Sample records for remolded soils

  1. Remolded Undrained Strength of Soils

    HONG Zhen-shun(洪振舜); LIU Han-long(刘汉龙); NEGAMI Takehito


    Extensive data of undrained shear strength for various remolded soils are compiled to normalize the remolded undrained strength. Remolded soils have a wide spectrum of liquid limits ranging from 25% to 412%. It is found that the remolded undrained strength is a function of water content and liquid limit. Furthermore, a simple index designated as normalized water content w* is introduced for normalizing remolded undrained strength for various soils. The normalized water content w* is the ratio of water content to liquid limit. The relationship between the remolded undrained strength and the normalized water content can be expressed by a simple equation. The new simple equation is not only valuable theoretically for helping in assessing the in-situ mechanical behavior, but also useful to ocean engineering practice.

  2. Shear strengths of undisturbed and remolded soil under typical forests in Jinyun Mountain ,Chongqing City ,southwest China

    ZHANG Xiaoming; WANG Yujie; WANG Yunqi; XIA Yiping; WU Yun; CHEN Lin


    To find the controlling measures in preventing soil and water loss from soil mechanics,according to the prescribed methods of soil engineering test regulations,shear strengths of undisturbed and remolded soils under five typical forests in Jinyun Mountain,Chongqing City were measured using the direct shear apparatus.Shear difference of both undisturbed and remolded soils was compared at the same vertical loading,under the condition of the same dry density and water content from the same forest land.The effect of roots (the freest roots) in soil-root composites (undisturbed soils) was analyzed.The results indicate that undisturbed soils have higher shear resistance and less shear displacement than remolded soils at the same vertical loading,when both soils have the same dry density and water content under the same vegetations.It has been shown that shear failure of undisturbed soils approximately indicate plastic failure,while shear failure of remolded soils is of the elastic nature.Shear strength of undisturbed soils has a positive correlation with root content,and relevant regression models about undisturbed soil were established from this.

  3. Segmental Modification of the Mualem Model by Remolded Loess

    Le-fan Wang


    Full Text Available The measured diffusion coefficient and soil-water characteristic curve (SWCC of remolded loess were used to modify the Mualem model for increasing its accuracy. The obtained results show that the goodness of fit between the Mualem model and the variable parameter-modified Mualem method comparing with the test results was not high. The saturation of 0.65 was introduced as the boundary to divide the curve of the measured diffusion coefficient into two segments. When the segmentation method combined with the variable parameter method was used to modify the Mualem model, the fitting correlation coefficient was increased to 0.921–0.998. The modified parameters Ko and L corresponding to remolded loess were calculated for different dry densities. Based on the exponential function between Ko and dry density and the linear relation between L and dry density, the segmentally modified Mualem model was established for remolded loess by considering variation in dry density. The results of the study can be used for directly determining the unsaturated infiltration coefficient and for indirectly determining the SWCC through diffusion coefficient.

  4. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Li Jian


    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  5. Comparison of Remolded Shear Strength with Intrinsic Strength Line for Dredged Deposits

    DENG Dong-sheng


    Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on the intrinsic strength line is different from the remolded undrained shear strength that is an important parameter for design and construction of land reclamation. The void index is used in this study for normalizing the remolded strength behavior of dredged deposits. A quantitative relationship between remolded undrained shear strength and void index is established based on extensive data of dredged deposits available from sources of literature. Furthermore, the normalized remolded undrained shear strength is compared with intrinsic strength line. The comparison result indicates that the ratio of undrained shear strength on the intrinsic strength line over remolded undrained shear strength increases with an increase in applied consolidated stress.

  6. Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel.

    Oh, Yeon Jeong; Cho, Il Hwan; Lee, Haeshin; Park, Ki-Jung; Lee, Hyukjin; Park, Sung Young


    A new way is demonstrated to develop a bio-inspired coacervate hydrogel by following catechol chemistry showing injectable and re-moldable physical properties. The formed coacervate shows potential long-term stability under water. Depending on pH, formation of the coacervate has been verified which is confirmed by XPS and zeta potential measurements.

  7. Remolding Diversified Objects in Ada95: Toward A-Object Pattern


    Ada provides full capacities of supporting object-orientation,but the diversified objects patterned in Ada are so intricate that Ada95's aim would be demolished. In order to complement the disfigurement that Ada does lack for a pr istine notion of class, this paper presents a remolded object pattern known as A -object, an Ada-based class description language A-ObjAda aiming at support f or A-object pattern and the related approach for key algorithms and implementation . In consequent, A-ObjAda hereby promotes Ada with highlighted object-orientati on , which not only effectively exploits the capacities in Ada95, but also rational ly hides befuddling concepts from Ada95.

  8. The renascence of industrial historic buildings——Taking the protective remolding and reusing of Chenguang Mechanical Factory in Nanjing as an example


    The protective remolding and reusing of industrial historic buildings and sites is regarded as a great scientific matter in today’s urban development. Based on discussing its significance and value,this paper,taking a specific example,makes a systematic discussion on the design strategy and method from the aspects of overall planning,remolding the old buildings,designing the new buildings,etc.

  9. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.

    Velandia-Huerto, Cristian A; Berkemer, Sarah J; Hoffmann, Anne; Retzlaff, Nancy; Romero Marroquín, Liliana C; Hernández-Rosales, Maribel; Stadler, Peter F; Bermúdez-Santana, Clara I


    Transfer RNAs (tRNAs) are ubiquitous in all living organism. They implement the genetic code so that most genomes contain distinct tRNAs for almost all 61 codons. They behave similar to mobile elements and proliferate in genomes spawning both local and non-local copies. Most tRNA families are therefore typically present as multicopy genes. The members of the individual tRNA families evolve under concerted or rapid birth-death evolution, so that paralogous copies maintain almost identical sequences over long evolutionary time-scales. To a good approximation these are functionally equivalent. Individual tRNA copies thus are evolutionary unstable and easily turn into pseudogenes and disappear. This leads to a rapid turnover of tRNAs and often large differences in the tRNA complements of closely related species. Since tRNA paralogs are not distinguished by sequence, common methods cannot not be used to establish orthology between tRNA genes. In this contribution we introduce a general framework to distinguish orthologs and paralogs in gene families that are subject to concerted evolution. It is based on the use of uniquely aligned adjacent sequence elements as anchors to establish syntenic conservation of sequence intervals. In practice, anchors and intervals can be extracted from genome-wide multiple sequence alignments. Syntenic clusters of concertedly evolving genes of different families can then be subdivided by list alignments, leading to usually small clusters of candidate co-orthologs. On the basis of recent advances in phylogenetic combinatorics, these candidate clusters can be further processed by cograph editing to recover their duplication histories. We developed a workflow that can be conceptualized as stepwise refinement of a graph of homologous genes. We apply this analysis strategy with different types of synteny anchors to investigate the evolution of tRNAs in primates and fruit flies. We identified a large number of tRNA remolding events concentrated

  10. 一氧化氮与基质金属蛋白酶介导的血管重构在动脉瘤中的作用%Role of vascular remolding induced by nitric oxide and matrix metalloproteinase in aneurysm

    廖明芳; 景在平; 赵珺


    Nitric oxide (NO) and matrix metaUoproteinases (MMPs) are important in vascular remold-ing, especially in abdominal aortic aneurysm. NO may be associated with aneurysms by modulating MMPs expression and activity.

  11. Experimental remolding on the caprock's 3D strain field of the Indosinian-Yanshanian epoch in Tongling deposit concentrating area

    DENG; Jun; HUANG; Dinghua; WANG; Qingfei; WAN; Li; SUN; Zho


    Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structures of the model using the methods of "slicing" and "stripping". A series of sliced planes vertical to the fold hinges show similar landscapes of that in the drill hole profiles. Meanwhile, layer stripping analysis indicates that the deformation features of each layer in the model are qualitatively analogical to those obtained from field observations.Through contrasting the 3D structure between the experimental model and the field phenomena,we verify the following 3D deformation features of the caprock in this area: (1) the Tongling area mainly consists of three series of NE S-typed fold groups; (2) in the uniform stress field, the incoherent folds universally develop in different positions, along different axes as well as in different strata; (3) the faults propagate upward which are mostly inter-bedded detachment faults,while the fold amplitudes decrease while going deeper; and (4) the folds and cleavages are highly developed in the Silurian System indicating that the deformation effect of the Indosinian-Yanshanian structural layer terminates at this layer, which suggests that the Silurian System is the crucial layer for the inversion between brittle and plastic deformation domains and the underlying strata are subject to the control of another deformation system with distinct properties.

