This paper described the development and testing procedures of the Scanning Laser Environmental Airborne Fluorosensor (SLEAF), which was designed to map and characterize oil contamination in marine coastal and shoreline environments. Laser-induced fluorescence is detected by SLEAF with a spectrometric receiver. Full-spectral resolution geo-referenced fluorescence data are collected for each laser pulse and recorded directly to a computer. Eight oil spill remote sensing flights using SLEAF were conducted during March and April 2006. Geo-referenced infrared, ultraviolet, colour video and digital still imagery was collected alongside the fluorosensor data. Several light patches of oil were observed with SLEAF, most of which were in shipping lanes in the Strait of Juan de Fuca. The oil patches were light, and some were not visible to the naked eye, and were only detected by the laser fluorosensor. Larger slicks were captured in video imagery. Approximately 50 marine vessels were overflown during the flight demonstration program, and only 2 vessels appeared to be associated with the oil slicks. It was concluded that chronic low-volume oil releases in shipping lanes around Vancouver Island are a cause for concern. 11 refs., 2 tabs., 5 figs.

  13. Geological remote sensing-evaluation of image data

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, H


    During the nationwide geothermal investigation program (Japan) begun in 1973, five districts were chosen for evaluation of the effectiveness and limitations of aerial thermography. Using thermal images of Ibusuki City and Yamakawa-cho, geothermal resource areas were detected and related fracture zones were established by combining the thermal imagery and geological maps. At Ibusuki City, it was determined that the heat source was the Ata caldera, and that a fracture system connecting it to Lake Ikeda provides a conduit for geothermal fluids. Image plotting of thermal anomalies in the Hachimantai geothermal field was found to be an effective method for monitoring variation in thermal activity. LANDSAT imagery was anlayzed and lineament systems were detected in the mountains of the Kanto district. Followup of LANDSAT data by mapping teams confirmed a fault which intersects the major Kamitsuna fault in that district. This successful use of remote sensing data is encouraging but it is possible to draw only limited conclusions from it at present. Further refinement of analytical techniques is required.

  14. Satellite Remote Sensing For Aluminum And Nickel Laterites (United States)

    Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.


    The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.

  15. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. (United States)

    Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C


    Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery

  16. Report on geologic remote sensing of the Columbia Plateau

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.; Schmierer, K.E.; Lindberg, J.W.


    The purpose of this remote sensing study is to identify faults or other geologic features which may have a significant bearing on the structural and tectonic character of the Hanford Site and the surrounding region. Landsat imagery, Skylab photographs, and U-2 photographs were analyzed to identify and map geologic photolineaments in the Columbia Plateau. The Landsat and Skylab imagery provided a regional perspective and allowed the identification of large-scale linear features. The U-2 photography provided much greater spatial resolution as well as a stereoscopic viewing capability. This allowed identification of smaller structural or geologic features and the identification of many cultural and nongeologic lineaments detected in the Landsat and Skylab imagery. The area studied totals, approximately 85,000 square miles, and encompasses virtually all exposures of Columbia River Basalt in the states of Washington, Oregon, and Idaho. It also includes an area bordering the Columbia River Basalt outcrop. This border area was studied in order to identify significant structures that may extend into the plateau. Included are a description of the procedures used for image analysis, 20 lineament maps at a scale of 1:250,000, geological summaries for the areas covered by the lineament maps, and discussions of many of the lineaments shown on the maps. Comparisons of the lineament maps with available geologic maps showed that the number of detected lineaments was much greater than the number of known faults and other linear features. Approximately 70% of the faults shown on the geologic maps were detected and are characterized as lineaments. Lineament trends in the northwest-southeast and northeast-southwest directions were found to predominate throughout the study area

  17. Applications of remote sensing techniques to the assessment of dam safety: A progress report

    International Nuclear Information System (INIS)

    Bowlby, J.R.; Grass, J.D.; Singhroy, V.H.


    Remote sensing detection and data collection techniques, combined with data from image analyses, have become effective tools that can be used for rapid identification, interpretation and evaluation of the geological and environmental information required in some areas of performance analysis of hydraulic dams. Potential geological hazards to dams such as faults, landslides and liquefaction, regional crustal warping or tilting, stability of foundation materials, flooding and volcanic hazards are applications in which remote sensing may aid analysis. Details are presented of remote sensing techiques, optimal time of data acquisition, interpreting techniques, and application. Techniques include LANDSAT thematic mapper (TM), SPOT images, thermal infrared scanning, colour infrared photography, normal colour photography, panchromatic black and white, normal colour video, infrared video, airborne multi-spectral electronic imagery, airborne synthetic aperture radar, side scan sonar, and LIDAR (optical radar). 3 tabs

  18. Remote sensing in Michigan for land resource management: Highway impact assessment (United States)


    An existing section of M-14 freeway constructed in 1964 and a potential extension from Ann Arbor to Plymouth, Michigan provided an opportunity for investigating the potential uses of remote sensing techniques in providing projective information needed for assessing the impact of highway construction. Remote sensing data included multispectral scanner imagery and aerial photography. Only minor effects on vegetation, soils, and land use were found to have occurred in the existing corridor. Adverse changes expected to take place in the corridor proposed for extension of the freeway can be minimized by proper design of drainage ditches and attention to good construction practices. Remote sensing can be used to collect and present many types of data useful for highway impact assessment on land use, vegetation categories and species, soil properties and hydrologic characteristics.

  19. Proceedings of the sixth circumpolar symposium on remote sensing of polar environments. CD-ROM ed.

    International Nuclear Information System (INIS)

    Taylor, D.


