WorldWideScience

Sample records for remote magnetic navigation

  1. Feasibility of remote magnetic navigation for epicardial ablation

    NARCIS (Netherlands)

    P. Abraham; L.D. Abkenari; E.C.H. Peters; T. Szili-Torok (Tamas)

    2013-01-01

    textabstractPercutaneous epicardial mapping and ablation is an emerging method to treat ventricular tachycardias (VT), premature ventricular complexes (PVC), and accessory pathways. The use of a remote magnetic navigation system (MNS) could enhance precision and maintain safety. This multiple case h

  2. A magnetic-resonance-imaging-compatible remote catheter navigation system.

    Science.gov (United States)

    Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria

    2013-04-01

    A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.

  3. Feasibility and safety of remote-controlled magnetic navigation for ablation of atrial fibrillation.

    Science.gov (United States)

    Katsiyiannis, William T; Melby, Daniel P; Matelski, Jayme L; Ervin, Vanessa L; Laverence, Kerri L; Gornick, Charles C

    2008-12-15

    Radiofrequency ablation for atrial fibrillation (AF) involves complex catheter manipulation resulting in prolonged procedure time and fluoroscopy exposure. Remote magnetic navigation (RMN) represents a novel approach toward improving the ability to perform complex ablation. Forty patients underwent ablation for AF, 20 using RMN (NIOBE II, Stereotaxis, Inc) with a 4-mm-tip magnetic catheter (Celsius, Biosense Webster) and 20 using a conventional 8-mm-tip bidirectional ablation catheter (Blazer, Boston Scientific). All patients underwent a combined wide area circumferential ablation and segmental pulmonary vein (PV) isolation using a circular mapping catheter and cavotricuspid isthmus ablation for right atrial flutter. The procedural end point was PV entrance block. There was no difference in atrial size, left ventricular systolic function, or type of AF between groups. PV entrance block was achieved in all patients. Mean procedure time was 279 +/- 60 minutes in the conventional group versus 209 +/- 56 minutes in the RMN group (p RMN group (p RMN group free from clinical AF and off antiarrhythmic drugs (p = NS). There were 2 additional ablations performed for atypical atrial flutter in the conventional group and 3 in the RMN group (p = ns). Ablation catheter char formation was not observed. There were no procedural complications. In conclusion, radiofrequency ablation of AF performed with RMN is safe and feasible. Compared with conventional hand-navigated ablation, RMN ablation results in similar clinical outcomes with decreased fluoroscopy and procedure times.

  4. Safety and efficacy of the remote magnetic navigation for ablation of ventricular tachycardias-a systematic review

    NARCIS (Netherlands)

    F. Akca (Ferdi); I. Önsesveren (Ibrahim); L.J.L.M. Jordaens (Luc); T. Szili-Torok (Tamas)

    2012-01-01

    textabstractObjective: Remote magnetic navigation (RMN) is considered to be a solution for mapping and ablation of several arrhythmias. In this systematic review we aimed to assess the safety and efficacy of RMN in ablation of ventricular tachycardia (VT). Methods: The National Library of Medicine's

  5. Remote Magnetic Navigation: A Focus on Catheter Ablation of Ventricular Arrhythmias.

    Science.gov (United States)

    Aagaard, Philip; Natale, Andrea; Briceno, David; Nakagawa, Hiroshi; Mohanty, Sanghamitra; Gianni, Carola; Burkhardt, J David; DI Biase, Luigi

    2016-03-01

    VT ablation is based on percutaneous catheter insertion under fluoroscopic guidance to selectively destroy (i.e., ablate) myocardial tissue regions responsible for the initiation or propagation of ventricular arrhythmias. Although the last decade has witnessed a rapid evolution of ablation equipment and techniques, the control over catheter movement during manual ablation has remained largely unchanged. Moreover, the procedures are long, and require ergonomically unfavorable positions, which can lead to operator fatigue. In an attempt to overcome these constraints, several technical advancements, including remote magnetic navigation (RMN), have been developed. RMN utilizes a magnetic field to remotely manipulate specially designed soft-tip ablation catheters anywhere in the x, y, or z plane inside the patient's chest. RMN also facilitates titration of the contact force between the catheter and the myocardial tissue, which may reduce the risk of complications while ensuring adequate lesion formation. There are several non-randomized studies showing that RMN has similar efficacy to manual ablation, while complication rates and total radiation exposure appears to be lower. Although these data are promising, larger randomized studies are needed to prove that RMN is superior to manual ablation of VT.

  6. A meta-analysis of manual versus remote magnetic navigation for ventricular tachycardia ablation.

    Science.gov (United States)

    Turagam, Mohit K; Atkins, Donita; Tung, Roderick; Mansour, Moussa; Ruskin, Jeremy; Cheng, Jie; Di Biase, Luigi; Natale, Andrea; Lakkireddy, Dhanunjaya

    2017-09-01

    There are limited studies on the safety and efficacy of remote magnetic navigation (RMN) versus manual navigation (MAN) in ventricular tachycardia (VT) ablation. A comprehensive literature search was performed using the keywords VT ablation, stereotaxis, RMN and MAN in Pubmed, Ebsco, Web of Science, Cochrane, and Google scholar databases. The analysis included seven studies (one randomized, three prospective observational, and three retrospective) including 779 patients [both structural heart disease (SHD) and idiopathic VT] comparing RMN (N = 433) and MAN (N = 339) in VT ablation. The primary end point of long-term VT recurrence was significantly lower with RMN (OR 0.61, 95% CI 0.44-0.85, p = 0.003) compared with MAN. Other end points of acute procedural success (OR 2.13, 95% CI 1.40-3.23, p = 0.0004) was significantly higher with RMN compared with MAN. Fluoroscopy [mean difference -10.42, 95% CI -12.7 to -8.1, p < 0.0001], procedural time [mean difference -9.79, 95% CI -19.27 to -0.3, p = 0.04] and complications (OR 0.35, 95% CI 0.17-0.74, p = 0.0006) were also significantly lower in RMN when compared with MAN. In a subgroup analysis SHD, there was no significant difference in VT recurrence or acute procedural success with RMN vs. MAN. In idiopathic VT, RMN significantly increased acute procedural success with no difference in VT recurrence. The results demonstrate that RMN is safe and effective when compared with MAN in patients with both SHD and idiopathic VT undergoing catheter ablation. Further prospective studies are needed to further verify the safety and efficacy of RMN.

  7. Efficacy and Safety of Atrial Fibrillation Ablation Using Remote Magnetic Navigation

    DEFF Research Database (Denmark)

    Jin, Q I; Pehrson, Steen; Jacobsen, Peter Karl;

    2016-01-01

    , respectively. The mean fluoroscopy time was 5.4 ± 3.7 minutes. Compared to PAF patients, procedural time and ablation time were significantly increased in patients with PerAF by 10% (P 5.3 ± 3.5 minutes, PAF vs. 5.6 ± 4......BACKGROUND: The objective of this study was to assess the procedural outcomes of catheter ablation guided by remote magnetic navigation (RMN) in a large cohort of patients with paroxysmal trial fibrillation (PAF) and persistent AF (PerAF). METHODS: A total of 726 patients (547 male, age: 58.5 ± 10...... and six ablation procedures were analyzed. One-third of the patients (240/726) were ablated on more than one occasion, resulting in a mean of 1.3 ± 0.6 times for the entire group. When analyzing all procedures, the mean procedural time and ablation time was 134 ± 35 minutes and 2,130 ± 1,025 seconds...

  8. Acute and long term outcomes of catheter ablation using remote magnetic navigation for the treatment of electrical storm in patients with severe ischemic heart failure

    DEFF Research Database (Denmark)

    Jin, Qi; Jacobsen, Peter Karl; Pehrson, Steen;

    2015-01-01

    BACKGROUND: Catheter ablation with remote magnetic navigation (RMN) can offer some advantages compared to manual techniques. However, the relevant clinical evidence for how RMN-guided ablation affects electrical storm (ES) due to ventricular tachycardia (VT) in patients with severe ischemic heart......-guided catheter ablation can prevent VT recurrence and significantly reduce ICD shocks, suggesting that this strategy can be used as an alternative therapy for VT storm in SIHF patients with ICDs.......BACKGROUND: Catheter ablation with remote magnetic navigation (RMN) can offer some advantages compared to manual techniques. However, the relevant clinical evidence for how RMN-guided ablation affects electrical storm (ES) due to ventricular tachycardia (VT) in patients with severe ischemic heart...... was defined as noninducibility of any sustained monophasic VT at the end of the procedure. Long-term analysis addressed VT recurrence, ICD therapies and all-cause death. ES was acutely suppressed by ablation in all patients. RESULTS: Acute ablation success was obtained in 32 of 40 (80%) patients...

  9. Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and meta-analysis.

    Science.gov (United States)

    Proietti, Riccardo; Pecoraro, Valentina; Di Biase, Luigi; Natale, Andrea; Santangeli, Pasquale; Viecca, Maurizio; Sagone, Antonio; Galli, Alessio; Moja, Lorenzo; Tagliabue, Ludovica

    2013-09-01

    The aim of this study was to determine the efficacy and safety of remote magnetic navigation (RMN) with open-irrigated catheter vs. manual catheter navigation (MCN) in performing atrial fibrillation (AF) ablation. We searched in PubMed (1948-2013) and EMBASE (1974-2013) studies comparing RMN with MCN. Outcomes considered were AF recurrence (primary outcome), pulmonary vein isolation (PVI), procedural complications, and data on procedure's performance. Odds ratios (OR) and mean difference (MD) were extracted and pooled using a random-effect model. Confidence in the estimates of the obtained effects (quality of evidence) was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. We identified seven controlled trials, six non-randomized and one randomized, including a total of 941 patients. Studies were at high risk of bias. No difference was observed between RMN and MCN on AF recurrence [OR 1.18, 95% confidence interval (CI) 0.85 to 1.65, P = 0.32] or PVI (OR 0.41, 95% CI 0.11-1.47, P = 0.17). Remote magnetic navigation was associated with less peri-procedural complications (Peto OR 0.41, 95% CI 0.19-0.88, P = 0.02). Mean fluoroscopy time was reduced in RMN group (-22.22 min; 95% CI -42.48 to -1.96, P = 0.03), although the overall duration of the procedure was longer (60.91 min; 95% CI 31.17 to 90.65, P RMN is not superior to MCN in achieving freedom from recurrent AF at mid-term follow-up or PVI. The procedure implies less peri-procedural complications, requires a shorter fluoroscopy time but a longer total procedural time. For the low quality of the available evidence, a proper designed randomized controlled trial could turn the direction and the effect of the dimensions explored.

  10. Impact of catheter ablation with remote magnetic navigation on procedural outcomes in patients with persistent and long-standing persistent atrial fibrillation

    DEFF Research Database (Denmark)

    Jin, Qi; Pehrson, Steen; Jacobsen, Peter Karl;

    2015-01-01

    BACKGROUND: The objectives of this study were to assess the procedural outcomes of persistent and long-standing persistent atrial fibrillation (PsAF and L-PsAF) ablation guided by remote magnetic navigation (RMN), and to detect factors predicting acute restoration of sinus rhythm (SR) by ablation...... with RMN. METHODS: A total of 313 patients (275 male, age 59 ± 9.5 years) with PsAF (187/313) or L-PsAF (126/313) undergoing ablation using RMN were included. Patients' disease history, pulmonary venous anatomy, left atrial (LA) volume, procedure time, mapping plus ablation time, radiofrequency (RF.......03). Stepwise regression analysis showed LA volume was the primary parameter affecting SR restoration (P = 0.01). The LA volume of patients without direct SR restoration by ablation was 24% greater than that of patients with SR restoration (P RMN is a safe...

  11. Remote Magnetic versus Manual Navigation for Radiofrequency Ablation of Paroxysmal Atrial Fibrillation: Long-Term, Controlled Data in a Large Cohort

    Directory of Open Access Journals (Sweden)

    Vikas Kataria

    2017-01-01

    Full Text Available Purpose. We aimed to study long-term outcome after pulmonary vein isolation (PVI guided by remote magnetic navigation (RMN and provided comparative data to outcome after manual navigation (MAN. Methods. Three hundred thirty-six patients with symptomatic paroxysmal AF underwent PVI by irrigated point-by-point radiofrequency (RF ablation (RMN, n=114 versus MAN, n=222. Patients were followed up with symptom guided rhythm monitoring for a period up to 43 months. The end point of the study was freedom from repeat ablation after a single procedure and without antiarrhythmic drug treatment (ADT. Results. At the end of follow-up (median 26.3 months, freedom from repeat ablation was comparable between RMN and MAN (70.9% versus 69.5%, p=0.61. At repeat, mean number of reconnected veins was 2.4 ± 1.2 in RMN versus 2.6 ± 1.0 in MAN (p=0.08. The majority of repeat procedures occurred during the first year (82.1% in RMN versus 78.5% in MAN; p=0.74. Conclusion. On the long term (up to 3 years and in a large cohort of patients with paroxysmal AF, RMN-guided PVI is as effective as MAN guided PVI. In both strategies the majority of repeat procedures occurred during the first year after index procedure.

  12. Magnetic navigation in percutaneous coronary intervention.

    Science.gov (United States)

    Patterson, Mark S; Schotten, Jeroen; van Mieghem, Carlos; Kiemeneij, Ferdinand; Serruys, Patrick W

    2006-12-01

    Magnetic navigation is the use of adjustable magnetic fields to precisely direct wires and equipment for clinical applications. It is a recently developed option that is now available for interventional cardiology. Procedures are based on the production of a three-dimensional reconstruction of the vessel lumen from standard angiographic images. Knowledge of the positions of the table and image intensifier during angiography allows calculation of the vessel coordinates in real space within the patient's chest. The applied magnetic field can be changed at any time to redirect the wire tip in order to improve navigation through complex and tortuous anatomy. The digital information of the coronary reconstruction can be used in further novel ways. Firstly, the integration of multislice computerized tomography images adds information about the path of the previous lumen of chronic total occlusions. Secondly, the computed center-line of the reconstructed vessel can be superimposed onto the live fluoroscopy images as a three-dimensional guide. The combination of improved navigation together with the other available system features may improve time, contrast, and material usage in a range of coronary lesions. Future potential developments include improvements in equipment and software, and potential therapeutic strategies under consideration include the use of equipment to perform remote control procedures, and the integration of the system to improve bone marrow-derived stem cell delivery.

  13. MAGNETIC VT study: a prospective, multicenter, post-market randomized controlled trial comparing VT ablation outcomes using remote magnetic navigation-guided substrate mapping and ablation versus manual approach in a low LVEF population.

    Science.gov (United States)

    Di Biase, Luigi; Tung, Roderick; Szili-Torok, Tamás; Burkhardt, J David; Weiss, Peter; Tavernier, Rene; Berman, Adam E; Wissner, Erik; Spear, William; Chen, Xu; Neužil, Petr; Skoda, Jan; Lakkireddy, Dhanunjaya; Schwagten, Bruno; Lock, Ken; Natale, Andrea

    2017-04-01

    Patients with ischemic cardiomyopathy (ICM) are prone to scar-related ventricular tachycardia (VT). The success of VT ablation depends on accurate arrhythmogenic substrate localization, followed by optimal delivery of energy provided by constant electrode-tissue contact. Current manual and remote magnetic navigation (RMN)-guided ablation strategies aim to identify a reentry circuit and to target a critical isthmus through activation and entrainment mapping during ongoing tachycardia. The MAGNETIC VT trial will assess if VT ablation using the Niobe™ ES magnetic navigation system results in superior outcomes compared to a manual approach in subjects with ischemic scar VT and low ejection fraction. This is a randomized, single-blind, prospective, multicenter post-market study. A total of 386 subjects (193 per group) will be enrolled and randomized 1:1 between treatment with the Niobe ES system and treatment via a manual procedure at up to 20 sites. The study population will consist of patients with ischemic cardiomyopathy with left ventricular ejection fraction (LVEF) of ≤35% and implantable cardioverter defibrillator (ICD) who have sustained monomorphic VT. The primary study endpoint is freedom from any recurrence of VT through 12 months. The secondary endpoints are acute success; freedom from any VT at 1 year in a large-scar subpopulation; procedure-related major adverse events; and mortality rate through 12-month follow-up. Follow-up will consist of visits at 3, 6, 9, and 12 months, all of which will include ICD interrogation. The MAGNETIC VT trial will help determine whether substrate-based ablation of VT with RMN has clinical advantages over manual catheter manipulation. Clinicaltrials.gov identifier: NCT02637947.

  14. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  15. High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    Science.gov (United States)

    Pedersen, L.; Allan, M.; To, V.; Utz, H.; Wojcikiewicz, W.; Chautems, C.

    2010-01-01

    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.

  16. Magnetic Navigation in Percutaneous Cardiac Intervention

    NARCIS (Netherlands)

    M.S. Patterson (Mark)

    2010-01-01

    textabstractMagnetic navigation is the use of a magnetic fi eld to re-orientate a magnetically-enabled wire or device. The fi eld is directed by external magnets that are moved by a computercontrolled system. This technology could improve percutaneous coronary interventional procedures as it

  17. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    2012-09-13

    using three-axis magnetic field measurements for navigation. While Storms innovative work exposed the ability to navigate using three-axis magnetometer...level of difficulty, Ascher et al. combine a magnetometer with a pair of inertial measurement units, a barometer , and a laser for precise indoor

  18. Indoor magnetic navigation for the blind.

    Science.gov (United States)

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S

    2012-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance.

  19. Indoor waypoint navigation via magnetic anomalies.

    Science.gov (United States)

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Condon, John P; Sheikh, Suneel I; Hedin, Daniel S

    2011-01-01

    A wide assortment of technologies have been proposed to construct indoor navigation services for the blind and vision impaired. Proximity-based systems and multilateration systems have been successfully demonstrated and employed. Despite the technical success of these technologies, broad adoption has been limited due to their significant infrastructure and maintenance costs. An alternative approach utilizing the indoor magnetic signatures inherent to steel-frame buildings solves the infrastructure cost problem; in effect the existing building is the location system infrastructure. Although magnetic indoor navigation does not require the installation of dedicated hardware, the dedication of resources to produce precise survey maps of magnetic anomalies represents a further barrier to adoption. In the present work an alternative leader-follower form of waypoint-navigation system has been developed that works without surveyed magnetic maps of a site. Instead the wayfarer's magnetometer readings are compared to a pre-recorded magnetic "leader" trace containing magnetic data collected along a route and annotated with waypoint information. The goal of the navigation system is to correlate the follower's magnetometer data with the leader's to trigger audio cues at precise points along the route, thus providing location-based guidance to the user. The system should also provide early indications of off-route conditions. As part of the research effort a smartphone based application was created to record and annotate leader traces with audio and numeric data at waypoints of interest, and algorithms were developed to determine (1) when the follower reaches a waypoint and (2) when the follower goes off-route. A navigation system utilizing this technology would enable a low-cost indoor navigation system capable of replaying audio annotations at precise locations along pre-recorded routes.

  20. Navigation: bat orientation using Earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  1. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.

    2006-01-01

    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  2. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  3. Magnetic navigation and tracking of underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Teixeira, F.C.; Pascoal, A.M.

    to errors in measurement data; 1 We emphasize that the Euler equation which applies to a local magnetic anomaly cannot be applied to the total ambient field which does not behave as a homogeneous function of the same degree. Tarantola (2005). Commonly..., and max. errors Problem Inversion SQUID FluxGate Navigation Analytic 1.6m n.a. Tracking Analytic 0.13m 1.7m Tracking Monte Carlo 0.4m RMS 0.7m RMS provides the localization of the vehicle relatively to the magnetic landmarks observed in real time...

  4. Magnetic Biocomposites for Remote Melting.

    Science.gov (United States)

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas

    2015-08-10

    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  5. Magnetic Anomaly Detection by Remote Means

    Science.gov (United States)

    2016-09-21

    effort we have demonstrated the detection of Xe using the remote Radar REMPI technique and the excitation of Xe atoms remotely using UV laser pulses...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Research on the possibility of detecting magnetic anomalies remotely using laser excitation of a... using laser excitation of a naturally occurring atomic or molecular species in air has focused on the use of Xe129. Although Xe129 is only present in

  6. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    Science.gov (United States)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  7. Comparison of Human Pilot (Remote) Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    National Research Council Canada - National Science Library

    Mahayuddin, Zainal Rasyid; Mohd Jais, Hairina; Arshad, Haslina

    2017-01-01

    .... In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques...

  8. 磁导航系统遥控导管消融治疗右心室流出道室性心动过速/室性早搏%Remote radiofrequency catheter ablation of right ventricular outflow tract ventricular tachycardia/pre-mature ventricular complexes using the magnetic navigation system combined with non-contact map-ping system

    Institute of Scientific and Technical Information of China (English)

    翟立上; 顾凯; 陈明龙; 曹克将; 杨兵; 孙建辉; 徐东杰; 张凤祥; 居维竹; 陈红武; 郦明芳; 杨刚

    2014-01-01

    Objective To evaluate the safety and efficacy of remote radiofrequency catheter ablation of right ventricular outflow tract ventricular tachycardia/premature ventricular complexes ( RVOT-VT/PVCs ) using the magnetic navigation system combined with the non-contact mapping system. Methods Totally 16 pa-tients with RVOT-VT/PVCs [12 women and 4 men,mean aged (44±15) years] were enrolled. The original site of arrhythmias was determined by non-contact activation mapping and conventional pace mapping. Ablation was performed using HeliosⅡmagnetic temperature-controled catheter manipulated by NiobeⅡmagnetic navi-gation system. If failed with magnetic system,the procedure would be transferred to manually controlled session. Results Among 10 of 16 subjects,documented RVOT-VT/PVCs were successfully abolished by remote abla-tion controlled by magnetic navigation system. In the other 6 patients,RVOT VT/PVCs were eliminated by man-ually controlled catheter ablation. The total procedure time was (190±42) min,and the mean ablation time was (240±33) s,and the average times of energy application were 3. 9±1. 6. The total X-ray exposure time was (4. 8±2. 6) min,which including (3. 2±2. 0) min for operators,and (1. 6±1. 0) min for remote ablation,respec-tively. No other complications were observed except one patient developed postoperative arteriovenous fistula. Conclusion Magnetic navigation system combined with non-contact mapping system was safe and effective for remote radiofrequency catheter ablation of RVOT-VT/PVCs. It may potentially reduce X-ray exposure time for both patients and operators.%目的:探讨应用磁导航遥控导管消融治疗右心室流出道起源的室性心动过速/室性早搏( RVOT-VT/PVCs)的安全性和有效性。方法2008年11月至2009年11月,在南京医科大学第一附属医院心血管内科行体表心电图检查,诊断为RVOT-VT/PVCs的患者共16例[女12例,男4例,平均年龄(44±15)岁],结合应用非接触标测系

  9. Magnetic and robotic navigation for catheter ablation: "joystick ablation".

    Science.gov (United States)

    Ernst, Sabine

    2008-10-01

    Catheter ablation has become the treatment of choice to cure various arrhythmias in the last decades. The newest advancement of this general concept is made on the navigation ability using remote-controlled ablation catheters. This review summarizes the concept of the two currently available systems, followed by a critical review of the published clinical reports for each system, respectively. Despite the limited amount of data, an attempt to compare the two systems is made.

  10. Magnetotactic bacteria. Magnetic navigation on the microscale

    Science.gov (United States)

    Klumpp, Stefan; Faivre, Damien

    2016-11-01

    Magnetotactic bacteria are aquatic microorganisms with the ability to swim along the field lines of a magnetic field, which in their natural environment is provided by the magnetic field of the Earth. They do so with the help of specialized magnetic organelles called magnetosomes, vesicles containing magnetic crystals. Magnetosomes are aligned along cytoskeletal filaments to give linear structures that can function as intracellular compass needles. The predominant viewpoint is that the cells passively align with an external magnetic field, just like a macroscopic compass needle, but swim actively along the field lines, propelled by their flagella. In this minireview, we give an introduction to this intriguing bacterial behavior and discuss recent advances in understanding it, with a focus on the swimming directionality, which is not only affected by magnetic fields, but also by gradients of the oxygen concentration.

  11. Magnetic therapeutic delivery using navigable agents.

    Science.gov (United States)

    Martel, S

    2014-02-01

    For treating cancer in particular, therapeutic agents have evolved in complexity in an effort to enhance targeting efficacy. So far, efforts towards the synthesis alone of new therapeutics have attracted most attention. However, present cancer treatments frequently fail because of severe side effects related to the fact that the drug accumulates in insufficient concentration at the tumor site, while being distributed over healthy tissues and organs. More recently, advanced engineering principles have been considered for the development of platforms and drug-loaded vehicles to deliver payloads to the area to be treated by navigating them using the most direct route in order to improve tumor killing effects while minimizing toxic side effects caused by drug activity in nontargeted regions. If the introduction of engineering and principles of robotics to provide complementary techniques in targeted cancer therapy prove to be beneficial, it could influence future delivery methods and the synthesis of therapeutic carriers.

  12. Remote magnetic navigation vs. manual navigation for ablation of ventricular tachycardia:a meta-analy-sis%磁导航指导下室性心动过速导管消融与手动导管消融比较的荟萃分析

    Institute of Scientific and Technical Information of China (English)

    吴莹; 王炜; 李库林; 郑杰; 张常莹; 刘晓宇; 崔志敏; 郁志明; 王如兴

    2015-01-01

    Objective The purpose of this study was to evaluate the efficacy and safety of the remote magnetic navigation ( RMN ) in comparison with manual catheter navigation ( MCN ) in performing ventricular tachycardia(VT) ablation. Methods An electronic search was performed using PubMed,EMBASE,and Co-chrane Library studies comparing RMN with MCN which published prior to 31 December 2013. Outcomes of inter-est were as follows:acute success,recurrence rate,complications,total procedure and fluoroscopic times. Standard mean difference( SMD) and its 95% CI were used for continuous outcomes;odds ratios( OR) were reported for di-chotomous variables. Results Four non-randomized studies,including 328 patients,were identified. RMN was de-ployed in 191 patients. Acute success and long-term freedom from arrhythmias were not significantly different be-tween RMN and control groups(OR 1. 845,95% CI 0. 731 were 4. 659,P=0. 195 and OR 0. 676,95% CI 0. 383 were 1. 194,P=0. 177,respectively). RMN was associated with less peri-procedural complications(OR 0. 279, 95% CI 0. 092 were 0. 843,P=0. 024). A shorter procedural and fluoroscopy times were achieved(-20. 1 min, 95% CI -0. 487 were -0. 035,P=0. 024,and -20. 3 min,95% CI -1. 467 were -0. 984,P<0. 001,respective-ly) . Conclusion The acute and long-term success rates for VT ablation were equal between RMN and MCN, whereas RMN-guided procedure can be performed with a lower complication rate and less procedural and fluoro-scopic times. More prospective randomized trials will be needed to evaluate the superior role of RMN for catheter ablation of VT.%目的:探讨磁导航指导下室性心动过速( VT)导管消融的疗效和安全性。方法检索PubMed、EMBASE、Cochrane Library文献数据库,检索时间为建库之日起至2013年12月31日,内容为关于磁导航指导下VT导管消融( RMN)与手动导管消融( MCN)的文献,比较2种消融方式下即刻成功率、复发率、并发症发生率、手术时间及曝光时间

  13. Comparison of Human Pilot (Remote Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Zainal Rasyid Mahayuddin

    2017-02-01

    Full Text Available This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency.

  14. Navigation with magnetic nanoparticles: magnetotactic bacteria and magnetic micro-robots

    Science.gov (United States)

    Klumpp, Stefan; Kiani, Bahareh; Vach, Peter; Faivre, Damien

    2015-10-01

    Magnetotactic bacteria navigate in the magnetic field of the Earth by aligning and swimming along field lines with the help of special magnetic organelles called magnetosomes. These organelles contain magnetic nanoparticles and are organized into chain structures in cells. Here we review recent work on the formation of these chains and provide some estimates of the magnetic interaction energies and the corresponding forces involved in this process. In addition, we briefly discuss the propulsion of synthetic micro- or nanopropellers based on magnetic nanoparticles.

  15. Remote Visualization and Navigation of 3d Models of Archeological Sites

    Science.gov (United States)

    Callieri, M.; Dellepiane, M.; Scopigno, R.

    2015-02-01

    The remote visualization and navigation of 3D data directly inside the web browser is becoming a viable option, due to the recent efforts in standardizing the components for 3D rendering on the web platform. Nevertheless, handling complex models may be a challenge, especially when a more generic solution is needed to handle different cases. In particular, archeological and architectural models are usually hard to handle, since their navigation can be managed in several ways, and a completely free navigation may be misleading and not realistic. In this paper we present a solution for the remote navigation of these dataset in a WebGL component. The navigation has two possible modes: the "bird's eye" mode, where the user is able to see the model from above, and the "first person" mode, where the user can move inside the structure. The two modalities are linked by a point of interest, that helps the user to control the navigation in an intuitive fashion. Since the terrain may not be flat, and the architecture may be complex, it's necessary to handle these issues, possibly without implementing complex mesh-based collision mechanisms. Hence, a complete navigation is obtained by storing the height and collision information in an image, which provides a very simple source of data. Moreover, the same image-based approach can be used to store additional information that could enhance the navigation experience. The method has been tested in two complex test cases, showing that a simple yet powerful interaction can be obtained with limited pre-processing of data.

  16. Robotic magnetic navigation for ablation of human arrhythmias

    Science.gov (United States)

    Da Costa, Antoine; Guichard, Jean Baptiste; Roméyer-Bouchard, Cécile; Gerbay, Antoine; Isaaz, Karl

    2016-01-01

    Radiofrequency treatment represents the first choice of treatment for arrhythmias, in particular complex arrhythmias and especially atrial fibrillation, due to the greater benefit/risk ratio compared to antiarrhythmic drugs. However, complex arrhythmias such as atrial fibrillation require long procedures with additional risks such as X-ray exposure or serious complications such as tamponade. Given this context, the treatment of arrhythmias using robotic magnetic navigation entails a technique well suited to complex arrhythmias on account of its efficacy, reliability, significant reduction in X-ray exposure for both patient and operator, as well as a very low risk of perforation. As ongoing developments will likely improve results and procedure times, this technology will become one of the most modern technologies for treating arrhythmias. Based on the literature, this review summarizes the advantages and limitations of robotic magnetic navigation for ablation of human arrhythmias. PMID:27698569

  17. Remote Synchronization Experiments for Quasi-Zenith Satellite System Using Multiple Navigation Signals as Feedback Control

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2011-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX is a remote control method that permits synchronization between a ground station atomic clock and Japanese quasi-zenith satellite system (QZSS crystal oscillators. To realize the RESSOX of the QZSS, the utilization of navigation signals of QZSS for feedback control is an important issue. Since QZSS transmits seven navigation signals (L1C/A, L1CP, L1CD, L2CM, L2CL, L5Q, and L5I, all combinations of these signals should be evaluated. First, the RESSOX algorithm will be introduced. Next, experimental performance will be demonstrated. If only a single signal is available, ionospheric delay should be input from external measurements. If multiple frequency signals are available, any combination, except for L2 and L5, gives good performance with synchronization error being within two nanoseconds that of RESSOX. The combination of L1CD and L5Q gives the best synchronization performance (synchronization error within 1.14 ns. Finally, in the discussion, comparisons of long-duration performance, computer simulation, and sampling number used in feedback control are considered. Although experimental results do not correspond to the simulation results, the tendencies are similar. For the overlapping Allan deviation of long duration, the stability of 1.23×10−14 at 100,160 s is obtained.

  18. Production of High-Resolution Remote Sensing Images for Navigation Information Infrastructures

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijun; Djemel Ziou; Costas Armenakis

    2004-01-01

    This paper introduces the image fusion approach of multi-resolution analysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral images from high-resolution panchromatic image and low-resolution multi-spectral images for navigation information infrastructure. The mathematical model of image fusion is derived according to the principle of remote sensing image formation. It shows that the pixel values of a high-resolution multi-spectral images are determined by the pixel values of the approximation of a high-resolution panchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixel valae computation the M-band wavelet theory and the à trous algorithm are then used. In order to evaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 m panchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusion approach gives promising fusion results and it can be used to produce the high-resolution remote sensing images required for navigation information infrastructures.

  19. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  20. Remote Sensing of Tropical Cyclones: Applications from Microwave Radiometry and Global Navigation Satellite System Reflectometry

    Science.gov (United States)

    Morris, Mary

    Tropical cyclones (TCs) are important to observe, especially over the course of their lifetimes, most of which is spent over the ocean. Very few in situ observations are available. Remote sensing has afforded researchers and forecasters the ability to observe and understand TCs better. Every remote sensing platform used to observe TCs has benefits and disadvantages. Some remote sensing instruments are more sensitive to clouds, precipitation, and other atmospheric constituents. Some remote sensing instruments are insensitive to the atmosphere, which allows for unobstructed observations of the ocean surface. Observations of the ocean surface, either of surface roughness or emission can be used to estimate ocean surface wind speed. Estimates of surface wind speed can help determine the intensity, structure, and destructive potential of TCs. While there are many methods by which TCs are observed, this thesis focuses on two main types of remote sensing techniques: passive microwave radiometry and Global Navigation Satellite System reflectometry (GNSS-R). First, we develop and apply a rain rate and ocean surface wind speed retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an airborne passive microwave radiometer, operates at C-band frequencies, and is sensitive to rain absorption and emission, as well as ocean surface emission. Motivated by the unique observing geometry and high gradient rain scenes that HIRAD typically observes, a more robust rain rate and wind speed retrieval algorithm is developed. HIRAD's observing geometry must be accounted for in the forward model and retrieval algorithm, if high rain gradients are to be estimated from HIRAD's observations, with the ultimate goal of improving surface wind speed estimation. Lastly, TC science data products are developed for the Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS constellation employs GNSS-R techniques to estimate ocean surface wind speed in all precipitating

  1. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    Science.gov (United States)

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  2. A remote constant current stimulator designed for rat-robot navigation.

    Science.gov (United States)

    Chen, Xi; Xu, Kedi; Ye, Shuming; Guo, Songchao; Zheng, Xiaoxiang

    2013-01-01

    In this paper, a remote stimulator is developed for rat-robot navigation based on the technique of Brain-Computer-Interface (BCI). The stimulator can output constant current from 0 to 1000 µA, which overcome several shortages of our previous constant voltage stimulator. The constant current stimulator consists of four major components, including power supply, micro control unit (MCU), constant current source and bluetooth transceiver for downloading stimulation commands. The stimulator has a weight of about 20 g and size of 32 mm*25 mm*6mm. It has five channels of stimulation, which are connected with implanted microelectrodes in rat brain. The electrical parameters were characterized on three rats with different recovery time after brain surgery. Increasing current stimulations were applied on the dorsolateral periaqueductal gray (dlPAG) area to prove the effect of current stimulation on rat behavior.