  12. Micaceous Soil Strength And Permeability Improvement Induced By Microbacteria From Vegetable Waste

    Omar, R. C.; Roslan, R.; Baharuddin, I. N. Z.; Hanafiah, M. I. M.


    Green technology method using vegetable waste are introduced in this paper for improvement of phyllite residual soil from UNITEN, Campus. Residual soil from phyllite are known as micaceous soils and it give problem in managing the stability of the slope especially in wet and extensively dry seasons. Micaceous soil are collected using tube sampler technique and mixed with liquid contain microorganism from fermented vegetable waste name as vege-grout to form remolded sample. The remolded sample are classify as 15.0%, 17.5%, 20.00% and 22.5% based on different incremental percentages of vege-grout. The curing time for the sample are 7, 14, 21, 28, and 35 days before the tests were conducted. Observation of the effect of treatment shows 20.0% of liquid contain Bacillus pasteurii and Bacillus Subtilis with 21 days curing time is the optimum value in strengthening the soil and improve the permeability.

  13. 应力作用下非饱和重塑黏土土水特征曲线研究%Experimental Study of Stress State-dependent SWCC of Remolded Unsaturated Clay

    宋亚亚; 卢廷浩; 季李通


    Automatic instruments of unsaturated soil consolidation were used to analyze the influences of vertical stress on SWCC of remolded unsaturated clay .Through least-square method ,FX model was chosen to fit the test data .The re-sults show that the higher the vertical stress ,the flatter the curve with higher air entry value and higher water content un-der the same suction .Through the fit results of SWCC ,it was found that FX model can reflect the ability of water-retain-ment of clay in this study well .Besides ,An empirical formula of SWCC only related with vertical stress has been pro-posed .%利用最新研制的全自动非饱和土固结仪,研究了竖向应力对非饱和重塑黏土土水特征曲线的影响,并采用FX模型,通过最小二乘法对试验结果进行拟合。结果表明,竖向应力越大,试样的空气进入值越大,曲线越平缓,水越难排出,相同吸力下含水率越高。FX模型可以较好的描述本次试验各组试样的土水特征曲线。通过分析拟合参数,提出一个只与竖向应力有关的土水特征曲线经验公式。

  14. 高强度疏水缔合水凝胶的重塑性能机理%Remolding Mechanism of Hydrophobic Association Hydrogels with High Mechanical Strength

    姜国庆; 刘凤岐


    Hydrophobic association hydrogels (HA-gels) were successfully prepared through micellar copolymerization of acrylamide and a small amount of octylphenol polyoxyethylene acrylate in an aqueous solution containing sodium dodecyl sulfate. HA-gels exhibited excellent mechanical properties and remolding property. In order to study the remolding property, the stress-relaxation behavior of HA-gels was characterized. The result shows that the stress-relaxation behavior of HA-gels can be divided into four stages: stress relaxation of hydrophilic polymer chains between cross-linked points ( I ) ; hydrophilic polymer chains between cross-linked points have a high level of orientation ( II ) ; structural reorganization of the cross-linked network( III ) ; stress of HA-gels is gone entirely (IV). Therefore, for HA-gels, the capability of remolding results mainly from their unique network. Due to the network of HA-gels is a reversible three-dimensional physical cross-linked network, the structure rearrangement of cross-linked network can be achieved through dissociation and reassociation of cross,linking points under the condition of external forces. Therefore, this unique network endows remolding property of HA-gels.%将丙烯酰胺和少量的疏水单体辛基酚聚氧乙烯(4)醚丙烯酸酯溶解于十二烷基硫酸钠水溶液中,采用胶束共聚的方法成功制备了疏水缔合水凝胶(HA-gels)。HA-gels除具有良好的力学性能以外,还具有重塑性能。为了研究HA-gels的重塑性能,对其应力松弛行为进行了表征。研究结果表明,HA-gels应力松弛过程可以分为四个阶段:第一阶段是交联点间亲水长链的应力松弛过程;第二阶段是交联点间亲水长链已经高度取向;第三阶段是交联网络的结构重排过程;第四阶段是HA-gels的应力完全消除。因此,HA-gels内的交联点在外力的作用下可以解缔合和重新缔合来实现交

  15. Study on the Test Method of Static Earth Pressure Coefficient of Deep Soils

    XU Zhi-wei; ZHOU Guo-qing; LIU Zhi-qiang; ZHAO Xiao-dong; LI Sheng-sheng; ZHANG Lei


    The static earth pressure coefficient of soils is, approximately, considered to be a constant in the view of classical soil mechanics. This is supported by many research results. The high pressure experimental research and analysis of remolding deep soil described herein indicate that the static earth pressure of thick overburden has a notable non linear characteristic. It also appears larger than that of superficial soils. It is necessary for deep coal mine design and construction to consider this particularity of soil pressure so as to avoid engineering accidents and heavy loss of life and property.

  16. Soils

    Emily Moghaddas; Ken Hubbert


    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  17. 高校校园流行文化的困境与重塑%On the Predicament and Remolding of the Popular Culture in Universities



    校园流行文化在学术界是一个颇为争议的文化范畴,它所产生的文化雾霾已对当代大学生造成了诸多不良影响。校园流行文化在工具理性和市场逻辑的作用下,呈现商品化、标准化、庸俗化、游戏化等表现形式,虚假个性和消费符号弥漫校园,文化的超越和永恒价值被压缩到背景世界之中,大学生的求真、求善、求美精神也随之埋葬。因此,需要重塑高校校园的人文精神,提升大学生的文化自觉和自律,以社会主义核心价值观构建校园文化的育人环境。%The popular culture in university is a quite disputed category of culture, and the cultural "haze" that it produced has led to adverse effects on modern undergraduates. Under instrumental reason and market logic, campus-wide popular culture takes on some forms of commodities, standardization, philistinism, gamification and so on. False personality and symbolic consumption are permeating whole campus. As the transcendent and eternal value of culture has been compressed into the background of the world, such values as truth, goodness and beauty for undergraduates are consequently lost. Therefore, it is necessary to remold humanistic spirits on campus, and to elevate cultural consciousness and self-discipline of the undergraduates, and to construct a better environment of socialist core values for them.

  18. Soil Compressibility Models for a Wide Stress Range

    Chong, Song-Hun


    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  19. 动载下饱和重塑黄土的骨干曲线变化研究%Study of variation of backbone curve of saturated remolded loess under dynamic loading

    廖红建; 肖正华; 刘健


    针对饱和重塑黄土进行了一系列等向固结和偏压同结下的排水与不排水动三轴试验,分析了饱和重塑黄土的动力性质、骨干曲线模型及其影响因素.基于动三轴试验结果,探讨了在考虑累积塑性应变影响下,修正 Hardin-Drnevich模型的适用性.结果表明,考虑累积塑性应变时,修正Hardin-Drnevich模型能够较好地模拟饱和重塑黄土的骨干曲线试验结果.进而分析了等向固结和偏压固结、固结围压、波形和排水条件等因素对饱和重塑黄土骨干曲线的影响,得到偏压固结和同结围压的增大使骨干曲线上移,土体强度增加,而波形对骨干曲线的影响较小;排水条件下的骨干曲线较不排水条件下的有所上移,土体强度增加.所得结论可供工程设计人员参考.%A series of triaxial tests of saturated remolded loess under dynamic loading in isotropic and anisotropic consolidation stress states on condition of drain and undrain are performed to analyse its dynamic characteristics and backbone curves.Based on the dynamic triaxial test results, the effect of accumulated plastic strain is considered; and then the applicability of modified model of Hardin-Drnevich to saturated remolded loess is discussed.The results show that the modified model of Hardin-Drnevich could simulate the backbone curve of saturated remolded loess well.After that, the influences of isotropic and anisotropic consolidation stress states, confining pressure of consolidation, wave form and drain or undrain on the backbone curve for saturated remolded loess are also discussed.The backbone curves are all upper shift under anisotropic consolidation with the increasing confining pressure of consolidation; and it is shown that the strength of samples is increased; the impact of wave form on backbone curve is little; the effect of drain condition on it is upper shift comparing with undrained condition and this indicates that the strength of samples

  20. Relationship of Resistivity with Water Content and Fissures of Unsaturated Expansive Soils


    The development of fissures in expansive soils has a great effect on the stability of slope.Of the three phases of soils, the gas phase and solid phase are relatively insulated, so the average resistivity of soils can be calculated from the resistivity of the liquid phase.On this basis, the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced.A 2-D resistance grid model is established based on simulating the resistance of vertically developed fissures.Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model.Fissure development can be inversely determined from the variation in the measured resistance.Finally, the model is verified by an indoor resistivity test for remolded soil samples, indicating that the test result agrees well with that of the model established.