    This international conference focused on the application of remote sensing to monitor morphological and environmental changes in polar environments to better understand the impacts of climatic change. Remote sensing included the use of satellite image mapping, LANDSAT imagery, and digitized aerial photography. The conference was divided into several sessions entitled: (1) techniques, (2) wildlife habitat, (3) regional mapping, (4) environment and climate, (5) geographical information systems (GIS) modeling, (6) geology and geomorphology, (7) snow and ice, and (8) monitoring. The work presented at this conference indicates that remote sensing, photogrammetry, GIS and cartography are cost-effective means to monitor hard to reach polar regions. A total of 27 papers were presented at this conference. Four have been processed separately for inclusion on the database. refs., tabs,. figs

  20. Towards automated statewide land cover mapping in Wisconsin using satellite remote sensing and GIS techniques

    International Nuclear Information System (INIS)

    Cosentino, B.L.; Lillesand, T.M.


    Attention is given to an initial research project being performed by the University of Wisconsin-Madison, Environmental Remote Sensing Center in conjunction with seven local, state, and federal agencies to implement automated statewide land cover mapping using satellite remote sensing and geographical information system (GIS) techniques. The basis, progress, and future research needs for this mapping program are presented. The research efforts are directed toward strategies that integrate satellite remote sensing and GIS techniques in the generation of land cover data for multiple users of land cover information. The project objectives are to investigate methodologies that integrate satellite data with other imagery and spatial data resident in emerging GISs in the state for particular program needs, and to develop techniques that can improve automated land cover mapping efficiency and accuracy. 10 refs

  1. A feasibility study of using remotely sensed data for water resource models (United States)

    Ruff, J. F.


    Remotely sensed data were collected to demonstrate the feasibility of applying the results to water resource problems. Photographs of the Wolf Creek watershed in southwestern Colorado were collected over a one year period. Cloud top temperatures were measured using a radiometer. Thermal imagery of the Wolf Creek Pass area was obtained during one pre-dawn flight. Remote sensing studies of water resource problems for user agencies were also conducted. The results indicated that: (1) remote sensing techniques could be used to assist in the solution of water resource problems; (2) photogrammetric determination of snow depths is feasible; (3) changes in turbidity or suspended material concentration can be observed; and (4) surface turbulence can be related to bed scour; and (5) thermal effluents into rivers can be monitored.


    Directory of Open Access Journals (Sweden)

    S. Eken


    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  3. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images (United States)

    Eken, S.; Aydın, E.; Sayar, A.


    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  4. Theory and approach of information retrievals from electromagnetic scattering and remote sensing

    CERN Document Server

    Jin, Ya-Qiu


    Covers several hot topics in current research of electromagnetic scattering, and radiative transfer in complex and random media, polarimetric scattering and SAR imagery technology, data validation and information retrieval from space-borne remote sensing, computational electromagnetics, etc.Including both forward modelling and inverse problems, analytic theory and numerical approachesAn overall summary of the author's works during most recent yearsAlso presents some insight for future research topics.

  5. Carbon dioxide effects research and assessment program. Measurement of changes in terrestrial carbon using remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G M [ed.


    Changes in the area of forests as well as changes in the storage of carbon within forest stands have large potential effects on atmospheric CO/sub 2/. This conference addressed the challenge of measuring changes in the area of forests globally through use of satellite remote sensing. The conclusion of the approximately seventy participants from around the world was that a program based on LANDSAT imagery supplemented by aerial photography is both possible and appropriate.

  6. Hyperspectral remote sensing of wild oyster reefs (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent


    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  7. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.


    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  8. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools (United States)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.


    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  9. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.


    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  10. USDOE Remote Sensing Laboratory multisensor surveys

    International Nuclear Information System (INIS)

    Tinney, L.; Christel, L.; Clark, H.; Mackey, H.


    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and routine environmental assessments of nuclear facilities. The unique suite of equipment used by RSL for multisensor surveys of nuclear facilities include gamma radiation sensors, mapping quality aerial cameras, video cameras, thermal imagers, and multispectral scanners. Results for RSL multisensor surveys that have been conducted at the Savannah River Site (SRS) located in South Carolina are presented

  11. Remote sensing and communications in random media (United States)

    Papanicolaou, George


    Reliable, high-capacity communications in scattering media can be effectively established with some basic remote sensing techniques involving time reversal. I will formulate these problems and discuss the various mathematical approaches that can be used for analysis. It turns out that stochastic analysis plays an important role and, in some cases, gives very satisfactory results. One such result is the spectacular increase in communications capacity in a richly scattering environment. I will end with a discussion of applications and computational issues that arise in the realistic simulation of communication systems.

  12. Parallelizing remote sensing image geometric correction


    Bernabeu i Altayó, Gerard; Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius


    Remote sensing spatial, spectral, and temporal resolutions of images, acquired Les resolucions espacials, espectrals i temporals d'imatges de teledetecci ó, adquirides a una mida raonable, donen com a resultat imatges que es poden processar per a representar grans àrees de terreny amb un nivell de detall espacial que es Las resoluciones espaciales, espectrales y temporales de imágenes de teledetección, adquiridas a un tamaño razonable, dan como resultado imágenes que se pueden procesar ...

  13. Application of remote sensing to environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Handley, J F


    The contribution of remote sensing to environmental management procedures at the sub-regional scale is examined in relation to the County Structure environmental management plan for Merseyside County, England. The various seasons, scales and emulsions used for aerial photography in the county are indicated, and results of aerial surveys of the distribution of derelict and despoiled land and of natural environments are presented and compared with ground surveys. The use of color infrared and panchromatic aerial photographs indicating areas of environmental stress and land use in the formulation, implementation and monitoring of environmental management activities is then discussed.

  14. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang


    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  15. Remote shock sensing and notification system (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.


    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  16. Remote sensing research in geographic education: An alternative view (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.


    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  17. Remote sensing programs and courses in engineering and water resources (United States)

    Kiefer, R. W.


    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  18. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.


    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  19. Remote sensing in operational range management programs in Western Canada (United States)

    Thompson, M. D.


    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  20. Preface to: Pan Ocean Remote Sensing Conference (PORSEC)

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.; Brown, R.; Shenoi, S.S.C.; Joseph, G.