  3. Multi-Sensor Localization and Navigation for Remote Manipulation in Smoky Areas

    Directory of Open Access Journals (Sweden)

    Jose Vicente Marti

    2013-04-01

    The developed method aims to position a robot in front of doors, fire extinguishers and other points of interest with enough accuracy to allow a human operator to manipulate the robot’s arm in order to actuate over the element. In coarse‐grain localization, a fingerprinting technique based on ZigBee and WiFi signals is used, allowing the robot to navigate inside the building in order to get near the point of interest that requires manipulation. In fine‐grained localization a remotely controlled programmable high intensity LED panel is used, which acts as a reference to the system in smoky conditions. Then, smoke detection and visual fine‐ grained localization are used to position the robot with precisely in the manipulation point (e.g., doors, valves, etc..

  4. Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories.

    Science.gov (United States)

    Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-05-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval.

  5. Fusing Global Navigation With Computer-Aided Remote Driving Of Robotic Vehicles

    Science.gov (United States)

    Cameron, Jonathan M.; Cooper, Brian K.; Salo, Robert A.; Wilcox, Brian H.

    1987-02-01

    Very few existing robotic vehicle systems today have the ability to plan a path and then execute it. Subsystems to do parts of this problem do exist. Automatic route planners can plan a path for a theoretical vehicle. Vehicle control systems such as Computer-Aided Remote Driving (CARD)' can drive a vehicle with limited operator intervention. The combination of route planning with the vehicle control system is the concept of Navigation Fusion. Work is under way at the Jet Propulsion Laboratory to fuse the functions of a route planner and a planetary rover prototype which is piloted using CARD. In the CARD system, the operator chooses a path for the vehicle using wide-baseline stereo images returned from cameras on the vehicle. The robotic vehicle then executes that path under computer control without operator intervention. The route is planned on a Symbolics LISP machine and is then displayed to the operator as a desired path. The concept of Navigation Fusion involves displaying this desired path in perspective on the operator's 3-dimensional display. It requires knowledge of the relationship between the images returned from the vehicle and any information about of the movement area (or map). The operator will modify this path as necessary to avoid obstacles. The vehicle will then be instructed to execute the path. The fusion of global route planning and local path execution allows more intelligent planning and execution of robotic vehicle movements.

  6. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    Directory of Open Access Journals (Sweden)

    Han-Sol Kim

    2017-03-01

    Full Text Available In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  7. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    Science.gov (United States)

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  8. Global Navigation Satellite Systems Reflectometry as a Remote Sensing Tool for Agriculture

    Directory of Open Access Journals (Sweden)

    Alejandro Egido

    2012-08-01

    Full Text Available The use of Global Navigation Satellite Systems (GNSS signals for remote sensing applications, generally referred to as GNSS-Reflectometry (GNSS-R, is gaining increasing interest among the scientific community as a remote sensing tool for land applications. This paper describes a long term experimental campaign in which an extensive dataset of GNSS-R polarimetric measurements was acquired over a crop field from a ground-based stationary platform. Ground truth ancillary data were also continuously recorded during the whole experimental campaign. The duration of the campaign allowed to cover a full crop growing season, and as a consequence of seasonal rains on the experimental area, data could be recorded over a wide variety of soil conditions. This enabled a study on the effects of different land bio-geophysical parameters on GNSS scattered signals. It is shown that significant power variations in the measured GNSS reflected signals can be detected for different soil moisture and vegetation development conditions. In this work we also propose a technique based on the combination of the reflected signal’s polarizations in order to improve the integrity of the observables with respect to nuisance parameters such as soil roughness.

  9. 远程磁导航指导下加强肺静脉前庭消融策略治疗心房纤颤有效性研究%Efficacy of enhanced ablation on pulmonary vein antrum isolation under remote magnetic navigation in patients with atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    郭文杰; 徐伟豪; 兰凯; 彭利; 张玉霄; 卢才义

    2016-01-01

    目的:探讨在远程磁导航系统( RMN)辅助下应用加强消融策略行心房纤颤( AF)射频消融治疗对AF远期成功率的影响。方法连续选取2013年1月至2015年6月在解放军总医院住院行导管射频消融治疗且自愿参加该临床研究的患者49例非瓣膜性AF患者随机分成两组,传统消融组(CAG, n=24)和加强消融组(EAG, n=25)。 CAG组对左右肺静脉行单环线性消融,EAG组在CAG消融基础上,靠近原有消融径线,在心房侧再次行线性消融,形成双环线性消融。术中应用磁导航消融导管,RMN系统、CARTO 3系统和Lasso环状标测电极,术后常规使用24 h动态心电图随访。结果所有患者均消融成功,EAG组较CAG组消融时间明显延长[(45.66±6.59)vs (40.10±3.48)min,P<0.01],而在曝光时间、手术时间和静脉血测定脑利钠肽前体上差异无统计学意义( P>0.05)。术后随访(19.3±5.6)个月,应用动态心电图随访发现EAG组复发率较CAG组明显降低(33.33%vs 8.00%,P<0.05)。二次手术时发现复发患者均存在电传导恢复情况,8例再次手术均成功。结论加强消融策略能有效改善AF患者的远期成功率,降低复发率。%Objective To assess the long-term efficacy of enhanced ablation in pulmonary vein antrum ( PVA) guided by remote magnetic navigation ( RMN) in the patients with atrial fibrillation ( AF) .Methods From January 2013 to June 2015, 49 consecutive patients with refractory non-valvular AF who undergoing radiofrequency catheter ablation and voluntarily taking part in this study in our hospital were recruited in this study .They were randomized into a conventional ablation group ( CAG, n =24 ) and an enhanced ablation group ( EAG, n=25) .PVA isolation was achieved by creating a single ablation circle in the patients of CAG group , and was double ablation circles at PVA in those of EAG group .An irrigated

  10. Multi-Sensor Localization and Navigation for Remote Manipulation in Smoky Areas

    Directory of Open Access Journals (Sweden)

    Jose Vicente Marti

    2013-04-01

    Full Text Available When localizing mobile sensors and actuators in indoor environments laser meters, ultrasonic meters or even image processing techniques are usually used. On the other hand, in smoky conditions, due to a fire or building collapse, once the smoke or dust density grows, optical methods are not efficient anymore. In these scenarios other type of sensors must be used, such as sonar, radar or radiofrequency signals. Indoor localization in low-visibility conditions due to smoke is one of the EU GUARDIANS [1] project goals. The developed method aims to position a robot in front of doors, fire extinguishers and other points of interest with enough accuracy to allow a human operator to manipulate the robot's arm in order to actuate over the element. In coarse-grain localization, a fingerprinting technique based on ZigBee and WiFi signals is used, allowing the robot to navigate inside the building in order to get near the point of interest that requires manipulation. In fine-grained localization a remotely controlled programmable high intensity LED panel is used, which acts as a reference to the system in smoky conditions. Then, smoke detection and visual fine-grained localization are used to position the robot with precisely in the manipulation point (e.g., doors, valves, etc..

  11. A remote control training system for rat navigation in complicated environment

    Institute of Scientific and Technical Information of China (English)

    FENG Zhou-yan; LIU Chun-qing; LIU Fu-xin; LUO Jian-hong; ZHUANG Yue-ting; ZHENG Xiao-xiang; CHEN Wei-dong; YE Xue-song; ZHANG Shao-min; ZHENG Xiao-jing; WANG Peng; JIANG Jun; JIN Lin; XU Zhi-jian

    2007-01-01

    A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forebrain bundle (MFB).

  12. A magnetic pulse does not affect homing pigeon navigation: a GPS tracking experiment.

    Science.gov (United States)

    Holland, Richard; Filannino, Caterina; Gagliardo, Anna

    2013-06-15

    The cues by which homing pigeons are able to return to a home loft after displacement to unfamiliar release sites remain debated. A number of experiments in which migratory birds have been treated with a magnetic pulse have produced a disruption in their orientation, which argues that a ferrimagnetic sense is used for navigation in birds. One previous experiment has also indicated an effect of magnetic pulses on homing pigeon navigation, although with inconsistent results. Previous studies have shown that some magnetic-related information is transmitted by the trigeminal nerve to the brain in some bird species, including the homing pigeon. The function of this information is still unclear. It has been suggested that this information is important for navigation. Previous studies with trigeminal nerve lesioned homing pigeons have clearly shown that the lack of trigeminally mediated information, even if magnetic, is not crucial for homing performance. However, this result does not completely exclude the possibility that other ferrimagnetic receptors in the homing pigeon play a role in navigation. Additionally, recent studies on homing pigeons suggested the existence of a ferrimagnetic sense in a novel location presumably located in the inner ear (lagena). In the present study, we tested whether any ferrimagnetic magnetoreceptors, irrespective of their location in the bird's head, are involved in pigeons' homing. To do this, we treated homing pigeons with a strong magnetic pulse before release, tracked birds with GPS loggers and analyzed whether this treatment affected homing performance. In the single previous magnetic pulse experiment on homing pigeons, only initial orientation at a release site was considered and the results were inconsistent. We observed no effect of the magnetic pulse at any of the sites used on initial orientation, homing performance, tortuosity or track efficiency, which does not support a role for the ferrimagnetic sense in homing pigeon

  13. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    Science.gov (United States)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  14. Magnetically navigated percutaneous coronary intervention in distal and/or complex lesions may improve procedural outcome and material consumption

    NARCIS (Netherlands)

    A.J.J. IJsselmuiden (Alexander); M.S. Patterson (Mark); F.C. van Nooijen (Ferdinand); G.J. Tangelder; M.T. Dirksen (Maurits); G. Amoroso (Giovanni); T. Slagboom (Ton); P.W.J.C. Serruys (Patrick); G-J. Laarman (GertJan); F. Kiemeneij (Ferdinand)

    2009-01-01

    textabstractAims: Comparison of magnetic guidewire navigation in percutaneous coronary intervention (magnetic PCI) across distal and /or complex lesions versus conventional navigation (conventional PCI). Methods and results: Forty-seven consecutive patients (age 61±10yr) undergoing elective single v

  15. Guidance and navigation for automatic landing, rollout, and turnoff using MLS and magnetic cable sensors

    Science.gov (United States)

    Pines, S.; Hueschen, R. M.

    1978-01-01

    This paper describes the navigation and guidance system developed for the TCV B-737, a Langley Field NASA research aircraft, and presents the results of an evaluation during final approach, landing, rollout and turnoff obtained through a nonlinear digital simulation. A Kalman filter (implemented in square root form) and a third order complementary filter were developed and compared for navigation. The Microwave Landing Systems (MLS) is used for all phases of the flight for navigation and guidance. In addition, for rollout and turnoff, a three coil sensor which detects the magnetic field induced by a buried wire in the runway (magnetic leader cable) is used. The outputs of the sensor are processed into measurements of position and heading deviation from the wire. The results show the concept to be both feasible and practical for commercial type aircraft terminal area control.

  16. Cryoballoon ablation versus remote magnetic navigation ablation in patients with paroxysmal atrial fibrillation:a prospective controlled study%冷冻球囊消融与磁导航指导的射频消融治疗阵发性心房颤动的临床对照研究

    Institute of Scientific and Technical Information of China (English)

    金奇; 吴立群; 张凝; 罗庆志; 韩岩新; 王义龙; 凌天佑; 陈康; 潘文麒; 谢玉才

    2016-01-01

    目的:冷冻球囊消融(CBA)和磁导航指导(RMN)的射频消融是治疗心房颤动(房颤)的两大新技术。本项研究旨在评估和比较两种消融新技术的有效性、安全性以及手术相关结果。方法入选2015年2月至2016年1月期间,在上海交通大学医学院附属瑞金医院心脏内科接受消融治疗的阵发性房颤患者60例,1∶1配对,分别行 CBA(CBA 组,30例)和 RMN 消融(RMN 组,30例)。主要研究终点为完成双侧肺静脉电隔离(PVI)成功率。次要研究终点为手术相关参数,包括手术相关并发症、手术时间、消融时间以及 X 线曝光时间等。术后至少随访3个月,观察两组患者消融空白期内房颤复发率和并发症。结果 CBA 组所有患者首次消融术均获得急性 PVI,RMN 组急性 PVI 成功率为97%,两组差异无统计学意义(P=1.0)。 RMN 组,术中及术后3个月内无心脏压塞、左心房食管瘘等严重手术相关并发症,腹股沟血肿1例。 CBA 组,发生1例膈神经损伤,无其他严重并发症,两组并发症发生率差异无统计学意义。与 RMN 组相比,CBA 组手术时间明显缩短[(142±36) min 对(108±30) min, P<0.01];但是,X 线曝光时间显著增加[(6.5±2.8) min 对(16.4±4.8) min,P<0.001]。术后3个月随访结果显示,两组患者消融空白期内房颤复发率差异无统计学意义(RMN 对 CBA:16.7%对23.0%, P=0.75)。结论应用 CBA 和 RMN 房颤 PVI 均是安全和有效的。 RMN 指导的房颤消融有助于降低X 线曝光时间,CBA 房颤手术时间更短。%Objective Cryoballoon-based ablation ( CBA) and remote magnetic navigation-guided (RMN)ablation are two novel means to treat paroxysmal atrial fibrillation(PAF),however,no controlled data have been reported in China.This prospective,controlled study was to assess the safety and efficacy of these two techniques and compare the procedure-related outcome. Methods A total of 60 patients with PAF were enrolled and

  17. Single-qubit remote manipulation by magnetic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); CNISM – c/o Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide, E-mail: nuzzi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero, E-mail: ruggero.vaia@isc.cnr.it [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola, E-mail: verrucchi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)

    2016-02-15

    Magnetic solitons can constitute a means for manipulating qubits from a distance. This would overcome the necessity of directly applying selective magnetic fields, which is unfeasible in the case of a matrix of qubits embedded in a solid-state quantum device. If the latter contained one-dimensional Heisenberg spin chains coupled to each qubit, one can originate a soliton in a selected chain by applying a time-dependent field at one end of it, far from the qubits. The generation of realistic solitons has been simulated. When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations, even in the presence of moderate thermal noise. - Highlights: • Proposal for the remote control of qubits coupled to a spin chain supporting solitons. • Traveling solitons can be generated on the chain by acting far from the qubit. • Suitable magnetic solitons can properly change the qubit state. • This qubit manipulation mechanism is shown to be resilient to thermal noise.

  18. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.

    Science.gov (United States)

    Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J

    2015-04-01

    During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics.

  19. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves.

    Science.gov (United States)

    Satarkar, Nitin S; Zhang, Wenli; Eitel, Richard E; Hilt, J Zach

    2009-06-21

    In recent years, hydrogels have attracted attention as active components in microfluidic devices. Here, we present a demonstration of remote controlled flow regulation in a microfluidic device using a hydrogel nanocomposite valve. To create the nanocomposite hydrogel, magnetic nanoparticles were dispersed in temperature-responsive N-isopropylacrylamide (NIPAAm) hydrogels. The swelling and collapse of the resultant nanocomposite can be remotely controlled by application of an alternating magnetic field (AMF). A ceramic microfluidic device with Y-junction channels was fabricated using low temperature co-fired ceramic (LTCC) technology. The nanocomposite was incorporated as a valve in one of the channels of the device. An AMF of frequency 293 kHz was then applied to the device and ON-OFF control on flow was achieved. A pressure transducer was placed at the inlet of the channel and pressure measurements were done for multiple AMF ON-OFF cycles to evaluate the reproducibility of the valve. Furthermore, the effect of the hydrogel geometry on the response time was characterized by hydrogels with different dimensions. Magnetic hydrogel nanocomposite films of different thicknesses (0.5, 1, 1.5 mm) were subjected to AMF and the kinetics of collapse and recovery were studied.

  20. Heading to the right: The effect of aperture width on navigation asymmetries for miniature remote-controlled vehicles.

    Science.gov (United States)

    Nicholls, Michael E R; Jones, Craig A; Robertson, Joanne S

    2016-06-01

    Our ability to attend to the environment is asymmetrical and affects activities like navigation. This study investigated whether rightward deviations exist for miniaturized vehicles. Experiment 1 asked participants (n = 26) to navigate a remote-controlled car through apertures that were 200, 300 or 400 mm wide. Analyses revealed a nonsignificant trend for the rightward deviation to increase with aperture width. None of the deviations was significantly to the right. Experiment 2 (n = 16) elevated the car to eye level to control for upper/lower visual-field effects. The results were unchanged. Experiment 3 (n = 16) altered the car's mechanical drive to control veering effects, and the results were unchanged. Data from Experiments 1-3 were combined to increase statistical power and showed that the rightward deviation increased for wider apertures. Experiment 4 (n = 17) investigated deviations for wider apertures (1,100 mm) and found a rightward deviation. Finally, Experiment 5 (n = 24) used a different type of remote-controlled vehicle. A rightward deviation, which increased with width, was observed. In addition, the degree of rightward deviation was related to the perceived middle of the aperture. It appears that systematic rightward deviations occur for miniaturized vehicles, which increase with aperture width. The implications of these results for attentional explanations of rightward deviation are discussed. (PsycINFO Database Record

  1. DRIFT-FREE INDOOR NAVIGATION USING SIMULTANEOUS LOCALIZATION AND MAPPING OF THE AMBIENT HETEROGENEOUS MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    J. C. K. Chow

    2017-09-01

    Full Text Available In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems Simultaneous Localization and Mapping (SLAM has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures are used instead of discrete feature correspondences (e.g. point-to-point as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments; however

  2. Benefits of Using Remotely Operated Vehicles to Inspect USACE Navigation Structures

    Science.gov (United States)

    2007-03-01

    navigation structures. ROVs are a class of maneuverable underwater robotic vehicles that are tethered via an umbilical cord to a surface operator...station. The umbilical carries power and operation signals to the ROV and returns video, still images, and vehicle status and sensor data to the...inspections. The primary users driving ROV technology have been the offshore oil industry, the hydroelectric and nuclear power industries, various navies

  3. Remote auscultatory patient monitoring during magnetic resonance imaging

    DEFF Research Database (Denmark)

    Henneberg, S; Hök, B; Wiklund, L;

    1992-01-01

    A system for patient monitoring during magnetic resonance imaging (MRI) is described. The system is based on remote auscultation of heart sounds and respiratory sounds using specially developed pickup heads that are positioned on the precordium or at the nostrils and connected to microphones via...... can be simultaneously auscultated both inside and outside the shielded MRI room by infrared transmission through a metal mesh window. Bench tests of the system show that common mode acoustic noise is suppressed by approximately 30 dB in the frequency region of interest (100-1,000 Hz), and that polymer...... tubing having a diameter of approximately 2 mm can be used for efficient sound transmission. Recordings in situ show satisfactory detection of both heart sounds and respiratory sounds, although the signal is somewhat masked by noise during imaging. A clinical test incorporating 17 sedated or anesthetized...

  4. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field

    Science.gov (United States)

    Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056

  5. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon.

    Science.gov (United States)

    Putman, Nathan F; Scanlan, Michelle M; Billman, Eric J; O'Neil, Joseph P; Couture, Ryan B; Quinn, Thomas P; Lohmann, Kenneth J; Noakes, David L G

    2014-02-17

    Migratory marine animals exploit resources in different oceanic regions at different life stages, but how they navigate to specific oceanic areas is poorly understood. A particular challenge is explaining how juvenile animals with no prior migratory experience are able to locate specific oceanic feeding habitats that are hundreds or thousands of kilometers from their natal sites. Although adults reproducing in the vicinity of favorable ocean currents can facilitate transport of their offspring to these habitats, variation in ocean circulation makes passive transport unreliable, and young animals probably take an active role in controlling their migratory trajectories. Here we experimentally demonstrate that juvenile Chinook salmon (Oncorhynchus tshawytscha) respond to magnetic fields like those at the latitudinal extremes of their ocean range by orienting in directions that would, in each case, lead toward their marine feeding grounds. We further show that fish use the combination of magnetic intensity and inclination angle to assess their geographic location. The "magnetic map" of salmon appears to be inherited, as the fish had no prior migratory experience. These results, paired with findings in sea turtles, imply that magnetic maps are phylogenetically widespread and likely explain the extraordinary navigational abilities evident in many long-distance underwater migrants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-09-01

    Full Text Available Pedestrian navigation systems (PNS using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF. This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1 walking along straight paths; (2 standing still for a long time. It is observed that these motion constraints (called “virtual sensor”, though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.

  7. The Use of a Brain Computer Interface Remote Control to Navigate a Recreational Device

    Directory of Open Access Journals (Sweden)

    Shih Chung Chen

    2013-01-01

    Full Text Available People suffering from paralysis caused by serious neural disorder or spinal cord injury also need to be given a means of recreation other than general living aids. Although there have been a proliferation of brain computer interface (BCI applications, developments for recreational activities are scarcely seen. The objective of this study is to develop a BCI-based remote control integrated with commercial devices such as the remote controlled Air Swimmer. The brain is visually stimulated using boxes flickering at preprogrammed frequencies to activate a brain response. After acquiring and processing these brain signals, the frequency of the resulting peak, which corresponds to the user’s selection, is determined by a decision model. Consequently, a command signal is sent from the computer to the wireless remote controller via a data acquisition (DAQ module. A command selection training (CST and simulated path test (SPT were conducted by 12 subjects using the BCI control system and the experimental results showed a recognition accuracy rate of 89.51% and 92.31% for the CST and SPT, respectively. The fastest information transfer rate demonstrated a response of 105 bits/min and 41.79 bits/min for the CST and SPT, respectively. The BCI system was proven to be able to provide a fast and accurate response for a remote controller application.

  8. Remote control and navigation tests for application to long-range lunar surface exploration

    Science.gov (United States)

    Mastin, W. C.; White, P. R.; Vinz, F. L.

    1971-01-01

    Tests conducted with a vehicle system built at the Marshall Space Flight Center to investigate some of the unknown factors associated with remote controlled teleoperated vehicles on the lunar surface are described. Test data are summarized and conclusions are drawn from these data which indicate that futher testing will be required.

  9. The feasibility and safety of applying the magnetic navigation system to manage chronically occluded vessels: A single centre experience

    NARCIS (Netherlands)

    S. Ramcharitar (Steve); W.J. van der Giessen (Wim); M. van der Ent (Martin); P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); R.J.M. van Geuns (Robert Jan)

    2011-01-01

    textabstractAims: Applying the Magnetic Navigation System (MNS) to manage chronic total occlusions (CTOs). The MNS precisely directs a magnetised guidewire in vivo through two permanent external magnets. Methods and results: The first 43 consecutive MNS treated CTOs were retrospectively evaluated. C

  10. The feasibility and safety of applying the magnetic navigation system to manage chronically occluded vessels: A single centre experience

    NARCIS (Netherlands)

    S. Ramcharitar (Steve); W.J. van der Giessen (Wim); M. van der Ent (Martin); P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); R.J.M. van Geuns (Robert Jan)

    2011-01-01

    textabstractAims: Applying the Magnetic Navigation System (MNS) to manage chronic total occlusions (CTOs). The MNS precisely directs a magnetised guidewire in vivo through two permanent external magnets. Methods and results: The first 43 consecutive MNS treated CTOs were retrospectively evaluated. C

  11. Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2012-05-01

    Full Text Available Wellingson S Paiva1, Erich T Fonoff1, Marco A Marcolin2, Hector N Cabrera1, Manoel J Teixeira11Division of Functional Neurosurgery, Hospital das Clinicas, 2TMS Laboratory of the Psychiatry Institute, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, BrazilAbstract: Transcranial magnetic stimulation (TMS is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus.Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure.Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES was 4.16 ± 1.02 mm (range: 2.56–5.27 mm.Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.Keywords: transcranial magnetic stimulation, cortical mapping, brain tumor, motor cortex

  12. In Silico Magnetic Nanocontainers Navigation in Blood Vessels: A Feedback Control Approach.

    Science.gov (United States)

    Do, Ton Duc; Noh, Yeongil; Kim, Myeong Ok; Yoon, Jungwon

    2016-06-01

    Magnetic nanoparticles (MNPs) are recently used in a drug delivery system to pass the blood brain barrier. However, because the magnetic force acting on particles is proportional to their volumes, as the size of particles is small, the large magnetic field is required to produce enough magnetic force for overcoming the hydrodynamic drag force as well as other forces in blood vessels. Other difficulties for controlling MNPs are the complicated behavior of hydrodynamic drag force and uncertain factors in their dynamics. Therefore, open-loop control methods cannot guarantee guiding every MNP to the correct location. Considering these challenges, this paper introduces a feedback control approach for magnetic nanoparticles (MNPs) in blood vessels. To the best of our knowledge, this is the first time feedback controller that is designed for MNPs without aggregation. Simulation studies in MATLAB and real-time verifications on a physical model in COMSOL-MATLAB interface are performed to prove the feasibility of the proposed approach. It is shown that the proposed control scheme can accurately and effectively navigate the MNP to the correct path with feasible hardware supports.

  13. Primary percutaneous coronary intervention by magnetic navigation compared with conventional wire technique.

    Science.gov (United States)

    Patterson, Mark S; Dirksen, Maurits T; Ijsselmuiden, Alexander J; Amoroso, Giovanni; Slagboom, Ton; Laarman, Gerrit-Jan; Schultz, Carl; van Domburg, Ron T; Serruys, Patrick W; Kiemeneij, Ferdinand

    2011-06-01

    Aims Comparison of magnetic guidewire navigation in percutaneous coronary intervention (MPCI) vs. conventional percutaneous coronary intervention (CPCI) for the treatment of acute myocardial infarction. Methods and results We compared 65 sequential patients (mean age 61 ± 15 years) undergoing primary MPCI with those of 405 patients undergoing CPCI (mean age 61 ± 13 years). The major endpoint was contrast media use. Technical success and procedural outcomes were evaluated. Clinical demographics and angiographic characteristics of the two groups were similar, except for fewer patients with previous coronary artery bypass grafting (CABG) and hypertension in the CPCI group and fewer patients with diabetes in the MPCI group. The technical success rate was high in both the MPCI and CPCI groups (95.4 vs. 98%). There was significantly less contrast media usage in the MPCI compared with the CPCI group, median reduction of contrast media of 30 mL with an OR = 0.41 (0.21-0.81). Fluoroscopy times were significantly reduced for MPCI compared with CPCI, median reduction of 7.2 min with an OR = 0.42 (0.20-0.79). Conclusion This comparison indicates the feasibility and non-inferiority of magnetic navigation in performing primary PCI and suggests the possibility of reductions in contrast media use and fluoroscopy time compared with CPCI.

  14. Using a respiratory navigator significantly reduces variability when quantifying left ventricular torsion with cardiovascular magnetic resonance.

    Science.gov (United States)

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Andres, Kristin N; Powell, David K; Charnigo, Richard J; Fornwalt, Brandon K

    2017-03-01

    Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion. We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure and then enforce variability in end-expiratory position between all LV basal and apical acquisitions. From these data, we quantified the inter-test variability of torsion in the absence and presence of enforced end-expiratory position variability, which established an upper bound for the expected torsion variability. For the second experiment (in 20 new, healthy volunteers), 10 pairs of cine DENSE basal and apical images were each acquired from consecutive breath-holds and consecutive navigator-gated scans (with a single acceptance position). Inter-test variability of torsion was compared between the breath-hold and navigator-gated scans to quantify the variability due to natural breath-hold variation. To demonstrate the importance of these variability reductions, we quantified the reduction in sample size required to detect a clinically meaningful change in LV torsion with the use of a respiratory navigator. The mean torsion was 3.4 ± 0.2°/cm. From the first experiment, enforced variability in end-expiratory position translated to considerable variability in measured torsion (0.56 ± 0.34°/cm), whereas inter-test variability with consistent end-expiratory position was 57% lower (0.24 ± 0.16°/cm, p < 0.001). From the second experiment, natural

  15. ROSS: The Remotely-Operated Surface Sampler - A MediumEndurance, Precision-Navigated Platform Optimized for Uncontaminated Measurement of Upper-Ocean Velocity, Density and Turbulence

    Science.gov (United States)

    2015-09-30

    ROSS : The Remotely-­‐Operated Surface Sampler A medium-­‐endurance, precision-­‐navigated  platform optimized...coas.oregonstate.edu Award N00014-­‐14-­‐1-­‐0490 http://kai.coas.oregonstate.edu/ OVERVIEW The Remotely Operated Surface   Sampler ( ROSS )  is an  open...configuration,   ROSS cruises at 4 knots,  is equipped  with  300 kHz  and 2 MHz  ADCPs,  and tows a 20-­‐m  lon thermistor/CTD  chain. Its

  16. Randomized comparison of the magnetic navigation system vs. standard wires in the treatment of bifurcations.

    Science.gov (United States)

    Ramcharitar, Steve; van der Giessen, Willem J; van der Ent, Martin; Serruys, Patrick W; van Geuns, Robert Jan

    2011-06-01

    Aims Randomly compare the magnetic navigation system (MNS) to standard guidewire techniques in managing bifurcating lesions. Methods and results Thirty-one consecutive patients with bifurcating lesions were randomized to cross the bifurcating vessels prior to treatment and thereafter the struts of deployed stents with either magnetic or standard guidewires. Crossing success, crossing/fluoroscopy times, and contrast media usage were directly compared. Similar times were noted in both the magnetic wire crossings (median, IQR; 68 s, 45-138 s vs. 59 s, 32-133 s) and fluoroscopic times (median, IQR; 62 s, 44-135 s vs. 55 s, 27-133 s) when compared with standard conventional wires passage through the deployed struts. The MNS successful crossings were 30/31 (96.8%) compared with 28/31 (90.0%) observed with the standard wires. Two previously failed standard wire cases were successfully crossed with magnetic guidewires. Conclusion In contemporary stented bifurcations, the MNS achieved equivalent crossing/fluoroscopy times through deployed stents struts and may be useful in salvaging failed standard wire cases.

  17. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    Science.gov (United States)

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. WiFi-Aided Magnetic Matching for Indoor Navigation with Consumer Portable Devices

    Directory of Open Access Journals (Sweden)

    You Li

    2015-06-01

    Full Text Available This paper presents a WiFi-aided magnetic matching (MM algorithm for indoor pedestrian navigation with consumer portable devices. This algorithm reduces both the mismatching rate (i.e., the rate of matching to an incorrect point that is more than 20 m away from the true value and computational load of MM by using WiFi positioning solutions to limit the MM search space. Walking tests with Samsung Galaxy S3 and S4 smartphones in two different indoor environments (i.e., Environment #1 with abundant WiFi APs and significant magnetic features, and Environment #2 with less WiFi and magnetic information were conducted to evaluate the proposed algorithm. It was found that WiFi fingerprinting accuracy is related to the signal distributions. MM provided results with small fluctuations but had a significant mismatch rate; when aided by WiFi, MM’s robustness was significantly improved. The outcome of this research indicates that WiFi and MM have complementary characteristics as the former is a point-by-point matching approach and the latter is based on profile-matching. Furthermore, performance improvement through integrating WiFi and MM depends on the environment (e.g., the signal distributions of magnetic intensity and WiFi RSS: In Environment #1 tests, WiFi-aided MM and WiFi provided similar results; in Environment #2 tests, the former was approximately 41.6% better. Our results supported that the WiFi-aided MM algorithm provided more reliable solutions than both WiFi and MM in the areas that have poor WiFi signal distribution or indistinctive magnetic-gradient features.

  19. DEVELOPMENT OF EMBEDDED SYSTEM FOR REMOTE MEASURING OF DYNAMIC MAGNETIC FIELDS USING ZIGBEE

    Directory of Open Access Journals (Sweden)

    Thiago Dantas da Silva

    2016-04-01

    Full Text Available This paper aims to describe the development and implementation of an embedded system applied to remote measurement of dynamic artificial magnetic fields using Zigbee, which is a set of specifications for wireless data communication (based on IEEE standard 802.15.4. In the implementation of this system, Arduino microcontrolled platforms were used integrated to a Hall effect sensor intended for measuring the strength of these dynamic magnetic fields. The Zigbee technology aims to enable the execution of real-time and in remote character of these measurements of magnetic field intensity, presenting them in a graphical view.

  20. Navigated transcranial magnetic stimulation of the primary somatosensory cortex impairs perceptual processing of tactile temporal discrimination.

    Science.gov (United States)

    Hannula, Henri; Neuvonen, Tuomas; Savolainen, Petri; Tukiainen, Taru; Salonen, Oili; Carlson, Synnöve; Pertovaara, Antti

    2008-05-30

    Previous studies indicate that transcranial magnetic stimulation (TMS) with biphasic pulses applied approximately over the primary somatosensory cortex (S1) suppresses performance in vibrotactile temporal discrimination tasks; these previous results, however, do not allow separating perceptual influence from memory or decision-making. Moreover, earlier studies using external landmarks for directing biphasic TMS pulses to the cortex do not reveal whether the changes in vibrotactile task performance were due to action on S1 or an adjacent area. In the present study, we determined whether the S1 area representing a cutaneous test site is critical for perceptual processing of tactile temporal discrimination. Electrical test pulses were applied to the thenar skin of the hand and the subjects attempted to discriminate single from twin pulses. During discrimination task, monophasic TMS pulses or sham TMS pulses were directed anatomically accurately to the S1 area representing the thenar using magnetic resonance image-guided navigation. The subject's capacity to temporal discrimination was impaired with a decrease in the delay between the TMS pulse and the cutaneous test pulse from 50 to 0 ms. The result indicates that S1 area representing a cutaneous test site is involved in perceptual processing of tactile temporal discrimination.

  1. Non-invasive Mapping of Face Processing by Navigated Transcranial Magnetic Stimulation

    Science.gov (United States)

    Maurer, Stefanie; Giglhuber, Katrin; Sollmann, Nico; Kelm, Anna; Ille, Sebastian; Hauck, Theresa; Tanigawa, Noriko; Ringel, Florian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M.