  1. Structural bonding-breakage constitutive model for natural unsaturated clayey soils

    Cai, Guo-Qing; Zhao, Cheng-Gang; Qin, Xiao-Ming


    The natural clayey soils are usually structural and unsaturated, which makes their mechanical properties quite different from the remolded saturated soils. A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism. In this model, the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory, and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic, whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model. The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils. Parametric analyses of the effects of damage variables on the model predictions are further carried out, which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.

  2. 深管内孔加工环形中心支架技术改造方案%The technical remolding solution of the annular central supporter on the deep tube inner hole machining

    王永红; 夏永红; 崔海峰


    针对旧设备镗床在整体挤压成型无缝厚壁深管内孔加工中的中心支架存在着手动装卸工件时间长,劳动强度大;手动滴润滑油,造成导轨滑合面油量不足、摩擦阻力大等问题,对镗床环形中心支架进行改造.通过对环形中心支架机械、电控部分的技术改造结果表明,改造获得了很好的经济效益.%Based on the following problems existed in old equipments boring mill, such as the long time for manual loading and uploading, labor-intensive operation, lacking of fuel on the guide rail sliding surface and the increased friction, this paper makes a decision to reform the technology of the annular central supporter. Through the remolding solution for electric control's technology on the annular central supporter, the result shows that the reform gains good economic benefits.

  3. 测试-改造-封堵-回采一体化试油管柱技术%On Multitasking (Testing, Remolding, Plugging and Recovering) Testing Column Technique

    曹宗波; 唐永祥; 熊江勇


    塔里木盆地属缝洞型碳酸盐岩储层,在试油时易喷易漏、井控安全隐患突出,为了解决此类问题,研发了以HP-1AH封隔器为核心组件的测试-改造-封堵-回采一体化工艺管柱,解决了该类储层试油作业易漏易喷井控风险的技术难题;同时减少了多次压井作业对储层造成的二次污染,缩短了施工作业周期,节约了成本,现场应用效果良好。%The Tarim Basin is the typical carbonate reservoir ot caves and hssures which could cause teaks and gushes of oil during formation testing, posing a safety threat to well control practices. This paper had successfully solved this problem by coming up with a tubular column with HP-1AH packer its core component which is capable of multitasks including testing, remolding, plugging and recovering. Moreover the technique could mitigate secondary pollution by repeated well killing operations, shorten working period, cut costs and proved effective in practices.

  4. Constitutive Soil Properties for Mason Sand and Kennedy Space Center

    Thomas, Michael A.; Chitty, Daniel E.


    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.

  5. Study on Forms and Remolding of New Rural Residence in Hehuang Region-Taking Hongzhuang Village of Ledu County, Qinghai Province for Instance%河湟地区新农村住宅形制及其改造研究--以青海省乐都县红庄村为例



    Taking rural residences of Hongzhuang Village of Ledu County, Qinghai Province as the object of study, this paper, on the basis of field survey to local traditional dwellings, concludes characters of rural residence in Hehuang Region and their causes, seeks spatial remolding methods from 4 aspects, i.e. plan layout, 3D mould, courtyard layout and energy efifciency design, and proposes strategies for spatial transformation and remolding of rural residences.%以青海省乐都县红庄村的农村住宅为研究对象,在对当地传统民居进行实地调研的基础上,归纳河湟地区农村住宅的形制特征及其成因,针对红庄村民居的现状,从平面布局、立面造型、院落布局及节能设计4个方面探索空间改造的方法,并提出农村住宅空间更新改造的策略。

  6. Structuring the Socialist Core Value System and Remolding the Cultural Leadership: Based on the Understanding and Application Basic on the Antonio Gramsci’s Leadership Theory%社会主义核心价值体系建设与文化领导权重塑——基于葛兰西领导权理论的当代理解与应用



    在当今多元文化时代背景下,社会主义核心价值体系的建设旨在于重塑中国的文化领导权。葛兰西的领导权理论对于我国社会主义核心价值体系的建设继而实现文化领导权的重塑具有重要的借鉴意义。社会主义核心价值体系的建设有赖于集体意志的形成,通过依靠有机知识分子的核心作用并且进行长期的"阵地战",最终实现文化领导权的重塑。%The aim of structuring the socialist core value system under the multicultural age is to remold China's cultural leadership. Antonio Gramsci's leadership theory has a significant meaning to structure the socialist core value system as well as realize the remolding the cultural leadership. In general, structuring the socialist core value system mainly depends on the formation of collective will and highlights the core function of organic-intellectual, and then realize the remolding the cultural leadership through a long-term front war.

  7. Effects of neuregulin-1 on ventricular remolding in experimental diabetic cardiomyopathy%神经调节蛋白-1对糖尿病心肌病大鼠心肌重构的影响

    黄鑫; 李宾公; 郑泽琪; 肖坚; 李勇; 李哲


    Aim To investigate the effect of neuregu-lin-1 on ventricular remolding in rats with diabetic car-diomyopathy and the signaling mechanism. Methods Diabetes was induced by intraperitoneal injection of streptozotocin in male SD rats and the control group rats were injected I. P. With PBS at the same time. 12 weeks after injection, diabetic rats were randomly divided into DCM group, NRG-1 group( 0. 01 (xg ? G~* rNRG-1 injected by tail vein every 2 days during the next 2 weeks ) and HERCE group( rNRG-1 0. 01 jjug ? G~* and Herceptin 0. 01 jjLg ? G~* injected by tail vein every 2 days during the next 2 weeks ). After intervened for another 2 weeks( 16 weeks after induction of diabetes ), heart function of the experimental rats was detected by echocardiography, apoptosis of cardiomyocytes was measured by Tunel staining, myocardial collagen contents was quantified by Masson staining and the related gene expressions were analyzed by quantitative real-time PCR. Results By the end of the experiment, the LVEF, FS and Em/Am in the DCM groupwere lower than those in the control group( P 0. 05 ). Conclusion Exogenous supply of NRG-1 can improve cardiac function and reverse remodeling of the heart of DCM rats by regulating cardiomyocyte apoptosis and cardiac fibrosis.%目的 观察神经调节蛋白-1(NRG-1)对糖尿病心肌病大鼠心肌重构的影响并初步探讨其机制.方法 ♂ SD大鼠经腹腔注射链脲佐菌素诱导糖尿病心肌病(DCM)模型,对照组(Control)大鼠给予腹腔注射PBS溶液.成模后12周大鼠分为DCM组(隔日1次尾静脉注射PBS液)、NRG-1组(隔日1次尾经脉注射重组NRG-1)、HERCE组(隔日1次尾经脉注射重组NRG-1及Herceptin),药物干预共2周,观察2周于DCM造模后16周,采用心脏超声评估糖尿病心肌病大鼠心功能变化;原位末端标记法(TUNEL)检测心肌细胞凋亡,Masson特殊胶原染色定量检测心肌胶原纤维,实时定量RT-PCR法检测心肌组织相关基因表达情况.结果