    Conference (PORSEC), earlier known as the Paci c Ocean Remote Sensing Conference (PORSEC), was formed in 1992 to provide a venue for international cooperation in the increasingly important area of remote sensing of the ocean. Many countries that border... and ocean dynamics, and modeling with satellite sensor (mainly microwave) data. Some of the presentations are of regional interest, while others will nd an audience beyond the satellite remote sensing community. These rst results through their simple...

  1. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.


    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones


    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  3. Remote sensing applied in uranium exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.


    A research project, aiming at investigation the use of remote sensing in uranium exploration, has been accomplished on data from South Greenland. During the project, analyses have been done on pure remote sensing data (Landsat MSS) and on integrated data of various types, including geochemical, aeromagnetic, radiometric and geological data in addition to the MSS data. Ratioing, factor analysis and discriminant analysis were used for enhancement of colour anomalies which correspond to oxidation zones. Some of the anomalies coincide with U and Nb mineralizations. Lineaments were mapped visually from photoprints, digitized and analysed statistically. A sinusoidal model could be applied to the general directional frequency distribution and was used to define ten classes of significant directions. Three of these directions were of major geological significance. Thus some of the major alkaline intrusions are situated at the intersections of some of the lineaments, a particular NE-SW trending lineament coincides with a geochemical boundary and pitchblende occurrences may be related to a WNW-ESE direction. The various types of data set were brought onto format of the Landsat images and collected in a data base. Representing three different types of data (Landsat MSS-band 7, aeromagnetic data and the geochemical Fe-content of stream sediments) on basis of intensity, hue and saturation revealed new features among which can be mentioned a possible indication of a subsurface continuation of one of the major alkaline intrusions. (author)

  4. Remote sensing application for property tax evaluation (United States)

    Jain, Sadhana


    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  5. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué


    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  6. Support for global science: Remote sensing's challenge (United States)

    Estes, J. E.; Star, J. L.


    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  7. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary


    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  8. Satellite remote sensing in epidemiological studies. (United States)

    Sorek-Hamer, Meytar; Just, Allan C; Kloog, Itai


    Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.

  9. Domestic parking estimation using remotely sensed data (United States)

    Ramzi, Ahmed


    Parking is an integral part of the traffic system everywhere. Provision of parking facilities to meet peak of demands parking in cities of millions is always a real challenge for traffic and transport experts. Parking demand is a function of population and car ownership which is obtained from traffic statistics. Parking supply in an area is the number of legal parking stalls available in that area. The traditional treatment of the parking studies utilizes data collected either directly from on street counting and inquiries or indirectly from local and national traffic censuses. Both methods consume time, efforts, and funds. Alternatively, it is reasonable to make use of the eventually available data based on remotely sensed data which might be flown for other purposes. The objective of this work is to develop a new approach based on utilization of integration of remotely sensed data, field measurements, censuses and traffic records of the studied area for studying domestic parking problems in residential areas especially in informal areas. Expected outcomes from the research project establish a methodology to manage the issue and to find the reasons caused the shortage in domestics and the solutions to overcome this problems.

  10. Land remote sensing commercialization: A status report (United States)

    Bishop, W. P.; Heacock, E. L.


    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  11. Levee Health Monitoring With Radar Remote Sensing (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.


    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  12. Physics teaching by infrared remote sensing of vegetation (United States)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund


    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  13. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation (United States)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches

  14. Prediction of reef fish spawning aggregations using remote sensing: A review

    International Nuclear Information System (INIS)

    Rosli, M R; Ibrahim, A L; Masron, T


    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  15. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.


    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  16. 环境一号C卫星SAR图像典型环境遥感应用初探%Applications of Environmental Remote Sensing by HJ-1C SAR Imageries

    Institute of Scientific and Technical Information of China (English)

    田维; 徐旭; 卞小林; 柴勋; 王世昂; 宫华泽; 熊文成; 邵芸


    The HJ-1C satellite was successfully launched in November 19, 2012. The HJ-1C and HJ-1A/1B satellites, which were launched in September 06, 2008, constitute the “2+1” small satellite constellation for environmental and disaster monitoring. This study focuses on the analysis and evaluation of the satellite performance with respect to environmental remote sensing, including land use interpretation, land cover classification, oil spill identification, retrieval of sea waves, and monitoring of coastal mariculture. The data used in this study cover the city of Beijing and the sea of the Fujian Province. Nine HJ-1C satellite images (level-2, S band, VV Pol, strip mode, 5 m resolution) from December 2012 to January 2013 are used. The conclusions are as follows:(1) the HJ-1C SAR images can be used to manually identify farmland, woodland, roads, rivers, urban construction, and rural residential areas;(2) the accuracy of the automatic land cover classification increased significantly when the HJ-1C SAR and HJ-1B CCD fusion images are used;(3) the HJ-1C satellite can be used to identify oil spills, to invert wave parameters, and to extract information regarding inshore aquaculture.%“环境一号”C卫星(HJ-1C)于2012年11月19日成功发射,并与2008年9月6日“一箭双星”发射的“环境一号”A星,B星(HJ-1A/1B)组成“2+1”环境与灾害监测预报小卫星星座系统。该文以2012年12月~2013年1月期间获取的9景HJ-1C卫星数据2级产品(S波段,VV极化,Strip模式,5 m分辨率)为实验数据,以北京市和福建省近海海域为研究实验区,以HJ-1C卫星SAR图像土地利用类型人工解译与制图、地表覆盖自动分类、近海海洋溢油污染识别、海浪特征参数反演、海水养殖区特征提取等近海海洋环境监测等为例,开展了HJ-1C卫星SAR图像环境遥感应用能力的分析与评价。结果表明:(1)HJ-1C卫星SAR图像可用于耕地、林地、公路用地、河流

  17. Airborne remote sensing of estuarine intertidal radionuclide concentrations

    International Nuclear Information System (INIS)

    Rainey, M.P.