    2017-01-01

    Background: Besides motor and language function, tumor resections within the frontal and parietal lobe have also been reported to cause neuropsychological impairment like prosopagnosia. Objective: Since non-navigated transcranial magnetic stimulation (TMS) has previously been used to map neuropsychological cortical function, this study aims to evaluate the feasibility and spatial discrimination of repetitive navigated TMS (rTMS) mapping for detection of face processing impairment in healthy volunteers. The study was also designed to establish this examination for preoperative mapping in brain tumor patients. Methods: Twenty healthy and purely right-handed volunteers (11 female, 9 male) underwent rTMS mapping for cortical face processing function using 5 Hz/10 pulses. Both hemispheres were investigated randomly with an interval of 2 weeks between mapping sessions. Fifty-two predetermined cortical spots of the whole hemispheres were mapped after baseline measurement. The task consisted of 80 portraits of popular persons, which had to be named while rTMS was applied. Results: In 80% of all subjects rTMS elicited naming errors in the right middle middle frontal gyrus (mMFG). Concerning anomia errors, the highest error rate (35%) was achieved in the bilateral triangular inferior frontal gyrus (trIFG). With regard to similarly or wrongly named persons, we observed 10% error rates mainly in the bilateral frontal lobes. Conclusion: It seems feasible to map the cortical face processing function and to generate face processing impairment via rTMS. The observed localizations are well in accordance with the contemporary literature, and the mapping did not interfere with rTMS-induced language impairment. The clinical usefulness of preoperative mapping has to be evaluated subsequently. PMID:28167906

  2. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  3. Mapping of cortical language function by functional magnetic resonance imaging and repetitive navigated transcranial magnetic stimulation in 40 healthy subjects.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-07-01

    Functional magnetic resonance imaging (fMRI) is considered to be the standard method regarding non-invasive language mapping. However, repetitive navigated transcranial magnetic stimulation (rTMS) gains increasing importance with respect to that purpose. However, comparisons between both methods are sparse. We performed fMRI and rTMS language mapping of the left hemisphere in 40 healthy, right-handed subjects in combination with the tasks that are most commonly used in the neurosurgical context (fMRI: word-generation = WGEN task; rTMS: object-naming = ON task). Different rTMS error rate thresholds (ERTs) were calculated, and Cohen's kappa coefficient and the cortical parcellation system (CPS) were used for systematic comparison of the two techniques. Overall, mean kappa coefficients were low, revealing no distinct agreement. We found the highest agreement for both techniques when using the 2-out-of-3 rule (CPS region defined as language positive in terms of rTMS if at least 2 out of 3 stimulations led to a naming error). However, kappa for this threshold was only 0.24 (kappa of <0, 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80 and 0.81-0.99 indicate less than chance, slight, fair, moderate, substantial and almost perfect agreement, respectively). Because of the inherent differences in the underlying physiology of fMRI and rTMS, the different tasks used and the impossibility of verifying the results via direct cortical stimulation (DCS) in the population of healthy volunteers, one must exercise caution in drawing conclusions about the relative usefulness of each technique for language mapping. Nevertheless, this study yields valuable insights into these two mapping techniques for the most common language tasks currently used in neurosurgical practice.

  4. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields☆

    Science.gov (United States)

    Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Klyachko, Natalia L.; Majouga, Alexander G.; Master, Alyssa M.; Sokolsky, Marina; Kabanov, Alexander V.

    2015-01-01

    The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia. PMID:26407671

  5. Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption.

    Science.gov (United States)

    Master, Alyssa M; Williams, Philise N; Pothayee, Nikorn; Pothayee, Nipon; Zhang, Rui; Vishwasrao, Hemant M; Golovin, Yuri I; Riffle, Judy S; Sokolsky, Marina; Kabanov, Alexander V

    2016-09-20

    Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (>250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact.

  6. Blood Velocity Estimation Based on an Optimal Observer for Magnetic Nanorobots Navigation

    Directory of Open Access Journals (Sweden)

    Duc Do Ton

    2017-01-01

    Full Text Available Magnetic nanorobots are recently used in a drug delivery system in order to perform minimally invasive medical procedures. One main difficulty for controlling nanorobots is the complicated behavior of hydrodynamic drag force and uncertain factors in their dynamics. The drag force depends on the blood velocity but unfortunately, it is apparently unknown. In previous feedback control system designs, the blood velocity was assumed to be known or set constant. This assumption did not reflect the reality and reduce the feasibility of the control systems. Considering this fact, this paper suggests an optimal observer for estimating blood velocity. The only information required for the proposed observer and overall control system is the position of nanorobots. The characteristic, stability, as well as gain tuning rules of the proposed optimal observer is discussed in detail. Simulation results are carried out in MATLAB/Simulink to demonstrate the effectiveness of the proposed optimal observer as well as the overall feedback control systems for nanorobot navigation in blood vessels.

  7. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome

    National Research Council Canada - National Science Library

    Roessler, K; Donat, M; Lanzenberger, R; Novak, K; Geissler, A; Gartus, A; Tahamtan, A R; Milakara, D; Czech, T; Barth, M; Knosp, E; Beisteiner, R

    2005-01-01

    The validity of 3 Tesla motor functional magnetic resonance imaging (fMRI) in patients with gliomas involving the primary motor cortex was investigated by intraoperative navigated motor cortex stimulation (MCS...

  8. DEVELOPMENT OF EMBEDDED SYSTEM FOR REMOTE MEASURING OF DYNAMIC MAGNETIC FIELDS USING ZIGBEE

    OpenAIRE

    Thiago Dantas da Silva; Jacques Cousteau da Silva Borges; Allan Aminadab André Freire Soares

    2016-01-01

    This paper aims to describe the development and implementation of an embedded system applied to remote measurement of dynamic artificial magnetic fields using Zigbee, which is a set of specifications for wireless data communication (based on IEEE standard 802.15.4). In the implementation of this system, Arduino microcontrolled platforms were used integrated to a Hall effect sensor intended for measuring the strength of these dynamic magnetic fields. The Zigbee technology aims to enable the ex...

  9. Volunteers Oriented Interface Design for the Remote Navigation of Rescue Robots at Large-Scale Disaster Sites

    Science.gov (United States)

    Yang, Zhixiao; Ito, Kazuyuki; Saijo, Kazuhiko; Hirotsune, Kazuyuki; Gofuku, Akio; Matsuno, Fumitoshi

    This paper aims at constructing an efficient interface being similar to those widely used in human daily life, to fulfill the need of many volunteer rescuers operating rescue robots at large-scale disaster sites. The developed system includes a force feedback steering wheel interface and an artificial neural network (ANN) based mouse-screen interface. The former consists of a force feedback steering control and a six monitors’ wall. It provides a manual operation like driving cars to navigate a rescue robot. The latter consists of a mouse and a camera’s view displayed in a monitor. It provides a semi-autonomous operation by mouse clicking to navigate a rescue robot. Results of experiments show that a novice volunteer can skillfully navigate a tank rescue robot through both interfaces after 20 to 30 minutes of learning their operation respectively. The steering wheel interface has high navigating speed in open areas, without restriction of terrains and surface conditions of a disaster site. The mouse-screen interface is good at exact navigation in complex structures, while bringing little tension to operators. The two interfaces are designed to switch into each other at any time to provide a combined efficient navigation method.

  10. Primary study on hand motor cortex mapping by using navigated transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Shuai LI

    2016-08-01

    Full Text Available Objective To investigate the feasibility and safety of using navigated transcranial magnetic stimulation (nTMS to map hand motor cortex and further analyze its clinical application.  Methods The first dorsal interosseous (FDI was selected as target muscle. The location and area of bilateral FDI were mapped by using nTMS in 10 healthy right-handed volunteers. In order to identify the accuracy of nTMS, all individual MRI volumes and the coordinates of hotspots were normalized to Montreal Neurological Institute (MNI space using SPM8. Positive sites and motor-evoked potential (MEP were recorded. The areas of hand motor representations were calculated and compared between bilateral cerebral hemispheres.  Results nTMS was capable of identifying hand motor cortex area in both hemispheres in all cases. It took 45 to 60 minutes to finish the whole nTMS procedures of each side of hand motor area. The motor cortex was found at the Ω area of bilateral precentral gyri. The right hand motor representation area was significantly larger than that of left area [(6.22 ± 0.76 cm2 vs (4.30 ± 0.40 cm2; t = 7.078, P = 0.000]. Four cases presented sleepiness, but no side effect such as headache or epilepsy was found.  Conclusions nTMS is a reliable and safe technique to map hand motor cortex. It can be a very useful supplementary tool for preoperative motor cortex mapping and study on motor functional remodeling. DOI: 10.3969/j.issn.1672-6731.2016.08.011

  11. Free-breathing steady-state free precession cine cardiac magnetic resonance with respiratory navigator gating.

    Science.gov (United States)

    Moghari, Mehdi H; Komarlu, Rukmini; Annese, David; Geva, Tal; Powell, Andrew J

    2015-04-01

    To develop and validate a respiratory motion compensation method for free-breathing cardiac cine imaging. A free-breathing navigator-gated cine steady-state free precession acquisition (Cine-Nav) was developed which preserves the equilibrium state of the net magnetization vector, maintains the high spatial and temporal resolutions of standard breath-hold (BH) acquisition, and images entire cardiac cycle. Cine image data is accepted only from cardiac cycles occurring entirely during end-expiration. Prospective validation was performed in 10 patients by obtaining in each three complete ventricular image stacks with different respiratory motion compensation approaches: (1) BH, (2) free-breathing with 3 signal averages (3AVG), and (3) free-breathing with Cine-Nav. The subjective image quality score (1 = worst, 4 = best) for Cine-Nav (3.8 ± 0.4) was significantly better than for 3AVG (2.2 ± 0.5, P = 0.002), and similar to BH (4.0 ± 0.0, P = 0.13). The blood-to-myocardium contrast ratio for Cine-Nav (6.3 ± 1.5) was similar to BH (5.9 ± 1.6, P = 0.52) and to 3AVG (5.6 ± 2.5, P = 0.43). There were no significant differences between Cine-Nav and BH for the ventricular volumes and mass. In contrast, there were significant differences between 3AVG and BH in all of these measurements but right ventricular mass. Free-breathing cine imaging with Cine-Nav yielded comparable image quality and ventricular measurements to BH, and was superior to 3AVG. © 2014 Wiley Periodicals, Inc.

  12. Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data.

    Science.gov (United States)

    Rosenstock, Tizian; Grittner, Ulrike; Acker, Güliz; Schwarzer, Vera; Kulchytska, Nataliia; Vajkoczy, Peter; Picht, Thomas

    2016-06-03

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive method for preoperatively localizing functional areas in patients with tumors in presumed motor eloquent areas. The aim of this study was to establish an nTMS-based risk stratification model by examining whether the results of nTMS mapping and its neurophysiological data predict postoperative motor outcome in glioma surgery. METHODS Included in this study were prospectively collected data for 113 patients undergoing bihemispheric nTMS examination prior to surgery for gliomas in presumed motor eloquent locations. Multiple ordinal logistic regression analysis was performed to test for any association between preoperative nTMS-related variables and postoperative motor outcome. RESULTS A new motor deficit or deterioration due to a preexisting deficit was observed in 20% of cases after 7 days and in 22% after 3 months. In terms of tumor location, no new permanent deficit was observed when the distance between tumor and corticospinal tract was greater than 8 mm and the precentral gyrus was not infiltrated (p = 0.014). New postoperative deficits on Day 7 were associated with a pathological excitability of the motor cortices (interhemispheric resting motor threshold [RMT] ratio 110%, p = 0.031). Interestingly, motor function never improved when the RMT was significantly higher in the tumorous hemisphere than in the healthy hemisphere (RMT ratio > 110%). CONCLUSIONS The proposed risk stratification model, based on objective functional-anatomical and neurophysiological measures, enables one to counsel patients about the risk of functional deterioration or the potential for recovery.

  13. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Lioumis, Pantelis; Zhdanov, Andrey; Mäkelä, Niko; Lehtinen, Henri; Wilenius, Juha; Neuvonen, Tuomas; Hannula, Henri; Deletis, Vedran; Picht, Thomas; Mäkelä, Jyrki P

    2012-03-15

    Transcranial magnetic stimulation (TMS) is widely used both in basic research and in clinical practice. TMS has been utilized in studies of functional organization of speech in healthy volunteers. Navigated TMS (nTMS) allows preoperative mapping of the motor cortex for surgical planning. Recording behavioral responses to nTMS in the speech-related cortical network in a manner that allows off-line review of performance might increase utility of nTMS both for scientific and clinical purposes, e.g., for a careful preoperative planning. Four subjects participated in the study. The subjects named pictures of objects presented every 2-3s on a computer screen. One-second trains of 5 pulses were applied by nTMS 300ms after the presentation of pictures. The nTMS and stimulus presentation screens were cloned. A commercial digital camera was utilized to record the subject's performance and the screen clones. Delays between presentation, audio and video signals were eliminated by carefully tested combination of displays and camera. An experienced neuropsychologist studied the videos and classified the errors evoked by nTMS during the object naming. Complete anomias, semantic, phonological and performance errors were observed during nTMS of left fronto-parieto-temporal cortical regions. Several errors were detected only in the video classification. nTMS combined with synchronized video recording provides an accurate monitoring tool of behavioral TMS experiments. This experimental setup can be particularly useful for high-quality cognitive paradigms and for clinical purposes.

  14. Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release

    Science.gov (United States)

    Kong, Seong Deok

    Hollow-sphere nanocapsules containing intentionally trapped magnetic nanoparticles and defined anticancer drugs provide a powerful magnetic vector under moderate gradient magnetic fields, and enable the nanocapsules to penetrate into the midst of tumors and allow a controlled on-off switchable release of the anticancer drug cargo by remotely applied Radio Frequency (RF) magnetic field. This imageable smart drug delivery system is compact because the drug molecules and magnetic nanoparticles can all be self-contained within 80~150 nm capsules. In vitro as well as in vivo results indicate that the nanocapsules are effective in reducing tumor cell growth. In Chapter 1, the concept of Drug Delivery Systems (DDSs) and the impact of nanotechnology on Drug Delivery Systems were introduced. Triggered drug release using magnetothermally-responsive nanomaterials, magnetic nanoparticles for nanomedicine, and ordered mesoporous materials in the context of Drug Delivery System were discussed. In Chapter 2, creation of remotely controllable, On-Off switchable drug release methodology was described. In this thesis work, triggerable nanocapsules which contain magnetic nanoparticles responsive to external radio frequency (RF) magnetic field have been successfully created. This is in contrast to the regular hollow nanospheres for slow passive release of drugs. The new nanocapsule material consists of bio-inert, bio-compatible or bio-degradable material that we can be selected from a variety of materials depending on specific medical applications. In Chapter 3, study and utilization of magnetic vector for guided tumor penetration was discussed. In the presence of a moderate gradient magnetic field, a powerful magnetic vector is created that allows these nanocapsules to cross cell membranes or blood-tissue barriers and penetrate into the midst of tumors, thus overcoming the well-known problem of limited access of anti-cancer drugs to cancer cells in the interior of a tumor tissue. In

  15. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    Science.gov (United States)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges

  16. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor.

    Science.gov (United States)

    Verpillat, F; Ledbetter, M P; Xu, S; Michalak, D J; Hilty, C; Bouchard, L-S; Antonijevic, S; Budker, D; Pines, A

    2008-02-19

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mum. An estimate of the sensitivity for an optimized system indicates that approximately 6 x 10(13) protons in a volume of 1,000 mum(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers.

  17. Mental "Space" Travel: Damage to Posterior Parietal Cortex Prevents Egocentric Navigation and Reexperiencing of Remote Spatial Memories

    Science.gov (United States)

    Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-01-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…

  18. A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote Sensing

    CERN Document Server

    Gelin, Chrystel

    2013-01-01

    Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion method...

  19. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Guohu Feng

    2012-06-01

    Full Text Available A matrix Kalman filter (MKF has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a at least one degree of rotational freedom is excited, and (b at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions.

  20. Measuring coronal magnetic fields with remote sensing observations of shock waves

    CERN Document Server

    Bemporad, Alessandro; Frassati, Federica; Fineschi, Silvano

    2016-01-01

    Recent works demonstrated that remote sensing observations of shock waves propagating into the corona and associated with major solar eruptions can be used to derive the strength of coronal magnetic fields met by the shock over a very large interval of heliocentric distances and latitudes. This opinion article will summarize most recent results obtained on this topic and will discuss the weaknesses and strengths of these techniques to open a constructive discussion with the scientific community.

  1. Contactless Remote Induction of Shear Waves in Soft Tissues Using a Transcranial Magnetic Stimulation Device

    CERN Document Server

    Grasland-Mongrain, Pol; Tang, An; Catheline, Stefan; Cloutier, Guy

    2016-01-01

    This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.

  2. Review of design principles for ITER VV remote inspection in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay Aux Roses, F-92265 (France)], E-mail: jean-baptiste.izard@cea.fr; Perrot, Yann; Friconneau, Jean-Pierre [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay Aux Roses, F-92265 (France)

    2009-06-15

    Because ITER magnet system has a limited number of mechanical and thermal stress cycles, shut down number of the toroidal field is limited during lifetime of ITER. Any inspection device able to withstand the toroidal field between two plasma shots will enhance the inspection frequency capacity of ITER during operation phase. In addition to the high magnetic field the system should also cope with high temperature, ultra-high vacuum and high radiation, in order to keep the reactor availability high. Radiation, ultra-high vacuum and temperature constraints already addressed by on going R and D activities within Europe-considering the required level of radiation is to date the highest encountered in remote handling, and that facing all these constraints at once is an additional issue to overcome. Whereas, operating remote handling systems in high magnetic field is quite new field of investigation. This paper aims to be a guideline for future designers to help them choose among options the adequate solution for an ITER relevant inspection device. It provides the designer an objective view of the different effects that stem from technical choices and help them deciding whether a technology is relevant or not depending on the task's requirements. We have selected a set of technologies and products available for structural design, actuation, sensing and data transmission in order to design inspection remote handling equipment for ITER in the given constraints. These different solutions are commented with specific considerations and directions to have them fit in the specifications. Different design strategies to cope with magnetic field are then discussed, which imply either insensitive design or using the magnetic field as a potential energy source and as a positioning help. This analysis is the first result of one of the projects in the PREFIT partnership, part of the European Fusion Training Scheme.

  3. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  4. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Valérie Renaudin

    2014-12-01

    Full Text Available The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU and acceleration gradient update (AGU. MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10° after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy.

  5. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation.

    Science.gov (United States)

    Renaudin, Valérie; Combettes, Christophe

    2014-12-02

    The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR) approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ)-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU) and acceleration gradient update (AGU). MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10° after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy.

  6. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    Science.gov (United States)

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming.

  7. A Personal Navigation System Based on Inertial and Magnetic Field Measurements

    Science.gov (United States)

    2010-09-01

    20Hard%20Iron%20Calibration.pdf [Accessed: May 3, 2010]. [82] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 2nd ed., McGraw-Hill...111 A. STRAPDOWN ALGORITHM FOR PERSONAL NAVIGATION .......111 B. ANALYSIS OF NUMERICAL METHODS FOR THE PNS..................112 1. Benchmark...Summary of Numerical Methods ...................................................132 C. A THREE-DIMENSIONAL FOOT MOTION MODEL

  8. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    Science.gov (United States)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  9. Radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia guided by magnetic navigation system: a prospective randomized comparison with conventional procedure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-xiao; LU Cai-yi; XUE Qiao; LI Ke; YAN Wei; ZHOU Sheng-hua

    2012-01-01

    Background Atrioventricular nodal reentrant tachycardia (AVNRT) is one of the most common paroxysmal supraventricular tachyarrhythmias.The aim of the study was to prospectively compare the characteristics of radiofrequency catheter ablation of AVNRT guided by a magnetic navigation system with the conventional procedure.Methods Patients with AVNRT diagnosed by electrophysiological tests were randomized into two groups.In the conventional technique group (CMT),a common 4-mm-tip quadrapolar temperature-controlled ablation catheter was used. In the magnetic navigation system guidance group (MNS), a magnetic 4-mm-tip quadrapolar temperature-controlled ablation catheter was used.The following parameters were collected and compared between the two groups: ablation procedure time,patient fluoroscopy time,operator fluoroscopy time,energy delivery numbers,maximal energy per deployment,success rate,complication rate and operative cost.Results Forty patients were enrolled and randomized into CMT and MNS groups.The age,gender,tachycardia history and basic cardiovascular diseases of the two groups were comparable (P >0.05).All procedures were conducted successfully without complications.No tachycardia recurred during the follow-up period of (9.3±2.6) months.In the MNS group,the patient and operator fluoroscopy times ((11.5±4.3) min,(4.2±1.5) min),energy delivery numbers (3.2±0.9),and maximal energy per deployment ((16.9±3.4) W) were shorter or lower than those of the CMT group ((14.3±6.2) min,(13.6±3.5) min,6.3±2.1,(23.7±1.3) W,respectively) (P <0.05).But the operative cost for the MNS group was higher than that of the CMT group (P <0.01 ).Conclusion Magnetic navigation system guided radiofrequency catheter ablation of AVNRT has the advantages of shorter fluoroscopy time and lower energy delivery numbers and maximal energy per deployment compared to the present conventional ablation technique.

  10. Remote delivery of congenital cardiac magnetic resonance imaging services: a unique telemedicine model.

    Science.gov (United States)

    Garg, Ruchira; Sevilla, Arnel; Garberich, Ross; Fleishman, Craig E

    2015-01-01

    Cardiac magnetic resonance imaging (CMRI) is increasingly utilized in the management of patients with congenital heart disease. Unfortunately, the expertise to perform and interpret these studies is not universally available, despite an increasing population of congenital heart survivors. This retrospective analysis describes our experience providing on-site CMRI services compared with providing the same services over a geographic distance of 250 miles. There were 83 local scans with both physician and patient on-site compared with 91 scans controlled by a physician geographically remote from the patients. The patients were well-matched for age, sex, study duration, scan type, and history of prior cardiac intervention. There was no difference in use of deep sedation or diazepam for anxiolysis, or use of atropine for arrhythmia suppression. There were no patient safety issues and there was satisfaction on the part of the referring physicians who were able to obtain more timely studies, as well as the remote-scanning physicians who had a workflow comparable with the local scans, but no lost travel time. This experience suggests that remote delivery of cardiac MRI services for the congenital heart population is feasible and can be done with comparable success and safety to a traditional "local" model. We also suggest the configuration to provide such remote CMRI services with commercially available hardware and software.

  11. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  12. Autonomous low-power magnetic data collection platform to enable remote high latitude array deployment.

    Science.gov (United States)

    Musko, Stephen B; Clauer, C Robert; Ridley, Aaron J; Arnett, Kennneth L

    2009-04-01

    A major driver in the advancement of geophysical sciences is improvement in the quality and resolution of data for use in scientific analysis, discovery, and for assimilation into or validation of empirical and physical models. The need for more and better measurements together with improvements in technical capabilities is driving the ambition to deploy arrays of autonomous geophysical instrument platforms in remote regions. This is particularly true in the southern polar regions where measurements are presently sparse due to the remoteness, lack of infrastructure, and harshness of the environment. The need for the acquisition of continuous long-term data from remote polar locations exists across geophysical disciplines and is a generic infrastructure problem. The infrastructure, however, to support autonomous instrument platforms in polar environments is still in the early stages of development. We report here the development of an autonomous low-power magnetic variation data collection system. Following 2 years of field testing at the south pole station, the system is being reproduced to establish a dense chain of stations on the Antarctic plateau along the 40 degrees magnetic meridian. The system is designed to operate for at least 5 years unattended and to provide data access via satellite communication. The system will store 1 s measurements of the magnetic field variation (<0.2 nT resolution) in three vector components plus a variety of engineering status and environment parameters. We believe that the data collection platform can be utilized by a variety of low-power instruments designed for low-temperature operation. The design, technical characteristics, and operation results are presented here.

  13. Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH.

    Science.gov (United States)

    Mistlberger, Günter; Koren, Klaus; Borisov, Sergey M; Klimant, Ingo

    2010-03-01

    Magnetic sensor macrospheres (MagSeMacs), i.e., stainless steel spheres coated with optical chemical sensors, are presented as an alternative to existing optical sensor patches and fiber-optical dip-probes. Such spheres can either be reversibly attached to the tip of an optical fiber (dip-probe) or trapped inside a vessel for read-out through the side wall. Moving the magnetic separator at the exterior enables measurements at varying positions with a single sensor. Moreover, the sensor's replacement is rapid and contactless. We measured dissolved oxygen or pH in stirred liquids, rotating flasks, and 24-well plates with a SensorDish-reader device for parallel cell culture monitoring. In these applications, MagSeMacs proved to be advantageous over conventional sensor patches and magnetic optical sensor particles because of their magnetism, spherical shape, reflectance, and size. These properties resulted in strong but reversible fixation, magnetic remote-controllability, short response times, high signal intensities, and simplified handling.

  14. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro [Toyama Medical and Pharmaceutical Univ. (Japan)

    2001-07-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  15. Integration and In-Field Gains Selection of Flight and Navigation Controller for Remotely Piloted Aircraft System

    Directory of Open Access Journals (Sweden)

    Słowik Maciej

    2017-03-01

    Full Text Available In the paper the implementation process of commercial flight and navigational controller in own aircraft is shown. The process of autopilot integration were performed for the fixed-wing type of unmanned aerial vehicle designed in high-wing and pull configuration of the drive. The above equipment were integrated and proper software control algorithms were chosen. The correctness of chosen hardware and software solution were verified in ground tests and experimental flights. The PID controllers for longitude and latitude controller channels were selected. The proper deflections of control surfaces and stabilization of roll, pitch and yaw angles were tested. In the next stage operation of telecommunication link and flight stabilization were verified. In the last part of investigations the preliminary control gains and configuration parameters for roll angle control loop were chosen. This enable better behavior of UAV during turns. Also it affected other modes of flight such as loiter (circle around designated point and auto mode where the plane executed a pre-programmed mission.

  16. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Science.gov (United States)

    Rotherham, Michael; El Haj, Alicia J

    2015-01-01

    Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling

  17. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Directory of Open Access Journals (Sweden)

    Michael Rotherham

    Full Text Available Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP. A commercially available oscillating magnetic bioreactor (MICA Biosystems was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate

  18. 蓝绿激光在水下航行器导航中的应用展望%Prospects of Blue-green Laser in the Navigation of Remote Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    张礴; 顾李冯

    2011-01-01

    针对水下航行器导航的薄弱环节,提出运用蓝绿激光的特殊性质,从远程水下航行器自身出发,对以海底地形匹配导航作为惯性导航的补充的导航方式进行了讨论.%For resolving the existing weak links of remote underwater vehicle, writer put forward that underwater vehicle start from itself, by use of the special nature of blue - green laser, sealed terrain matching navigation with inertial navigation as a supplementary means of navigation in this article.

  19. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  20. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    Science.gov (United States)

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2017-10-05

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  1. Hydroflotation magnetic-aided endolumenal navigation-preliminary platform in ex-vivo setting for the next paradigm in minimally invasive urologic surgery.

    Science.gov (United States)

    Kommu, Sashi S

    2010-07-01

    Navigation of endolumenal devices, such as image rendering capsules, have been described for diagnostic purposes in the animal, and more recently, human models. In urology, the ureter is a prime lumenal structure that often needs to be explored for diagnostic and therapeutic purposes. A novel device using a flotation mechanism in a water-filled environment was developed and its navigation achieved with magnetic-aided guidance. The device was tested for propulsion and real-time control in the ex-vivo setting. An endolumenal bionic worm (EBW) with a magnetic core was developed and introduced into synthetic lumens (SL) and supermarket chicken lumenal structures. The latter involved the gastrointestinal lumenal tissue of supermarket chickens; ie, the ex-vivo equivalent of a ureteral substitute lumen (USL). Navigation was graded by achievement of the EBW in propulsion to premarked sites, ability to remain static when necessary, and trauma to the USL. The structures were observed under the microscope for breech after the exercises. Navigation was observed in 10 SLs and 10 USLs. The EBW was successfully steered using the magnetic guidance system with hydroflotation. Observation of endolumenal surfaces did not reveal evidence of trauma in either model. Hydroflotation magnetic-aided endolumenal navigation (HMAEN) of a microdevice was achieved endolumenally with targeted real-time control and with no observed trauma to the structures. HMAEN could potentially be used to guide devices like the EBW to permit diagnostic and therapeutic ureteroscopy including biopsy of ureteral and renal pelvis lesions, thus ushering in the platform for the next paradigm in endolumenal urologic procedures.

  2. Analysis of 137 Patients Who Underwent Endoscopic Transsphenoidal Pituitary Adenoma Resection Under High-Field Intraoperative Magnetic Resonance Imaging Navigation.

    Science.gov (United States)

    Zhang, Huaping; Wang, Fuyu; Zhou, Tao; Wang, Peng; Chen, Xiaolei; Zhang, Jiashu; Zhou, Dingbiao

    2017-08-01

    Pure endoscopic resection has become the most popular surgical approach for pituitary adenoma. Intraoperative magnetic resonance imaging (iMRI) systems have been in use for endoscopic resection of pituitary adenomas. This study aimed to evaluate the effectiveness of iMRI and neuroimaging navigation techniques during endoscopic endonasal transsphenoidal surgery of pituitary adenomas. Data from 137 patients who underwent resection of endoscopic pituitary adenoma under 1.5T iMRI navigation were collected and analyzed. Of patients, 92 underwent complete resection and 45 had residual tumor on real-time iMRI. Twenty-three patients underwent further surgery, and total resection was achieved in 19. Extent of total resection increased from 67.15% to 81.02%. iMRI revealed 3 patients with bleeding in the surgical area, which was successfully treated during the surgery. Review images obtained 3 months after surgery showed 26 patients with residual tumor; 14 patients had the same volume as intraoperatively, and 12 patients had a volume less than that observed intraoperatively. Residual tumor volume in the suprasellar region was less than that seen intraoperatively in 11 of 15 (73.3%) patients. The use of iMRI and neuronavigation not only leads to a higher rate of tumor resection but also helps in detecting and removing hematomas in the surgical area. Follow-up examinations of extent of residual tumor at 3 months postoperatively were consistent with intraoperative results. Residual tumor volume in the suprasellar region was usually less than that observed intraoperatively. Copyright © 2017. Published by Elsevier Inc.

  3. A small scale remote cooling system for a superconducting cyclotron magnet

    Science.gov (United States)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  4. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging

    KAUST Repository

    Zhang, Wei

    2014-04-02

    Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer-by-layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g-1, which is lower than the 7-22 emu g-1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.

  5. Remote Operating Monitoring Of Spatial Stability Magnets On A Kurchatov Source Of Synchrotron Radiation

    CERN Document Server

    Barkovsky, E V; Martynenko, V V; Novikov, V A; Udin, L I

    2004-01-01

    During operation of the accelerator because of a nonuniform warm -up of the ring base and constructions of installation there are angular and linear displacements of bending and focusing magnets of a Big Accelerator Ring (BR) of a Kurchatov Source of Synchrotron Radiation. With the purpose of remote operating monitoring of a spatial position of elements BR was used anglemetrical control and measuring system with digital and analog registration in a real time mode. The results of the first stage of a monitoring BR have shown high informativity of the given instrumental - methodical means. The basic radiants of cyclical thermoelastic alternating strains are detected; the amplitudes of angular and linear displacements of magnets from different internal factors evaluated during operation of the accelerator. Is established, that the maximum radial angular and linear displacements of magnets are watched in 3,5-4 day after switching on of installation and achieve in max 30-35 seconds of an arc or 120-150 microns in ...

  6. MATLAB WEB SERVER AND ITS APPLICATION IN REMOTE COLLABORATIVE DESIGN OF MAGNETIC BEARING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.

  7. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.

    Science.gov (United States)

    Brothers, J Roger; Lohmann, Kenneth J

    2015-02-02

    Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals.

  8. Blood Velocity Estimation Based on an Optimal Observer for Magnetic Nanorobots Navigation

    OpenAIRE

    Duc Do Ton

    2017-01-01

    Magnetic nanorobots are recently used in a drug delivery system in order to perform minimally invasive medical procedures. One main difficulty for controlling nanorobots is the complicated behavior of hydrodynamic drag force and uncertain factors in their dynamics. The drag force depends on the blood velocity but unfortunately, it is apparently unknown. In previous feedback control system designs, the blood velocity was assumed to be known or set constant. This assumption did not reflect the ...

  9. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T.

    Science.gov (United States)

    Johnson, Kevin; Sharma, Puneet; Oshinski, John

    2008-01-01

    A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.

  10. Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping.

    Science.gov (United States)

    Sollmann, Nico; Tanigawa, Noriko; Bulubas, Lucia; Sabih, Jamil; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2017-01-01

    Correctly determining individual's resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients. Data were collected from preoperative motor mapping of abductor pollicis brevis (APB), abductor digiti minimi (ADM), and flexor carpi radialis (FCR) muscle representations among these patients. While edema and age at exam in the ADM model only jointly reduced the unexplained variance significantly, the other factors kept in the ADM model (gender, antiepileptic drug intake, and motor deficit) and each of the factors kept in the APB and FCR models independently significantly reduced the unexplained variance. Hence, several clinical parameters contribute to inter-individual rMT variability and should be taken into account during initial and follow-up motor mappings. Thus, the present study adds basic evidence on inter-individual rMT variability, whereby some of the parameters are specific to brain tumor patients.

  11. The Number of Pulses Needed to Measure Corticospinal Excitability by Navigated Transcranial Magnetic Stimulation: Eyes Open vs. Close Condition

    Science.gov (United States)

    Bashir, Shahid; Yoo, Woo-Kyoung; Kim, Hyoung Seop; Lim, Hyun Sun; Rotenberg, Alexander; Abu Jamea, Abdullah

    2017-01-01

    Objective: Motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) enable measures of the corticospinal excitability (CSE). However the reliability of TMS-derived CSE measures is suboptimal due to appreciable pulse-to-pulse MEP amplitude variability. We thus calculated how many TMS–derived MEPs will be needed to obtain a reliable CSE measure in awake adult subjects, in the eyes open (EO) and eyes closed (EC) conditions. Methods: Twenty healthy adults (70% male) received 40 consecutive navigated TMS pulses (120% resting motor threshold, RMT) in the EO or EC conditions on two separate days in randomized order. Results: For either the EO or EC condition, the probability that the 95% confidence interval (CI) derived from consecutive MEP amplitude measured included the true CSE, increased when the number of consecutive stimuli increased (EO: p = 0.05; EC: p = 0.001). No significant effect of RMT, Mini-Mental State Examination (MMSE) score, or gender on the CSE estimates was identified. At least 34 consecutive stimuli were required to obtain a most reliable CSE estimate in the EO condition and 31 in the EC condition. Conclusion: Our findings indicate that >30 consecutive MEPs may be necessary in order to obtain a CSE measure in healthy adults.

  12. Non-contrast-enhanced MR angiography of the thoracic aorta using cardiac and navigator-gated magnetization-prepared three-dimensional steady-state free precession.