  8. Effect of Keratin Structures from Chicken Feathers on Expansive Soil Remediation

    Elda Montes-Zarazúa


    Full Text Available Chicken feathers are composed mainly of avian keratin, a fibrillar protein with a complex structure, and important properties such as durability, hydrophobicity, being chemically unreactive, and depending on the specific function can change its morphological and inner structure. This study takes advantage of these features and for the first time the use of keratin from chicken feathers to modify characteristics on expansive soils is reported. Swelling characteristics of remolded expansive soil specimens were studied through varying the percentage of keratin fiber content using 0.25, 0.50, 1.00 and 3.00 wt%. One-dimensional swell-consolidation tests were conducted on oedometric specimens, specific surface area was determined using methylene blue, and degree of saturation was also analyzed. Finally random distribution and interaction between keratin structures and soil were studied by scanning electron microscopy. The results show that randomly distributed fibers are useful in restraining the swelling tendency of expansive soils. The maximum reduction of pressure (43.99% due to swelling is achieved by reducing the void ratio, which can be reached with the addition of chicken feather keratin structures to the expansive soil. Finally, the mechanism by which discrete and randomly distributed fibers reduce swelling pressure of expansive soil is explained.

  9. Revisiting the Bjerrum’s correction factor:Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength

    Kamil Kayabali; Ozgur Akturk; Mustafa Fener; Orhan Dikmen; Furkan Hamza Harputlugil


    The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory is one of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in lab-oratory to measure this parameter due to its simplicity; however, it is severely affected by sample disturbance. The vane shear test (VST) technique that is less sensitive to sample disturbance involves a correction factor against the soil plasticity, commonly known as the Bjerrum’s correction factor, m. This study aims to reevaluate the Bjerrum’s correction factor in consideration of a different approach and a relatively new method of testing. Atterberg limits test, miniature VST, and reverse extrusion test (RET) were conducted on 120 remolded samples. The effect of soil plasticity on undrained shear strength was examined using the liquidity index instead of Bjerrum’s correction factor. In comparison with the result obatined using the Bjerrum’s correction factor, the undrained shear strength was better represented when su values were correlated with the liquidity index. The results were validated by the RET, which was proven to take into account soil plasticity with a reliable degree of accuracy. This study also shows that the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils.

  10. Revisiting the Bjerrum's correction factor: Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength

    Kamil Kayabali


    Full Text Available The undrained shear strength (su of fine-grained soils that can be measured in situ and in laboratory is one of the key geotechnical parameters. The unconfined compression test (UCT is widely used in laboratory to measure this parameter due to its simplicity; however, it is severely affected by sample disturbance. The vane shear test (VST technique that is less sensitive to sample disturbance involves a correction factor against the soil plasticity, commonly known as the Bjerrum's correction factor, μ. This study aims to reevaluate the Bjerrum's correction factor in consideration of a different approach and a relatively new method of testing. Atterberg limits test, miniature VST, and reverse extrusion test (RET were conducted on 120 remolded samples. The effect of soil plasticity on undrained shear strength was examined using the liquidity index instead of Bjerrum's correction factor. In comparison with the result obatined using the Bjerrum's correction factor, the undrained shear strength was better represented when su values were correlated with the liquidity index. The results were validated by the RET, which was proven to take into account soil plasticity with a reliable degree of accuracy. This study also shows that the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils.

  11. 非甾体类抗炎药对种植体周围骨愈合和骨改建的影响%Effect of non-steroidal anti-inflammatory drug on healing and remolding of peri-implant bones

    郑小菲; 游智惟; 莫安春


    The success of dental implants depends on optimal osseointegration, which is affected by many factors, such as systemic drug administration. In clinical practice, non-steroidal anti-inflammatory drugs(NSAID) are prescribed to deal with chronic inflammation or pain caused by some joint disorders or fractures and to control discomfort after implant surgery. NSAID can inhibit the activity of cyclo-oxygenase, resulting in decreased production of dinoprost, which plays avitalroleinbonemetabolism.Hence,administrationofNSAIDmayinfluencebonehealingofperi-implantsduringosseointegration. This article aims to review available data regarding the effects of NSAID on implant osseointegration, as well as on healing or remolding of peri-implant bones.%牙种植的成功首先取决于种植体的骨整合,而良好的骨整合受诸多因素的影响。非甾体类抗炎药(NSAID)除用来治疗骨关节系统的慢性炎症性疾病之外,还常用于控制种植手术后的疼痛不适。NSAID通过抑制环加氧酶的活性来减少地诺前列酮的合成,进而影响种植体骨整合和骨改建过程中新骨的形成。本文就NSAID对成骨细胞、骨愈合和种植体周围成骨的作用等研究进展作一综述。

  12. Soil erosion in Iran: Issues and solutions

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi


    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  13. The Lego Story: Remolding Education Policy and Practice

    Pirrie, Anne


    The aim of this article is to develop a more nuanced understanding of the complex nature of learning as it relates to both the educational and social aims of education as manifested in contemporary European education policy. The article explores tensions in education policy and practice by exploring the evolution of the global brand Lego. The…

  14. Soils - NRCS Web Soil Survey

    NSGIC GIS Inventory (aka Ramona) — Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation...

  15. Soil friability

    Munkholm, Lars Juhl


    has been found but it is not possible to identify a specific lower critical level of organic matter across soil types. Sustainable management of soil requires continuous and adequate inputs of organic matter to sustain or improve soil friability. Intensive tillage and traffic in unfavorable conditions...... for optimal friability. There is a strong need to get more detailed knowledge about effects of soil water content on soil friability and especially to be able to quantify the least limiting water range for soil friability and therefore soil tillage. A strong relationship between organic matter and friability...

  16. Soil properties, soil functions and soil security

    Poggio, Laura; Gimona, Alessandro


    Soil plays a crucial role in the ecosystem functioning such as food production, capture and storage of water, carbon and nutrients and in the realisation of a number of UN Sustainable Developments Goals. In this work we present an approach to spatially and jointly assess the multiple contributions of soil to the delivery of ecosystem services within multiple land-use system. We focussed on the modelling of the impact of soil on sediment retention, carbon storage, storing and filtering of nutrients, habitat for soil organisms and water regulation, taking into account examples of land use and climate scenarios. Simplified models were used for the single components. Spatialised Bayesian Belief networks were used for the jointly assessment and mapping of soil contribution to multiple land use and ecosystem services. We integrated continuous 3D soil information derived from digital soil mapping approaches covering the whole of mainland Scotland, excluding the Northern Islands. Uncertainty was accounted for and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils and provides an example of integrated study assessing the contributions of soil. The results show the importance of the multi-functional analysis of the contribution of soils to the ecosystem service delivery and UN SDGs.

  17. Soil formation.

    Breemen, van N.; Buurman, P.


    Soil Formation deals with qualitative and quantitative aspects of soil formation (or pedogenesis) and the underlying chemical, biological, and physical processes. The starting point of the text is the process - and not soil classification. Effects of weathering and new formation of minerals, mobilis

  18. Soil metagenomics and tropical soil productivity

    Karen A Garrett


    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  19. Soil microbiology and soil health assessment

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  20. Soils - Volusia County Soils (Polygons)

    NSGIC GIS Inventory (aka Ramona) — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  1. Soil pollution and soil protection.

    Haan, de F.A.M.; Visser-Reijneveld, M.I.


    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  2. Soil infiltrometer

    Mehler, M.R.


    This patent describes an infiltrometer useful for field testing soil permeability. It comprises: a large reservoir having an open bottom resting on the soil; a small reservoir having an open bottom resting on the soil, the small reservoir being positioned within the large reservoir; the small reservoir comprising a relatively large receptacle adjacent the soil and a relatively small receptacle connected thereto and extending upwardly therefrom; the volume of the large reservoir greatly exceeding the volume of the small reservoir; the ratio of the upper surface area of liquid in the large reservoir to the surface area of the soil covered thereby greatly exceeding the ratio of the upper surface area of liquid in the relatively small receptacle of the small reservoir to the surface area of the soil covered thereby; and means for determining the amount of liquid from the small reservoir permeating into the soil.