    The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Pic.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafield-derived 137 Cs and 241 Am and clay content (r 2 = 0.93 and 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5μm) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r 2 = 0.81). Subsequently, the established relationships between 137 Cs and 241 Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92 km 2 ) to be mapped at a geomorphic scale (1.75 m). The accuracy of these maps

  18. An evaluation of remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites in Pennsylvania (United States)

    Slonecker, E. Terrence; Fisher, Gary B.


    This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.

  19. Benefits to world agriculture through remote sensing (United States)

    Buffalano, A. C.; Kochanowski, P.


    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  20. Biomass Burning Emissions from Fire Remote Sensing (United States)

    Ichoku, Charles


    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  1. Remote Sensing of Parasitic Nematodes in Plants (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John


    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  2. Remote sensing with laser spectrum radar (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong


    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  3. Remote sensing of sagebrush canopy nitrogen (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.


    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.


    Directory of Open Access Journals (Sweden)

    J. P. Stals


    Full Text Available Earth observation (EO data is effective in monitoring agricultural cropping activity over large areas. An example of such an application is the GeoTerraImage crop type classification for the South African Crop Estimates Committee (CEC. The satellite based classification of crop types in South Africa provides a large scale, spatial and historical record of agricultural practices in the main crop growing areas. The results from these classifications provides data for the analysis of trends over time, in order to extract valuable information that can aid decision making in the agricultural sector. Crop cultivation practices change over time as farmers adapt to demand, exchange rate and new technology. Through the use of remote sensing, grain crop types have been identified at field level since 2008, providing a historical data set of cropping activity for the three most important grain producing provinces of Mpumalanga, Freestate and North West province in South Africa. This historical information allows the analysis of farm management practices to identify changes and trends in crop rotation and irrigation practices. Analysis of crop type classification over time highlighted practices such as: frequency of cultivation of the same crop on a field, intensified cultivation on centre pivot irrigated fields with double cropping of a winter grain followed by a summer grain in the same year and increasing cultivation of certain types of crops over time such as soyabeans. All these practices can be analysed in a quantitative spatial and temporal manner through the use of the remote sensing based crop type classifications.

  5. Data Fusion for Earth Science Remote Sensing (United States)

    Braverman, Amy


    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  6. A Parallel Processing Algorithm for Remote Sensing Classification (United States)

    Gualtieri, J. Anthony


    A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.

  7. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)


    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  8. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    Dozier J 1989a Remote sensing of snow in the visible and near-infrared wavelengths; In: Theory and Applications of. Optical Remote Sensing (ed.) Asrar G (New York: John. Wiley and Sons), pp. 527–547. Dozier J 1989b Spectral signature of alpine snow cover from the Landsat Thematic Mapper; Rem. Sens. Environ. 28.

  9. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.


    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  10. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)


    present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used. Remotely sensed .... growing stock in Tahno range of Dehradun Forest Division. Okhandiara (2008) .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral signatures to ...

  11. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.


    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  12. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  13. Recent developments in remote sensing for coastal and marine applications

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie


    Full Text Available at the coast is that it is in a permanent state of change. Remote sensing, whether from orbiting (space-borne) or air-borne platforms, can greatly assist in the task of monitoring coastal environments. In particular, remote sensing enables simultaneous or near...

  14. Remote sensing fire and fuels in southern California (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen


    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  15. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun


    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  16. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.


    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  17. Potential benefits of remote sensing: Theoretical framework and empirical estimate (United States)

    Eisgruber, L. M.


    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  18. Remote sensing education in NASA's technology transfer program (United States)

    Weinstein, R. H.


    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  19. Remote Sensing Data Visualization, Fusion and Analysis via Giovanni (United States)

    Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.


    We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.

  20. Landsat's role in ecological applications of remote sensing. (United States)

    Warren B. Cohen; Samuel N. Goward


    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  1. The potential of remote sensing technology for the detection and ...

    African Journals Online (AJOL)

    Internationally, a number of studies have successfully used remote sensing technology to monitor forest damage. Remote sensing technology allows for instantaneous methods of assessments whereby ground assessments would be impossible on a regular basis. This paper provides an overview of how advances in ...

  2. Remote sensing and change detection in rangelands | Palmer ...

    African Journals Online (AJOL)

    To most land managers, remote sensing has remained illusive, seldom allowing the manager to use it to its full potential. In contrast, the policy maker, backed by GIS laboratories and remote sensing specialists, is confronted by plausible scenarios of degradation and transformation. After intervening, he is seldom active long ...

  3. A NDVI assisted remote sensing image adaptive scale segmentation method (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei


    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  4. Online catalog access and distribution of remotely sensed information (United States)

    Lutton, Stephen M.


    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  5. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France


    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  6. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S


    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  7. The function of remote sensing in support of environmental policy


    de Leeuw, Jan; Georgiadou, P.Y.; Georgiadou, Yola; Kerle, Norman; de Gier, Alfred; Inoue, Yoshio; Ferwerda, Jelle; Smies, Maarten; Narantuya, Davaa


    Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1), there is apparently lit...

  8. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan


    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  9. Commercial future: making remote sensing a media event (United States)

    Lurie, Ian


    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  10. Thermal Remote Sensing with Uav-Based Workflows (United States)

    Boesch, R.


    Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.

  11. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen


    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  12. Geographic information systems and remote sensing techniques in environmental assessment

    International Nuclear Information System (INIS)

    Kenny, F.M.