    Science.gov (United States)

    Amano, Yasuo; Takahama, Katsuya; Kumita, Shinichiro

    2008-03-01

    To assess the usefulness of non-contrast-enhanced MR angiography using cardiac and navigator-gated magnetization-prepared three-dimensional (3D) steady-state free precession (SSFP) imaging for the diagnosis of diseases of the thoracic aorta. Twenty-two patients with diseases of the thoracic aorta were examined using a 1.5 Tesla unit. Non-contrast-enhanced MR angiography was done using parasagittal 3D SSFP combined with cardiac-gating and k-space weighted navigator-gating techniques, using T2-prepared and fat-suppression pulses. Imaging quality and the diagnostic capability of this technique were compared with the imaging quality of 2D SSFP or contrast-enhanced 3D MR angiography and with final diagnoses. Non-contrast-enhanced 3D MR angiography provided signal-to-noise and contrast-to-noise ratios of the thoracic aorta comparable to non-contrast-enhanced 2D or contrast-enhanced 3D MR angiography (P > 0.17). This imaging technique gave accurate diagnoses in 19 of the 22 patients. Non-contrast-enhanced MR angiography using cardiac and navigator-gated magnetization-prepared 3D SSFP technique was useful for the diagnosis of diseases of the thoracic aorta.

  13. Magnetic navigation system assisted percutaneous coronary intervention:a comparison to the conventional approach in daily practice

    Institute of Scientific and Technical Information of China (English)

    LI Chun-jian; WANG Hui; YANG Zhi-jian; CAO Ke-jiang

    2011-01-01

    Background The benefits of the magnetic navigation system (MNS) for percutaneous coronary intervention (PCI)remain unclear,and a comparison of the MNS assisted approach to the conventional approach for PCl,when used in daily practice,is little studied.This study aimed to investigate the benefits of an MNS assisted technique as compared to the conventional technique for PCI.Methods Forty-eight consecutive patients scheduled for PCI were recruited between December 2009 and April 2010.MNS assisted PCls were performed on 54 target vessels.Another 45 patients with 54 target vessels undergoing conventional PCls were selected from a historical population of patients to match the MNS group according to the coronary lesion type (ACC/AHA classification).Emergency PCls and chronic total occlusions were excluded from both groups.Analyses were performed using Stata 9.2 statistical software.Results There were no significant differences between the baseline characteristics of the MNS group and the control group.The success rates were 100.0% for the MNS assisted PCI and 98.1% for the conventional PCI,which did not reach a significant difference (P=1.000);there were also no significant differences in terms of guide wire crossing time ((51.7±30.5) seconds vs.(57.5±49.4) seconds,P=0.448),operation time ((28.4±15.9) minutes vs.(28.0±24.7) minutes,P=0.935),X-ray exposure ((458.1±350.1) μGym2 vs.(558.7±451.7) μGym2,P=0.197;and (94.2±80.9) mGy vs.(96.2±77.3) mGy,P=0.895) or contrast usage ((7.3±4.0) ml vs.(6.1 ±3.7) ml,P=0.121 ) between the two groups.However,a trend toward shorter guide wire crossing time and less X-ray exposure were observed for the magnetic group.Conclusion In daily practice,MNS assisted PCI resulted in a similar procedural success rate,operation time,and contrast usage,with a trend toward shorter guide wire crossing time and less X-ray exposure when compared to the conventional PCI.

  14. Development of a passive and remote magnetic microsensor with thin-film giant magnetoimpedance element and surface acoustic wave transponder

    KAUST Repository

    Al Rowais, Hommood

    2011-01-01

    This paper presents the development of a wireless magnetic field sensor consisting of a three-layer thin-film giant magnetoimpedance sensor and a surface acoustic wave device on one substrate. The goal of this integration is a passive and remotely interrogated sensor that can be easily mass fabricated using standard microfabrication tools. The design parameters, fabrication process, and a model of the integrated sensor are presented together with experimental results of the sensor. © 2011 American Institute of Physics.

  15. AUTOMATIC NAVIGATION.

    Science.gov (United States)

    NAVIGATION, REPORTS), (*CONTROL SYSTEMS, *INFORMATION THEORY), ABSTRACTS, OPTIMIZATION, DYNAMIC PROGRAMMING, GAME THEORY, NONLINEAR SYSTEMS, CORRELATION TECHNIQUES, FOURIER ANALYSIS, INTEGRAL TRANSFORMS, DEMODULATION, NAVIGATION CHARTS, PATTERN RECOGNITION, DISTRIBUTION THEORY , TIME SHARING, GRAPHICS, DIGITAL COMPUTERS, FEEDBACK, STABILITY

  16. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  17. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    Science.gov (United States)

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  18. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2016-01-18

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  19. Remote viewing with the artist Ingo Swann: neuropsychological profile, electroencephalographic correlates, magnetic resonance imaging (MRI), and possible mechanisms.

    Science.gov (United States)

    Persinger, M A; Roll, W G; Tiller, S G; Koren, S A; Cook, C M

    2002-06-01

    In the present study, the artist Ingo Swann, who helped develop the process of remote viewing (awareness of distant objects or places without employing normal senses), was exposed during a single setting of 30 min. to specific patterns of circumcerebral magnetic fields that significantly altered his subjective experiences. Several times during subsequent days, he was asked to sit in a quiet chamber and to sketch and to describe verbally distant stimuli (pictures or places) beyond his normal senses. The proportions of unusual 7-Hz spike and slow wave activity over the occipital lobes per trial were moderately correlated (rho=.50) with the ratings of accuracy between these distal, hidden stimuli and his responses. A neuropsychological assessment and Magnetic Resonance Imaging indicated a different structural and functional organization within the parieto-occipital region of the subject's right hemisphere from organizations typically noted. The results suggest that this type of paranormal phenomenon, often dismissed as methodological artifact or accepted as proofs of spiritual existence, is correlated with neurophysiological processes and physical events. Remote viewing may be enhanced by complex experimentally generated magnetic fields designed to interact with the neuromagnetic "binding factor" of consciousness.

  20. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xiaojie Xu

    2014-12-01

    Full Text Available Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors’ disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted.

  1. Post-traumatic stress influences local and remote functional connectivity: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Ke, Jun; Chen, Feng; Qi, Rongfeng; Xu, Qiang; Zhong, Yuan; Chen, Lida; Li, Jianjun; Zhang, Li; Lu, Guangming

    2016-10-08

    Post-traumatic stress disorder (PTSD) is associated with alterations in regional brain activation and remote functional connectivity (FC) in limbic and prefrontal cortex. However, little is known about local FC changes following a traumatic event. Resting-state functional magnetic resonance images were collected for typhoon survivors with (n = 27) and without PTSD (n = 33), and healthy controls (n = 30). Local FC was examined by calculating regional homogeneity (ReHo), and remote FC was investigated between regions showing significant ReHo group differences. The PTSD group showed ReHo changes in multiple regions, including the amygdala, parahippocampal gyrus, and prefrontal cortex relative to both control groups. Compared with healthy controls, typhoon survivors had increased ReHo in the insula/inferior frontal gyrus, middle and dorsal anterior cingulate cortex (MCC/dACC), as well as enhanced negative FC between the MCC/dACC and posterior cingulate cortex (PCC)/precuneus. The typhoon-exposed control group exhibited higher ReHo in the PCC/precuneus than the PTSD and healthy control groups. Furthermore, positive correlations were found between PTSD symptom severity and ReHo in several regions. Post-traumatic stress can influence local and remote FC, irrespective of PTSD diagnosis. Future studies are needed to validate the findings and to determine whether the alterations represent pre-existing or acquired deficits.

  2. Biomedical Applications of Magnetic Nanoparticles: Delivering Genes and Remote Control of Cells

    Science.gov (United States)

    Dobson, Jon

    2013-03-01

    The use of magnetic micro- and nanoparticles for biomedical applications was first proposed in the 1920s as a way to measure the rehological properties of the cell's cytoplasm. Since that time, magnetic micro- and nanoparticle synthesis, coating and bio-functionalization have advanced significantly, as have the applications for these particles. Magnetic micro- and nanoparticles are now used in a variety of biomedical techniques such as targeted drug delivery, MRI contrast enhancement, gene transfection, immno-assay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. This talk will focus on magnetic nanoparticle targeting to and actuation of cell surface receptors to control cell signaling cascades to control cell behavior. This technology has applications in disease therapy, cell engineering and regenerative medicine. The use of magnetic nanoparticles and oscillating magnet arrays for enhanced gene delivery will also be discussed.

  3. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    Science.gov (United States)

    Bietenbeck, Michael; Florian, Anca; Faber, Cornelius; Sechtem, Udo; Yilmaz, Ali

    2016-01-01

    Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed.

  4. Oceanic navigation in Cory's shearwaters: evidence for a crucial role of olfactory cues for homing after displacement.

    Science.gov (United States)

    Gagliardo, Anna; Bried, Joël; Lambardi, Paolo; Luschi, Paolo; Wikelski, Martin; Bonadonna, Francesco

    2013-08-01

    Pelagic birds, which wander in the open sea most of the year and often nest on small remote oceanic islands, are able to pinpoint their breeding colony even within an apparently featureless environment, such as the open ocean. The mechanisms underlying their surprising navigational performance are still unknown. In order to investigate the nature of the cues exploited for oceanic navigation, Cory's shearwaters, Calonectris borealis, nesting in the Azores were displaced and released in open ocean at about 800 km from their colony, after being subjected to sensory manipulation. While magnetically disturbed shearwaters showed unaltered navigational performance and behaved similarly to unmanipulated control birds, the shearwaters deprived of their sense of smell were dramatically impaired in orientation and homing. Our data show that seabirds use olfactory cues not only to find their food but also to navigate over vast distances in the ocean.

  5. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water

    Science.gov (United States)

    Middea, Antonieta; Spinelli, Luciana S.; Souza, Fernando G.; Neumann, Reiner; Gomes, Otavio da F. M.; Fernandes, Thais L. A. P.; de Lima, Luiz C.; Barthem, Vitoria M. T. S.; de Carvalho, Fernanda V.

    2015-08-01

    Recently there has been considerable interest in magnetic sorbents materials, which is added excellent capabilities such as sorption and magnetic response to an applied field. Accordingly, palygorskite nanoparticles were covered by magnetite using a co-precipitation technique and characterized by: X-ray fluorescence (XRF), X-ray diffraction (XRD), surface analysing and scanning electron microscopy (SEM) with element analysis and mapping, particle size, pore surface area (BET), density, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and zeta potential. Additionally, magnetic properties were studied by SQUID magnetometer, magnetic force microscopy (MFM) and also using a simple experimental setup. Magnetic nanoparticles produced had average diameters in a nanometric range. The amount of iron present in the nanoparticles increased by six times after the magnetization and a superparamagnetic behavior was exhibited with high saturation magnetization, from 4.0 × 10-4 Am2/kg to about 20 Am2/kg. A weight loss was also observed around 277 °C-339 °C by TGA, indicating a structural change from magnetite to maghemite, which confirms the magnetization of palygorskite. Batch adsorption experiments were carried out for the removal of methylene blue cationic dye from aqueous solution using pure and covered by magnetite palygorskite nanoparticles as adsorbents. Furthermore, about 90% of methylene blue was removed within 3 min using magnetized palygorskite.

  6. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water

    Energy Technology Data Exchange (ETDEWEB)

    Middea, Antonieta, E-mail: amiddea@cetem.gov.br [Centre for Mineral Technology (CETEM), Av. Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro 21941908 (Brazil); Federal University of Rio de Janeiro, Institute of Macromolecules, Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941598 (Brazil); Spinelli, Luciana S., E-mail: spinelli@ima.ufrj.br [Federal University of Rio de Janeiro, Institute of Macromolecules, Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941598 (Brazil); Souza, Fernando G. [Federal University of Rio de Janeiro, Institute of Macromolecules, Av. Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro 21941598 (Brazil); Neumann, Reiner; Gomes, Otavio da F.M. [Centre for Mineral Technology (CETEM), Av. Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro 21941908 (Brazil); Federal University of Rio de Janeiro, National Museum of Brazil, Postgraduate Program in Geosciences, Av. Quinta da Boa Vista, S/N Bairro Imperial de São Cristóvão, Rio de Janeiro 20940040 (Brazil); Fernandes, Thais L.A.P.; Lima, Luiz C. de [Centre for Mineral Technology (CETEM), Av. Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro 21941908 (Brazil); Barthem, Vitoria M.T.S. [Federal University of Rio de Janeiro, Physics Institute, Av. Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro 21941972 (Brazil); Carvalho, Fernanda V. de [Centre for Mineral Technology (CETEM), Av. Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro 21941908 (Brazil)

    2015-08-15

    Highlights: • Nanopalygorskites’ surface modification was confirmed by characterization. • The magnetism of nanoparticles was characterized by different techniques. • Methylene blue was easily removed using the magnetic nanopalygorskites. - Abstract: Recently there has been considerable interest in magnetic sorbents materials, which is added excellent capabilities such as sorption and magnetic response to an applied field. Accordingly, palygorskite nanoparticles were covered by magnetite using a co-precipitation technique and characterized by: X-ray fluorescence (XRF), X-ray diffraction (XRD), surface analysing and scanning electron microscopy (SEM) with element analysis and mapping, particle size, pore surface area (BET), density, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and zeta potential. Additionally, magnetic properties were studied by SQUID magnetometer, magnetic force microscopy (MFM) and also using a simple experimental setup. Magnetic nanoparticles produced had average diameters in a nanometric range. The amount of iron present in the nanoparticles increased by six times after the magnetization and a superparamagnetic behavior was exhibited with high saturation magnetization, from 4.0 × 10{sup −4} Am{sup 2}/kg to about 20 Am{sup 2}/kg. A weight loss was also observed around 277 °C–339 °C by TGA, indicating a structural change from magnetite to maghemite, which confirms the magnetization of palygorskite. Batch adsorption experiments were carried out for the removal of methylene blue cationic dye from aqueous solution using pure and covered by magnetite palygorskite nanoparticles as adsorbents. Furthermore, about 90% of methylene blue was removed within 3 min using magnetized palygorskite.

  7. Surgical neuro navigator guided by preoperative magnetic resonance images, based on a magnetic position sensor;Neuronavegador cirurgico guiado por imagens de ressonancia magnetica pre-operatoria, baseado num transdutor de posicao magnetico

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Siqueira, Rogerio Bulha; Carneiro, Antonio Adilton Oliveira, E-mail: adilton@ffclrp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Oliveira, Lucas Ferrari de [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Informatica; Machado, Helio Rubens [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurocirurgia

    2009-08-15

    Image guided neurosurgery enables the neurosurgeon to navigate inside the patient's brain using pre-operative images as a guide and a tracking system, during a surgery. Following a calibration procedure, three-dimensional position and orientation of surgical instruments may be transmitted to computer. The spatial information is used to access a region of interest, in the pre-operative images, displaying them to the neurosurgeon during the surgical procedure. However, when a craniotomy is involved and the lesion is removed, movements of brain tissue can be a significant source of error in these conventional navigation systems. The architecture implemented in this work intends the development of a system to surgical planning and orientation guided by ultrasound image. For surgical orientation, the software developed allows the extraction of slices from the volume of the magnetic resonance images (MRI) with orientation supplied by a magnetic position sensor (Polhemus{sup R}). The slices extracted with this software are important because they show the cerebral area that the neurosurgeon is observing during the surgery, and besides they can be correlated with the intra-operative ultrasound images to detect and to correct the deformation of brain tissue during the surgery. Also, a tool for per-operative navigation was developed, providing three orthogonal planes through the image volume. In the methodology used for the software implementation, the Python{sup tm} programming language and the Visualization Toolkit (VTK) graphics library were used. The program to extract slices of the MRI volume allowed the application of transformations in the volume, using coordinates supplied by the position sensor. (author)

  8. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    Directory of Open Access Journals (Sweden)

    Bietenbeck M

    2016-07-01

    Full Text Available Michael Bietenbeck,1 Anca Florian,1 Cornelius Faber,2 Udo Sechtem,3 Ali Yilmaz11Department of Cardiology and Angiology, 2Department of Clinical Radiology, University Hospital Münster, Münster, 3Division of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany Abstract: Magnetic resonance imaging (MRI allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs. These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT. The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed

  9. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles;

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  10. A family of enantiopure Fe(III)4 single molecule magnets: fine tuning of energy barrier by remote substituent.

    Science.gov (United States)

    Zhu, Yuan-Yuan; Cui, Chang; Qian, Kang; Yin, Ji; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2014-08-21

    A new family of enantiopure star-shaped Fe(III)4 single-molecule magnets (SMMs) with the general formula [Fe4(L(K))6] (H2L = (R or S)-2-((2-hydroxy-1-phenylethylimino methyl)phenol); K = H (), Cl (), Br (), I (), and t-Bu ()), were structurally and magnetically characterized. Complex was reported in our previous paper (Chem. Commun., 2011, 47, 8049-8051). Detailed magnetic measurements and a systematic magneto-structural correlation study revealed that the SMM properties of this series of compounds can be finely tuned by the remote substituent of the ligands. Although the change in the coordination environment of the central Fe(3+) ions is very small, the properties of SMM behavior are changed considerably. All five complexes display frequency dependence of the ac susceptibility. However, the χ peaks of complexes and cannot be observed down to 0.5 K. The fitted anisotropy energy barriers (Ueff) of complexes , , and were 5.9, 7.1, and 11.0 K, respectively. Moreover, the hysteresis loops of these three complexes can be also observed around 0.5 K. Magneto-structural correlation analyses revealed that the coordination symmetry of the central Fe(3+) ion and the intermolecular interaction are two key factors affecting the SMM properties. Deviation to a trigonal prism coordination environment and the existence of intermolecular interactions between neighboring clusters may both reduce the anisotropy energy barriers.

  11. Autonomous Spacecraft Navigation With Pulsars

    CERN Document Server

    Becker, Werner; Jessner, Axel

    2013-01-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  12. Personal navigation method based on foot-mounted MEMS inertial/magnetic measurement unit%光电跟踪模型噪声卡尔曼滤波算法

    Institute of Scientific and Technical Information of China (English)

    王秋平; 李凤; 马春林

    2012-01-01

    为减小滤波性能对跟踪目标状态空间模型噪声的敏感性,提出一种基于新息同时更新系统噪声方差和测量噪声方差方法,并将其与非线性卡尔曼滤波类算法相结合,构成一类适用于光电跟踪目标的自适应非线性卡尔曼滤波算法.同时将此方法应用到非线性测量光电跟踪系统中,并与扩展卡尔曼滤波和U卡尔曼滤波进行性能对比.仿真实验结果证明该方法可以实时调整系统噪声方差和测量噪声方差,有效地避免由于系统模型噪声统计特性不准确所带来的滤波性能下降的问题,而且其性能明显优于扩展卡尔曼滤波和U卡尔曼滤波.%In order to relieve the dependence of personal navigation on global navigation satellite system (GNSS), a personal navigation method was studied based on foot-mounted MEMS inertial/ magnetic measurement unit. Navigation information including attitude, velocity and position was obtained through the data from MEMS inertial measurement unit and strapdown inertial navigation algorithm. The azimuth of the navigation system was obtained by magnetic sensors. The errors of MEMS inertial navigation system and random errors of inertial sensors were modified by applying gait phase detection and zero-velocity update, so that the accumulate speed of the positioning errors was slowed down. The navigation experiment result shows that, the navigation errors of straight line and rectangle route retain about 2 m and 6 m during about 9 minutes' walking. The errors take up 1.1% and 2.5% of the whole distances of walking respectively. The experiment conclusion proves that the proposed method can effectively improve the positioning precision of personal navigation system, and can achieve personal positioning for longer time under the environment that GNSS signal is attenuated or become failure.

  13. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal

    Science.gov (United States)

    Wu, Jing; Wang, Nü; Zhao, Yong; Jiang, Lei

    2015-01-01

    Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3O4 nanoparticles, such fibrous films act as a ``smart magnetically controlled oil removal carrier'', which effectively overcome the drawbacks of other in situ oil adsorbant materials and can also be easily recovered. This work provides a simple strategy to fabricate magnetic responsive intelligent oil removal materials, which will find broad applications in complex environment oil-water separation.Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3

  14. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome.

    Science.gov (United States)

    Roessler, K; Donat, M; Lanzenberger, R; Novak, K; Geissler, A; Gartus, A; Tahamtan, A R; Milakara, D; Czech, T; Barth, M; Knosp, E; Beisteiner, R

    2005-08-01

    The validity of 3 Tesla motor functional magnetic resonance imaging (fMRI) in patients with gliomas involving the primary motor cortex was investigated by intraoperative navigated motor cortex stimulation (MCS). Twenty two patients (10 males, 12 females, mean age 39 years, range 10-65 years) underwent preoperative fMRI studies, performing motor tasks including hand, foot, and mouth movements. A recently developed high field clinical fMRI technique was used to generate pre-surgical maps of functional high risk areas defining a motor focus. Motor foci were tested for validity by intraoperative motor cortex stimulation (MCS) employing image fusion and neuronavigation. Clinical outcome was assessed using the Modified Rankin Scale. FMRI motor foci were successfully detected in all patients preoperatively. In 17 of 22 patients (77.3%), a successful stimulation of the primary motor cortex was possible. All 17 correlated patients showed 100% agreement on MCS and fMRI motor focus within 10 mm. Technical problems during stimulation occurred in three patients (13.6%), no motor response was elicited in two (9.1%), and MCS induced seizures occurred in three (13.6%). Combined fMRI and MCS mapping results allowed large resections in 20 patients (91%) (gross total in nine (41%), subtotal in 11 (50%)) and biopsy in two patients (9%). Pathology revealed seven low grade and 15 high grade gliomas. Mild to moderate transient neurological deterioration occurred in six patients, and a severe hemiparesis in one. All patients recovered within 3 months (31.8% transient, 0% permanent morbidity). The validation of clinically optimised high magnetic field motor fMRI confirms high reliability as a preoperative and intraoperative adjunct in glioma patients selected for surgery within or adjacent to the motor cortex.

  15. Hydrazone-bearing PMMA-functionalized magnetic nanocubes as pH-responsive drug carriers for remotely targeted cancer therapy in vitro and in vivo.

    Science.gov (United States)

    Ding, Xingwei; Liu, Yun; Li, Jinghua; Luo, Zhong; Hu, Yan; Zhang, Beilu; Liu, Junjie; Zhou, Jun; Cai, Kaiyong

    2014-05-28

    To develop vehicles for efficient chemotherapeutic cancer therapy, we report a remotely triggered drug delivery system based on magnetic nanocubes. The synthesized magnetic nanocubes with average edge length of around 30 nm acted as cores, whereas poly(methyl methacrylate) (PMMA) was employed as an intermediate coating layer. Hydrazide was then tailored onto PMMA both for doxorubicin (DOX) loading and pH responsive drug delivery via the breakage of hydrazine bonds. The successful fabrication of the pH responsive drug carrier was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and magnetic hysteresis loops, respectively. The carrier was stable at neutral environment and doxorubicin released at pH of 5.0. Cell viability assay and confocal laser scanning microscopy observations demonstrated that the loaded DOX could be efficiently released after cellular endocytosis and induced cancer cells apoptosis thereby. More importantly, the carrier could be guided to the tumor tissue site with an external magnetic field and led to efficient tumor inhibition with low side effects, which were reflected by magnetic resonance imaging (MRI), change of tumor size, TUNEL staining, and H&E staining assays, respectively. All results suggest that hydrazide-tailoring PMMA-coated magnetic nanocube would be a promising pH-responsive drug carrier for remotely targeted cancer therapy in vitro and in vivo.

  16. Remote sensing of sample temperatures in nuclear magnetic resonance using photoluminescence of semiconductor quantum dots.

    Science.gov (United States)

    Tycko, Robert

    2014-07-01

    Knowledge of sample temperatures during nuclear magnetic resonance (NMR) measurements is important for acquisition of optimal NMR data and proper interpretation of the data. Sample temperatures can be difficult to measure accurately for a variety of reasons, especially because it is generally not possible to make direct contact to the NMR sample during the measurements. Here I show that sample temperatures during magic-angle spinning (MAS) NMR measurements can be determined from temperature-dependent photoluminescence signals of semiconductor quantum dots that are deposited in a thin film on the outer surface of the MAS rotor, using a simple optical fiber-based setup to excite and collect photoluminescence. The accuracy and precision of such temperature measurements can be better than ±5K over a temperature range that extends from approximately 50K (-223°C) to well above 310K (37°C). Importantly, quantum dot photoluminescence can be monitored continuously while NMR measurements are in progress. While this technique is likely to be particularly valuable in low-temperature MAS NMR experiments, including experiments involving dynamic nuclear polarization, it may also be useful in high-temperature MAS NMR and other forms of magnetic resonance. Published by Elsevier Inc.

  17. Design of Underwater Integrated Navigation System of Underwater Vehicle Based on Magnetic Compass, DVL and GPS%基于磁罗盘、DVL及GPS的组合导航系统设计

    Institute of Scientific and Technical Information of China (English)

    葛锡云; 岳丽娜; 潘琼文; 申高展

    2015-01-01

    Because navigation system of underwater vehicle is expensive and the accuracy of underwater positioning is not high, this article designed a kind of low-cost integrated navigation system based on the magnetic compass, DVL and global satellite positioning system. Using piecewise linear interpolation compensation method and Compensation method of the speed of sound. The magnetic compass and DVL is calibrated and compensated, the accuracy of single navigation equipment is improved. Finally, according to the data fusion of Kalman filter, the accuracy of the entire navigation system is improved and the precise navigation of underwater vehicle is achieved.%针对水下潜器导航定位系统成本昂贵且水下定位精度不高的问题,设计了一种基于磁罗盘、多普勒测速仪(DVL)及全球卫星定位系统(GPS)的低成本组合导航系统。采用分段线性插值拟合补偿法及声速补偿法,对磁罗盘和多普勒测速仪进行校准及补偿,提高了单个导航设备的精度。最后通过卡尔曼滤波进行数据融合,提高了整个导航系统的精度,实现了水下潜器的精确导航。

  18. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many space missions require relative navigation between several spacecraft systems or between spacecraft and rovers or remote controlled probes, such as spacecraft...

  19. Remote effects of cortical dysgenesis on the primary motor cortex: evidence from the silent period following transcranial magnetic stimulation.

    Science.gov (United States)

    Cincotta, M; Borgheresi, A; Guidi, L; Macucci, M; Cosottini, M; Lambruschini, P; Benvenuti, F; Zaccara, G

    2000-08-01

    In cortical dysgenesis (CD), animal studies suggested abnormal cortico-cortical connections. Cerebral areas projecting to the primary motor cortex (M1) modulate the cortical silent period (CSP) following transcranial magnetic stimulation (TMS). Therefore, we used the CSP to investigate remote effects of CD on the M1. A detailed investigation, including single-pulse TMS and electrical nerve stimulation, was performed in 3 consecutive adults with focal CD located outside the M1 and in 18 controls. Two patients with unilateral CD were epileptic and treated with anti-epileptic drugs. One patient with focal CD on both sides had no history of seizures. Neurological examination was normal in all patients. Recordings were made from both first dorsal interosseous muscles. In CD patients, the CSP was significantly lengthened contralaterally to the affected hemispheres. In treated patients with unilateral CD, the interside difference of the CSP duration was also significantly increased. In contrast, excitability threshold, peripheral and corticospinal motor conduction studies, and peripheral as well as ipsilateral silent periods were not significantly modified. Our findings indicate that focal CD outside the M1 may produce CSP modifications, which are likely due to changes of afferent control.

  20. The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space

    Science.gov (United States)

    Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.

    2011-12-01

    Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.

  1. Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Narumi, Shinsuke; Ohba, Hideki; Mori, Kiyofumi; Ohura, Kazumasa; Ono, Ayumi; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2010-04-15

    Magnetic resonance (MR) plaque imaging for carotid arteries is usually performed by using an electrocardiograph (ECG)-gating technique to eliminate pulsation-related artifacts, which can affect the plaque signals because of varied repetition time (TR) among patients. Hence, we investigated whether differences in TR causes signal alterations of the carotid plaque by using a non-gated plaque imaging technique. We prospectively examined 19 patients with carotid stenosis by using a T1-weighted self-navigated radial-scan technique with TRs of 500, 700, and 900 ms. The signal intensity of the carotid plaque was measured, and the contrast ratio (CR) relative to the adjacent muscle was calculated. CRs of the carotid plaques were 1.39 {+-} 0.39, 1.29 {+-} 0.29, and 1.23 {+-} 0.24 with TRs of 500, 700, and 900 ms, respectively, and were significantly different. Among the plaques, those with a hyperintensity signal (CR > 1.5) and moderate-intensity signal (CR 1.2-1.5) at 500 ms showed a TR-dependent signal decrease (hyperintensity plaques, 1.82 {+-} 0.26; 1.61 {+-} 0.19; and 1.48 {+-} 0.17; moderate-intensity plaques, 1.33 {+-} 0.08; 1.26 {+-} 0.08; and 1.19 {+-} 0.07), while those with an isointensity signal (CR < 1.2) remained unchanged regardless of TR (0.96 {+-} 0.12, 0.96 {+-} 0.11, and 0.97 {+-} 0.13). The signal intensity of the carotid plaque on T1-weighted imaging significantly varies among different TRs and tends to decrease with longer TR. MR plaque imaging with short and constant TR settings that the ECG-gating method cannot realize would be preferable for evaluating plaque characteristics. (orig.)

  2. Minimally Invasive Electro-Magnetic Navigational Bronchoscopy-Integrated Near-Infrared-Guided Sentinel Lymph Node Mapping in the Porcine Lung

    Science.gov (United States)

    Wada, Hironobu; Hirohashi, Kentaro; Anayama, Takashi; Nakajima, Takahiro; Kato, Tatsuya; Chan, Harley H. L.; Qiu, Jimmy; Daly, Michael; Weersink, Robert; Jaffray, David A.; Irish, Jonathan C.; Waddell, Thomas K.; Keshavjee, Shaf; Yoshino, Ichiro; Yasufuku, Kazuhiro

    2015-01-01

    Background The use of near-infrared (NIR) fluorescence imaging with indocyanine green (ICG) for sentinel lymph node (SN) mapping has been investigated in lung cancer; however, this has not been fully adapted for minimally invasive surgery (MIS). The aim of our study was to develop a minimally invasive SN mapping integrating pre-operative electro-magnetic navigational bronchoscopy (ENB)-guided transbronchial ICG injection and intraoperative NIR thoracoscopic imaging. Methods A NIR thoracoscope was used to visualize ICG fluorescence. ICG solutions in a 96-well plate and ex vivo porcine lungs were examined to optimize ICG concentrations and injection volumes. Transbronchial ICG injection (n=4) was assessed in comparison to a traditional transpleural approach (n=3), where after thoracotomy an ICG solution (100μL at 100μg/mL) was injected into the porcine right upper lobe for SN identification. For further translation into clinical use, transbronchial ICG injection prior to thoracotomy followed by NIR thoracoscopic imaging was validated (n=3). ENB was used for accurate targeting in two pigs with a pseudo-tumor. Results The ICG fluorescence at 10 μg/mL was the brightest among various concentrations, unchanged by the distance between the thoracoscope and ICG solutions. Injected ICG of no more than 500μL showed a localized fluorescence area. All 7 pigs showed a bright paratracheal lymph node within 15 minutes post-injection, with persistent fluorescence for 60 minutes. The antecedent transbronchial ICG injection succeeded in SN identification in all 3 cases at the first thoracoscopic inspection within 20 minutes post-injection. The ENB system allowed accurate ICG injection surrounding the pseudo-tumors. Conclusions ENB-guided ICG injection followed by NIR thoracoscopy was technically feasible for SN mapping in the porcine lung. This promising platform may be translated into human clinical trials and is suited for MIS. PMID:25993006

  3. Minimally invasive electro-magnetic navigational bronchoscopy-integrated near-infrared-guided sentinel lymph node mapping in the porcine lung.

    Directory of Open Access Journals (Sweden)

    Hironobu Wada

    Full Text Available The use of near-infrared (NIR fluorescence imaging with indocyanine green (ICG for sentinel lymph node (SN mapping has been investigated in lung cancer; however, this has not been fully adapted for minimally invasive surgery (MIS. The aim of our study was to develop a minimally invasive SN mapping integrating pre-operative electro-magnetic navigational bronchoscopy (ENB-guided transbronchial ICG injection and intraoperative NIR thoracoscopic imaging.A NIR thoracoscope was used to visualize ICG fluorescence. ICG solutions in a 96-well plate and ex vivo porcine lungs were examined to optimize ICG concentrations and injection volumes. Transbronchial ICG injection (n=4 was assessed in comparison to a traditional transpleural approach (n=3, where after thoracotomy an ICG solution (100 μL at 100 μg/mL was injected into the porcine right upper lobe for SN identification. For further translation into clinical use, transbronchial ICG injection prior to thoracotomy followed by NIR thoracoscopic imaging was validated (n=3. ENB was used for accurate targeting in two pigs with a pseudo-tumor.The ICG fluorescence at 10 μg/mL was the brightest among various concentrations, unchanged by the distance between the thoracoscope and ICG solutions. Injected ICG of no more than 500μ L showed a localized fluorescence area. All 7 pigs showed a bright paratracheal lymph node within 15 minutes post-injection, with persistent fluorescence for 60 minutes. The antecedent transbronchial ICG injection succeeded in SN identification in all 3 cases at the first thoracoscopic inspection within 20 minutes post-injection. The ENB system allowed accurate ICG injection surrounding the pseudo-tumors.ENB-guided ICG injection followed by NIR thoracoscopy was technically feasible for SN mapping in the porcine lung. This promising platform may be translated into human clinical trials and is suited for MIS.

  4. Unenhanced respiratory-navigated NATIVE(®) TrueFISP magnetic resonance angiography in the evaluation of renal arteries: Comparison with contrast-enhanced magnetic resonance angiography.

    Science.gov (United States)

    Değirmenci, B; Kara, M; Kıdır, V; İnal, S; Sezer, T; Umul, A; Orhan, H; Çelik, A O; Demirtaş, H; Yilmaz, Ö

    2017-02-01

    To compare unenhanced three-dimensional (3D) NATIVE(®) true fast imaging with steady-state precession (TrueFISP) magnetic resonance (MR) angiography with the more conventional MR angiography technique obtained after intravenous administration of a gadolinium chelate in the evaluation of renal arteries and their branches in patients with suspected renal artery stenosis. A total of 39 patients (25 men, 14 women) with a mean age of 51.4±17.5years (SD) (range: 10-82years) were included in the study. All patients with suspected renal artery stenosis underwent unenhanced 3D NATIVE(®) TrueFISP MR angiography and contrast-enhanced MR angiography. The two MR angiography methods were compared by two independent readers for image quality using a four-point scale, diagnostic performance and grading of renal artery stenosis on a total of 78 renal arteries. For both readers image quality of unenhanced 3D NATIVE(®) TrueFISP MR angiography (3.12 to 3.63) was greater than that of contrast-enhanced MR angiography (1.94 to 2.71) for renal artery ostium-trunk and the left renal artery segmental branches. The sensitivity of 3D NATIVE(®) TrueFISP MR angiography for the diagnosis of renal artery stenosis was 100% for both readers for the right renal artery and 66% and 80% for the left renal artery for reader 1 and reader 2, respectively. Agreement between 3D NATIVE(®) TrueFISP MR angiography and CE-MR angiography was 95% (74/78) for reader 1 and 92% (72/78) for reader 2. Unenhanced NATIVE(®) TrueFISP magnetic resonance angiography can play an additional role in the evaluation of renal arteries in patients with hypertension, especially in subjects at risk of nephrogenic systemic fibrosis. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  6. Airborne Navigation Remote Map Reader Evaluation.