  3. (Contaminated soil)

    Siegrist, R.L.


    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  4. Lab determination of soil thermal Conductivity. Fundamentals, geothermal applications and relationship with other soil parameters; Medida de la conductividad termica del suelo en laboratorio. Fundamentos fisicos, aplicaciones geotermicas y relaciones con otros parametros del suelo

    Nope Gomez, F. I.; Santiago, C. de


    Shallow geothermal energy application in buildings and civil engineering works (tunnels, diaphragm walls, bridge decks, roads, and train/metro stations) are spreading rapidly all around the world. the dual role of these energy geostructures makes their design challenging and more complex with respect to conventional projects. Besides the geotechnical parameters, thermal behavior parameters are needed in the design and dimensioning to warrantee the thermo-mechanical stability of the geothermal structural element. As for obtaining any soil thermal parameter, both in situ and laboratory methods can be used. The present study focuses on a lab test known the need ke method to measure the thermal conductivity of soils (λ). Through this research work, different variables inherent to the test procedure, as well as external factors that may have an impact on thermal conductivity measurements were studied. Samples extracted from the cores obtained from a geothermal drilling conducted on the campus of the Polytechnic University of Valencia, showing different mineralogical and nature composition (granular and clayey) were studied different (moisture and density) compacting conditions. 550 thermal conductivity measurements were performed, from which the influence of factors such as the degree of saturation-moisture, dry density and type of material was verified. Finally, a stratigraphic profile with thermal conductivities ranges of each geologic level was drawn, considering the degree of saturation ranges evaluated in lab tests, in order to be compared and related to thermal response test, currently in progress. Finally, a test protocol is set and proposed, for both remolded and undisturbed samples, under different saturation conditions. Together with this test protocol, a set of recommendations regarding the configuration of the measuring equipment, treatment of samples and other variables, are posed in order to reduce errors in the final results. (Author)

  5. Soil Solution

    Sonneveld, C.; Voogt, W.


    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  6. Linking soil biodiversity and agricultural soil management

    Thiele-Bruhn, S.; Bloem, J.; Vries, de F.T.; Kalbitz, K.; Wagg, C.


    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend o

  7. Linking soil biodiversity and agricultural soil management

    Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C.


    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend

  8. Soil mechanics

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.


    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  9. Agriculture: Soils

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  10. Soil sustainability and indigenous soil management practices ...

    Soil sustainability and indigenous soil management practices among food crop farmers in Ogun State, Nigeria. ... Journal of Environmental Extension ... describe and analyse the current soil management practices among food crop farmers in ...

  11. Soil Survey Geographic (SSURGO) - Magnesic Soils

    California Department of Resources — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  12. Schoolground Soil Studies.

    Doyle, Charles


    Outlined are simple activities for studying soil, which can be conducted in the schoolyard. Concepts include soil profiles, topsoil, soil sizes, making soil, erosion, slope, and water absorption. (SJL)

  13. Critical State Sedimentation Line of Soft Marine Clays

    HONG Zhen-shun(洪振舜); LIU Han-long(刘汉龙); CHANG Nien-yin


    The compression behavior responsible for unity sensitivity is very valuable in quantitative assessment of the effects of soil structure on the compression behavior of soft marine sediments. However, the quantitative assessment of such effects is not possible because of unavailability of the formula for the compression curve of marine sediments responsible for unit sensitivity. In this study, the relationship between the remolded state and the conventional critical state line is presented in the deviator stress versus mean effective stress plot. The analysis indicates that the remolded state is on the conventional critical state line obtained at a relatively small strain. Thus, a unique critical state sedimentation line for marine sediments of unit sensitivity is proposed. The comparison between the critical state sedimentation line proposed in this study and the existing normalized consolidation curves obtained from conventional oedometer tests on remolded soils or reconstituted soils explains well the effects of initial water content on the oedometer consolidation curves for remolded soils.

  14. Micromorphology and stable-isotope geochemistry of historical pedogenic siderite formed in PAH-contaminated alluvial clay soils, Tennessee, U.S.A

    Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.


    Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of

  15. Soil use and management

    Hartemink, A.E.; McBratney, A.B.; White, R.E.


    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  16. Visual soil evaluation and soil compaction research

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl


    to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... and climatic conditions, as well as in utilizing VSE methods together with qualitative methods to evaluate the impact of soil management (Munkholm et al., 2013). Soil compaction due to agricultural operations is a serious threat to soil productivity and soil ecological functions and has been a key research...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  17. Detailed Soils 24K

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  18. GeologicSoils_SOAG

    Vermont Center for Geographic Information — GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages were joined to the...

  19. Indicators: Soil Chemistry

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  20. Soil Organic Carbon Stock

    U.S. Geological Survey, Department of the Interior — Soil organic carbon (SOC) is the carbon held within soil organic constituents (i.e., products produced as dead plants and animals decompose and the soil microbial...

  1. Soils, Soils, Published in 2004, Taylor County.

    NSGIC GIS Inventory (aka Ramona) — This Soils dataset, was produced all or in part from Published Reports/Deeds information as of 2004. It is described as 'Soils'. Data by this publisher are often...

  2. Surfactant adsorption to soil components and soils

    Ishiguro, Munehide; Koopal, Luuk K.


    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  3. Soil-structure interaction including nonlinear soil

    Gicev, Vlado


    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  4. NOrth AMerica Soil (NOAM-SOIL) Database

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.


    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management ( Progress on database completion is reported.

  5. Fundamentals of soil science

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  6. Hot fire, cool soil

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.


    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures i

  7. Restoring Soil Quality to Mitigate Soil Degradation

    Rattan Lal


    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  8. Cross-cutting activities: Soil quality and soil metagenomics

    Peter P. Motavalli; Garrett, Karen A.


    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  9. Classification of Ferrallitic Soils in Chinese Soil Taxonomy


    The development of the classification of ferrallitic soils in China is reviewed and the classification of Ferralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation between the ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems. In the former soil classification systems of China, the ferrallitic soils were classified into the soil groups of Latosols, Latosolic red soils, Red soils, Yellow soils and Dry red soils, according to the combination of soil forming conditions, soil-forming processes, soil features and soil properties. In the Chinese Soil Taxonomy, most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostic horizons and/or diagnostic characteristics with quantitatively defined properties. Ferralisols are the soils that have ferralic horizon, and they are merely subdivided into one suborder and two soil groups. Ferrisols are the soils that have LAC-ferric horizon but do not have ferralic horizon, and they are subdivided into three suborders and eleven soil groups. Ferralisols may correspond to part of Latosols and Latosolic red soils. Ferrisols may either correspond to part of Red soils, Yellow soils and Dry red soils, or correspond to part of Latosols and Latosolic red soils.

  10. Cracking in desiccating soils

    Ledesma Alberto


    Soil shrinkage is produced typically under desiccating conditions. Eventually shrinkage may generate cracks in the soil mass, a phenomenon that is being studied by several researchers, because its prediction is far from being a routine in Soil Mechanics. Within this context, Unsaturated Soil Mechanics provides a promising framework to understand the mechanisms involved. In addition to that, physical modelling of desiccating soils constitutes a good tool to explore the nature of this problem. ...

  11. Study on Soil Magnetic Effect



    A study on the effect of applied magnetic field was performed with six types of soils collected from northeastern China.Magnetic field was found to cause changes of soil physico-chemical properties and soil enzyme activities.An appropriate applied magnetic field could cut down soil zeta-potential,soil specific surface,soil water potential and soil swelling capacity;raise the charge density on soil colloids and the activities of invertase,hydrogen peroxidase and amylase in the soils;enhance soil aggregation and improve soil structural status and soil water-releasing capability.