    Digital map products and spatial inventories are becoming increasingly available from geological surveys, agricultural, natural resource, environmental, energy, transportation and forestry departments. As well there are now multitudes of specialized digital airborne and satellite image products available. This wide availability of geographically referenced data and the advances in spatial data analysis software are providing geoscientists with new tools and new ways of viewing traditionally used data. Through several examples, this paper will demonstrate how remote sensing and GIS technologies can contribute to environmental assessment of an urban fringe area. Nowhere is the need for spatial inventories and mapping greater than in such areas, where pre-existing information becomes rapidly outdated. A 260-km 2 site, north of Metropolitan Toronto was chosen as a study area. A spatial data base was constructed which included imagery from three different satellite sensors, a Digital Terrain Model (DTM), and digital drainage network, and a digital copy of the Ontario Geological Survey's Quaternary geological map. (author). 15 refs., 1 tab., 17 figs

  13. Subpixel level mapping of remotely sensed image using colorimetry

    Directory of Open Access Journals (Sweden)

    M. Suresh


    Full Text Available The problem of extracting proportion of classes present within a pixel has been a challenge for researchers for which already numerous methodologies have been developed but still saturation is far ahead, since still the methods accounting these mixed classes are not perfect and they would never be perfect until one can talk about one to one correspondence for each pixel and ground data, which is practically impossible. In this paper a step towards generation of new method for finding out mixed class proportions in a pixel on the basis of the mixing property of colors as per colorimetry. The methodology involves locating the class color of a mixed pixel on chromaticity diagram and then using contextual information mainly the location of neighboring pixels on chromaticity diagram to estimate the proportion of classes in the mixed pixel.Also the resampling method would be more accurate when accounting for sharp and exact boundaries. With the usage of contextual information can generate the resampled image containing only the colors which really exist. The process is simply accounting the fraction and then the number of pixels by multiplying the fraction by total number of pixels into which one pixel is splitted to get number of pixels of each color based on contextual information. Keywords: Subpixel classification, Remote sensing imagery, Colorimetric color space, Sampling and subpixel mapping

  14. Operational programs in forest management and priority in the utilization of remote sensing (United States)

    Douglass, R. W.


    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  15. Ten ways remote sensing can contribute to conservation (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara


    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  16. Ten ways remote sensing can contribute to conservation. (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara


    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  17. Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification

    Directory of Open Access Journals (Sweden)

    Jian Zhang


    Full Text Available Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications has not been well documented in related studies. The objective of this research was to apply three commonly-used classification methods (unsupervised, supervised, and object-based to three-band imagery with RGB (red, green, and blue bands and four-band imagery with RGB and near-infrared (NIR bands to evaluate the performance of a dual-camera imaging system for crop identification. Airborne images were acquired from a cropping area in Texas and mosaicked and georeferenced. The mosaicked imagery was classified using the three classification methods to assess the usefulness of NIR imagery for crop identification and to evaluate performance differences between the object-based and pixel-based methods. Image classification and accuracy assessment showed that the additional NIR band imagery improved crop classification accuracy over the RGB imagery and that the object-based method achieved better results with additional non-spectral image features. The results from this study indicate that the airborne imaging system based on two consumer-grade cameras used in this study can be useful for crop identification and other agricultural applications.

  18. Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields

    Directory of Open Access Journals (Sweden)

    Teerapong Panboonyuen


    Full Text Available Object segmentation of remotely-sensed aerial (or very-high resolution, VHS images and satellite (or high-resolution, HR images, has been applied to many application domains, especially in road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts at applying the deep convolutional neural network (DCNN to extract roads from remote sensing images have been made; however, the accuracy is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road extraction of remote sensing images by applying landscape metrics (LMs and conditional random fields (CRFs. To improve the DCNN, a modern activation function called the exponential linear unit (ELU, is employed in our network, resulting in a higher number of, and yet more accurate, extracted roads. To further reduce falsely classified road objects, a solution based on an adoption of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as the Thailand Earth Observation System (THEOS satellite imagery data sets. The results showed that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique, on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F 1 .

  19. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X


    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  20. Assessment of sensors and aircraft for oil spill remote sensing

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fruhwirth, M.


    Environment Canada has assessed sensors and aircraft suitable for remote sensing, particularly the capability of sensors to detect oil and to discriminate oil from background targets. The assessment was based on past experience and technical considerations. The first sensor recommended for use is an infrared camera or an IR/UV system. This recommendation is based on the system's ability to detect oil and discriminate this from the background, and the low cost of these sensors. The laser fluorosensor is recommended as the second device, as it is the only unit capable of positively discriminating oil on water, among weeds, and in sediment or beach material. Cameras operating in the visible region of the spectrum are recommended for two functions: documentation and providing background or location imagery for other sensors. Imaging radars, be they SAR or SLAR, are recommended for long-range searches or for oil spill work at night or when fog is present. Radars are expensive and require dedicated aircraft. Passive microwave devices are currently being developed but have not been proven as an alternative to radar or for measuring slick thickness. A laser based thickness sensor is under development. Satellite systems were also assessed. Satellite sensors operating in the visible spectrum have only limited application to major oil spills. New radar sensors show limited potential. The major limitation of any satellite system is the limited coverage time that is a function of its orbit. A study of aircraft and aircraft modifications was carried out to catalog aircraft modifications necessary to operate oil spill remote sensors. A potential user could select modifications that are already approved and thus save the high costs of aircraft modification design. The modifications already approved in Canada and the US for a given aircraft provide criteria for the selection of an aircraft

  1. Using Monte Carlo Simulation to Improve the Performance of Semivariograms for Choosing the Remote Sensing Imagery Resolution for Natural Resource Surveys: Case Study on Three Counties in East, Central, and West China

    Directory of Open Access Journals (Sweden)

    Juanle Wang


    Full Text Available Semivariograms have been widely used in research to obtain optimal resolutions for ground features. To obtain the semivariogram curve and its attributes (range and sill, parameters including sample size (SS, maximum distance (MD, and group number (GN have to be defined, as well as a mathematic model for fitting the curve. However, a clear guide on parameter setting and model selection is currently not available. In this study, a Monte Carlo simulation-based approach (MCS is proposed to enhance the performance of semivariograms by optimizing the parameters, and case studies in three regions are conducted to determine the optimal resolution for natural resource surveys. Those parameters are optimized one by one through several rounds of MCS. The result shows that exponential model is better than sphere model; sample size has a positive relationship with R2, while the group number has a negative one; increasing the simulation number could improve the accuracy of estimation; and eventually the optimized parameters improved the performance of semivariogram. In case study, the average sizes for three general ground features (grassland, farmland, and forest of three counties (Ansai, Changdu, and Taihe in different geophysical locations of China were acquired and compared, and imagery with an appropriate resolution is recommended. The results show that the ground feature sizes acquired by means of MCS and optimized parameters in this study match well with real land cover patterns.