    Science.gov (United States)

    1986-03-01

    Volatile RAM’s ( NVRAMs ). One is mounted on the motherboard and stores constants related to the particular units such as alignment correction numbers... NVRAM is a rather unusual chip in that it contains both a working RAM and an electrically eraseable prom (EEPROM). It is set up such that information...Replaceable Unit LVPS .... Low Voltage Power Supply NATO .... North Atlantic Treaty Organization NTSC .... National Television System Committee NVRAM

  7. Remote actuated valve implant

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  8. Remote Nanodiamond Magnetometry

    CERN Document Server

    Ruan, Yinlan; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; V., Shahraam Afshar; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2016-01-01

    Optical fibres have transformed the way people interact with the world and now permeate many areas of science. Optical fibres are traditionally thought of as insensitive to magnetic fields, however many application areas from mining to biomedicine would benefit from fibre-based remote magnetometry devices. In this work, we realise such a device by embedding nanoscale magnetic sensors into tellurite glass fibres. Remote magnetometry is performed on magnetically active defect centres in nanodiamonds embedded into the glass matrix. Standard optical magnetometry techniques are applied to initialize and detect local magnetic field changes with a measured sensitivity of 26 micron Tesla/square root(Hz). Our approach utilizes straight-forward optical excitation, simple focusing elements, and low power components. We demonstrate remote magnetometry by direct reporting of the magnetic ground states of nitrogen-vacancy defect centres in the optical fibres. In addition, we present and describe theoretically an all-optica...

  9. Apollo Onboard Navigation Techniques

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  10. Inertial Navigation Sensors

    Science.gov (United States)

    2010-03-01

    Capteurs de navigation a faible cout et technologie d’integration) RTO-EN-SET-116(2010) 14. ABSTRACT For many navigation applications , improved...ABSTRACT For many navigation applications , improved accuracy/performance is not necessarily the most important issue, but meeting performance at...reduced cost and size is. In particular, small navigation sensor size allows the introduction of guidance, navigation, and control into applications

  11. Highly Efficient Freestyle Magnetic Nanoswimmer.

    Science.gov (United States)

    Li, Tianlong; Li, Jinxing; Morozov, Konstantin I; Wu, Zhiguang; Xu, Tailin; Rozen, Isaac; Leshansky, Alexander M; Li, Longqiu; Wang, Joseph

    2017-08-09

    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

  12. Optical Navigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  13. Optical Navigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  14. An overview of GNSS remote sensing

    OpenAIRE

    Kegen, Yu; Rizos, Chris; Burrage, Derek; Dempster, Andrew; Zhang, Kefei; Markgraf, Markus

    2014-01-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote ...

  15. Unmanned vehicle mobility: Limits of autonomous navigation

    Science.gov (United States)

    McCormac, A. W.; Hanna, D. M.; McFee, J.

    Considerable research is being conducted on the development of unmanned vehicles for military and civilian applications, particularly for hostile environments. It is desirable to produce a vehicle which can select its own route, not requiring remote navigation, but then it would be required to sense its surroundings. Although imaging systems and modern computers make this possible, the extreme data processing demands usually make it impractical. It is suggested that an inverse relationship exists between vehicle mobility and the complexity of the autonomous navigation system required for an unmanned vehicle. An overview of vehicle navigation is presented which shows the degree to which navigation is affected by increasing inherent mobility. If the inherent mobility of a vehicle is greatly enhanced, the scene image processing requirements and navigational computations are greatly simplified. This means the vehicle path selection and speed and steering adjustments may be made more quickly, resulting in higher vehicle speeds whenever possible. Combined with reduced deviation from the intended path, this would greatly increase the speed of the vehicle from one given point to another, suggesting that high speed autonomous navigation may be feasible.

  16. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.

    Science.gov (United States)

    Stocke, Nathanael A; Sethi, Pallavi; Jyoti, Amar; Chan, Ryan; Arnold, Susanne M; Hilt, J Zach; Upreti, Meenakshi

    2017-03-01

    Magnetic hyperthermia as a treatment modality is acquiring increased recognition for loco-regional therapy of primary and metastatic lung malignancies by pulmonary delivery of magnetic nanoparticles (MNP). The unique characteristic of magnetic nanoparticles to induce localized hyperthermia in the presence of an alternating magnetic field (AMF) allows for preferential killing of cells at the tumor site. In this study we demonstrate the effect of hyperthermia induced by low and high dose of MNP under the influence of an AMF using 3D tumor tissue analogs (TTA) representing the micrometastatic, perfusion independent stage of triple negative breast cancer (TNBC) that infiltrates the lungs. While application of inhalable magnetic nanocomposite microparticles or magnetic nanocomposites (MnMs) to the micrometastatic TNBC model comprised of TTA generated from cancer and stromal cells, showed no measureable adverse effects in the absence of AMF-exposure, magnetic hyperthermia generated under the influence of an AMF in TTA incubated in a high concentration of MNP (1 mg/mL) caused significant increase in cellular death/damage with mechanical disintegration and release of cell debris indicating the potential of these inhalable composites as a promising approach for thermal treatment of diseased lungs. The novelty and significance of this study lies in the development of methods to evaluate in vitro the application of inhalable composites containing MNPs in thermal therapy using a physiologically relevant metastatic TNBC model representative of the microenvironmental characteristics in secondary lung malignancies.

  17. Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance.

    Science.gov (United States)

    Bonadonna, F; Bajzak, C; Benhamou, S; Igloi, K; Jouventin, P; Lipp, H P; Dell'Omo, G

    2005-03-07

    After making foraging flights of several thousands of kilometers, wandering albatrosses (Diomedea exulans) are able to pinpoint a specific remote island where their nests are located. This impressive navigation ability is highly precise but its nature is mysterious. Here we examined whether albatrosses rely on the perception of the Earth's magnetic field to accomplish this task. We disturbed the perception of the magnetic field using mobile magnets glued to the head of nine albatrosses and compared their performances with those of 11 control birds. We then used satellite telemetry to monitor their behavior. We found that the ability of birds to home specific nest sites was unimpaired by this manipulation. In particular, experimental and control birds did not show significant differences with respect to either foraging trip duration, or length, or with respect to homing straightness index. Our data suggest that wandering albatrosses do not require magnetic cues to navigate back to their nesting birds.

  18. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  19. Space Shuttle navigation validation

    Science.gov (United States)

    Ragsdale, A.

    The validation of the guidance, navigation, and control system of the Space Shuttle is explained. The functions of the ascent, on-board, and entry mission phases software of the navigation system are described. The common facility testing, which evaluates the simulations to be used in the navigation validation, is examined. The standard preflight analysis of the operational modes of the navigation software and the post-flight navigation analysis are explained. The conversion of the data into a useful reference frame and the use of orbit parameters in the analysis of the data are discussed. Upon entry the data received are converted to flags, ratios, and residuals in order to evaluate performance and detect errors. Various programs developed to support navigation validation are explained. A number of events that occurred with the Space Shuttle's navigation system are described.

  20. Active-imaging-based underwater navigation

    Science.gov (United States)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  1. The Current Status of Research on GNSS-R Remote Sensing Technology in China and Future Development

    National Research Council Canada - National Science Library

    Li Huang; Xia Qing; Yin Cong; Wan Wei

    2013-01-01

    .... In recent years, development of the navigation satellite remote sensing applications using GNSS as a external illuminator, it has been forming a new Global Navigation Satellite System METeorology (GNSS/MET...

  2. EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    SONG, H. Q.; CHEN, Y.; Wang, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); ZHANG, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); CHENG, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); HU, Q.; LI, G. [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); WANG, Y. M., E-mail: hqsong@sdu.edu.cn [Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences (CAS), Hefei, Anhui 230026 (China)

    2015-07-20

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  3. Chemical compass for bird navigation

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Hore, Peter J.; Ritz, Thorsten

    2014-01-01

    Migratory birds travel spectacular distances each year, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the detection...... increased interest following the proposal in 2000 that free radical chemistry could occur in the bird's retina initiated by photoexcitation of cryptochrome, a specialized photoreceptor protein. In the present paper we review the important physical and chemical constraints on a possible radical...

  4. Chemical compass for bird navigation

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Hore, Peter J.; Ritz, Thorsten

    2014-01-01

    Migratory birds travel spectacular distances each year, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the detection...... increased interest following the proposal in 2000 that free radical chemistry could occur in the bird's retina initiated by photoexcitation of cryptochrome, a specialized photoreceptor protein. In the present paper we review the important physical and chemical constraints on a possible radical...

  5. Image Based Indoor Navigation

    OpenAIRE

    Noreikis, Marius

    2014-01-01

    Over the last years researchers proposed numerous indoor localisation and navigation systems. However, solutions that use WiFi or Radio Frequency Identification require infrastructure to be deployed in the navigation area and infrastructureless techniques, e.g. the ones based on mobile cell ID or dead reckoning suffer from large accuracy errors. In this Thesis, we present a novel approach of infrastructure-less indoor navigation system based on computer vision Structure from Motion techniques...

  6. Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions.

    Science.gov (United States)

    Chechetka, Svetlana A; Yuba, Eiji; Kono, Kenji; Yudasaka, Masako; Bianco, Alberto; Miyako, Eijiro

    2016-05-23

    Cancer is one of the primary causes of death worldwide. A high-precision analysis of biomolecular behaviors in cancer cells at the single-cell level and more effective cancer therapies are urgently required. Here, we describe the development of a magnetically- and near infrared light-triggered optical control method, based on nanorobotics, for the analyses of cellular functions. A new type of nanotransporters, composed of magnetic iron nanoparticles, carbon nanohorns, and liposomes, was synthesized for the spatiotemporal control of cellular functions in cells and mice. Our technology will help to create a new state-of-the-art tool for the comprehensive analysis of "real" biological molecular information at the single-cell level, and it may also help in the development of innovative cancer therapies.

  7. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  8. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF.

    Directory of Open Access Journals (Sweden)

    Miroslaw Janowski

    Full Text Available BACKGROUND: The purpose of the study was to evaluate the long-term clinical tracking of magnetically labeled stem cells after intracerebroventricular transplantation as well as to investigate in vitro feasibility for magnetic guidance of cell therapy within large fluid compartments. METHOD: After approval by our Institutional Review Board, an 18-month-old patient, diagnosed as being in a vegetative state due to global cerebral ischemia, underwent cell transplantation to the frontal horn of the lateral ventricle, with umbilical cord blood-derived stem cells labeled with superparamagnetic iron oxide (SPIO contrast agent. The patient was followed over 33 months with clinical examinations and MRI. To evaluate the forces governing the distribution of cells within the fluid compartment of the ventricular system in vivo, a gravity-driven sedimentation assay and a magnetic field-driven cell attraction assay were developed in vitro. RESULTS: Twenty-four hours post-transplantation, MR imaging (MRI was able to detect hypointense cells in the occipital horn of the lateral ventricle. The signal gradually decreased over 4 months and became undetectable at 33 months. In vitro, no significant difference in cell sedimentation between SPIO-labeled and unlabeled cells was observed (p = NS. An external magnet was effective in attracting cells over distances comparable to the size of human lateral ventricles. CONCLUSIONS: MR imaging of SPIO-labeled cells allows monitoring of cells within lateral ventricles. While the initial biodistribution is governed by gravity-driven sedimentation, an external magnetic field may possibly be applied to further direct the distribution of labeled cells within large fluid compartments such as the ventricular system.

  9. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    Science.gov (United States)

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.

  10. Aorta Stent Implantation Guided by Magnetic Navigation System: an in Vitro Study%磁导航引导主动脉支架植入术的实验研究

    Institute of Scientific and Technical Information of China (English)

    王肃; 蔡俊锋; 罗哲; 顾力栩; 王哲; 赵强

    2012-01-01

    Objective:To evaluate the feasibility? Repeatability and accuracy of using magnetic navigation system to guide aorta stcnt implantation in virtual reality environment. Methods:Prcopcrativc CT image information was loaded into the computer and reconstructed to a 3D anatomic structure. The next step was to complete prcopcrativc registration with the model and to infuse the real-time ultrasound images. After that* the virtual reality environment was established. The intcrvcntional devices were transformed so that in models they can be traced accurately and located in a 3D anatomic structure by using Aurora magnetic navigation system. The aorta stcnt was deployed according to the sensor coil in front of the stcnt. The accuracy was proved by real-time ultrasound and postoperative CT. The operation time (T) , registration error (Kl) , and the total operation error (K2) were recorded and calculated. Results: All aorta stcnts were successfully deployed in accurate positions. The average operation time was (38. 4 ± 3. 9) min; the average registration error was (0. 59 ± 0. 27) mm; the average total operation error was (1. 94 I 1. 15) mm. Registration and operation accuracy satisfied the clinical requirements. Conclusions; The experiment of in vitro models has proved that in virtual reality environment aorta stcnt implantation guided by magnetic navigation system is easy and rcpcatablc. This method can be used as a new intcrvcntional tracing and positioning method.%目的:研究虚拟现实环境下应用磁导航引导对主动脉夹层进行支架植入术的可行性.方法:利用术前CT影像信息,通过计算机进行三维解剖结构重建,与模型完成术前配准,并通过融入实时超声图像,形成虚拟现实环境.对介入手术器械和主动脉支架植入物进行结构性能改造,应用NDI Aurora电磁导航系统,在体外实验模型中实现对器械和植入物的精确示踪和三维立体定位,参照支架前传感器完成支架释放,并

  11. Remote Research

    CERN Document Server

    Tulathimutte, Tony

    2011-01-01

    Remote studies allow you to recruit subjects quickly, cheaply, and immediately, and give you the opportunity to observe users as they behave naturally in their own environment. In Remote Research, Nate Bolt and Tony Tulathimutte teach you how to design and conduct remote research studies, top to bottom, with little more than a phone and a laptop.

  12. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  13. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  14. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  15. Geomagnetic Navigation in Sea Turtles

    Science.gov (United States)

    Lohmann, K.; Putman, N.; Lohmann, C.

    2011-12-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Newly hatched turtles (hatchlings) begin the migration with a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries. In laboratory experiments, young turtles that had never before been in the ocean were exposed to fields like those that exist at various, widely separated locations along their transoceanic migratory route. Turtles responded by swimming in directions that would, in each case, help them remain within the North Atlantic gyre currents and advance along the migratory pathway. The results demonstrate that turtles can derive both longitudinal and latitudinal information from the Earth's field, and provide strong evidence that hatchling loggerheads inherit a remarkably elaborate set of responses that function in guiding them along their open-sea migratory route. For young sea turtles, couplings of oriented swimming to regional magnetic fields appear to provide the fundamental building blocks from which natural selection can sculpt a sequence of responses capable of guiding first-time ocean migrants along complex migratory routes. The results imply that hatchlings from different populations in different parts of the world are likely to have magnetic navigational responses uniquely suited for the migratory routes that each group follows. Thus, from a conservation perspective, turtles from different populations are not interchangeable. From an evolutionary perspective, the responses are not incompatible with either secular variation or magnetic polarity reversals. As Earth's field gradually changes, strong selective pressure presumably acts to maintain an approximate match between the responses of hatchlings and the fields that exist at critical points along

  16. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Science.gov (United States)

    2013-11-15

    ... COMMISSION Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems... the United States after importation of certain navigation products, including GPS devices, navigation... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  17. Mobile magnetic traps for manipulation of magnetically labeled and unlabeled cells

    Science.gov (United States)

    Henighan, Thomas; Chen, Aaron; Vieira, Greg; Hauser, Adam; Yang, Fengyuan; Chalmers, Jeffrey; Sooryakumar, Ratnasingham

    2010-03-01

    Magnetic forces are frequently used for the manipulation of biological cells because magnetic fields are typically easier to use and have fewer effects on the cells than optical or electrical fields. While magnetic forces are typically used for bulk separation, it is considerably harder to magnetically manipulate a single cell, or a small number of cells. In this study we employ reprogrammable magnetization profiles created through lithographically patterned ferromagnetic disks as a template for producing highly localized trapping fields. The resulting magnetic field gradients can be modulated by an external magnetic field enabling directed forces to be applied on, (a) single, or a small number of immunomagnetically labeled biological cells and, (b) magnetic microspheres that act as magnetically actuated force transmitting probes to navigate fluid-borne unlabeled cells with micrometer precision. We demonstrate the mobile traps by remotely transporting and arranging, with programmed routines (a la joystick), T-lymphocyte and leukemia cells on the platform. Without producing damage, the forces transport the cells with speeds up to 20 microns/sec across a silicon platform to predetermined sites.

  18. Algorithms for vehicle navigation

    OpenAIRE

    Storandt, Sabine

    2012-01-01

    Nowadays, navigation systems are integral parts of most cars. They allow the user to drive to a preselected destination on the shortest or quickest path by giving turn-by-turn directions. To fulfil this task the navigation system must be aware of the current position of the vehicle at any time, and has to compute the optimal route to the destination on that basis. Both of these subproblems have to be solved frequently, because the navigation system must react immediately if the vehicle leaves...

  19. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    Abstract Robots will soon take part in everyone’s daily life. In industrial production this has been the case for many years, but up to now the use of mobile robots has been limited to a few and isolated applications like lawn mowing, surveillance, agricultural production and military applications....... The research is now progressing towards autonomous robots which will be able to assist us in our daily life. One of the enabling technologies is navigation, and navigation is the subject of this thesis. Navigation of an autonomous robot is concerned with the ability of the robot to direct itself from...

  20. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  1. Mathematical Formulation of the Remote Electric and Magnetic Emissions of the Lightning Dart Leader and Return Stroke

    Science.gov (United States)

    Thiemann, Edward M. B.

    analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.

  2. Coastal Navigation Portfolio Management

    Science.gov (United States)

    2015-02-19

    the entire navigation portfolio of projects , both inland and coastal. The Coastal Structures Management , Analysis, and Ranking Tool (CSMART) is a...FEB 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coastal Navigatoin Portfolio Management 5a. CONTRACT...CIRP.aspx Coastal Inlets Research Program Coastal Navigation Portfolio Management The Coastal Navigatoin Portfolio Management work unit

  3. An overview of GNSS remote sensing

    Science.gov (United States)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  4. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation lights, aids to navigation, navigation charts, and related data policy, practices and procedure. 209.325 Section 209.325 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF...

  5. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  6. Remote Sensing.

    Science.gov (United States)

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  7. Remote medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-29

    The international oil industry, catalyzed by a surge in exploration and production projects in remote regions, is giving health care for its travelers and expatriates a high priority. L.R. Aalund, the Journal`s Managing Editor--Technology, reports on why and how this is happening now. He covers this in articles on: health care in Russia, air ambulance evacuations, and the deployment of remote paramedics. Aalund gathered the information during trips to Finland and Russia and interviews with oil industry personnel, physicians, and other medical professionals in North America, Europe, and Siberia. Titles of the four topics presented in this special section on remote medicine are as follows: Oil companies focus on emergency care for expats in Russia; Air ambulance plan can be critical; Remote paramedics have high level of training; and Other facets of remote medicine.

  8. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin

    2012-07-26

    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a responsive block copolymer-grafted mesoporous silica shell and magnetite core (see figure; P2VP-b-PDMS: poly(2-vinylpyridine-b- dimethylsiloxane)). Desirable properties of the liquid marbles include that they rupture upon ultraviolet illumination and can be remotely manipulated by an external magnetic field. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  10. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.

  11. Navigating Distributed Services

    DEFF Research Database (Denmark)

    Beute, Berco

    2002-01-01

    , to a situation where they are distributedacross the Internet. The second trend is the shift from a virtual environment that solelyconsists of distributed documents to a virtual environment that consists of bothdistributed documents and distributed services. The third and final trend is theincreasing diversity...... of devices used to access information on the Internet.The focal point of the thesis is an initial exploration of the effects of the trends onusers as they navigate the virtual environment of distributed documents and services.To begin the thesis uses scenarios as a heuristic device to identify and analyse...... themain effects of the trends. This is followed by an exploration of theory of navigationInformation Spaces, which is in turn followed by an overview of theories, and the stateof the art in navigating distributed services. These explorations of both theory andpractice resulted in a large number of topics...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  13. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  15. Visual navigation aid for planetary UAV risk reduction

    Science.gov (United States)

    McPherson, C. A.; Bottkol, M. S.; Madison, R. W.; DeBitetto, P. A.; Young, M.

    2007-09-01

    Unlike the navigation problem of Earth operations, the precise navigation of a vehicle in a remote planetary environment presents a challenging problem for either absolute or relative navigation. There exist no GPS/INS solutions due to a lack of a GPS constellation, few or no accurately surveyed markers for use in terminal sensing measurements, and highly uncertain terrain elevation maps used by a TERCOM system. These, and other, issues prompted the investigation of the potential use of a visual navigation aid to supplement an Inertial Navigation System (INS) and radar altimeter suite of a planetary airplane for the purpose of the identifying the potential benefit of visual measurements to the overall navigation solution. The mission objective used in the study, described herein, requires the precise relative navigation of the airplane over an uncertain terrain. Unlike the previously successful employment of visual aided navigation on the MER1 landing vehicle, the mission objectives require that the airplane traverse a precise flight pattern over the objective terrain at relatively low altitudes for hundreds of kilometers, and is more akin to a velocity correlator application than a terminal fix problem. The results of the investigation indicate that a good knowledge of aircraft altitude is required in order to obtain the desired performance for velocity estimate accuracy. However, it was determined that the direction of the velocity vector can be obtained without a high accuracy height estimate. The characterization of the dependency of velocity estimate accuracy upon the variety of factors involved in the process is the primary focus of this report. This report describes the approach taken in this investigation to both define the architecture of the solution for minimal impact upon payload requirements, and the analysis of the potential gains to the overall navigation problem. Also described as part of the problem definition are the initially assumed contribution

  16. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  17. Navigational Planning in Orienteering

    Science.gov (United States)

    Murakoshi, Shin

    Navigation is a human activity with the aim being to arrive at a predetermined destination. In order to find the way to the destination, the use of current input from the actual environment while travelling is needed as well as stored and organized knowledge of the local geography. Although the knowledge requirement has been studied extensively in the form of cognitive maps or other spatial representation, few studies deal with how the knowledge is used together with the input from the actual environment while navigating.

  18. Framing of grid cells within and beyond navigation boundaries

    Science.gov (United States)

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  19. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  20. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  1. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  2. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  6. Navigating Hypermasculine Terrains

    DEFF Research Database (Denmark)

    Henriksen, Ann-Karina Eske

    2015-01-01

    The study addresses how young women navigate urban terrains that are characterized by high levels of interpersonal aggression and crime. It is argued that young women apply a range of gendered tactics to establish safety and social mastery, and that these are framed by the limits and possibilitie...

  7. Personal Navigation System

    Science.gov (United States)

    2005-10-31

    GPS Satellite Simulator PC I B us PC I B us Embedded C language software TMS320VC33 DSP • Sensor I/O • Navigation Equations • Deep Integration...Simulator Test Display Simulation Controller 22 Figure 12. PNS Prototype Software System Integration Environment Embedded C language

  8. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    -technical system, the attack navigator identifies routes to an attacker goal. Specific attacker properties such as skill or resources can be included through attacker profiles. This enables defenders to explore attack scenarios and the effectiveness of defense alternatives under different threat conditions....

  9. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...

  10. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    Science.gov (United States)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are

  11. Ultrasound Navigation for Transcatheter Aortic Stent Deployment Using Global and Local Information

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2016-11-01

    Full Text Available An ultrasound (US navigation system using global and local information is presented for transcatheter aortic stent deployment. The system avoids the use of contrast agents and radiation required in traditional fluoroscopically-guided procedures and helps surgeons precisely visualize the surgical site. To obtain a global 3D (three-dimensional navigation map, we use magnetic resonance (MR to provide a 3D context to enhance 2D (two-dimensional US images through image registration. The US images are further processed to obtain the trajectory of interventional catheter. A high-resolution aortic model is constructed by using trajectory and segmented intravascular ultrasound (IVUS images. The constructed model reflects morphological characteristics of the aorta to provide local navigation information. Our navigation system was validated using in vitro phantom of heart and aorta. The mean target registration error is 2.70 mm and the average tracking error of the multi-feature particle filter is 0.87 mm. These results confirm that key parts of our navigation system are effective. In the catheter intervention experiment, the vessel reconstruction error of local navigation is reduced by 80% compared to global navigation. Moreover, the targeting error of the navigation combining global and local information is reduced compared to global navigation alone (1.72 mm versus 2.87 mm. Thus, the US navigation system which integrates the large view of global navigation and high accuracy of local navigation can facilitate transcatheter stent deployment.

  12. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  13. A magnetic compass aids monarch butterfly migration

    National Research Council Canada - National Science Library

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species...

  14. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  15. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.

    Science.gov (United States)

    Kaltenbach, Benjamin; Bucher, Andreas M; Wichmann, Julian L; Nickel, Dominik; Polkowski, Christoph; Hammerstingl, Renate; Vogl, Thomas J; Bodelle, Boris

    2017-06-16

    The aim of this study was to assess the feasibility of a free-breathing dynamic liver imaging technique using a prototype Cartesian T1-weighted volumetric interpolated breathhold examination (VIBE) sequence with compressed sensing and simultaneous acquisition of a navigation signal for hard-gated and motion state-resolved reconstruction. A total of 43 consecutive oncologic patients (mean age, 66 ± 11 years; 44% female) underwent free-breathing dynamic liver imaging for the evaluation of liver metastases from colorectal cancer using a prototype Cartesian VIBE sequence (field of view, 380 × 345 mm; image matrix, 320 × 218; echo time/repetition time, 1.8/3.76 milliseconds; flip angle, 10 degrees; slice thickness, 3.0 mm; acquisition time, 188 seconds) with continuous data sampling and additionally acquired self-navigation signal. Data were iteratively reconstructed using 2 different approaches: first, a hard-gated reconstruction only using data associated to the dominating motion state (CS VIBE, Compressed Sensing VIBE), and second, a motion-resolved reconstruction with 6 different motion states as additional image dimension (XD VIBE, eXtended dimension VIBE). Continuous acquired data were grouped in 16 subsequent time increments with 11.57 seconds each to resolve arterial and venous contrast phases. For image quality assessment, both CS VIBE and XD VIBE were compared with the patient's last staging dynamic liver magnetic resonance imaging including a breathhold (BH) VIBE as reference standard 4.5 ± 1.2 months before. Representative quality parameters including respiratory artifacts were evaluated for arterial and venous phase images independently, retrospectively and blindly by 3 experienced radiologists, with higher scores indicating better examination quality. To assess diagnostic accuracy, same readers evaluated the presence of metastatic lesions for XD VIBE and CS VIBE compared with reference BH examination in a second session. Compared with CS VIBE, XD VIBE

  16. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  17. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  18. 33 CFR 401.53 - Obstructing navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  19. An Integrated Unmanned Aerial Vehicle Navigation System Capable of Fault Detection and Isolation

    Directory of Open Access Journals (Sweden)

    Gen Keke

    2016-01-01

    Full Text Available The article discusses an integrated navigation system development for unmanned aerial vehicles (UAVs to provide fault detection and isolation. In case an UAV operates flights in independent mode or in remote pilot control under conditions when an operator has a lack of information on the environment, the single-source information cannot ensure appropriate precision to navigate the UAV. Therefore, the UAV, certainly, needs an integrated navigation system based on the merger of navigation information from the several sources to enable compensation for the shortcomings of each of the sources. The integrated navigation system typically combines two or more than two types of navigation systems. Thus, an integrated navigation system can take full advantage of the complementarity of various navigation systems and generate accurate navigation information. Such systems typically include an inertial measurement unit (Inertial Measurement Units - IMU, SNA, visual navigation system, etc. However, in practical applications, there are many factors that affect the accuracy and reliability of the measured data, such as data transmission errors, ambient noise, and systematic errors of sensors, etc. Therefore, the fault detection and isolation feature is also necessary for the integrated navigation system. The article offers an integrated navigation system for UAV based on conversion of navigation modes, Kalman filter, and merge of navigation information from the several sources, namely a SNA system, visual navigation system based on the algorithm of simultaneous localization and mapping (Simultaneous Localization And Mapping - SLAM, barometric altimeter, altimeter and inertial navigation system (INS. Such an integrated navigation system is capable not only to provide detection and isolation of low reliable navigation information on the basis of the residual errors of the test "chi-squared" and the result of the test "chi-squared" with two state predictions, but

  20. Real-time visual mosaicking and navigation on the seafloor

    Science.gov (United States)

    Richmond, Kristof

    Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead

  1. A local geopotential model for implementation of underwater passive navigation

    Institute of Scientific and Technical Information of China (English)

    Zhigang Wang; Shaofeng Bian

    2008-01-01

    A main aspect of underwater passive navigation is how to identify the vehicle location on an existing gravity map.and several match-ing algorithms as ICCP and SITAN are the most prevalent methods that many scholars are using.In this paper,a novel algorithm that is different from matching algorithms for passive navigation is developed.The algorithm implements underwater passive navigation by directly estimating the inertial errors through Kalman falter algorithm,and the key part of this implementation is a Fourier series.based local geopotential model.Firstly,the pfinople of local geopotential model based on Fourier series is introduced in this paper,thus the discrete gravity anomalies data can be expressed analytically with respect to geographic coordinares to establish the observation equation required in the application of Kalman filter.Whereafter,the indicated gravity anomalies can be gotten by substituting the inertial posi-tions to existing gravity anomalies map.Finally,the classical extended Kalman filter is introduced with the differences between measured gravity and indicated gravity used as observations to optimally estimate the errors of the inertial navigation system(INS).This naviga-tion algorithm is tested on simulated data with encouraging results.Although this algorithm is developed for underwater navigation using gravity data,it iS equally applicable to other domains,for example vehicle navigation on magnetic or terrain data.

  2. Mobile Robot Localization and Navigation in Artificial Intelligence: Survey

    Directory of Open Access Journals (Sweden)

    G. Nirmala

    2017-01-01

    Full Text Available The potential applications for mobile robots are enormous. The mobile robots must quickly and robustly perform useful tasks in a previously unknown, dynamic and challenging environment. Mobile robot navigation plays a key role in all mobile robot activities and tasks such as path planning. Mobile robots are machines which navigate around their environment getting sensory information about that environment and performing actions dependent on this sensory information. Localization is basic to navigation. Various techniques have been described for estimating the orientation and positioning of a mobile robot. Navigation may be defined as the process of guiding the movement of intelligent vehicle systems from one location to another location with the support of various types of sensors to the different environments such as indoor, outdoor and other complex environments by using various navigation methods. This paper reviews the following mobile robot systems which are used in navigation for localization (1 Odometry (2 Magnetic compass (3 Active beacons (4 Global positioning system (5 Landmark navigation (6 Pattern matching.

  3. Navigational Mechanisms of Migrating Monarch Butterflies

    Science.gov (United States)

    Reppert, Steven M.; Gegear, Robert J.; Merlin, Christine

    2010-01-01

    Recent studies of the iconic fall migration of monarch butterflies have illuminated the mechanisms behind the navigation south, using a time-compensated sun compass. Skylight cues, such as the sun itself and polarized light, are processed through both eyes and likely integrated in the brain’s central complex, the presumed site of the sun compass. Time compensation is provided by circadian clocks that have a distinctive molecular mechanism and that reside in the antennae. Monarchs may also use a magnetic compass, because they possess two cryptochromes that have the molecular capability for light-dependent magnetoreception. Multiple genomic approaches are being utilized to ultimately identify navigation genes. Monarch butterflies are thus emerging as an excellent model organism to study the molecular and neural basis of long-distance migration. PMID:20627420

  4. Development of standard components for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  5. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  6. Remote Control of Experiments via Matlab

    Directory of Open Access Journals (Sweden)

    Michal Sedlak

    2006-08-01

    Full Text Available The paper demonstrates two possibilities of remote control of real experiments using Matlab software environment. We introduced basic approaches to Matlab remote access using Matlab Web Server, COM and Virtual Reality Toolbox. The proposed concepts were used and tested for control of magnetic levitation system. The gained experience was also discussed in the paper.

  7. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  8. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.

    Science.gov (United States)

    Halko, Mark A; Connors, Erin C; Sánchez, Jaime; Merabet, Lotfi B

    2014-06-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill; however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using functional magnetic resonance imaging, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between Santa Barbara Sense of Direction scores and activation within right temporal parietal junction during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community.

  9. Integrated navigation method based on inertial navigation system and Lidar

    Science.gov (United States)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  11. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  13. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  14. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur......, Informationsteknologi, Biologi, Fysik, Medicin, Odontologi og Folkesundhedsvidenskab. NiHE undersøgelsen er gennemført i efteråret 2015 og vinter 2016, og den har til formål at generere data til almen undervisningsudvikling og rummer derfor både faglige, sociale og personlige perspektiver på undervisning....

  15. Waves at Navigation Structures

    Science.gov (United States)

    2014-10-27

    ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 2 19a. NAME...upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock

  16. Invisible Navigation (or Impossible?).

    OpenAIRE

    Özcan, Oğuzhan; O'Neil, Mary Lou

    2013-01-01

    Abstract: This article introduces an experimental artwork on moving mobile interfaces. It aims to answer the question: Is it possible to navigate a part of a large image composition, moving a smaller interface of a mobile device in a certain direction such as left and right, back and forth or up and down? The article then outlines the new concept of “Invisible (or impossible) Navigation” and discusses the output of artistic practices which address the “Labyrinth of Art”.

  17. Self-navigating robot

    Science.gov (United States)

    Thompson, A. M.

    1978-01-01

    Rangefinding equipment and onboard navigation system determine best route from point to point. Research robot has two TV cameras and laser for scanning and mapping its environment. Path planner finds most direct, unobstructed route that requires minimum expenditure of energy. Distance is used as measure of energy expense, although other measures such as time or power consumption (which would depend on the topography of the path) may be used.

  18. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  19. Multisensor robot navigation system

    Science.gov (United States)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  20. Estimation with applications to tracking and navigation theory, algorthims and software

    CERN Document Server

    Bar-Shalom, Yaakov; Kirubarajan, Thiagalingam

    2001-01-01

    Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimatio

  1. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    OpenAIRE

    Chua Kia; Mohd. Rizal Arshad

    2005-01-01

    This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs) operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system ...