  12. Soil Reinforcement Techniques

    Prashant Patil


    Full Text Available In many activities concerned with the use of soil, the physical properties like Stiffness, Compressibility and Strength are some of the few important parameters to be considered. Of the many methods involved in improvement of soil properties, soil reinforcement is method concerned with increase of strength properties of soil. In soil reinforcement, the reinforcements or resisting element are of different materials and of various forms depending upon the intended use. The reinforcement can be provided permanently or temporarily to increase strength of adjacent structures. The present topic of discussion involves different materials, forms and applications of soil reinforcement

  13. Soil and Litter Animals.

    Lippert, George


    A lesson plan for soil study utilizes the Tullgren extraction method to illustrate biological concepts. It includes background information, equipment, collection techniques, activities, and references for identification guides about soil fauna. (MCO)

  14. GeologicSoils_ONSITE

    Vermont Center for Geographic Information — ONSITE is a pre-selected subset of SSURGO certified soil data depicting onsite sewage disposal ratings of Vermont soils. The SSURGO county coverages were joined to...

  15. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta


    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  16. Thermal Properties of Soils


    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  17. Soil immune responses

    Raaijmakers, Jos M.; Mazzola, Mark


    Soil microorganisms are central to the provision of food, feed, fiber, and medicine. Engineering of soil microbiomes may promote plant growth and plant health, thus contributing to food security and agricultural sustainability (1, 2). However, little is known about most soil microorganisms and their

  18. Visual soil evaluation

    Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic...

  19. Factors affecting soil cohesion

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  20. Conserving Soil. Revised.

    Soil Conservation Service (USDA), Washington, DC.

    This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…

  1. Soil-water characteristics of sandy soil and soil cement with and without vegetation


    The use of soil cement as a growth medium was examined in this study. During the monitoring, green soil cement revealed diverse ecological values. The survival rates of plants in each soil conditions were higher than 80%,which was very promising. Furthermore, the survival rates dropped when the soil density reached95%, which means soil density might influence the survival rate of plant. Plant growth rates in sandy soil were higher than that in soil cement. In particular, low soil density faci...

  2. Advances in treatment for atrial remolding%心房重构的治疗进展



    Atrial remodeling is the pathological basis of the occurrence and persistence of atrial fibrillation. The prevention and treatment of atrial remodeling is crucial for the prevention of atrial fibrillation. Atrial remodeling includes structural, electrophysiologic and metabolic changes. The prevention and treatment of atrial remodeling include angiotensin converting enzyme inhibitor, angiotensin Ⅱ receptor antagonist, antifibrotic drugs, crosslink breakers, etc.%心房重构是发生心房颤动和心房颤动持续存在的病理基础.预防和治疗心房重构对于预防心房颤动极为重要.心房重构包括心房结构、电生理、代谢等多方面.预防和治疗心房重构的措施包括血管紧张肽转换酶抑制药、血管紧张肽Ⅱ受体拮抗药、抗纤维化药物、交叉连接破坏药等.

  3. Experimental unsaturated soil mechanics

    Delage, Pierre


    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.

  4. Lake Darling Flood Control Project, Souris River, North Dakota. General Project Design. Appendix B. Geology and Soils.



  5. Tropical Soil Chemistry

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors......A new book that is particularly relevant as tropical countries experience increased pressure on land resources to improve agricultural production. To ensure sustainable land use, the potentials and limitations of different kinds of tropical soils must be known in relation to crop production...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  6. Soil heavy metals

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)


    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  7. From soil in art towards Soil Art

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.


    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  8. Mass Transport within Soils

    McKone, Thomas E.


    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  9. Basics of soil fertility management

    Berner, Alfred


    The brochure highlights the soil fertility from various scientific and farming perspectives. Its aims to supplement practical observations of farmers, to encourage them to reconsider their relation to their soil and to practice a truly sustainable soil culture. The booklet tries to achieve this goal by providing information on soil matter such as important soil organisms and soil characteristics like root density, soil structure and alkalinity and by showing possibilities of how to ass...

  10. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    Mohammad Reza


    Full Text Available Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic, herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical conductivity is easier, less expensive and faster than other soil properties measurements, using a detector that can do on the go soil EC measurements is a good tool for obtaining useful information about soil pollution condition.

  11. Mycorrhizas and soil structure.

    Rillig, Matthias C; Mummey, Daniel L


    In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.

  12. Advances in soil dynamics

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  13. Advances in soil dynamics

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  14. Managing to enhance soil health

    Healthy soils are critical for meeting current and future societal demands. Management strategies that protect the soil against erosion, build soil organic matter and promote nutrient cycling are ways to enhance soil health. Keeping soils covered and judicious use of agrochemicals are akin to us “hu...

  15. Soil microbiota of the prairie

    The prairie ecosystem is often used as a benchmark ecosystem to provide a reference soil quality or soil health assessment. Current soil health assessments include measurements of soil chemical and physical indicators and of selected microbiological activities but no characterization of soil microbi...

  16. Electrodialytic Soil Remediation

    Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.


    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  17. Earthworms and Soil Pollutants

    Kazuyoshi Tamae


    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  18. Hysteresis of soil temperature under different soil moisture and ...



    Oct 17, 2011 ... temperature under three soil moisture and two fertilizer levels in solar greenhouse .... temperature is governed by the one-dimensional heat conduction equation in the soil, and the soil temperature varied sinusoidally. We.

  19. Soils - Soil Survey Geographic (SSURGO) Data for Montana

    NSGIC GIS Inventory (aka Ramona) — These data sets are digital soil surveys and generally are the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  20. Soil Survey Geographic (SSURGO) - Kinds and Distribution of Soils

    California Department of Resources — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  1. Measuring soil physical properties to assess soil quality

    Raczkowski, C.W.


    Soil quality is the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant, animal and human health. A quantitative assessment of soil quality is invaluable in determining the sustainability of land management systems. Criteria for soil quality assessment are: 1) Choose indicators of soil quality based on the multiple functions of soil that maintain productivity and environmental health, 2)must include s...

  2. Correlation Between Soil Water Retention Capability and Soil Salt Content


    The soil moisture retention capability of Chao soil and coastal saline Chao soil in Shandong and Zhejiang provinces were measured by pressure membrane method. The main factors influencing soil moisture retention capability were studied by the methods of correlation and path analyses. The results indicated that < 0.02mm physical clay and soil salt content were the main factors influencing soil moisture retention capability. At soil suction of 30~50 kPa, the soil salt content would be the dominant factor.

  3. KBRA OPWP Soil Rooting Depth

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  4. Tolerable soil erosion in Europe

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina


    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  5. Creative Soil Conservation

    Smith, Martha


    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  6. Electrodialytic soil remediation

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene


    prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...

  7. Resilient behaviour of soils

    Correia, A. Gomes; Gilett, S.


    This study examine the resilient behaviour of sands, silts and clay for different moisture conditions and various stress paths. The analysis of data from repeated load triaxial tests carried out on these recompacted soils has enable to test different models and validate their hability to predict resilient response of soils.

  8. Mycophagous soil bacteria

    Rudnick, M.B.



    Soil microorganisms evolved several strategies to compete for limited nutrients in soil. Bacteria of the genus Collimonas developed a way to exploit fungi as a source of organic nutrients. This strategy has been termed “mycophagy&r

  9. Soil and Culture

    Editors Ed Landa and Christian Feller have assembled an international ensemble cast of writers, artists, historians, philosophers, and scientists of broad perspective to create a book of truly fascinating reading for any soils enthusiast. When so little we see in print is truly new or original, Soil...

  10. Soil Health Educational Resources

    Hoorman, James J.


    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  11. Diffusion in aggregated soil.

    Rappoldt, C.


    The structure of an aggregated soil is characterized by the distribution of the distance from an arbitrary point in the soil to the nearest macropore or crack. From this distribution an equivalent model system is derived to which a diffusion model can be more easily applied. The model system consist

  12. The soil life cycle

    Leeuwen, van J.P.


    Soil is one of the most important natural resource for life on Earth and provides important ecosystem services, such as food production, carbon sequestration, water regulation and contaminant attenuation. Soil quality, defined as the soil’s ability to provide these services, is drastically red

  13. Contaminated soil concrete blocks

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.


    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  14. Soil and vegetation surveillance

    Antonio, E.J.


    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  15. Soil invertebrates as bioindicators of urban soil quality.