  2. Computational Ghost Imaging for Remote Sensing (United States)

    Erkmen, Baris I.


    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  3. Geospatial Analysis and Remote Sensing from Airplanes and Satellites for Cultural Resources Management (United States)

    Giardino, Marco J.; Haley, Bryan S.


    Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously

  4. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.


    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  5. Remote sensing of coral reefs and their physical environment

    International Nuclear Information System (INIS)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T.


    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas

  6. Remote sensing of coral reefs and their physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T


    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.

  7. Tropical forest degradation monitoring using ETM+ and MODIS remote sensing data in the Peninsular Malaysia

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Chong, K W


    This study was undertaken in order to test the use of remote sensing technology to assess forest degradation in the Peninsular Malaysia. In order to analyse the effect of spatial resolution on forest degradation assessment, course and moderate spatial resolution remote sensing data were examined in this study. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used as coarse spatial resolution data, while Landsat Enhanced Thematic Mapper + (ETM + ) imagery was used as moderate spatial resolution to compare the accuracy. Geometric and radiometric correction and re-sampling were performed in preprocessing section to enhance the analysis and results. Canopy fractional cover was used as an approach to assess the forest degradation in this study. Then, an optimum vegetation index was selected to apply on canopy fractional cover to enhance the detection of forest canopy damage. At the same time, accuracy assessment for the approach was referred to the location of Neobalanocarpus Heimii and correlate with global evapotranspiration rate. The forest degradation analysis was also applied and compared for all of the states in the Peninsular Malaysia. In conclusion, Landsat ETM + imagery obtained higher accuracy compare to MODIS using canopy fractional cover approach for forest degradation assessment, and can be more broadly applicable to use for forest degradation investigation

  8. Automated training site selection for large-area remote-sensing image analysis (United States)

    McCaffrey, Thomas M.; Franklin, Steven E.


    A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.

  9. Review of Remote Sensing Needs and Applications in Africa (United States)

    Brown, Molly E.


    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  10. Educational activities of remote sensing archaeology (Conference Presentation) (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter


    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  11. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding

    Directory of Open Access Journals (Sweden)

    Maria Tattaris


    Full Text Available Remote sensing (RS of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle, with that of proximal sensing, and satellite-based imagery. Two physiological traits were considered, canopy temperature (CT and a vegetation index (NDVI, to determine the most viable approaches for large scale crop genetic improvement. The UAV-based platform achieves plot-level resolution while measuring several hundred plots in one mission via high-resolution thermal and multispectral imagery measured at altitudes of 30-100 m. The satellite measures multispectral imagery from an altitude of 770 km. Information was compared with proximal measurements using IR thermometers and an NDVI sensor at a distance of 0.5-1m above plots. For robust comparisons, CT and NDVI were assessed on panels of elite cultivars under irrigated and drought conditions, in different thermal regimes, and on un-adapted genetic resources under water deficit. Correlations between airborne data and yield/biomass at maturity were generally higher than equivalent proximal correlations. NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 x 2.4 m due to restricted pixel density. Results support use of UAV-based RS techniques for high-throughput phenotyping for both precision and efficiency.

  12. A Review of Oil Spill Remote Sensing. (United States)

    Fingas, Merv; Brown, Carl E


    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.

  13. Environmental remote sensing for the petroleum industry

    International Nuclear Information System (INIS)

    Baker, R.N.


    Remote sensing techniques developed for exploration programs can often be used to address environmental issues facing the petroleum industry. While this industry becomes increasingly more environmentally conscious, budgets remain tight, requiring any technology used in environmental applications to be cost effective, widely available and reliable. In this paper a three-fold analysis of environmental issues facing the petroleum industry concludes: major areas of concern included environmental mapping natural habitats, surface cover, change through time, pollution monitoring (hazardous wastes, oil seeps and spills on and offshore), earth hazards assessment, baseline studies, facilities sitting and crisis response. options matrices were developed plotting current and near future RS technology vs environmental concerns, and each sensor/platform combination subjectively evaluated to determine which combination could best address the problem. While presently available RS technology (both airborne and spaceborne) has significant capability toward environmental mapping, hazards detection and other concerns, the anticipated launches of ERS-1, JERS-1, Landsat-6 and other systems will provide environmentally useful data available today only from relatively expensive and local airborne surveys. Low altitude airborne surveys and ground/sea truth will continue to be critical to any quantitative studies

  14. a Framework for Capacity Building in Mapping Coastal Resources Using Remote Sensing in the Philippines (United States)

    Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.


    Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.

  15. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07 (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.