  2. 神经导航经颅磁刺激在癫痫术前语言区评估中的应用%The application of navigated trans cranial magnetic stimulation in preoperative language mapping for epilepsy

    Institute of Scientific and Technical Information of China (English)

    张希; 张国君; 遇涛; 闫晓明; 徐翠萍; 肖东升; 李勇杰

    2016-01-01

    Objective To investigate the application of navigated transcranial magnetic stimulation applied in preoperative language mapping.Methods Fourteen epilepsy patients were selected who were going to accept intracranial electrode implantation.The cortices were stimulated by 4-10Hz repetitive transcranial magnetic stimulation ( rTMS) guided by neuronavigation system in order to identify the cortical location.By comparing with the results of electrical cortical stimulation ( ECS) , the nTMS cortical language mapping results could be investigated and verified. Results Language arrest or disturbance was elicited in twelve of the fourteen patients, no definite language deficit was noted in two patients.The twelve patients who showed positive response in nTMS also showed language deficits in ECS.The probability of language disturbance can be raised by increasing the intensity of TMS.There were good tolerance for patients and effectiveness for language mapping in 4-6Hz TMS.Conclusion Preoperative nTMS language mapping could provide important functional information for patient who is not suitable for invasive language evaluation.%目的:探讨神经导航经颅磁刺激( nTMS)在术前皮质语言区评估中的临床应用价值。方法选取14例接受颅内硬膜下电极埋置术的癫痫患者,在神经导航引导下,采用4~10Hz 重复经颅磁刺激( rTMS),对患者语言区进行定侧、定位分析。通过与颅内电极皮质电刺激( ECS)语言功能定位结果进行比较,评估nTMS在术前语言区定位中的临床应用价值。结果在14例患者中,nTMS诱发出明确语言停顿或明显语言干扰的患者12例,2例未出现明显语言干扰现象。术前nTMS诱发出语言障碍的12例患者,在ECS过程中均出现明确语言功能障碍。提高刺激强度可以提高诱发语言干扰的几率,频率4~6Hz刺激在语言区定位中,可以较好地兼顾患者的耐受性和刺激效果。结论对于不

  3. Remote BCDGs

    Science.gov (United States)

    Erastova, L. K.

    2017-07-01

    The remote BCDGs with z>0.05 from the Second Byurakan Survey (SBS) are extracted. They are analogs of similar BCDGs in low-z Universe. The properties of these objects are discussed. Definitions of other physical types of active galaxies are considered and also clarified.

  4. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  5. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  7. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  8. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  9. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  10. Particle Filter ROV Navigation using Hydrodynamic Position and Speed log Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    An integrated navigation system design is presented for an underwater remotely operated vehicle (ROV). The available navigation information is an acoustic position measurement and a Doppler log speed measurement. Both measurements are studied in detail and modeled statistically. A kinematic model...... is assigned to the ROV with its driving noise from a Gaussian mixture, and a particle filter is suggested to estimate ROV position and velocity. The advantages of using a particle filter in this ROV navigation scheme are: 1) to make full use of all available information to improve the estimation performance...

  11. Super-resolution image reconstruction methods applied to GFE-referenced navigation system

    Science.gov (United States)

    Yan, Lei; Lin, Yi; Tong, Qingxi

    2007-11-01

    The problem about reference grid data's overlarge spacing, which makes deviated estimation of un-surveyed points and poor accuracy of correlation positioning, has been embarrassing Geophysical Fields of the Earth (GFE) referenced navigation research. The super-resolution images reconstruction methods in remote sensing field give some inspiration, and its brief method, Maximum A-Posterior (MAP) based on Bayesian theory, is transplanted on grid data. The proposed algorithm named MAP-G can implement interpolation of reference data field by reflecting whole distribution trend. Comparison with traditional interpolation algorithms and simulation experiments on underwater terrain/gravity-aided navigation platform, indicate that MAP-G algorithm can effectively improve navigation's performance.

  12. Biomimetic MEMS sensor array for navigation and water detection

    Science.gov (United States)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  13. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  14. Hierarchical state-space estimation of leatherback turtle navigation ability.

    Science.gov (United States)

    Mills Flemming, Joanna; Jonsen, Ian D; Myers, Ransom A; Field, Christopher A

    2010-12-28

    Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices.

  15. Recent advances in navigation of underwater remotely operated vehicles

    Directory of Open Access Journals (Sweden)

    Blanca Viviana Martínez Carvajal

    2013-01-01

    Full Text Available Se presenta una revisión de las publicaciones técnicas más significativas sobre la navegación de vehículos submarinos operados remotamente, con especial interés en la navegación inercial asistida. Se definen los sensores que se utilizan para su implementación, los algoritmos de estimación y los modelos que describen los sistemas de navegación. Con esta revisión, se concluye que la implementación de un estimador basado en los modelos cinemático y dinámico del vehículo ayuda a limitar el crecimiento del error de estimación, incluso cuando sólo está disponible la información proporcionada por una unidad de medición inercial.

  16. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    is the substantial impact of the current and future oil price on the optimal compliance strategies ship-owners choose when complying with the new air emission requirements for vessels. The oil price determines the attractiveness of investing in asset modification for compliance, given the capital investment required......This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  17. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  18. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  19. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  20. Understanding how birds navigate

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2009-01-01

    A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye.......A proposed model for migrating birds' magnetic sense can withstand moderate orientational disorder of a key protein in the eye....

  1. A model for navigational errors in complex environmental fields.

    Science.gov (United States)

    Postlethwaite, Claire M; Walker, Michael M

    2014-12-21

    Many animals are believed to navigate using environmental signals such as light, sound, odours and magnetic fields. However, animals rarely navigate directly to their target location, but instead make a series of navigational errors which are corrected during transit. In previous work, we introduced a model showing that differences between an animal׳s 'cognitive map' of the environmental signals used for navigation and the true nature of these signals caused a systematic pattern in orientation errors when navigation begins. The model successfully predicted the pattern of errors seen in previously collected data from homing pigeons, but underestimated the amplitude of the errors. In this paper, we extend our previous model to include more complicated distortions of the contour lines of the environmental signals. Specifically, we consider the occurrence of critical points in the fields describing the signals. We consider three scenarios and compute orientation errors as parameters are varied in each case. We show that the occurrence of critical points can be associated with large variations in initial orientation errors over a small geographic area. We discuss the implications that these results have on predicting how animals will behave when encountering complex distortions in any environmental signals they use to navigate.

  2. A Particle Filter for Smartphone-Based Indoor Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Andrea Masiero

    2014-11-01

    Full Text Available This paper considers the problem of indoor navigation by means of low-cost mobile devices. The required accuracy, the low reliability of low-cost sensor measurements and the typical unavailability of the GPS signal make indoor navigation a challenging problem. In this paper, a particle filtering approach is presented in order to obtain good navigation performance in an indoor environment: the proposed method is based on the integration of information provided by the inertial navigation system measurements, the radio signal strength of a standard wireless network and of the geometrical information of the building. In order to make the system as simple as possible from the user’s point of view, sensors are assumed to be uncalibrated at the beginning of the navigation, and an auto-calibration procedure of the magnetic sensor is performed to improve the system performance: the proposed calibration procedure is performed during regular user’s motion (no specific work is required. The navigation accuracy achievable with the proposed method and the results of the auto-calibration procedure are evaluated by means of a set of tests carried out in a university building.

  3. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    Science.gov (United States)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional

  4. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  5. Underwater Navigation using Pseudolite

    Directory of Open Access Journals (Sweden)

    Krishneshwar Tiwary

    2011-07-01

    Full Text Available Using pseudolite or pseudo satellite, a proven technology for ground and space applications for the augmentation of GPS, is proposed for underwater navigation. Global positioning systems (GPS like positioning for underwater system, needs minimum of four pseudolite-ranging signals for pseudo-range and accumulated delta range measurements. Using four such measurements and using the models of underwater attenuation and delays, the navigation solution can be found. However, for application where the one-way ranging does not give good accuracy, alternative algorithms based upon the bi-directional and self-difference ranging is proposed using selfcalibrated pseudolite array algorithm. The hardware configuration is proposed for pseudolite transceiver for making the self-calibrated array. The pseudolite array, fixed or moored under the sea, can give position fixing similar to GPS for underwater applications.Defence Science Journal, 2011, 61(4, pp.331-336, DOI:http://dx.doi.org/10.14429/dsj.61.1087

  6. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and...

  7. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  9. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  10. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  11. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  12. Computer Navigation-aided Resection of Sacral Chordomas

    Directory of Open Access Journals (Sweden)

    Yong-Kun Yang

    2016-01-01

    Full Text Available Background: Resection of sacral chordomas is challenging. The anatomy is complex, and there are often no bony landmarks to guide the resection. Achieving adequate surgical margins is, therefore, difficult, and the recurrence rate is high. Use of computer navigation may allow optimal preoperative planning and improve precision in tumor resection. The purpose of this study was to evaluate the safety and feasibility of computer navigation-aided resection of sacral chordomas. Methods: Between 2007 and 2013, a total of 26 patients with sacral chordoma underwent computer navigation-aided surgery were included and followed for a minimum of 18 months. There were 21 primary cases and 5 recurrent cases, with a mean age of 55.8 years old (range: 35-84 years old. Tumors were located above the level of the S3 neural foramen in 23 patients and below the level of the S3 neural foramen in 3 patients. Three-dimensional images were reconstructed with a computed tomography-based navigation system combined with the magnetic resonance images using the navigation software. Tumors were resected via a posterior approach assisted by the computer navigation. Mean follow-up was 38.6 months (range: 18-84 months. Results: Mean operative time was 307 min. Mean intraoperative blood loss was 3065 ml. For computer navigation, the mean registration deviation during surgery was 1.7 mm. There were 18 wide resections, 4 marginal resections, and 4 intralesional resections. All patients were alive at the final follow-up, with 2 (7.7% exhibiting tumor recurrence. The other 24 patients were tumor-free. The mean Musculoskeletal Tumor Society Score was 27.3 (range: 19-30. Conclusions: Computer-assisted navigation can be safely applied to the resection of the sacral chordomas, allowing execution of preoperative plans, and achieving good oncological outcomes. Nevertheless, this needs to be accomplished by surgeons with adequate experience and skill.

  13. Introductory Course on Satellite Navigation

    Science.gov (United States)

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  14. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  15. Dynamic Transportation Navigation

    Science.gov (United States)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  16. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  17. Navigation of military and space unmanned ground vehicles in unstructured terrains

    Science.gov (United States)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  18. Digital waterway construction based on inland electronic navigation chart

    Science.gov (United States)

    Wang, Xue; Pan, Junfeng; Zhu, Weiwei

    2015-12-01

    With advantages of large capacity, long distance, low energy consumption, low cost, less land occupation and light pollution, inland waterway transportation becomes one of the most important constituents of the comprehensive transportation system and comprehensive water resources utilization in China. As one of "three elements" of navigation, waterway is the important basis for the development of water transportation and plays a key supporting role in shipping economic. The paper discuss how to realize the informatization and digitization of waterway management based on constructing an integrated system of standard inland electronic navigation chart production, waterway maintenance, navigation mark remote sensing and control, ship dynamic management, and water level remote sensing and report, which can also be the foundation of the intelligent waterway construction. Digital waterway construction is an information project and also has a practical meaning for waterway. It can not only meet the growing high assurance and security requirements for waterway, but also play a significant advantage in improving transport efficiency, reducing costs, promoting energy conservation and so on. This study lays a solid foundation on realizing intelligent waterway and building a smooth, efficient, safe, green modern inland waterway system, and must be considered as an unavoidable problem for the coordinated development between "low carbon" transportation and social economic.

  19. 33 CFR 66.10-15 - Aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  20. Remote field eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M

    2001-03-01

    The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included.

  1. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  2. Prospective representation of navigational goals in the human hippocampus.

    Science.gov (United States)

    Brown, Thackery I; Carr, Valerie A; LaRocque, Karen F; Favila, Serra E; Gordon, Alan M; Bowles, Ben; Bailenson, Jeremy N; Wagner, Anthony D

    2016-06-10

    Mental representation of the future is a fundamental component of goal-directed behavior. Computational and animal models highlight prospective spatial coding in the hippocampus, mediated by interactions with the prefrontal cortex, as a putative mechanism for simulating future events. Using whole-brain high-resolution functional magnetic resonance imaging and multi-voxel pattern classification, we tested whether the human hippocampus and interrelated cortical structures support prospective representation of navigational goals. Results demonstrated that hippocampal activity patterns code for future goals to which participants subsequently navigate, as well as for intervening locations along the route, consistent with trajectory-specific simulation. The strength of hippocampal goal representations covaried with goal-related coding in the prefrontal, medial temporal, and medial parietal cortex. Collectively, these data indicate that a hippocampal-cortical network supports prospective simulation of navigational events during goal-directed planning.

  3. Navigable networks as Nash equilibria of navigation games

    Science.gov (United States)

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  4. A greedy-navigator approach to navigable city plans

    CERN Document Server

    Lee, Sang Hoon

    2012-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to m...

  5. Navigation in Augmented Reality, Navigation i Augmented Reality

    OpenAIRE

    Bernelind, Sarah

    2015-01-01

    The concept of augmented reality has existed since the 60’s. In this thesis it has been investigated if navigation using a mobile device would benefit, from a usability perspective, if the navigational data were presented using augmented reality instead of a standardized map. The usability principles from which the applications were evaluated are learnability, user satisfaction, efficiency and effectivity. An AR prototype was developed and tested against a standard map, in the form of Google ...

  6. Magnetism a very short introduction

    CERN Document Server

    Blundell, Stephen J

    2012-01-01

    Magnetism: A Very Short Introduction explains the mysteries and importance of magnetism. For centuries magnetism has been used for various exploits: as a great healer, a navigation aid through compasses, and through motors, generators, and turbines it has given us power. Our understanding of electricity and magnetism, from the work of Galvani, Ampère, Faraday, and Tesla is explored, and how Maxwell and Faraday's work led to the unification of electricity and magnetism is explained. With a discussion of the relationship between magnetism and relativity, quantum magnetism, and its impact on computers and information storage, how magnetism has changed our fundamental understanding of the Universe is shown.

  7. Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment

    Science.gov (United States)

    Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.

  8. Results of the Magnetometer Navigation (MAGNAV) Inflight Experiment

    Science.gov (United States)

    Thienel, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrarad Explorer Post-Science Engineer- ing Testbed. Initialization of MAGNAV occured on September 4, 2004. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the earth s magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajec- tory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and tra- jectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudc-linear Kalman filter. Sun sensor data is also used to improve the accu- racy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse constraints.

  9. A Family of Co(II)Co(III)3 Single-Ion Magnets with Zero-Field Slow Magnetic Relaxation: Fine Tuning of Energy Barrier by Remote Substituent and Counter Cation.

    Science.gov (United States)

    Zhu, Yuan-Yuan; Zhang, Yi-Quan; Yin, Ting-Ting; Gao, Chen; Wang, Bing-Wu; Gao, Song

    2015-06-01

    The synthesis, structures, and magnetic properties of a family of air-stable star-shaped Co(II)Co(III)3 complexes were investigated. These complexes contain only one paramagnetic Co(II) ion with the approximate D3 coordination environment in the center and three diamagnetic Co(III) ions in the peripheral. Magnetic studies show their slow magnetic relaxation in the absence of an applied dc field, which is characteristic behavior of single-molecule magnets (SMMs), caused by the individual Co(II) ion with approximate D3 symmetry in the center. Most importantly, it was demonstrated that the anisotropy energy barrier can be finely tuned by the periphery substituent of the ligand and the countercation. The anisotropy energy barrier can be increased significantly from 38 K to 147 K.

  10. A New Concept for Magnetic Capsule Colonoscopy based on an Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Gioia Lucarini

    2015-03-01

    Full Text Available Traditional endoscopy based on flexible endoscopes is reliable and effective, but poorly tolerated by patients; it also requires extended training by physicians. In order to reduce the invasiveness of these procedures, wireless passive capsule endoscopy has been proposed and clinically used during the past decade. A capsule endoscope with an active locomotion mechanism is desirable for carrying out controllable interactive procedures that are normally not possible using passive devices. Due to many difficulties in embedding actuators in swallowable devices, many researchers and companies have adopted an external magnetic field actuation solution. Magnetic resonance modified systems or permanent magnets are used to manoeuvre capsules remotely; however, both these cases present some limitations: magnetic resonance systems are bulky and expensive and permanent magnets are intrinsically unstable to control, and it is impossible to switch them off. Within this framework, the authors present the design and assessment of a magnetic system for endoscopic capsules based on an electromagnetic approach. In particular, the use of a single electromagnet was proposed and investigated: magnetic attraction, locomotion forces and magnetic torques were modelled for guaranteeing the reliable navigation of the capsule and based on these specifications, an electromagnet was designed, developed and experimentally evaluated. The results demonstrated the feasibility of the proposed approach for active locomotion capsule endoscopy.

  11. A New Concept for Magnetic Capsule Colonoscopy Based on an Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Gioia Lucarini

    2015-03-01

    Full Text Available Traditional endoscopy based on flexible endoscopes is reliable and effective, but poorly tolerated by patients; it also requires extended training by physicians. In order to reduce the invasiveness of these procedures, wireless passive capsule endoscopy has been proposed and clinically used during the past decade. A capsule endoscope with an active locomotion mechanism is desirable for carrying out controllable interactive procedures that are normally not possible using passive devices. Due to many difficulties in embedding actuators in swallowable devices, many researchers and companies have adopted an external magnetic field actuation solution. Magnetic resonance modified systems or permanent magnets are used to manoeuvre capsules remotely; however, both these cases present some limitations: magnetic resonance systems are bulky and expensive and permanent magnets are intrinsically unstable to control, and it is impossible to switch them off. Within this framework, the authors present the design and assessment of a magnetic system for endoscopic capsules based on an electromagnetic approach. In particular, the use of a single electromagnet was proposed and investigated: magnetic attraction, locomotion forces and magnetic torques were modelled for guaranteeing the reliable navigation of the capsule and based on these specifications, an electromagnet was designed, developed and experimentally evaluated. The results demonstrated the feasibility of the proposed approach for active locomotion capsule endoscopy.

  12. Exploring maps with greedy navigators

    CERN Document Server

    Lee, Sang Hoon

    2011-01-01

    During the last decade of network researches focusing on structural and dynamical properties of networks, the role of network users has been more or less underestimated from the bird's eye view of global perspective. In this era of GPS-equipped smartphones, however, user's ability to access local geometric information and find efficient pathways on networks plays a crucial role, rather than the globally optimal pathways. We present a simple greedy spatial navigation strategy as a probe to explore spatial networks. These greedy navigators use directional information in every move they take, without being trapped in a dead end based on their memory about previous routes. We suggest that the centralities measures have to be modified to incorporate the navigators' behavior, and present the intriguing effect of navigators' greediness where removing some edges may actually enhance the routing efficiency, which is reminiscent of Braess's paradox caused by the chasm between user and global optimum. In addition, using...

  13. Radio Navigation Waveform Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is installing the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) onto the truss of the International Space Station to demonstrate...

  14. NOAA Electronic Navigational Charts (ENC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Coast Survey (OCS) has been involved in the development of a NOAA Electronic Navigational Chart (NOAA ENC) suite to support the marine transportation...

  15. LITERATURE FORENSICS: NAVIGATING THROUGH ...

    Science.gov (United States)

    Intimidation and bewilderment are but two feelings scientists often confront when facing the ever- expanding universe of the published scientific literature. With the birth of any hypothesis, all fantasies of a one-way freeway for a scientific endeavor evaporate when the journey abruptly confronts a forked-road dilemma. One direction (what is known and what was known) leads back in time. A twisted, rutted, convoluted course, it can reveal how, and from where, pioneers from other, unrelated journeys arrived at the same juncture; but it can make for a punishing and, at first thought, boring ride. The other (what is unknown or pretends to be the unknown) quickly recedes into what at least appears to be the unexplored horizon - and its seductive siren can easily win our attention. Proper navigation of this juncture of old vs. new, past vs. future, dull vs. exciting, known vs. unknown is critical in avoiding a morass of ill fates, including reinventions duplication, and attendant ridicule or censure by our colleagues for failing to build upon or acknowledge what those before us have done. Following the siren of exploration without investigating where others have traveled is fraught with risks - the worst being when the fork's two branches loop back on one another, revealing that they are one continuum. What had seemed to be uncharted territory is unveiled as a Mobius path towards the fool's gold of rediscovery. Much like the disoriented spelunker seeking a

  16. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    Science.gov (United States)

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  17. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    Directory of Open Access Journals (Sweden)

    Muhammad Haris Afzal

    2011-11-01

    Full Text Available Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS. Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR or special constraints like Zero velocity UPdaTes (ZUPT and Zero Angular Rate Updates (ZARU. This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  18. Evidence of the Solar EUV hot channel as a magnetic flux rope from remote-sensing and in-situ observations

    CERN Document Server

    Song, Hongqiang; Zhang, Jie; Cheng, Xin; Wang, Bing; Hu, Qiang; Li, Gang; Wang, Yuming

    2015-01-01

    Hot channels (HCs), high temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to make definitive proof given the fact that there is no direct measurement of magnetic field in the corona. An alternative way is to use the magnetic field measurement in the solar wind from in-situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the AIA high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. In the meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by \\textit{ACE}, showi...

  19. Multiple node remote messaging

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Ohmacht, Martin (Yorktown Heights, NY); Salapura, Valentina (Chappaqua, NY); Steinmacher-Burow, Burkhard (Esslingen, DE); Vranas, Pavlos (Danville, CA)

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  20. Possible disruption of remote viewing by complex weak magnetic fields around the stimulus site and the possibility of accessing real phase space: a pilot study.

    Science.gov (United States)

    Koren, S A; Persinger, M A

    2002-12-01

    In 2002 Persinger, Roll, Tiller, Koren, and Cook considered whether there are physical processes by which recondite information exists within the space and time of objects or events. The stimuli that compose this information might be directly detected within the whole brain without being processed by the typical sensory modalities. We tested the artist Ingo Swann who can reliably draw and describe randomly selected photographs sealed in envelopes in another room. In the present experiment the photographs were immersed continuously in repeated presentations (5 times per sec.) of one of two types of computer-generated complex magnetic field patterns whose intensities were less than 20 nT over most of the area. WINDOWS-generated but not DOS-generated patterns were associated with a marked decrease in Mr. Swann's accuracy. Whereas the DOS software generated exactly the same pattern, WINDOWS software phase-modulated the actual wave form resulting in an infinite bandwidth and complexity. We suggest that information obtained by processes attributed to "paranormal" phenomena have physical correlates that can be masked by weak, infinitely variable magnetic fields.

  1. A remotely interrogated all-optical Rb-87 magnetometer

    NARCIS (Netherlands)

    Patton, B.; Versolato, O. O.; Hovde, D. C.; Corsini, E.; Higbie, J. M.; Budker, D.

    2012-01-01

    Atomic magnetometry was performed at Earth's magnetic field over a free-space distance of ten meters. Two laser beams aimed at a distant alkali-vapor cell excited and detected the Rb-87 magnetic resonance, allowing the magnetic field within the cell to be interrogated remotely. Operated as a driven

  2. 33 CFR 100.45 - Establishment of aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Establishment of aids to navigation. 100.45 Section 100.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... navigation. The District Commander will establish and maintain only those aids to navigation necessary...

  3. 33 CFR 67.35-10 - Private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  4. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  5. Design of a laser navigation system for the inspection robot used in substation

    Science.gov (United States)

    Zhu, Jing; Sun, Yanhe; Sun, Deli

    2017-01-01

    Aimed at the deficiency of the magnetic guide and RFID parking system used by substation inspection robot now, a laser navigation system is designed, and the system structure, the method of map building and positioning are all introduced. The system performance is tested in a 500kV substation, and the result show that the repetitive precision of navigation system is precise enough to help the robot fulfill inspection tasks.

  6. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    Science.gov (United States)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  7. 基于Modbus RTU协议的磁控电抗器远程监控系统%Remote Monitoring System of Magnetic Controlled Reactor Based on Modbus RTU Protocol

    Institute of Scientific and Technical Information of China (English)

    欧振国; 程汉湘; 林桂龙; 赵建青; 黄沃林

    2014-01-01

    In recent years, the development of wind power, photovoltaic power and smart grid provides opportunities for magnetic controlled reactor.The remote monitoring system of magnetic controlled reactor (MCR) in automatic system of substation has been researched base on Modbus RTU protocol. Firstly, the technical points of Modbus RTU protocol are expounded; secondly, the hardware structure of the control system is described; thirdly, background software is designed based on the functional characteristics of MCR; finally, the reliability of the system is verified according to experimental results. Test results show that the control system is safe, reliable, humanized and has good real-time performance.%近年来风电、光伏发电的发展及智能电网的提出,为磁控电抗器的发展带来了机遇。文中主要研究Modbus RTU协议在变电站综合自动化系统中的磁控电抗器(MCR)远程监控系统的有效实现。首先阐明Modbus RTU的技术要点,然后介绍控制系统的硬件构成,接着结合MCR的功能特点设计后台软件,最后根据试验结果验证监控系统的可靠性。试验结果表明,该控制系统安全、可靠、人性化、实时性好。

  8. Global navigation satellite systems, inertial navigation, and integration

    CERN Document Server

    Grewal, Mohinder S; Bartone, Chris G

    2013-01-01

    An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kal

  9. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false McClellan-Kerr Arkansas River navigation system: use, administration, and navigation. 207.275 Section 207.275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS §...

  10. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area... SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.122 Regulated Navigation Area: Navigable waters...

  11. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    Science.gov (United States)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  12. Søgning og navigation

    DEFF Research Database (Denmark)

    Grauballe, Henning; Strunck, Kirsten Marie

    6 udvalgte testposter undersøges i 97 danske folkebibliotekers webkataloger med henblik på at afdække, hvordan disse testposters kontrollerede data udnyttes som hyperlinks til navigation og til videresøgning på ”Noget der ligner”. Undersøgelsen viser, at webkatalogerne især fokuserer på at udnytte...... opstillingsdata og udvalgte emnedata til navigation. Dermed udnyttes det samlede potentiale i de kontrollerede data ikke til at imødekomme brugernes forventninger til navigation ved hjælp af hyperlinks på Web’en. Undersøgelsen indikerer desuden, at der er en tæt sammenhæng mellem det konkrete bibliotekssystem...

  13. Behavioral Mapless Navigation Using Rings

    Science.gov (United States)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  14. The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation

    Science.gov (United States)

    Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo

    2011-01-01

    Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329

  15. The role of geomagnetic cues in green turtle open sea navigation.

    Directory of Open Access Journals (Sweden)

    Simon Benhamou

    Full Text Available BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS, which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  16. Remote-controlled magnetic pulmonary vein isolation combined with superior vena cava isolation for paroxysmal atrial fibrillation: a prospective randomized study.

    Science.gov (United States)

    Da Costa, Antoine; Levallois, Marie; Romeyer-Bouchard, Cécile; Bisch, Laurence; Gate-Martinet, Alexis; Isaaz, Karl

    2015-03-01

    Radiofrequency ablation (RFA) of paroxysmal atrial fibrillation (PAF) has focused on pulmonary vein isolation (PVI). However, despite initial positive results, significant recurrences have occurred, partly because of pulmonary vein (PV) reconnection or non-PV ectopic foci, including the superior vena cava (SVC). This prospective, randomized study sought to investigate the efficacy of additional SVCI combined with PVI in symptomatic PAF patients referred for ablation. From November 2011 to May 2013, RFA was performed remotely using a CARTO(®) 3 System in patients randomized to undergo PVI for symptomatic drug-refractory PAF, with (PVI+SVCI group) or without (PVI alone group) SVCI. PVI and SVCI were confirmed by spiral catheter recording during ablation. Procedural data, complications and freedom from atrial tachycardia (AT) and atrial fibrillation (AF) were assessed. Over an 18-month period, 100 consecutive patients (56±9years; 17 women) with symptomatic PAF were included in the study (PVI+SVCI, n=51; PVI, n=49); the CHA2DS2-VASc score was 0.9±1. Median duration of procedure (±interquartile), 2.5±1hours; total X-ray exposure, 13.3±8minutes; transseptal puncture and catheter positioning, 8±5minutes; left atrium electroanatomical reconstruction, 3±2minutes; and catheter ablation, 3.7±3minutes. After a median follow-up of 15±8months, and having undergone a single procedure, 84% of patients were symptom free, while 86% remained asymptomatic after undergoing two procedures. The cumulative risks of atrial arrhythmias (AT or AF) were interpreted using Kaplan-Meier curves and compared using the log-rank test. Long-term follow-up revealed no significant difference between groups, with atrial arrhythmias occurring in six (12%) patients in the PVI+SVCI group and nine (18%) patients in the PVI alone group (P=0.6). One transient phrenic nerve palsy and one phrenic nerve injury with partial recovery occurred in the PVI+SVCI group. SVCI combined with PVI did not reduce

  17. Observability of Inertial Navigation System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To improve the observability of strapdown inertial navigation system and the effectiveness of Kalman filter in the navigation system, the method of estimating the observability is analyzed based on eigenvalues and eigenvectors which are proved to be availabe, on this basis two-position alignment technigue is applied. The simulation shows that two-position alignment really makes the system's observability change from being incomplete to being complete, and the test method based on eigenvalues and eigenvectors is available to determine the observability of every state vector.

  18. The Design of Cellphone Indoor Positioning System Based Magnetic Assisted Inertial Navigation Technology%基于惯导辅助地磁的手机室内定位系统设计

    Institute of Scientific and Technical Information of China (English)

    宋镖; 程磊; 周明达; 吴怀宇; 陈洋

    2015-01-01

    目前的室内定位技术大都是需要建立足够多的信号节点,这种有源信号受建筑物干扰衰减快导致其定位精度不足。为了避免这些存在的问题,通过深入研究室内定位方法,提出了基于惯导辅助地磁匹配的适用于手机移动终端的室内定位方法。有别于传统的室外定位系统,本文利用地球磁场在不同点的差异化信息,并通过选择适当的地磁匹配算法,可以实现不依赖于外部设备的移动个体室内定位,同时通过惯导辅助地磁的组合定位方式有效增加地磁信息匹配效率,能获得较高的室内定位的精度。最后设计了基于android平台的手机室内定位软件,可利用手机内置的传感器设备实现室内定位功能,仿真及实验显示该定位方法是有效的。%To implement indoor positioning,sufficient signal nodes fast attenuated by the interference of the con⁃struction and consequently cause the low positional accuracy,are mostly required. In order to avoid the existing problem,by further studying the technologies of indoor positioning,a positioning algorithm with inertial navigation technology assisted geomagnetic matching that suits for cellphone terminal indoor positioning is presented. Different from the traditional outdoor positioning system,by taking advantage of differentiated information of Earth's magnet⁃ic field at different points and selecting an appropriate geomagnetic matching algorithm ,the indoor positioning of cellphone devices without depending on external devices can be achieved,simultaneously applying the combined lo⁃calization method of inertial navigation-assisted geomagnetic positioning improve the indoor positioning accuracy. Finally,a cellphone indoor positioning software which is based on Android platform is novelly and successfully de⁃signed with mobile built-in sensors,Simulations and experiments show that this localization method is effective.

  19. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  20. Generating navigation models from existing building data

    NARCIS (Netherlands)

    Liu, L.; Zlatanova, S.

    2013-01-01

    Research on indoor navigation models mainly focuses on geometric and logical models .The models are enriched with specific semantic information which supports localisation, navigation and guidance. Geometric models provide information about the structural (physical) distribution of spaces in a build

  1. Improved navigation for image-guided bronchoscopy

    Science.gov (United States)

    Khare, Rahul; Yu, Kun-Chang; Higgins, William E.

    2009-02-01

    Past work has shown that guidance systems help improve both the navigation through airways and final biopsy of regions of interest via bronchoscopy. We have previously proposed an image-based bronchoscopic guidance system. The system, however, has three issues that arise during navigation: 1) sudden disorienting changes can occur in endoluminal views; 2) more feedback could be afforded during navigation; and 3) the system's graphical user interface (GUI) lacks a convenient interface for smooth navigation between bifurcations. In order to alleviate these issues, we present an improved navigation system. The improvements offer the following: 1) an enhanced visual presentation; 2) smooth navigation; 3) an interface for handling registration errors; and 4) improved bifurcation-point identification. The improved navigation system thus provides significant ergonomic and navigational advantages over the previous system.

  2. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  3. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  4. Generating navigation models from existing building data

    NARCIS (Netherlands)

    Liu, L.; Zlatanova, S.

    2013-01-01

    Research on indoor navigation models mainly focuses on geometric and logical models .The models are enriched with specific semantic information which supports localisation, navigation and guidance. Geometric models provide information about the structural (physical) distribution of spaces in a

  5. Navigation Issues in the South China Sea

    OpenAIRE

    2005-01-01

    The South China Sea is one of the most important sea lanes with numerous competing sovereignty disputes. The freedom of navigation in this region is critical to all major trading States in the world. After an introduction to the navigational regimes of UNCLOS, this article describes the whole navigation situation in this region, by separately introducing the navigation issues in the territorial sea, straits, archipelagic waters and the Spratly area. Meanwhile, since the legal status of the ma...

  6. Mobile Robot Navigation Support in Living Environments

    Science.gov (United States)

    Armbrust, Christopher; Koch, Jan; Stocker, Ulf; Berns, Karsten

    Navigation and application functionality of mobile robots rely on their collision-avoiding capabilities, also known as local navigation. We present the mobile robot ARTOS (Autonomous Robot for Transport and Service) that is particularly designed to operate in living environments and therefore faces the problem of fuzzy and unstructured obstacles. The local navigation architecture is motivated regarding decisions on sensor hardware setup as well as the software layers that support and influence navigation control.

  7. Celestial navigation in a nutshell

    CERN Document Server

    Schlereth, Hewitt

    2000-01-01

    Celestial Navigation in a Nutshell demonstrates how to take sights by the sun, moon, stars, and planets, discussing the advantages and disadvantages of each method. The reader is taken carefully through several examples and situational illustrations, making this a most effective self-teaching guide. Common errors are reviewed and several tips on how to improve accuracy are given.

  8. Designing automated handheld navigation support

    NARCIS (Netherlands)

    Uluca, D.; Streefkerk, J.W.; Sciacchitano, B.; McCrickard, D.S.