    Santorufo, Lucia; Van Gestel, Cornelis A M; Rocco, Annamaria; Maisto, Giulia


    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Soil Series in Soil Classifications of the United States

    Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.


    Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type

  17. The Changing Model of Soil

    Richter, D. D.; Yaalon, D.


    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  18. Cultural Patterns of Soil Understanding

    Patzel, Nikola; Feller, Christian


    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  19. Climate-smart soils

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete


    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  20. Managing soil natural capital

    Cong, Ronggang; Termansen, Mette; Brady, Mark


    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  1. Relaxometry in soil science

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.


    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  2. Glyphosate bioavailability in soil.

    Shushkova, Tatyana; Ermakova, Inna; Leontievsky, Alexey


    Biodegradation of glyphosate in sod-podzol soil by both the indigenous micro flora and the introduced strain Ochrobactrum anthropi GPK 3 was studied with respect to its sorption and mobility. The experiments were carried out in columns simulating the vertical soil profile. Soil samples studied were taken from soil horizons 0-10, 10-20, and 20-30 cm deep. It was found out that the most of the herbicide (up to 84%) was adsorbed by soil during the first 24 h; the rest (16%) remained in the soluble fraction. The adsorbed glyphosate was completely extractable by alkali. No irreversible binding of glyphosate was observed. By the end of the experiment (21st day), glyphosate was only found in extractable fractions. The comparison of the effect of the introduced O. anthropi GPK 3 and indigenous microbial community on the total toxicant content (both soluble and absorbed) in the upper 10 cm soil layer showed its reduction by 42% (21 mg/kg soil) and 10-12% (5 mg/kg soil), respectively. Simultaneously, 14-18% glyphosate moved to a lower 10-20 cm layer. Watering (that simulated rainfall) resulted in a 20% increase of its content at this depth; 6-8% of herbicide was further washed down to the 20-30 cm layer. The glyphosate mobility down the soil profile reduced its density in the upper layer, where it was available for biodegradation, and resulted in its concentration in lower horizons characterized by the absence (or low level) of biodegradative processes. It was shown for the first time how the herbicide biodegradation in soil can be increased manifold by introduction of the selected strain O. anthropi GPK 3.

  3. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    Bottinelli, N.; Jouquet, Pascal; CAPOWIEZ, Y.; Podwojewski, Pascal; Grimaldi,Michel; Peng, X.


    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  4. Soil pedotransfer functions for four Mexican soils

    Bell, M.A.; Keulen, van H.


    The PTF relating CEC to clay content, soil organic matter content (SOM), and pH explained 96% of the variability. Analysis of the residuals showed the effects of clay at three sites and SOM at all sites to be similar, despite quite distinct agro-ecological conditions and a wide range of SOM levels (

  5. Soil bacteria for remediation of polluted soils

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.


    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  6. Soil management: The key to soil quality and sustainable agriculture

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel


    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  7. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  8. Introductory Soil Science Exercises Using USDA Web Soil Survey

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.


    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  9. Climate Strategic Soil Management

    Rattan Lal


    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  10. Soil washing treatability study

    Krstich, M.


    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  11. [Trophic chains in soil].

    Goncharov, A A; Tiunov, A V


    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  12. Iodine in soil

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology


    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  13. SOIL Geo-Wiki: A tool for improving soil information

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael


    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  14. Improvement of Soil Physical Properties with Soil Conditioners



    Effects of non-ionic polyacrylamide(PAM),anionic polyacrylamide(PHP),cationic polyacrylamide(PCAM),non-ionic polyvinylalcohol(PVA),anionic hydrolyzed polyacrylonitrile(HPAN)and polyethleneoxide(PEO)on the physical properties of three different soil stpes were studied.content of water-stable aggregates larger than 0.25mm increased to varying extents for different soils and soil conditioners,Among the six kinds of condiftioners,non-ionic polyacrylamide(PAM) was the most effective for red soil while polyethyleneoxide(PEO)the least effective for Chao soil,red soil and yellow-brown soil.Water-stable aggregates with the molecular weight of PEO within a certain range.Only evaporation rate of Chao soil decreased after aplication of PAM and HPAN to Chao soil and red soil.

  15. Selenium in soil

    Čuvardić Maja S.


    Full Text Available Selenium (Se is an essential microelement, necessary for normal functioning of human and animal organisms. Its deficiency in food and feed causes a number of diseases. In high concentrations, selenium is toxic for humans animals and plants. Soil provision with selenium affects its level in food and feed via nutrition chain. However, selenium reactivity and bioavailability depends not only on its total content in soil but also on its chemical forms. Distribution of the different forms of selenium depends on soil properties such as reaction, aeration, contents of clay and organic matter and microbiological activity.

  16. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile


    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mycotoxins in the soil environment

    Elmholt, S.


    The paper outlines the current knowledge concerning fate of mycotoxins in the soil environment, including - outline of mycotoxins addressed (trichothecenes, zearalenone, fumonisins, aflatoxins, ochratoxins and patulin) - routes by which the mycotoxins enter the soil environment - routes by which they are immobilised or removed from the soil environment - mycotoxigenic fungi and mycotoxins in the soil environment

  18. Two Centuries of Soil Conservation.

    Helms, Douglas


    Narrates U.S. soil conservation history since the late eighteenth century. Discusses early practices such as contour plowing. Profiles individuals who promoted soil conservation and were largely responsible for the creation of the Soil Conservation Service. Explains the causes of erosion and how soil conservation districts help farmers prevent…

  19. Soil and soil environmental quality monitoring in China: a review.

    Teng, Yanguo; Wu, Jin; Lu, Sijin; Wang, Yeyao; Jiao, Xudong; Song, Liuting


    Over the past few decades, numerous concerns have been raised in China over the issue of environmental sustainability. Various soil survey and monitoring programs have been carried out in China to study soil quality, and to provide a scientific basis for environment policy making. This paper provides an overview of past and current soil quality surveys and monitoring activities in China. This paper includes a summary of concerns over background concentrations of elements in soil, and soil environmental standards and guidelines in China. Levels of pollution in urban soil, agricultural soil, and soil in mining and smelting areas were compared using the concentrations and pollution indexes. In addition to soil surveys, soil monitoring is essential to study the data and to examine the effects of contaminants in soils. However, the current soil quality monitoring system was insufficient to accurately determine the soil quality status of soils across China. For accurate soil monitoring in China, it will be necessary to set up routine monitoring systems at various scales (national, provincial, and local scales), taking into consideration monitoring indicators and quality assurance. This is currently an important priority for the environmental protection administration of China.

  20. Effect of soil property on evaporation from bare soils

    Zhang, Chenming; Li, Ling; Lockington, David


    Quantifying the actual evaporation rate from bare soils remains a challenging task as it not only associates with the atmospheric demand and liquid water saturation on the soil surface, but also the properties of the soils (e.g., porosity, pore size distribution). A physically based analytical model was developed to describe the surface resistance varying with the liquid water saturation near the soil surface. This model considers the soil pore size distribution, hydraulic connection between the main water cluster and capillary water in the soil surface when the soil surface is wet and the thickness of the dry soil layer when the soil surface is dry. The surface resistance model was then integrated to a numerical model based on water balance, heat balance and surface energy balance equations. The integrated model was validated by simulating water and heat transport processes during six soil column drying experiments. The analysis indicates that the when soil surface is wet, the consideration of pore size distribution in the surface resistance model offers better estimation of transient evaporation among different soil types than the estimations given by empirically based surface resistance models. Under fixed atmospheric boundary condition and liquid water saturation, fine sand has greater evaporation rate than coarse sand as stronger capillary force devlivers more water from the main water cluster. When the soil surface becomes dry, the impact of soil property to evaporation becomes trivial as the thickness of the dry soil layer turns to be the key factor to determine the evaporation rate.

  1. European Atlas of Soil Biodiversity

    Krogh (contributor), Paul Henning

    on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...... and climate change? The first ever European Atlas of Soil Biodiversity uses informative texts, stunning photographs and maps to answer these questions and other issues. The European Atlas of Soil Biodiversity functions as a comprehensive guide allowing non-specialists to access information about this unseen...... Biodiversity'. Starting with the smallest organisms such as the bacteria, this segment works through a range of taxonomic groups such as fungi, nematodes, insects and macro-fauna to illustrate the astonishing levels of heterogeneity of life in soil. The European Atlas of Soil Biodiversity is more than just...