    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  16. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames (United States)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline


    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  17. Development of airborne remote sensing data assimilation system

    International Nuclear Information System (INIS)

    Gudu, B R; Bi, H Y; Wang, H Y; Qin, S X; Ma, J W


    In this paper, an airborne remote sensing data assimilation system for China Airborne Remote Sensing System is introduced. This data assimilation system is composed of a land surface model, data assimilation algorithms, observation data and fundamental parameters forcing the land surface model. In this data assimilation system, Variable Infiltration Capacity hydrologic model is selected as the land surface model, which also serves as the main framework of the system. Three-dimensional variation algorithm, four-dimensional variation algorithms, ensemble Kalman filter and Particle filter algorithms are integrated in this system. Observation data includes ground observations and remotely sensed data. The fundamental forcing parameters include soil parameters, vegetation parameters and the meteorological data

  18. Multi-source remote sensing data management system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun; Lu Donghua; Zhang Donghui; Wu Wenhuan


    In this thesis, the author explored multi-source management problems of remote sensing data. The main idea is to use the mosaic dataset model, and the ways of an integreted display of image and its interpretation. Based on ArcGIS and IMINT feature knowledge platform, the author used the C# and other programming tools for development work, so as to design and implement multi-source remote sensing data management system function module which is able to simply, conveniently and efficiently manage multi-source remote sensing data. (authors)

  19. Searches over graphs representing geospatial-temporal remote sensing data (United States)

    Brost, Randolph; Perkins, David Nikolaus


    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  20. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image


    Wang, Jianhua; Qin, Qiming; Zhao, Jianghua; Ye, Xin; Feng, Xiao; Qin, Xuebin; Yang, Xiucheng


    Road damage detection and assessment from high-resolution remote sensing image is critical for natural disaster investigation and disaster relief. In a disaster context, the pairing of pre-disaster and post-disaster road data for change detection and assessment is difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster data (i.e., remote sensing imagery or vector map) are hard to obtain. In this study, a knowledge-based method for ...

  1. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano


    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  2. Documentation of archaeological sites in northern iraq using remote sensing methods (United States)

    Matoušková, E.; Pavelka, K.; Nováček, K.; Starková, L.


    The MULINEM (The Medieval Urban Landscape in Northeastern Mesopotamia) project is aiming to investigate a Late Sasanian and Islamic urban network in the land of Erbil, historic province of Hidyab (Adiabene) that is located in the northern Iraq. The research of the hierarchical urban network in a defined area belongs to approaches rarely used in the study of the Islamic urbanism. The project focuses on the cluster of urban sites of the 6th-17th centuries A.D. This paper focuses on remote sensing analysis of historical sites with special interest of FORMOSAT-2 data that have been gained through a research announcement: Free FORMOSAT-2 satellite Imagery. Documentation of two archaeological sites (Makhmúr al-Qadima and Kushaf) are introduced. FORMOSAT-2 data results have been compared to historic CORONA satellite data of mentioned historical sites purchased earlier by the University of West Bohemia. Remote sensing methods were completed using in-situ measurements.

  3. Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors (United States)

    Yang, J.


    GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching

  4. Integrating remote sensing and terrain data in forest fire modeling (United States)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy

  5. Deep Space Network Radiometric Remote Sensing Program (United States)

    Walter, Steven J.


    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  6. Structural mapping based on potential field and remote sensing data ...

    Indian Academy of Sciences (India)

    Swarnapriya Chowdari


    Aug 31, 2017 ... to comprehend the tectonic development of the ... software for the analysis and interpretation of G– .... The application of remote sensing for mapping ..... Pf1 and Pf2 show profile locations adopted for joint G–M modelling.

  7. and remote sensing for multi-temporal analysis of sand ...

    African Journals Online (AJOL)


    remote sensing techniques particularly those referring to change detection. This kind of ... Technol. depending on many factors in relation to climate conditions, nature .... geomorphologic position make it a perfect wind corridor. (Chahbani ...

  8. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... technology provides an efficient avenue of assessment of biomass content of any area. ... use data, can be integrated into GIS together with results from remote sensing analysis ...

  9. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  10. Quantitative remote sensing in thermal infrared theory and applications

    CERN Document Server

    Tang, Huajun


    This comprehensive technical overview of the core theory of thermal remote sensing and its applications in hydrology, agriculture, and forestry includes a host of illuminating examples and covers everything from the basics to likely future trends in the field.

  11. Remote sensing monitoring the spatio-temporal changes of ...

    Indian Academy of Sciences (India)

    Xiaoming Cao


    Jun 16, 2017 ... mainly focused on the models established by the remote sensing data in .... Page 5 of 16 58. Organization (WMO) World Weather Watch Pro- gram. ...... the disorder of urban sprawl would bring decreased vegetation cover and ...

  12. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  13. Decision tree approach for classification of remotely sensed satellite

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  14. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus; Fisher, Joshua B.; Skidmore, Andrew K.


    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales

  15. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.


    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  16. Conditional Estimation of Vector Patterns in Remote Sensing and GIS

    National Research Council Canada - National Science Library

    Masuch, J


    .... This effort is cooperatively conducted with the professional researchers at the Remote Sensing GIS Center of the US Army Cold Regions Research and Engineering Laboratory in Hanover, New Hampshire...

  17. Integrated ancillary and remote sensing data for land use ...

    African Journals Online (AJOL)

    Full Name

    The application of GMM to remote sensing image classification ... A . The boundary that has a Mahalanobis distance to the centre ... yields the Baye's theorem: ..... bands were extracted using the layer properties tool and visualised in MATLAB ...

  18. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang


    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  19. SparkRS - Spark for Remote Sensing, Phase I (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...


    African Journals Online (AJOL)


    A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT OF DEFORESTATION IN ... This study measured and analyzed deforestation in Uyo and examined the possible effects of the ..... the Burkill technique, (1985, 1994, 1995, 1997.


    African Journals Online (AJOL)


    remote sensing data for Uyo for the periods 1969, 1978, 1988, 2001 and 2004; evaluate the ... geographical information system (GIS) technology was applied to carry out this research. Field ..... preventing erosion, landslides, and making the.

  2. Use of Remote Sensing for Decision Support in Africa (United States)

    Policelli, Frederick S.


    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  3. Blending the most fundamental Remote-Sensing principles (RS ...