    2008-01-01

    Map usage on handheld devices suffers from limited screen size and the minimal attention that users can dedicate to them in mobile situations. This work examines effects of automating navigation features like zooming and panning as well as other features such as rotation, path finding and artifact r

  9. Safety effects of navigation systems.

    NARCIS (Netherlands)

    2009-01-01

    Increasing numbers of drivers are using navigation systems in their cars. The advantages to the user are obvious: you can get to your destination via the fastest and shortest route. This reduces stress and exposure to other traffic. However, there are also some (unintended) negative effects. For exa

  10. Surgical navigation with QR codes

    Directory of Open Access Journals (Sweden)

    Katanacho Manuel

    2016-09-01

    Full Text Available The presented work is an alternative to established measurement systems in surgical navigation. The system is based on camera based tracking of QR code markers. The application uses a single video camera, integrated in a surgical lamp, that captures the QR markers attached to surgical instruments and to the patient.

  11. 19 CFR 4.98 - Navigation fees.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Navigation fees. 4.98 Section 4.98 Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES General § 4.98 Navigation fees. (a)(1) The Customs Service shall... revised schedule of navigation fees for the following services: Fee No. and description of services...

  12. Lunar roving vehicle navigation system performance review

    Science.gov (United States)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  13. Simulation Platform for Vision Aided Inertial Navigation

    Science.gov (United States)

    2014-09-18

    canyons, indoors or underground. It is also possible for a GPS signal to be jammed. This weakness motivates the development of alternate navigation ...Johnson, E. N., Magree, D., Wu, A., & Shein, A. (2013). "GPS‐Denied Indoor and Outdoor Monocular Vision Aided Navigation and Control of Unmanned...SIMULATION PLATFORM FOR VISION AIDED INERTIAL NAVIGATION THESIS SEPTEMBER 2014 Jason Gek

  14. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  15. 33 CFR 401.97 - Closing procedures and ice navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Closing procedures and ice navigation. 401.97 Section 401.97 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Navigation...

  16. 33 CFR 207.306 - Missouri River; administration and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  17. 33 CFR 64.31 - Determination of hazard to navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Determination of hazard to navigation. 64.31 Section 64.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARKING OF STRUCTURES, SUNKEN VESSELS AND OTHER OBSTRUCTIONS...

  18. 33 CFR 162.240 - Tongass Narrows, Alaska; navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tongass Narrows, Alaska; navigation. 162.240 Section 162.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.240...

  19. 33 CFR 117.455 - Houma Navigation Canal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The draw of SR 661 (Houma Nav Canal) bridge,...

  20. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    Science.gov (United States)

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  1. Pulsar/CNS integrated navigation based on federated UKF

    Institute of Scientific and Technical Information of China (English)

    Jin Liu; Jie Ma; Jinwen Tian

    2010-01-01

    In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system)integrated navigation method based on federated unscented Kalman filter(UKF)is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservabie.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.

  2. Opus-H: a new navigational and targeting observation device

    Science.gov (United States)

    van der Merwe, J.; Fritze, J.; Muenzberg, M.

    2008-04-01

    Current and future land warriors operate in a group or autonomously. The necessity to observe and locate targets during day, night and all weather conditions inspire developments of small, but complex handheld devices, which are able to fulfill these tasks. Observation in daylight can be achieved by means of a visual telescope with high resolution. For night operation a thermal imager is required. Navigation tasks can be fulfilled with a digital magnetic compass and a GPS receiver. For measuring ranges to targets an eye-safe laser rangefinder is necessary. OPUS H, the newest member of the ZEISS family of handheld navigational and targeting devices, combines all these functions in a light-weight instrument and analyses all data to provide first hand information about potential targets to the soldier and his group with sufficient accuracy for combat decisions.

  3. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...

  4. Decoding the view expectation during learned maze navigation from human fronto-parietal network.

    Science.gov (United States)

    Shikauchi, Yumi; Ishii, Shin

    2015-12-03

    Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants' view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder's output reflected participants' expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation.

  5. Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Directory of Open Access Journals (Sweden)

    A. Renga

    2013-01-01

    Full Text Available The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS; (b generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser; and (c generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach.

  6. Spatial navigation in young versus older adults

    Directory of Open Access Journals (Sweden)

    Ivana eGazova

    2013-12-01

    Full Text Available Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus dependent and egocentric (body-centered, parietal lobe dependent navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18-26 years old and 44 older participants stratified as participants 60-70 years old (n=24 and participants 71-84 years old (n=20. All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the 8 consecutive trials, trials 2-8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials. The participants who were 71-84 years old (p< .001, but not those 60-70 years old, showed deficit in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p´s ≤.01. There were no gender differences in spatial navigation and learning. The linear regression limited to older participants showed linear (β=0.30, p=.045 and quadratic (β=0.30, p=.046 effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from prodromal Alzheimer

  7. Navigating the Internet of Things

    DEFF Research Database (Denmark)

    Rassia, Stamatina; Steiner, Henriette

    2017-01-01

    Navigating the Internet of Things is an exploration of interconnected objects, functions, and situations in networks created to ease and manage our daily lives. The Internet of Things represents semi-automated interconnections of different objects in a network based on different information...... technologies. Some examples of this are presented here in order to better understand, explain, and discuss the elements that compose the Internet of Things. In this chapter, we provide a theoretical and practical perspective on both the micro- and macro-scales of ‘things’ (objects), small and large (e.......g. computers or interactive maps), that suggest new topographic relationships and challenge our understanding of users’ involvement with a given technology against the semi-automated workings of these systems. We navigate from a philosophical enquiry into the ‘thingness of things’ dating from the 1950s...

  8. Autonomous Guidance, Navigation and Control

    Science.gov (United States)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  9. Orientation in birds. Olfactory navigation.

    Science.gov (United States)

    Papi, F

    1991-01-01

    Research work on the olfactory navigation of birds, which has only recently attracted attention, has shown that many wild species rely on an osmotactic mechanism to find food sources, even at a considerable distance. The homing pigeon, the only bird to have been thoroughly investigated with respect to olfactory navigation, has been found to rely on local odours for homeward orientation, and to integrate olfactory cues perceived during passive transportation with those picked up at the release site. It is possible to design experiments in which birds are given false olfactory information, and predictions about the effects of this can be made and tested. Pigeons are able to home from unfamiliar sites because they acquire an olfactory map extending beyond the area they have flown over. The olfactory map is built up by associating wind-borne odours with the direction from which they come; this was shown by experiments which aimed to prevent, limit or alter this association. One aim of the research work has been to test whether pigeons flying over unfamiliar areas also rely or can learn to rely on non-olfactory cues, depending on their local availability, and/or on the methods of rearing and training applied to them. Various evaluations have been made of the results; the most recent experiments, however, confirm that pigeons do derive directional information from atmospheric odours. A neurobiological approach is also in progress; its results show that some telencephalic areas are involved in orientation and olfactory navigation. The lack of any knowledge about the distribution and chemical nature of the odorants which allow pigeons to navigate hinders progress in this area of research.

  10. Orientation and navigation in birds

    Directory of Open Access Journals (Sweden)

    H. Bouwman

    1998-07-01

    Full Text Available How birds orientate and navigate over long distances, remains one of the subjects of ornithology eliciting much interest. Birds use combinations of different sources of information to find direction and position. Some of these are the geomagnetic field, celestial bodies, mosaic and gradient maps, sound, smell, idiotetic information and others. Different species use different combinations of sources. This ability is partially inherent and partially learned.

  11. 06421 Executive Summary -- Robot Navigation

    OpenAIRE

    Fekete, Sándor; Fleischer, Rudolf; Klein, Rolf; Lopez-Ortiz, Alejandro

    2007-01-01

    For quite a number of years, researchers from various fields have studied problems motivated by Robot Navigation. People in Online Algorithms have developed strategies that can deal with the inherent lack of information an autonomous robot encounters, as it sets out to perform a task in an unknown environment. Computational Geometers have obtained many results on the efficient planning of collision-free motions, and on visibility problems. Scientists and engineers in Robotics have perfected r...

  12. CT navigated lateral interbody fusion.

    Science.gov (United States)

    Drazin, Doniel; Liu, John C; Acosta, Frank L

    2013-10-01

    Lateral interbody fusion techniques are heavily reliant on fluoroscopy for retractor docking and graft placement, which expose both the patient and surgeon to high doses of radiation. Use of image-guided technologies with CT-based images, however, can eliminate this radiation exposure for the surgeon. We describe the surgical technique of performing lateral lumbar interbody fusion using CT navigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Celestial Navigation for the Novice

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    What kinds of astronomical lab activities can introductory astronomy students carry out easily in daytime? The most impressive is the determination of their latitude and longitude from observations of the sun. The "shooting of a noon sight” and its "reduction to a position” is a technique still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses and include celestial navigation. These techniques continue to be used by the military and by private sailors as a backup to electronic navigation systems. We present a method to establish one's latitude and longitude to better than 30 miles from measurements of the sun's altitude that is easily within the capability non-science majors. This is a practical application of astronomy in use the world over. The streamlined method used is based on an easy-to-build protractor and string quadrant. Participants will leave with all materials to conduct this activity in their own classroom.

  14. Efficient ranging-sensor navigation methods for indoor aircraft

    Science.gov (United States)

    Sobers, David Michael, Jr.

    Unmanned Aerial Vehicles (UAVs) are often used for reconnaissance, search and rescue, damage assessment, exploration, and other tasks that are dangerous or prohibitively difficult for humans to perform. Often, these tasks include traversing indoor environments where radio links are unreliable, hindering the use of remote pilot links or ground-based control, and effectively eliminating Global Positioning System (GPS) signals as a potential localization method. As a result, any vehicle capable of indoor flight must be able to stabilize itself and perform all guidance, navigation, and control (GNC) tasks without dependence on a radio link, which may be available only intermittently. Stability and control of rotorcraft UAVs is usually achieved by either a passive stability system, such as a Bell stabilizer bar, or by actively measuring body accelerations and angular rates with an onboard Inertial Measurement Unit (IMU) and using that data for feedback control. However, neither active nor passive attitude stabilization methods provide position control by themselves. Therefore, GNC methods must either be tolerant to position drift or have some means of estimating and controlling position, which requires an external reference in order to measure and correct errors in the position estimate. GPS signals are often the most convenient method for providing this external position reference. As a result, most UAVs utilize GPS for localization and to bound error on position drift. Unfortunately, the availability of GPS signals in unknown environments is not assured, especially during indoor operation. As a result, other sensors must be used to provide position information relative to the environment. This research covers a description of different ranging sensors and methods for incorporating them into the overall guidance, navigation, and control system. Various sensors are analyzed to determine their performance characteristics and suitability for indoor navigation, including

  15. Navigation Operations for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  16. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  17. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  18. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    Science.gov (United States)

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  19. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-05-01

    Full Text Available This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF and Unscented Kalman filter (UKF were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  20. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Science.gov (United States)

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  1. Indoor integrated navigation and synchronous data acquisition method for Android smartphone

    Science.gov (United States)

    Hu, Chunsheng; Wei, Wenjian; Qin, Shiqiao; Wang, Xingshu; Habib, Ayman; Wang, Ruisheng

    2015-08-01

    Smartphones are widely used at present. Most smartphones have cameras and kinds of sensors, such as gyroscope, accelerometer and magnet meter. Indoor navigation based on smartphone is very important and valuable. According to the features of the smartphone and indoor navigation, a new indoor integrated navigation method is proposed, which uses MEMS (Micro-Electro-Mechanical Systems) IMU (Inertial Measurement Unit), camera and magnet meter of smartphone. The proposed navigation method mainly involves data acquisition, camera calibration, image measurement, IMU calibration, initial alignment, strapdown integral, zero velocity update and integrated navigation. Synchronous data acquisition of the sensors (gyroscope, accelerometer and magnet meter) and the camera is the base of the indoor navigation on the smartphone. A camera data acquisition method is introduced, which uses the camera class of Android to record images and time of smartphone camera. Two kinds of sensor data acquisition methods are introduced and compared. The first method records sensor data and time with the SensorManager of Android. The second method realizes open, close, data receiving and saving functions in C language, and calls the sensor functions in Java language with JNI interface. A data acquisition software is developed with JDK (Java Development Kit), Android ADT (Android Development Tools) and NDK (Native Development Kit). The software can record camera data, sensor data and time at the same time. Data acquisition experiments have been done with the developed software and Sumsang Note 2 smartphone. The experimental results show that the first method of sensor data acquisition is convenient but lost the sensor data sometimes, the second method is much better in real-time performance and much less in data losing. A checkerboard image is recorded, and the corner points of the checkerboard are detected with the Harris method. The sensor data of gyroscope, accelerometer and magnet meter have

  2. INS/CNS/GNSS integrated navigation technology

    CERN Document Server

    Quan, Wei; Gong, Xiaolin; Fang, Jiancheng

    2015-01-01

    This book not only introduces the principles of INS, CNS and GNSS, the related filters and semi-physical simulation, but also systematically discusses the key technologies needed for integrated navigations of INS/GNSS, INS/CNS, and INS/CNS/GNSS, respectively. INS/CNS/GNSS integrated navigation technology has established itself as an effective tool for precise positioning navigation, which can make full use of the complementary characteristics of different navigation sub-systems and greatly improve the accuracy and reliability of the integrated navigation system. The book offers a valuable reference guide for graduate students, engineers and researchers in the fields of navigation and its control. Dr. Wei Quan, Dr. Jianli Li, Dr. Xiaolin Gong and Dr. Jiancheng Fang are all researchers at the Beijing University of Aeronautics and Astronautics.

  3. Quantum Navigation and Ranking in Complex Networks

    Science.gov (United States)

    Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David

    2012-08-01

    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems.

  4. Spatial Database Modeling for Indoor Navigation Systems

    Science.gov (United States)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  5. Fusion of Onboard Sensors for Better Navigation

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2013-03-01

    Full Text Available This paper presents simulation results of navigation sensors such as integrated navigation system (INS, global navigation satellite system (GNSS and TACAN sensors onboard an aircraft to find the navigation solutions. Mathematical models for INS, GNSS (GPS satellite trajectories, GPS receiver and TACAN characteristics are simulated in Matlab. The INS simulation generates the output for position, velocity and attitude based on aerosond dynamic model. The GPS constellation is generated based on the YUMA almanac data. The GPS dilution of precession (DOP parameters are calculated and the best combination of four satellites (minimum PDOP is used for calculating the user position and velocity. The INS, GNSS, and TACAN solutions are integrated through loosely coupled extended Kalman filter for calculating the optimum navigation solution. The work is starting stone for providing aircraft based augmentation system for required navigation performance in terms of availability, accuracy, continuity and integrity.

  6. Indoor inertial waypoint navigation for the blind.

    Science.gov (United States)

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Whalen, William E; Giudice, Nicholas A

    2013-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction and evaluation of an inertial dead reckoning navigation system that provides real-time auditory guidance along mapped routes. Inertial dead reckoning is a navigation technique coupling step counting together with heading estimation to compute changes in position at each step. The research described here outlines the development and evaluation of a novel navigation system that utilizes information from the mapped route to limit the problematic error accumulation inherent in traditional dead reckoning approaches. The prototype system consists of a wireless inertial sensor unit, placed at the users' hip, which streams readings to a smartphone processing a navigation algorithm. Pilot human trials were conducted assessing system efficacy by studying route-following performance with blind and sighted subjects using the navigation system with real-time guidance, versus offline verbal directions.

  7. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.

    Science.gov (United States)

    Andersson, Patrik; Pluim, Josien P W; Viergever, Max A; Ramsey, Nick F

    2013-01-01

    Brain-computer interfaces (BCIs) allow people with severe neurological impairment and without ability to control their muscles to regain some control over their environment. The BCI user performs a mental task to regulate brain activity, which is measured and translated into commands controlling some external device. We here show that healthy participants are capable of navigating a robot by covertly shifting their visuospatial attention. Covert Visuospatial Attention (COVISA) constitutes a very intuitive brain function for spatial navigation and does not depend on presented stimuli or on eye movements. Our robot is equipped with motors and a camera that sends visual feedback to the user who can navigate it from a remote location. We used an ultrahigh field MRI scanner (7 Tesla) to obtain fMRI signals that were decoded in real time using a support vector machine. Four healthy subjects with virtually no training succeeded in navigating the robot to at least three of four target locations. Our results thus show that with COVISA BCI, realtime robot navigation can be achieved. Since the magnitude of the fMRI signal has been shown to correlate well with the magnitude of spectral power changes in the gamma frequency band in signals measured by intracranial electrodes, the COVISA concept may in future translate to intracranial application in severely paralyzed people.

  8. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  9. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  10. The use of intraoperative computed tomography navigation in pituitary surgery promises a better intraoperative orientation in special cases

    OpenAIRE

    Stefan Linsler; Sebastian Antes; Sebastian Senger; Joachim Oertel

    2016-01-01

    Objective: The safety of endoscopic skull base surgery can be enhanced by accurate navigation in preoperative computed tomography (CT) and magnetic resonance imaging (MRI). Here, we report our initial experience of real-time intraoperative CT-guided navigation surgery for pituitary tumors in childhood. Materials and Methods: We report the case of a 15-year-old girl with a huge growth hormone-secreting pituitary adenoma with supra- and perisellar extension. Furthermore, the skull base was infi...

  11. Reliable dynamic in-vehicle navigation

    OpenAIRE

    Kaparias, I.

    2008-01-01

    Having started off from luxury makes and models, in-vehicle navigation systems are now gradually spreading through the entire vehicle fleet, as drivers appreciate their usefulness. Increasingly sophisticated systems are being developed, having much more advanced functions than simple driving directions. This thesis presents a new approach for in-vehicle navigation, in which travel time reliability is incorporated in the route finding component of the navigation system. Based on historical tra...

  12. Vector database for vehicle road navigation

    OpenAIRE

    Kenda, Lian

    2007-01-01

    Vehicle navigation devices use vector cartographic view, which is designed as a vector database. Database creation begins by setting up a landscape model which includes all the graphical and descriptive data required for accurate vehicle navigation. This paper presents the creation of a database part called StreetConnect, which is used for road navigation. Data obtained using distinct specifications have been transformed into the format compatible with Garmin GPS devices. Data have been obtai...

  13. Research on integrated navigation method for AUV

    Institute of Scientific and Technical Information of China (English)

    GUO Zhen; SUN Feng

    2005-01-01

    The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.

  14. Global navigation satellite systems and their applications

    CERN Document Server

    Madry, Scott

    2015-01-01

    Dr. Madry, one of the world's leading experts in the field, provides in a condensed form a quick yet comprehensive overview of satellite navigation. This book concisely addresses the latest technology, the applications, the regulatory issues, and the strategic implications of satellite navigation systems. This assesses the strengths and weaknesses of satellite navigation networks and review of all the various national systems now being deployed and the motivation behind the proliferation of these systems.

  15. Lunar articulated remote transportation system

    Science.gov (United States)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  16. 75 FR 39632 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, Harvey...

    Science.gov (United States)

    2010-07-12

    ..., Inner Harbor Navigation Canal, Harvey Canal, Algiers Canal, New Orleans, LA; Correction ACTION: Interim... Navigation Canal, Harvey Canal, Algiers Canal, New Orleans, LA into the Code of Federal Regulations....

  17. Neural encoding of objects relevant for navigation and resting state correlations with navigational ability

    NARCIS (Netherlands)

    Wegman, J.B.T.; Janzen, G.

    2011-01-01

    Objects along a route can help us to successfully navigate through our surroundings. Previous neuroimaging research has shown that the parahippocampal gyrus (PHG) distinguishes between objects that were previously encountered at navigationally relevant locations (decision points) and irrelevant loca

  18. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  19. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  20. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  1. Improved Modeling in a Matlab-Based Navigation System

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  2. Emergency navigation without an infrastructure.

    Science.gov (United States)

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  3. Youth Mobilisation as Social Navigation

    DEFF Research Database (Denmark)

    Vigh, Henrik Erdman

    2010-01-01

    This article sheds light on the mobilisation of young people into conflict. It argues that warfare constitutes a terrain of possibility for urban youth in Guinea‑Bissau, and shows how they navigate war as an event by tactically manoeuvring within the social ties and options that arise in such situations. Building on the Guinean Creole term of dubriagem, the article proposes the concept of social navigation...... as an analytical optic able to shed light on praxis in unstable environments. The concept of social navigation makes it possible to focus on the way we move within changing social environments. It is processuality squared, illuminating motion within motion. The article thus advocates an analysis of praxis that takes its point of departure in a Batesonian and intermorphological understanding of action in order to further our understanding of the acts of youth in conflict....

  4. Crew-Aided Autonomous Navigation

    Science.gov (United States)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  5. Emergency Navigation without an Infrastructure

    Directory of Open Access Journals (Sweden)

    Erol Gelenbe

    2014-08-01

    Full Text Available Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF and a cognitive packet network (CPN-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  6. Hybrid Guidance System for Relative Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA architectures and missions will involve many distributed platforms that must work together. This in turn requires guidance, navigation and control...

  7. Limitations of navigation through Nubaria canal, Egypt.

    Science.gov (United States)

    Samuel, Magdy G

    2014-03-01

    Alexandria port is the main Egyptian port at the Mediterranean Sea. It is connected to the Nile River through Nubaria canal, which is a main irrigation canal. The canal was designed to irrigate eight hundred thousand acres of agricultural lands, along its course which extends 100 km. The canal has three barrages and four locks to control the flow and allow light navigation by some small barges. Recently, it was decided to improve the locks located on the canal. More than 40 million US$ was invested in these projects. This decision was taken to allow larger barges and increase the transported capacity through the canal. On the other hand, navigation through canals and restricted shallow waterways is affected by several parameters related to both the channel and the vessel. Navigation lane width as well as vessel speed and maneuverability are affected by both the channel and vessel dimensions. Moreover, vessel dimensions and speed will affect the canal stability. In Egypt, there are no guide rules for navigation through narrow and shallow canals such Nubaria. This situation threatens the canal stability and safety of navigation through it. This paper discussed the characteristics of Nubaria canal and the guide rules for navigation in shallow restricted water ways. Dimensions limitation for barges navigating through Nubaria canal is presented. New safe operation rules for navigation in Nubaria canal are also presented. Moreover, the implication of navigation through locks on canal discharge is estimated.

  8. Limitations of navigation through Nubaria canal, Egypt

    Directory of Open Access Journals (Sweden)

    Magdy G. Samuel

    2014-03-01

    Full Text Available Alexandria port is the main Egyptian port at the Mediterranean Sea. It is connected to the Nile River through Nubaria canal, which is a main irrigation canal. The canal was designed to irrigate eight hundred thousand acres of agricultural lands, along its course which extends 100 km. The canal has three barrages and four locks to control the flow and allow light navigation by some small barges. Recently, it was decided to improve the locks located on the canal. More than 40 million US$ was invested in these projects. This decision was taken to allow larger barges and increase the transported capacity through the canal. On the other hand, navigation through canals and restricted shallow waterways is affected by several parameters related to both the channel and the vessel. Navigation lane width as well as vessel speed and maneuverability are affected by both the channel and vessel dimensions. Moreover, vessel dimensions and speed will affect the canal stability. In Egypt, there are no guide rules for navigation through narrow and shallow canals such Nubaria. This situation threatens the canal stability and safety of navigation through it. This paper discussed the characteristics of Nubaria canal and the guide rules for navigation in shallow restricted water ways. Dimensions limitation for barges navigating through Nubaria canal is presented. New safe operation rules for navigation in Nubaria canal are also presented. Moreover, the implication of navigation through locks on canal discharge is estimated.

  9. Robotics_MobileRobot Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  10. Airports and Navigation Aids Database System -

    Data.gov (United States)

    Department of Transportation — Airport and Navigation Aids Database System is the repository of aeronautical data related to airports, runways, lighting, NAVAID and their components, obstacles, no...

  11. Lunar Autonomous Automatic Surface Navigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA GRC Laboratory need for navigation capabilities to provide location awareness, precision position fixing, best heading, and traverse path...

  12. Applications of navigation for orthognathic surgery.

    Science.gov (United States)

    Bobek, Samuel L

    2014-11-01

    Stereotactic surgical navigation has been used in oral and maxillofacial surgery for orbital reconstruction, reduction of facial fractures, localization of foreign bodies, placement of implants, skull base surgery, tumor removal, temporomandibular joint surgery, and orthognathic surgery. The primary goals in adopting intraoperative navigation into these different surgeries were to define and localize operative anatomy, to localize implant position, and to orient the surgical wound. Navigation can optimize the functional and esthetic outcomes in patients with dentofacial deformities by identifying pertinent anatomic structures, transferring the surgical plan to the patient, and verifying the surgical result. This article discusses the principles of navigation-guided orthognathic surgery.

  13. Precision optical navigation guidance system

    Science.gov (United States)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  14. The N456 Navigator System

    Science.gov (United States)

    2009-01-01

    system, the N456 timing functions are not used or affected. – 4 – 5. PRV Mode This is a common navigation method for the Jason/ Medea system. In...this mode, a trigger is sent down the tether, where it is causes an interrogation pulse from Medea . Boards dedicated to Medea and Jason both time the... Medea uses PING_BOARD=2 # MODE_CYCLE = the name of a ping cycle definition # IS_TIMED = 0 if pings occur at the commanded instant

  15. Fuzzy sets and autonomous navigation

    Science.gov (United States)

    Lea, Robert N.

    1987-01-01

    The use of fuzzy sets in modeling the human expert for certain Space Shuttle navigation problems is discussed with particular reference to onboard and ground console data monitoring tasks traditionally performed by astronauts and engineers. Specific problems include determining the quality of sensor data and of the filter state. The results obtained in this study indicate that fuzzy sets can be successfully used in modeling human reaction to rules in decision-making processes. They can also be used within software systems where guidelines have traditionally been used to set strict tolerances.

  16. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.

  17. 33 CFR 245.20 - Determination of hazard to navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Determination of hazard to navigation. 245.20 Section 245.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REMOVAL OF WRECKS AND OTHER OBSTRUCTIONS § 245.20 Determination of hazard to...

  18. Off the Beaten tracks: Exploring Three Aspects of Web Navigation

    NARCIS (Netherlands)

    Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M.; Edmonds, H.; Hawkey, K.; Kellar, M.; Turnbull, D.

    2006-01-01

    This paper presents results of a long-term client-side Web usage study, updating previous studies that range in age from five to ten years. We focus on three aspects of Web navigation: changes in the distribution of navigation actions, speed of navigation and within-page navigation. “Navigation acti

  19. Training of a leaning agent for navigation--inspired by brain-machine interface.

    Science.gov (United States)

    Kitamura, Tadashi; Nishino, Daisuke

    2006-04-01

    The design clue for the remote control of a mobile robot is inspired by the Talwar's brain-machine interface technology for remotely training and controlling rats. Our biologically inspired autonomous robot control consciousness-based architecture (CBA) is used for the remote control of a robot as a substitute for a rat. CBA is a developmental hierarchy model of the relationship between consciousness and behavior, including a training algorithm. This training algorithm computes a shortcut path to a goal using a cognitive map created based on behavior obstructions during a single successful trial. However, failures in reaching the goal due to errors of the vision and dead reckoning sensors require human intervention to improve autonomous navigation. A human operator remotely intervenes in autonomous behaviors in two ways: low-level intervention in reflexive actions and high-level ones in the cognitive map. Experiments are conducted to test CBA functions for intervention with a joystick for a Khepera robot navigating from the center of a square obstacle with an open side toward a goal. Their statistical results show that both human interventions, especially high-level ones, are effective in drastically improving the success rate of autonomous detours.

  20. Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation

    Science.gov (United States)

    Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri

    2002-01-01

    The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.

  1. Remote presence proctoring by using a wireless remote-control videoconferencing system.

    Science.gov (United States)

    Smith, C Daniel; Skandalakis, John E

    2005-06-01

    Remote presence in an operating room to allow an experienced surgeon to proctor a surgeon has been promised through robotics and telesurgery solutions. Although several such systems have been developed and commercialized, little progress has been made using telesurgery for anything more than live demonstrations of surgery. This pilot project explored the use of a new videoconferencing capability to determine if it offers advantages over existing systems. The video conferencing system used is a PC-based system with a flat screen monitor and an attached camera that is then mounted on a remotely controlled platform. This device is controlled from a remotely placed PC-based videoconferencing system computer outfitted with a joystick. Using the public Internet and a wireless router at the client site, a surgeon at the control station can manipulate the videoconferencing system. Controls include navigating the unit around the room and moving the flat screen/camera portion like a head looking up/down and right/left. This system (InTouch Medical, Santa Barbara, CA) was used to proctor medical students during an anatomy class cadaver dissection. The ability of the remote surgeon to effectively monitor the students' dissections and direct their activities was assessed subjectively by students and surgeon. This device was very effective at providing a controllable and interactive presence in the anatomy lab. Students felt they were interacting with a person rather than a video screen and quickly forgot that the surgeon was not in the room. The ability to move the device within the environment rather than just observe the environment from multiple fixed camera angles gave the surgeon a similar feel of true presence. A remote-controlled videoconferencing system provides a more real experience for both student and proctor. Future development of such a device could greatly facilitate progress in implementation of remote presence proctoring.

  2. 76 FR 31831 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments

    Science.gov (United States)

    2011-06-02

    ... conforming amendments and technical corrections to Coast Guard navigation and navigable water regulations... that erroneously omitted the words ``within a''. The correction to the section is not substantive and..., Waterways. 33 CFR Part 107 Harbors, Facilities, Marine safety, Maritime security, Navigation (water...

  3. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  4. MR-guided vertebroplasty with augmented reality image overlay navigation.

    Science.gov (United States)

    Fritz, Jan; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Kathuria, Sudhir; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A

    2014-12-01

    To evaluate the feasibility of magnetic resonance imaging (MRI)-guided vertebroplasty at 1.5 Tesla using augmented reality image overlay navigation. Twenty-five unilateral vertebroplasties [5 of 25 (20%) thoracic, 20 of 25 (80%) lumbar] were prospectively planned in 5 human cadavers. A clinical 1.5-Teslan MRI system was used. An augmented reality image overlay navigation system and 3D Slicer visualization software were used for MRI display, planning, and needle navigation. Intermittent MRI was used to monitor placement of the MRI-compatible vertebroplasty needle. Cement injections (3 ml of polymethylmethacrylate) were performed outside the bore. The cement deposits were assessed on intermediate-weighted MR images. Outcome variables included type of vertebral body access, number of required intermittent MRI control steps, location of final needle tip position, cement deposit location, and vertebroplasty time. All planned procedures (25 of 25, 100%) were performed. Sixteen of 25 (64%) transpedicular and 9 of 25 (36%) parapedicular access routes were used. Six (range 3-9) MRI control steps were required for needle placement. No inadvertent punctures were visualized. Final needle tip position and cement location were adequate in all cases (25 of 25, 100%) with a target error of the final needle tip position of 6.1 ± 1.9 mm (range 0.3-8.7 mm) and a distance between the planned needle tip position and the center of the cement deposit of 4.3 mm (range 0.8-6.8 mm). Time requirement for one level was 16 (range 11-21) min. MRI-guided vertebroplasty using image overlay navigation is feasible allowing for accurate vertebral body access and cement deposition in cadaveric thoracic and lumbar vertebral bodies.

  5. Optic flow and autonomous navigation.

    Science.gov (United States)

    Campani, M; Giachetti, A; Torre, V

    1995-01-01

    Many animals, especially insects, compute and use optic flow to control their motion direction and to avoid obstacles. Recent advances in computer vision have shown that an adequate optic flow can be computed from image sequences. Therefore studying whether artificial systems, such as robots, can use optic flow for similar purposes is of particular interest. Experiments are reviewed that suggest the possible use of optic flow for the navigation of a robot moving in indoor and outdoor environments. The optic flow is used to detect and localise obstacles in indoor scenes, such as corridors, offices, and laboratories. These routines are based on the computation of a reduced optic flow. The robot is usually able to avoid large obstacles such as a chair or a person. The avoidance performances of the proposed algorithm critically depend on the optomotor reaction of the robot. The optic flow can be used to understand the ego-motion in outdoor scenes, that is, to obtain information on the absolute velocity of the moving vehicle and to detect the presence of other moving objects. A critical step is the correction of the optic flow for shocks and vibrations present during image acquisition. The results obtained suggest that optic flow can be successfully used by biological and artificial systems to control their navigation. Moreover, both systems require fast and accurate optomotor reactions and need to compensate for the instability of the viewed world.

  6. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  7. Molecular magnetic switch for a metallofullerene

    OpenAIRE

    Bo WU; Wang, Taishan; Feng, Yongqiang; Zhang, Zhuxia; Jiang,Li; Wang, Chunru

    2015-01-01

    The endohedral fullerenes lead to well-protected internal species by the fullerene cages, and even highly reactive radicals can be stabilized. However, the manipulation of the magnetic properties of these radicals from outside remains challenging. Here we report a system of a paramagnetic metallofullerene Sc3C2@C80 connected to a nitroxide radical, to achieve the remote control of the magnetic properties of the metallofullerene. The remote nitroxide group serves as a magnetic switch for the e...

  8. Advances in the Remote Glow Discharge Experiment

    Science.gov (United States)

    Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl

    2014-10-01

    The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.

  9. New bionic navigation algorithm based on the visual navigation mechanism of bees

    Science.gov (United States)

    Huang, Yufeng; Liu, Yi; Liu, Jianguo

    2015-04-01

    Through some research on visual navigation mechanisms of flying insects especially honeybees, a novel navigation algorithm integrating entropy flow with Kalman filter has been introduced in this paper. Concepts of entropy image and entropy flow are also introduced, which can characterize topographic features and measure changes of the image respectively. To characterize texture feature and spatial distribution of an image, a new concept of contrast entropy image has been presented in this paper. Applying the contrast entropy image to the navigation algorithm to test its' performance of navigation and comparing with simulation results of intensity entropy image, a conclusion that contrast entropy image performs better and more robust in navigation has been made.

  10. On credibility improvements for automotive navigation systems

    NARCIS (Netherlands)

    Schaub, Florian; Hipp, Markus; Kargl, Frank; Weber, Michael

    2012-01-01

    Automotive navigation systems are becoming ubiquitous as driver assistance systems. Vendors continuously aim to enhance route guidance by adding new features to their systems. However, we found in an analysis of current navigation systems that many share interaction weaknesses, which can damage the

  11. Understanding the Social Navigation User Experience

    Science.gov (United States)

    Goecks, Jeremy

    2009-01-01

    A social navigation system collects data from its users--its community--about what they are doing, their opinions, and their decisions, aggregates this data, and provides the aggregated data--community data--back to individuals so that they can use it to guide behavior and decisions. Social navigation systems empower users with the ability to…

  12. A Semantic Navigation Model for Video Games

    Science.gov (United States)

    van Driel, Leonard; Bidarra, Rafael

    Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.

  13. Blavigator: a navigation aid for blind persons

    OpenAIRE

    José,João; Moreno, M.; Pinilla-Dutoit, J.; Rodrigues, J. M. F.; du Buf, J. M. H.