    African Journals Online (AJOL)

    Blending the most fundamental Remote-Sensing principles (RS) with the most functional spatial knowledge (GIS) with the objective of the determination of the accident-prone palms and points (case study: Tehran-Hamadan Highway on Saveh Superhighway)

  4. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements (United States)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.


    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types

  5. NASA Remote Sensing Data for Epidemiological Studies (United States)

    Maynard, Nancy G.; Vicente, G. A.


    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  6. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin


    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  7. Mid infrared lasers for remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Brian M., E-mail: [NASA Langley Research Center, Hampton, VA 23681 (United States); Lee, Hyung R. [National Institute of Aerospace, Hampton, VA 23666 (United States); Barnes, Norman P. [Science Systems and Applications, Inc., Hampton, VA 23666 (United States)


    To accurately measure the concentrations of atmospheric gasses, especially the gasses with low concentrations, strong absorption features must be accessed. Each molecular species or constituent has characteristic mid-infrared absorption features by which either column content or range resolved concentrations can be measured. Because of these characteristic absorption features the mid infrared spectral region is known as the fingerprint region. However, as noted by the Decadal Survey, mid-infrared solid-state lasers needed for DIAL systems are not available. The primary reason is associated with short upper laser level lifetimes of mid infrared transitions. Energy gaps between the energy levels that produce mid-infrared laser transitions are small, promoting rapid nonradiative quenching. Nonradiative quenching is a multiphonon process, the more phonons needed, the smaller the effect. More low energy phonons are required to span an energy gap than high energy phonons. Thus, low energy phonon materials have less nonradiative quenching compared to high energy phonon materials. Common laser materials, such as oxides like YAG, are high phonon energy materials, while fluorides, chlorides and bromides are low phonon materials. Work at NASA Langley is focused on a systematic search for novel lanthanide-doped mid-infrared solid-state lasers using both quantum mechanical models (theoretical) and spectroscopy (experimental) techniques. Only the best candidates are chosen for laser studies. The capabilities of modeling materials, experimental challenges, material properties, spectroscopy, and prospects for lanthanide-doped mid-infrared solid-state laser devices will be presented. - Highlights: • We discuss mid infrared lasers and laser materials. • We discuss applications to remote sensing. • We survey the lanthanide ions in low phonon materials for potential. • We present examples of praseodymium mid infrared spectroscopy and laser design.

  8. Remote Sensing and Quantization of Analog Sensors (United States)

    Strauss, Karl F.


    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  9. Remote Sensing and the Kyoto Protocol: A Workshop Summary (United States)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig


    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  10. Applications of airborne remote sensing in atmospheric sciences research (United States)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.


    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  11. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh


    Full Text Available M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical... studies are: where to sample, what to sample and how many samples to obtain. Conventional sampling techniques are not always suitable in environmental studies and scientists have explored the use of remotely-sensed data as ancillary information to aid...

  12. DARLA: Data Assimilation and Remote Sensing for Littoral Applications (United States)


    at reasonable logistical or financial costs . Remote sensing provides an attractive alternative. We discuss the range of different sensors that are...DARLA: Data Assimilation and Remote Sensing for Littoral Applications Final Report Award Number: N000141010932 Andrew T. Jessup Chris Chickadel...20. Radermacher, M., M. Wengrove, J. V. de Vries, and R. Holman (2014), Applicability of video-derived bathymetry estimates to nearshore current

  13. [Use of Remote Sensing for Crop and Soil Analysis (United States)

    Johannsen, Chris J.


    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  14. CSIR-NLC mobile LIDAR for atmosphere remote sensing

    CSIR Research Space (South Africa)

    Sivakumar, V


    Full Text Available Africa. 2Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa. 3Tshwane University of Technology, Pretoria 0001, South Africa. ABSTRACT A mobile LIDAR (LIght Detection... obtained using the CSIR-NLC mobile LIDAR in a 23 hour field campaign at the University of Pretoria. Index Terms— Atmospheric measurements, Remote sensing, Aerosols, Air pollution, Meteorology 1. INTRODUCTION Remote sensing is a technique...

  15. Problems in global fire evaluation: Is remote sensing the solution?

    International Nuclear Information System (INIS)

    Robinson, J.M.


    In this chapter the author critically examines the prospects for reducing uncertainties over global biomass burning using remote sensing. First he considers the global temporal, spatial, and intensity distributions of fires and the remotely sensible signals they create and discusses the opportunities and problems that exist for matching available sensors to fire signal. Then he considers problems relating to instrumentation and to atmospheric interference

  16. Remote sensing mapping of carbon and energy fluxes over forests

    NARCIS (Netherlands)

    Roerink, G.J.; Wit, de A.J.W.; Pelgrum, H.; Mücher, C.A.


    This report presents the results of the EU project "Carbon and water fluxes of Mediterranean forests and impacts of land use/cover changes". The objectives of the project can be summarized as follows: (I) surface energy balance mapping using remote sensing, (ii) carbon uptake mapping using remote

  17. Remote sensing terminology: past experience and recent needs (United States)

    Kancheva, Rumiana


    Terminology is a key issue for a better understanding among people using various languages. Terminology accuracy is essential during all phases of international cooperation. It is crucial to keep up with the latest quantitative and qualitative developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have wide and ever extending applications in various domains of human activity. The importance of the correct use of remote sensing terms refers not only to people working in this field but also to experts in many disciplines who handle remote sensing data and information products. The paper is devoted to terminology issues that refer to all aspects of remote sensing research and application areas. The attention is drawn on the recent needs and peculiarities of compiling specialized dictionaries in the subject area of remote sensing. Details are presented about the work in progress on the preparation of an English-Bulgarian dictionary of remote sensing terms focusing on Earth observations and geoinformation science. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. Any interest in cooperation and initiating of suchlike collaborative multilingual projects is welcome and highly appreciated.

  18. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives. (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin


    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  19. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li


    Full Text Available Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1 scale issue; (2 transportability issue; (3 data availability; and (4 uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  20. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)


    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.