    2012-01-01

    Blavigator (blind navigator) is a vision aid for blind and visuaIIy impaired persons. It supports local navigation by detecting waIkable paths in the immediate vicinity of the user. It guides the user for centering on the path.

  14. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were measu

  15. Traffic safety effects of navigation systems

    NARCIS (Netherlands)

    Feenstra, P.J.; Hogema, J.H.; Vonk, T.

    2007-01-01

    Abstract— To investigate effects of navigation systems on traffic safety, a literature search, a damages database analysis, a user survey and an instrumented car study were conducted. This paper presents the instrumented car study to investigate the effects of a navigation system on driving behavior

  16. Waypoint navigation with a vibrotactile waist belt

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.A.H.C. van; Jansen, C.; Dobbins, T.

    2005-01-01

    Presenting waypoint navigation on a visual display is not suited for all situations. The present experiments investigate if it is feasible to present the navigation information on a tactile display. Important design issue of the display is how direction and distance information must be coded. Import

  17. Disputing Viking navigation by polarized skylight.

    Science.gov (United States)

    Roslund, C; Beckman, C

    1994-07-20

    The widely held notion that the Vikings utilized polarization of skylight on overcast days for navigational purposes is demonstrated to have no scientific basis. The use of polarized skylight for navigation under partly cloudfree skies should be treated with caution and skepticism.

  18. The Navigational Power of Web Browsers

    NARCIS (Netherlands)

    Bielecki, M.; Hidders, J.; Paredaens, J.; Spielmann, M.; Tyszkiewicz, J.; Van den Bussche, J.

    2010-01-01

    We investigate the computational capabilities of Web browsers, when equipped with a standard finite automaton. We observe that Web browsers are Turingcomplete. We introduce the notion of a navigational problem, and investigate the complexity of solving Web queries and navigational problems by Web br

  19. Validation of principles for tactile navigation displays

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.

    2006-01-01

    Access to navigation information rapidly becomes standard in many situations, for example through GPS receivers and collision avoidance systems in cars. However, perceiving and processing the information may result in overloading the userÆs visual sense and cognitive resources. Intuitive navigation

  20. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were

  1. Evolved Navigation Theory and Horizontal Visual Illusions

    Science.gov (United States)

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  2. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  3. Parsimonious Ways to Use Vision for Navigation

    Directory of Open Access Journals (Sweden)

    Paul Graham

    2012-05-01

    Full Text Available The use of visual information for navigation appears to be a universal strategy for sighted animals, amongst which, one particular group of expert navigators are the ants. The broad interest in studies of ant navigation is in part due to their small brains, thus biomimetic engineers expect to be impressed by elegant control solutions, and psychologists might hope for a description of the minimal cognitive requirements for complex spatial behaviours. In this spirit, we have been taking an interdisciplinary approach to the visual guided navigation of ants in their natural habitat. Behavioural experiments and natural image statistics show that visual navigation need not depend on the remembering or recognition of objects. Further modelling work suggests how simple behavioural routines might enable navigation using familiarity detection rather than explicit recall, and we present a proof of concept that visual navigation using familiarity can be achieved without specifying when or what to learn, nor separating routes into sequences of waypoints. We suggest that our current model represents the only detailed and complete model of insect route guidance to date. What's more, we believe the suggested mechanisms represent useful parsimonious hypotheses for the visually guided navigation in larger-brain animals.

  4. The Navigation Metaphor in Security Economics

    DEFF Research Database (Denmark)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept...... of navigation makes it easier to motivate and explain security investment to a wide audience, encouraging strategic security decisions....

  5. The navigation metaphor in security economics

    NARCIS (Netherlands)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret; Heath, Claude P.R.; Probst, Christian W.; Verbij, Ruud

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of navig

  6. Using distributed magnetometry in navigation of heavy launchers and space vehicles

    Science.gov (United States)

    Praly, N.; Bristeau, P.-J.; Laurent-Varin, J.; Petit, N.

    2013-12-01

    Recently, a new technique (magneto-inertial navigation, MINAV) has emerged to address the general problem of reconstructing the inertial velocity of a rigid body moving in a magnetically disturbed region. The contribution of this paper is to apply the developed method, in a prospective spirit, to a case of space navigation in view of estimating the performance improvement that could be obtained using state-of-theart magnetometer technology onboard heavy launchers and other space vehicles. The main underlying idea of the approach is to estimate the inertial velocity by readings of the magnetic field at spatially distributed (known) locations on the rigid body. Mathematically, through a chainrule differentiation involving variables commonly appearing in classic inertial navigation, an estimate of this velocity can be obtained. This paper presents the potential of this method in the field of navigation of heavy launchers passing through particular regions of the Earth magnetosphere as considered, e. g., for upcoming Galileo missions. Numerical results based on the specifications of candidate embedded magnetic sensors stress the relevance of the approach. The presented methodology is patent pending and has been partially funded by CNES.

  7. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    Directory of Open Access Journals (Sweden)

    Yong-Jin Yoon

    2015-03-01

    Full Text Available Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Positioning System is coupled with Inertial Navigation System to correct the errors, while Inertial Navigation System itself can be used to provide navigation solution during a Global Positioning System outage. Data from Global Positioning System and Inertial Navigation System can be integrated by extensive Kalman filtering, using loosely coupled integration architecture to provide navigation solutions. In this study, real-time low-cost loosely coupled micro-electro-mechanical system Inertial Navigation System/Global Positioning System sensors have been used for pedestrian navigation. Trial runs of Global Positioning System outages have been conducted to determine the accuracy of the system described. The micro-electro-mechanical system Inertial Navigation System/Global Positioning System can successfully project a trajectory during a Global Positioning System outage and produces a root mean square error of 9.35 m in latitude direction and 10.8 m in longitude direction. This technology is very suitable for visually impaired pedestrians.

  8. Sex differences in virtual navigation influenced by scale and navigation experience.

    Science.gov (United States)

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  9. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...... available environment features (natural landmarks). The goal is also to integrate techniques and algorithms (also related to other research field) in the same navigation system, in order to improve localization performance and system autonomy. The proposed localization strategy is based on a continuous...... update of the estimated robot position while the robot is moving. In order to make the system autonomous, both acquisition and observation of landmarks have to be carried out automatically. The thesis consequently proposes a method for learning and navigation of a working environment and it explores...

  10. Autonomous Deep-Space Optical Navigation Project

    Science.gov (United States)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  11. Navigation in spatial networks: A survey

    Science.gov (United States)

    Huang, Wei; Chen, Shengyong; Wang, Wanliang

    2014-01-01

    The study on the navigation process in spatial networks has attracted much attention in recent years due to the universal applications in real communication networks. This article surveys recent advances of the navigation problem in spatial networks. Due to the ability to overcome scaling limitations in utilizing geometric information for designing navigation algorithms in spatial networks, we summarize here several important navigation algorithms based on geometric information on both homogeneous and heterogeneous spatial networks. Due to the geometric distance employed, the cost associated with the lengths of additional long-range connections is also taken into account in this survey. Therefore, some contributions reporting how the distribution of long-range links’ lengths affects the average navigation time are summarized. We also briefly discuss two other related processes, i.e. the random walk process and the transportation process. Finally, a few open discussions are included at the end of this survey.

  12. Beacons for supporting lunar landing navigation

    Science.gov (United States)

    Theil, Stephan; Bora, Leonardo

    2017-03-01

    Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

  13. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  14. Enhancing Navigation on Wikipedia with Social Tags

    CERN Document Server

    Zubiaga, Arkaitz

    2012-01-01

    Social tagging has become an interesting approach to improve search and navigation over the actual Web, since it aggregates the tags added by different users to the same resource in a collaborative way. This way, it results in a list of weighted tags describing its resource. Combined to a classical taxonomic classification system such as that by Wikipedia, social tags can enhance document navigation and search. On the one hand, social tags suggest alternative navigation ways, including pivot-browsing, popularity-driven navigation, and filtering. On the other hand, it provides new metadata, sometimes uncovered by documents' content, that can substantially improve document search. In this work, the inclusion of an interface to add user-defined tags describing Wikipedia articles is proposed, as a way to improve article navigation and retrieval. As a result, a prototype on applying tags over Wikipedia is proposed in order to evaluate its effectiveness.

  15. Ethical Navigation in Leadership Training

    Directory of Open Access Journals (Sweden)

    Øyvind Kvalnes

    2012-05-01

    Full Text Available Business leaders frequently face dilemmas, circumstances where whatever course of action they choose, something of important value will be offended. How can an organisation prepare its decision makers for such situations? This article presents a pedagogical approach to dilemma training for business leaders and managers. It has evolved through ten years of experience with human resource development, where ethics has been an integral part of programs designed to help individuals to become excellent in their professional roles. The core element in our approach is The Navigation Wheel, a figure used to keep track of relevant decision factors. Feedback from participants indicates that dilemma training has helped them to recognise the ethical dimension of leadership. They respond that the tools and concepts are highly relevant in relation to the challenges that occur in the working environment they return to after leadership training.http://dx.doi.org/10.5324/eip.v6i1.1778

  16. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  17. Autonomous navigation system and method

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  18. MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries.

    Science.gov (United States)

    Martel, Sylvain; Felfoul, Ouajdi; Mathieu, Jean-Baptiste; Chanu, Arnaud; Tamaz, Samer; Mohammadi, Mahmood; Mankiewicz, Martin; Tabatabaei, Nasr

    2009-09-01

    Medical nanorobotics exploits nanometer-scale components and phenomena with robotics to provide new medical diagnostic and interventional tools. Here, the architecture and main specifications of a novel medical interventional platform based on nanorobotics and nanomedicine, and suited to target regions inaccessible to catheterization are described. The robotic platform uses magnetic resonance imaging (MRI) for feeding back information to a controller responsible for the real-time control and navigation along pre-planned paths in the blood vessels of untethered magnetic carriers, nanorobots, and/or magnetotactic bacteria (MTB) loaded with sensory or therapeutic agents acting like a wireless robotic arm, manipulator, or other extensions necessary to perform specific remote tasks. Unlike known magnetic targeting methods, the present platform allows us to reach locations deep in the human body while enhancing targeting efficacy using real-time navigational or trajectory control. The paper describes several versions of the platform upgraded through additional software and hardware modules allowing enhanced targeting efficacy and operations in very difficult locations such as tumoral lesions only accessible through complex microvasculature networks.

  19. Remote spatial memory in aging: all is not lost

    Directory of Open Access Journals (Sweden)

    R Shayna eRosenbaum

    2012-09-01

    Full Text Available The ability to acquire and retain spatial memories in order to navigate in new environments is known to decline with age, but little is known about the effect of aging on representations of environments learned long ago, in the remote past. To investigate the status of remote spatial memory in old age, we tested healthy young and older adults on a variety of mental navigation tests based on a large-scale city environment that was very familiar to participants but rarely visited by the older adults in recent years. We show that whereas performance on a route learning test of new spatial learning was significantly worse in older than younger adults, performance was comparable or better in the older adults on mental navigation tests based on a well-known environment learned long ago. An exception was in the older adults’ ability to vividly re-experience the well-known environment, and recognize and represent the visual details contained within it. The results are seen as analogous to the pattern of better semantic than episodic memory that has been found to accompany healthy aging.

  20. A control system of mobile navigation robot for precise spraying based ultrasonic detecting and ARM embedded technologies

    Science.gov (United States)

    Tang, Xiuying; Li, Cuiling; Wang, Xiu; Yue, Xinpeng; Peng, Yankun

    2011-06-01

    This paper described a control system of mobile navigation robot for precision spraying in greenhouse environment, which were composed of main control module, motor driving module, ultrasonic detecting module and wirless remote control module. The hard circuits of control system were built. The main control module used ARM7TDMI-S-based LPC2210 micro-processing controller. The motor driving module consisted of voltage amplifier circuit based SN74LS245N and DM74LS244N chips, RC filter circuit, and HM-YZ-30 DC brush motor driver. The ultrasonic detecting module consisted of four standard ultrasonic ranging modules which were arranged on the four sides around the mobile navigation robot, and used GM8125 chip to expand serial communication interfaces. An obstacle-avoiding strategy and its algorithm were proposed and the control programs of mobile navigation robot were programmed. The mobile navigation robot for spraying can realize the actions such as starting and stopping, forward and backward moving, accelerate and decelerate motion, and right and left turn. Finally, the functional experiments of the mobile navigation robot were conducted in the laboratory environment. The results showed that the ultrasonic detecting distance of the robot was 50.5mm-1832.0mm and detecting blind zone was less than 50mm, the ultrasonic detecting angle of individual ultrasonic detecting module of robot was similar to U-shaped and its vaule was about 45.66°, and the moving path of navigation robot was approximately linear.

  1. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...

  5. Nuclear Magnetic Resonance Gyroscope

    Science.gov (United States)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  6. A catalog system for remote-sensing data

    Science.gov (United States)

    Singh, R. S.; Scherz, J. P.

    1974-01-01

    The Practical System for Cataloging, Indexing, and Retrieval of Remote Sensing Data developed by the Interdisciplinary Remote Sensing Group at the University of Wisconsin consists of a card catalog, a site-index-map, a site-index-file, an industry-index-file, and a project-index-file. The system is designed for retrieval of remote-sensing data which include imagery, magnetic tapes, flight logs, maps, ground-truth reports, and research reports containing raw data. It can be operated by conventional library methods, but provision has been made for digitizing the system for computer retrieval.

  7. Reliable Global Navigation System using Flower Constellation

    Directory of Open Access Journals (Sweden)

    Daniele Mortari

    2013-03-01

    Full Text Available For many space missions using satellite constellations, symmetry of satellites distribution plays usually a key role. Symmetry may be considered in space and/or in time distribution. Examples of required symmetry in space distribution are in Earth observation missions (either, for local or global as well as in navigation systems. It is intuitive that to optimally observe the Earth a satellite constellation should be synchronized with the Earth rotation rate. If a satellite constellation must be designed to constitute a communication network between Earth and Jupiter, then the orbital period of the constellation satellites should be synchronized with both Earth and Jupiter periods of revolution around the Sun. Another example is to design satellite constellations to optimally observe specific Earth sites or regions. Again, this satellites constellation should be synchronized with Earth’s rotational period and (since the time gap between two subsequent observations of the site should be constant also implies time symmetry in satellites distribution. Obtaining this result will allow to design operational constellations for observing targets (sites, borders, regions with persistence or assigned revisit times, while minimizing the number of satellites required. Constellations of satellites for continuous global or zonal Earth coverage have been well studied over the last twenty years, are well known and have been well documented [1], [2], [7], [8], [11], [13]. A symmetrical, inclined constellation, such as a Walker constellation [1], [2] provides excellent global coverage for remote sensing missions; however, applications where target revisit time or persistent observation are important lead to required variations of traditional designs [7], [8]. Also, few results are available that affect other figures of merit, such as continuous regional coverage and the systematic use of eccentric orbit constellations to optimize“hang time” over regions of

  8. Initial experience of percutaneous coronary intervention guided by computed tomography coronary angiography derived roadmap and magnetic navigation system%冠状动脉CT影像转入磁导航系统指导介入治疗的临床研究

    Institute of Scientific and Technical Information of China (English)

    张秋; 孔德玉; 李春坚; 陈波; 贾恩志; 陈磊磊; 贾庆哲; 戴振华; 朱甜甜

    2013-01-01

    目的 探讨CT路标和磁导航系统指导下经皮冠状动脉介入治疗(PCI)的可行性、有效性和安全性.方法2011年6月至2012年5月连续入选门诊双源CT检查诊断冠心病,并经冠状动脉造影确诊、拟行PCI的冠心病患者30例.将靶血管的冠状动脉CT影像转入磁导航系统,经剪辑、重建后投照在X线屏幕上作为实时路标.记录靶病变特征、放置导丝过程所需的时间、X线暴露量、对比剂用量及相关并发症.结果 对30例入选患者的36处靶病变进行了介入治疗.其中A型病变16处、B1型病变11处、B2型病变8处、C型病变1处.靶病变长度为(22.0 ±9.8)mm、狭窄程度为(81.3±10.3)%.在CT路标和磁导航系统指导下,磁导丝通过病变36处,通过率为100%.导丝放置时间为92.5(56.6~131.3)s;X线暴露量为235.0(123.5~ 395.1) μGym2/36.5 (21.3~ 67.8) mGy;对比剂用量为0.0(0.0~3.0)ml,其中21(58.3%)处靶病变在放置导丝过程中未使用对比剂.所有靶血管均成功接受介入治疗,未发生与磁导航系统相关的并发症.结论 CT路标和磁导航引导下行PCI是可行、有效和安全的,这一方法可能对指导闭塞病变介入治疗时的导丝放置有重要价值.%Objective To evaluate the feasibility,efficacy and safety of the percutaneous coronary intervention(PCI) guided by computed tomography(CT) coronary angiography derived roadmap and magnetic navigation system(MNS).Methods During June 2011 and May 2012,thirty consecutive patients receiving elective PCI were enrolled,coronary artery disease was primarily diagnosed by dual-source CT coronary angiography(DSCT-CA) at outpatient clinic and successively proved by coronary artery angiography in the hospital.Target vessels from pre-procedure DSCT-CA were transferred to the magnetic navigation system,and consequently edited,reconstructed,and projected onto the live fluoroscopic screen as roadmaps.Parameters including characters of the target

  9. Navigation Upgrades to the National Deep Submergence Facility Vehicles D.S.V. Alvin, Jason 2, and the DSL-120A

    Science.gov (United States)

    Whitcomb, L. L.; Kinsey, J. C.; Yoerger, D. R.; Taylor, C. L.; Bowen, A. D.; Walden, B. B.; Fornari, D. J.

    2003-12-01

    We report on recently completed enhancements to the navigation systems employed on the 4500m submersible Alvin and the 6500m ROV Jason 2 and DSL-120A sonar system of the UNOLS National Deep Submergence Facility (NDSF) of the Woods Hole Oceanographic Institution (WHOI). Over the last two years we have significantly improved the accuracy and update rate of the six degree-of-freedom vehicle position and velocity navigation data available for these vehicles, thus improving the quantitative accuracy of acoustic surveys, optical surveys, and sampling operations. The navigation upgrades have also enabled improvements in the closed-loop dynamic positioning accuracy of the Jason 2 ROV, thus improving the vehicle tracking precision during survey and sampling operations. We have sought to employ more a uniform suite of navigation instruments, navigation data processing software systems, and data logging format standards for NDSF vehicles to improve the utility and ease-of-use of data by science users. Improved navigation instruments deployed on each of these vehicles in 2001 and 2002 include the following: (a) A 1200 KHz Bottom Lock Doppler Sonar (RDInstruments Inc.) providing three dimensional vehicle velocity information with respect to the ocean floor and the water column at an update rate of up to 10 Hz, providing a single-ping beam-velocity error standard deviation of 0.3% for a nominal advance velocity of 1 meter/sec. (b) A north-seeking fiber-optic gyroscope (IXSEA Inc.) providing true-north heading, pitch, and roll with a rated accuracy of 0.1 degree. Improved navigation data processing software systems deployed on these vehicles in 2001 and 2002 includes Dvlnav, an interactive navigation program developed at JHU for precision navigation of underwater vehicles and submersibles. DVLNAV employs a variety of sensors including bottom lock Doppler sonar, long baseline (LBL) acoustic navigation, gyro compasses, magnetic compasses, depth sensors, altimeters, and (when

  10. Pulsar Navigation in the Solar System

    CERN Document Server

    Dong, Jiang

    2008-01-01

    The X-ray Pulsar-based Autonomous Navigation(XNAV) were recently tested which use the Crab pulsar (PSR B0531+21) in the USA Experiment on flown by the Navy on the Air Force Advanced Research and Global Observation Satellite (ARGOS) under the Space Test Program. It provide the way that the spacecraft could autonomously determine its position with respect to an inertial origin. Now I analysis the sensitivity of the exist instrument and the signal process to use radio pulsar navigation and discuss the integrated navigation use pulsar,then give the different navigation mission analysis and design process basically which include the space, the airborne, the ship and the land of the planet or the lunar.So the pulsar navigation can give the continuous position in deep spaces, that means we can freedom fly successfully in the solar system use celestial navigation that include pulsar and traditional star sensor.It also can less or abolish the depend of Global Navigation Satellite System which include GPS, GRONSS, Gali...

  11. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis.

    Science.gov (United States)

    Meng, Xiao-Tong; Guan, Xiao-Fei; Zhang, Hai-Long; He, Shi-Sheng

    2016-07-01

    Although application of intraoperative computer navigation technique had been integrated into placement of pedicle screws (PSs) in thoracic fusion for years, its security and practicability remain controversial. The aim of this study is to evaluate the accuracy, the operative time consumption, the amount of intraoperative blood loss, time of pedicle insertion and the incidence of complications of thoracic pedicle screw placement in patients with thoracic diseases such as scoliosis and kyphosis. Pubmed, Web of Knowledge, and Google scholar were searched to identify comparative studies of thoracic pedicle screw placement between intraoperative computer navigation and fluoroscopy-guided navigation. Outcomes of malposition rate, operative time consumption, insertion time, intraoperative blood loss, and the incidence of complications are evaluated. Fourteen articles including 1723 patients and 9019 PSs were identified matching inclusion criteria. The malposition rate was lower (RR: 0.33, 95 % CI: 0.28-0.38, P navigation group than that in fluoroscopy-guided navigation group; the operative time was significantly longer [weighted mean difference (WMD) = 23.66, 95 % CI: 14.74-32.57, P navigation group than that in fluoroscopy-guided navigation group. The time of insertion was shorter (WMD = -1.88, 95 % CI: -2.25- -1.52, P navigation group than that in fluoroscopy-guided navigation group. The incidence of complications was lower (RR = 0. 23, 95 % CI: 0.12-0.46, P navigation group than that in the other group. The intraoperative blood loss was fewer (WMD = -167.49, 95 % CI: -266.39- -68.58, P navigation group than that in the other. In conclusion, the meta-analysis of thoracic pedicle screw placement studies clearly demonstrated lower malposition rate, less intraoperative blood loss, and fewer complications when using computer navigation. This result provides strong evidence that computer technology could be safer and more reliable than

  12. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  13. Remote Control Reading.

    Science.gov (United States)

    Ervin, Helen

    1995-01-01

    Explains how students who have difficulty remembering what they have read may be taught how to reread sections of text by suggesting to them that reading is analogous to watching a video with the remote control in hand. (TB)

  14. Testing the Preliminary X-33 Navigation System

    Science.gov (United States)

    Lomas, James J.; Mitchell, Daniel W.; Freestone, Todd M.; Lee, Charles; Lessman, Craig; Foster, Lee D. (Technical Monitor)

    2001-01-01

    The X-33 Reusable Launch Vehicle (RLV) must meet the demanding requirements of landing autonomously on a narrow landing strip following a flight that reaches an altitude of up to 200,000 feet and a speed in excess of Mach 9 with significant in-flight energy bleed-off maneuvers. To execute this flight regimen a highly reliable avionics system has been designed that includes three LN-100G Inertial Navigation System/Global Positioning System (INS/GPS) units as the primary navigation system for the X-33. NASA's Marshall Space Flight Center (MSFC) tested an INS/GPS system in real-time simulations to determine the ability of this navigation suite to meet the in flight and autonomous landing requirements of the X-33 RLV. A total of sixty-one open loop tests were performed to characterize the navigation accuracy of the LN-100G. Twenty-seven closed-loop tests were also performed to evaluate the performance of the X-33 Guidance, Navigation and Control (GN&C) algorithms with the real navigation hardware. These closed-loop tests were also designed to expose any integration or operational issues with the real-time X-33 vehicle simulation. Dynamic road tests of the INS/GPS were conducted by Litton to assess the performance of differential and nondifferential INS/GPS hybrid navigation solutions. The results of the simulations and road testing demonstrate that this novel solution is capable of meeting the demanding requirements of take-off, in-flight navigation, and autonomous landing of the X-33 RLV. This paper describes the test environment developed to stimulate the LN-100G and discusses the results of this test effort. This paper also presents recommendations for a navigation system suitable to an operational RLV system.

  15. Inner Harbor Navigation Canal Basin Velocity Analysis

    Science.gov (United States)

    2014-10-01

    ER D C/ CH L TR -1 4- 12 Inner Harbor Navigation Canal Basin Velocity Analysis Co as ta l a nd H yd ra ul ic s La bo ra to ry...library at http://acwc.sdp.sirsi.net/client/default. ERDC/CHL TR-14-12 October 2014 Inner Harbor Navigation Canal Basin Velocity Analysis...system of levees, gates, and drainage structures in the Inner Harbor Navigation Canal (IHNC) basin and the greater New Orleans, Louisiana, area. Two

  16. Bio-Inspired, Odor-Based Navigation

    Science.gov (United States)

    2006-03-01

    Bio -Inspired, Odor-Based Navigation THESIS Maynard John Porter III, Captain, USAF AFIT/GE/ENG/06-48 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...States Government. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation THESIS Presented to the Faculty Department of Electrical and Computer...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation Maynard John Porter III, B.S.E.E. Captain

  17. Enhancing Navigation Skills through Audio Gaming.

    Science.gov (United States)

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  18. Navigating nuclear science: Enhancing analysis through visualization

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  19. Remote monitoring of nursing home residents using a humanoid robot.

    Science.gov (United States)

    Bäck, Iivari; Kallio, Jouko; Perälä, Sami; Mäkelä, Kari

    2012-09-01

    We studied the feasibility of using a humanoid robot as an assistant in the monitoring of nursing home residents. The robot can receive alarms via its wireless Internet connection and navigate independently to the room where the alarm originated. Once it has entered the room, the robot can transmit near real time images to the staff and also open a voice connection between the resident and the remote caregivers. This way the remote caregiver is able to check the situation in the room, and take appropriate actions. We tested the prototype robot in three private nursing homes in the Finnish county of South Ostrobothnia. During the testing, 2-4 alarms were produced by each participant and there were 29 alarms in total. The robot was able to navigate correctly to the room from which the alarm was sent and open the speech connection, as well as transmit images via the wireless Internet connection. The experiments provided evidence of the feasibility of using autonomous robots as assistants to nursing home staff in remote monitoring. The response from the nursing home residents was uniformly positive.

  20. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  1. Remote Sensing Open Access Journal: Increasing Impact through Quality Publications

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2014-08-01

    Full Text Available Remote Sensing, an open access journal (http://www.mdpi.com/journal/remotesensing has grown at rapid pace since its first publication five years ago, and has acquired a strong reputation. It is a “pathfinder” being the first open access journal in remote sensing. For those academics who were used to waiting a year or two for their peer-reviewed scientific work to be reviewed, revised, edited, and published, Remote Sensing offers a publication time frame that is unheard of (in most cases, less than four months. However, we do this after multiple peer-reviews, multiple revisions, much editorial scrutiny and decision-making, and professional editing by an editorial office before a paper is published online in our tight time frame, bringing a paradigm shift in scientific publication. As a result, there has been a swift increase in submissions of higher and higher quality manuscripts from the best authors and institutes working on Remote Sensing, Geographic Information Systems (GIS, Global Navigation Satellite System (GNSS, GIScience, and all related geospatial science and technologies from around the world. The purpose of this editorial is to update everyone interested in Remote Sensing on the progress made over the last year, and provide an outline of our vision for the immediate future. [...

  2. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available and to consist of theory and practical exercises • Theory: Remote sensing process, Photogrammetry, introduction to multispectral, remote sensing systems, Thermal infra-red remote sensing, Active and passive remote sensing, LIDAR, Application of remotely... Aerosol measurements and cloud characteristics head2right Water vapour measurements in the lower troposphere region up to 8 km head2right Ozone measurements in the troposphere regions up to 18 km Slide 22 © CSIR 2008 www...

  3. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  4. Research on positioning mode of LADAR aided navigation system over plain area

    Science.gov (United States)

    Lin, Yi; Yan, Lei; Tong, Qingxi

    2007-11-01

    Laser Radar (LADAR) achieves more applications on aerial aided-navigation in mountainous areas for its good performance. But plain areas encounter terrain elevation's slow variation and occasional unavailability of Digital Feature Analysis Database (DFAD), which as necessary reference. Looking for replaceable map source and extracting common characters for matching, are the fundamental circles of imaging LADAR aided navigation research. In this paper aerial high-resolution remote sensing (RS) images are applied as substitute for DFAD, and the edge factor is chosen out by synthetically analyzing RS images' and imaging LADAR point cloud'scharacters. Then edge extraction algorithm based on multi-scale wavelet is explored to reflect their common features, and weighted Hausdorff distance method is applied to match for positioning. At last the high-resolution RS images and imaging LADAR data of the same area are assumed for simulation experiment, which testifies the validity of the methods proposed above.

  5. 14 CFR 63.61 - Flight navigator courses.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight navigator courses. 63.61 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.61 Flight navigator courses. An applicant for approval of a flight navigator course must submit a letter to the...

  6. LEO AUTONOMOUS NAVIGATION BASED ON IMAGE MOTION

    Institute of Scientific and Technical Information of China (English)

    DUANFang; LIUJian-ye; YUFeng

    2005-01-01

    A method of LEO autonomous navigation is presented based on the nonlinear satellite velocity relative to the earth. The velocity is detected by a high-speed camera, with the attitude information detected by a star sensor. Compared with traditional autonomous navigation by landmark identification, the satellite velocity relarive to the earth is obtained by correlativity analysis of images. It does not need to recognize ground objects or views. Since it is not necessary to pre-store the database of ground marks, lots of memory space can be saved.The state and observation equations are constructed, and the filtering is processed by the Kalman filter. Simulation results show that the system has high autonomous navigation precision in LEO autonomous navigation.

  7. NOAA Seamless Raster Navigational Charts (RNC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Seamless Raster Chart Server provides a seamless collarless mosaic of the NOAA Raster Navigational Charts (RNC). The RNC are a collection of approximately...

  8. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  9. 78 FR 68077 - Navigation Safety Advisory Council

    Science.gov (United States)

    2013-11-13

    ... Study (ACPARS). The Council will receive an update on the ACPARS undertaken to accommodate offshore wind..., and those expected to commence in calendar year 2014. (4) Navigation Rules Regulatory Project....

  10. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...... update of the estimated robot position while the robot is moving. In order to make the system autonomous, both acquisition and observation of landmarks have to be carried out automatically. The thesis consequently proposes a method for learning and navigation of a working environment and it explores...... of the proposed method is based on a system with a simple setup. The novelty and potentiality, are in combining algorithms for panoramic view-synthesis, attention selection, stereo reconstruction, triangulation, optimal triplet selection, and image-based rendering. Experiments demonstrate that the system can...

  11. 5th China Satellite Navigation Conference

    CERN Document Server

    Jiao, Wenhai; Wu, Haitao; Lu, Mingquan

    2014-01-01

    China Satellite Navigation Conference (CSNC) 2014 Proceedings presents selected research papers from CSNC2014, held on 21-23 May in Nanjing, China. The theme of CSNC2014 is 'BDS Application: Innovation, Integration and Sharing'. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 9 topics to match the corresponding sessions in CSNC2014, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.  SUN Jiadong is the Chief Designer of the Compass/ BDS, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; LU Mingquan is a professor at Department of Electronic Engineering of Tsinghua University.

  12. Plenoptic Imager for Automated Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  13. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  14. Inertial sensors for smartphones navigation.

    Science.gov (United States)

    Dabove, P; Ghinamo, G; Lingua, A M

    2015-01-01

    The advent of smartphones and tablets, means that we can constantly get information on our current geographical location. These devices include not only GPS/GNSS chipsets but also mass-market inertial platforms that can be used to plan activities, share locations on social networks, and also to perform positioning in indoor and outdoor scenarios. This paper shows the performance of smartphones and their inertial sensors in terms of gaining information about the user's current geographical locatio n considering an indoor navigation scenario. Tests were carried out to determine the accuracy and precision obtainable with internal and external sensors. In terms of the attitude and drift estimation with an updating interval equal to 1 s, 2D accuracies of about 15 cm were obtained with the images. Residual benefits were also obtained, however, for large intervals, e.g. 2 and 5 s, where the accuracies decreased to 50 cm and 2.2 m, respectively.

  15. Venous catheterization with ultrasound navigation

    Science.gov (United States)

    Kasatkin, A. A.; Urakov, A. L.; Nigmatullina, A. R.

    2015-11-01

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient's exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  16. Venous catheterization with ultrasound navigation

    Energy Technology Data Exchange (ETDEWEB)

    Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R. [Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation); Urakov, A. L., E-mail: ant-kasatkin@yandex.ru [Institute of Mechanics Ural Branch of Russian Academy of Sciences, T.Baramzinoy street 34, Izhevsk, Russia, 426067, Izhevsk (Russian Federation); Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation)

    2015-11-17

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  17. Seamless Navigation Using Various Sensors: AN Overview of the Seamless Navigation Campaign

    Science.gov (United States)

    Nakagawa, M.; Yamada, Y.; Namie, H.; Ebinuma, T.; Kubo, N.; Kawaguchi, T.; Yoshida, M.; Yasuda, A.

    2012-07-01

    Seamless positioning techniques in indoor and outdoor environments are necessary for obtaining sensor locations. However, no definitive indoor-outdoor navigation system simultaneously provides high accuracy, high availability and low installation cost. Furthermore, crowded indoor-outdoor navigation systems consisting of multiple techniques will destructively interfere with each other, but an exclusive navigation environment will have difficulty providing stable location services for users. This anticipated issue needs to be investigated with experimental data and simulation results. However, experiments that are deliberately overcrowded with disparate location systems are rare. Therefore, the initial focus in our research was the construction of a test environment for indoor-outdoor seamless navigation experiments. Based on "Standards and Recommended Practices" (SARPs), we focused on accuracy, availability, continuity and integrity to verify the effects of seamless navigation under a combination of as many disparate systems and sensors as possible. We then conducted data acquisition and data analysis in seamless navigation through four integrated experiments. Based on the results of our experiments, we summarize some observations about seamless navigation using multiple navigation systems, and offer examples of the representative issues in our research. We also suggest some directions in indoor-outdoor navigation environment construction for seamless positioning using disparate systems and sensors.

  18. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  19. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  20. Navigation System for Reusable Launch Vehicle

    OpenAIRE

    Schlotterer, Markus

    2008-01-01

    PHOENIX is a downscaled experimental vehicle to demonstrate automatic landing capabilities of future Reusable Launch Vehicles (RLVs). PHOENIX has flown in May 2004 at NEAT (North European Aerospace Test range) in Vidsel, Sweden. As the shape of the vehicle has been designed for re-entry, the dynamics are very high and almost unstable. This requires a fast and precise GNC system. This paper describes the navigation system and the navigation filter of PHOENIX. The system is introduced and the h...