  2. CPC Soil Moisture

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of a file containing 1/2 degree monthly averaged soil moisture water height equivalents for the globe from 1948 onwards. Values are...

  3. Soil colloidal behavior

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  4. National Geochemical Database: Soil

    U.S. Geological Survey, Department of the Interior — Geochemical analysis of soil samples from the National Geochemical Database. Primarily inorganic elemental concentrations, most samples are from the continental US...

  5. Soils - Mean Permeability

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  6. The Soil Mobilome

    Luo, Wenting

    Soil is considered a reservoir of diverse bacterial cellular functions, of which resistance mechanisms towards biological antimicrobial agents are of substantial interest to us. Previous findings report that the long-term accumulation of copper in an agricultural soil significantly affects......-selected for among natural bacterial populations. One possible explanation is the horizontal transfer of resistance genes among soil bacteria mediated by mobile genetic elements, such as plasmids, integrons, transposons and bacteriophages, of which copper and antibiotic resistance genes can be linked on the same...... mobile elements. To test this hypothesis, we collected non-polluted and CuSO4- contaminated soil samples and attempted to describe the co-selection of plasmid-encoded copper and antimicrobial resistance via both an endogenous plasmid isolation approach as well as a plasmid metagenomic approach...

  7. The Soil Mobilome

    Luo, Wenting

    Soil is considered a reservoir of diverse bacterial cellular functions, of which resistance mechanisms towards biological antimicrobial agents are of substantial interest to us. Previous findings report that the long-term accumulation of copper in an agricultural soil significantly affects......-selected for among natural bacterial populations. One possible explanation is the horizontal transfer of resistance genes among soil bacteria mediated by mobile genetic elements, such as plasmids, integrons, transposons and bacteriophages, of which copper and antibiotic resistance genes can be linked on the same...... mobile elements. To test this hypothesis, we collected non-polluted and CuSO4- contaminated soil samples and attempted to describe the co-selection of plasmid-encoded copper and antimicrobial resistance via both an endogenous plasmid isolation approach as well as a plasmid metagenomic approach...

  8. Metals in urban playground soils

    Ljung, Karin


    Urban soils generally have elevated metal contents originating from both point and diffuse pollution sources. Urban areas designated for children, who are most susceptible to any negative health effects of soil metals, may therefore have elevated soil metal contents. Children ingest soil both directly and by putting dirty hands and objects in their mouths. The soil ingested involuntarily mainly comprise very fine particles that have a larger surface area for sorption and may therefore hold hi...

  9. Soil geomorphic classification, soil taxonomy, and effects on soil richness assessments

    Jonathan D. Phillips; Daniel A. Marion


    The study of pedodiversity and soil richness depends on the notion of soils as discrete entities. Soil classifications are often criticized in this regard because they depend in part on arbitrary or subjective criteria. In this study soils were categorized on the basis of the presence or absence of six lithological and morphological characteristics. Richness vs. area...

  10. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.


    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  11. A modified soil water based Richards equation for layered soils

    Kalinka, F.; Ahrens, B.


    Most Soil-Vegetation-Atmosphere-Transfer (SVAT) models like TERRA-ML (implemented e.g. in the CCLM model ( use the soil moisture based Richards equation to simulate vertical water fluxes in soils, assuming a homogeneous soil type. Recently, high-resolution soil type datasets (e.g. BüK 1000, only for Germany (Federal Institute for Geosciences and Natural Resources, BGR, or Harmonized World Soil Database (HWSD, version 1.1, FAO/IIASA/ISRIC/ISSCAS/JRC, March 2009)) have been developed. Deficiencies in the numerical solution of the soil moisture based Richards equation may occur if inhomogeneous soil type data is implemented, because there are possibly discontinuities in soil moisture due to various soil type characteristics. One way to fix this problem is to use the potential based Richards equation, but this may lead to problems in conservation of mass. This presentation will suggest a possible numerical solution of the soil moisture based Richards equation for inhomogeneous soils. The basic idea is to subtract the equilibrium state of it from soil moisture fluxes. This should reduce discontinuities because each soil layer aspires the equilibrium state and therefore differences might be of the same order. First sensitivity studies have been done for the Main river basin, Germany.

  12. Soil organic matter as sole indicator of soil degradation.

    Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y


    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

  13. Soil biodiversity and human health

    Six, Johan; Pereg, Lily; Brevik, Eric


    Biodiversity is important for the maintenance of soil quality. Healthy, biodiverse soils are crucial for human health and wellbeing from several reasons, for example: biodiversity has been shown to be important in controlling populations of pathogens; healthy, well-covered soils can reduce disease outbreaks; carbon-rich soils may also reduce outbreaks of human and animal parasites; exposure to soil microbes can reduce allergies; soils have provided many of our current antibiotics; soil organisms can provide biological disease and pest control agents, healthy soils mean healthier and more abundant foods; soil microbes can enhance crop plant resilience; healthy soils promote good clean air quality, less prone to wind and water erosion; and healthy soils provide clean and safe water through filtration, decontamination by microbes and removal of pollutants. Soil microbes and other biota provide many benefits to human health. Soil microbes are a source of medicines, such as antibiotics, anticancer drugs and many more. Organisms that affect soil health and thus human health include those involved in nutrient cycling, decomposition of organic matter and determining soil structure (e.g. aggregation). Again these are related to food security but also affect human health in other ways. Many beneficial organisms have been isolated from soil - plant growth promoting and disease suppressive microbes used as inoculants, foliar inoculants for improvement of ruminant digestion systems and inoculants used in bioremediation of toxic compounds in the environment. Soil biodiversity is highly recognised now as an important feature of healthy soil and imbalances have been shown to give advantage to harmful over beneficial organisms. This presentation will highlight the many connections of biodiversity to soil quality and human health.

  14. Soil functional types: surveying the biophysical dimensions of soil security

    Cécillon, Lauric; Barré, Pierre


    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  15. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    Putku, Elsa; Astover, Alar; Ritz, Christian


    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  16. Soil Microbial Mineralization of Cellulose in Frozen Soils

    Segura, J.; Haei, M.; Sparrman, T.; Nilsson, M. B.; Schleucher, J.; Oquist, M. G.


    Soils of high-latitude ecosystems store a large fraction of the global soil carbon pool. In boreal forests, the mineralization of soil organic matter (SOM) during winter by soil heterotrophic activity can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances depend on whether soil microorganisms can utilize the more complex, polymeric substrates in SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). The [13C]-CO2 production rate in the samples at +4°C were 0.524 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.008 mg CO2 SOM -1 day-1. Thus, freezing of the soil markedly reduced microbial utilization of the cellulose. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming microbial growth also in the frozen soil matrix. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero. This also involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of soils of high-latitude ecosystems.

  17. Soil mechanics and analysis of soils overlying cavitose bedrock

    Drumm, E.C.


    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs.

  18. A soil-inventory of agricultural used soils of Germany

    Siebner, Clemens; Gensior, Andreas; Evertsbusch, Sven; Freibauer, Annette; Flessa, Heiner


    In the framework of UNFCCC reports for greenhouse gas emissions of land use and land use change also soil organic carbon stocks and stock changes of have to be reported. Since 1990 a forest soil inventory exists for Germany, but similar data are still missing for agricultural land. Up till now, a very rough estimation of the soil organic carbon stocks based on the soil map of Germany at the scale of 1:1,000,000 and estimated soil organic carbon contents and bulk densities have been used for the national inventory reports. Now we are starting an extended agricultural soil inventory for Germany which is explicitly designed to detect soil organic carbon stocks and stock changes. We will use a grid of 8x8 km, like it was used for the forest soil inventory. In order to extrapolate from point data and perform regionalisations, not only soil type, soil parent material and basic climate parameters will be taken into account, but under agricultural land use different agricultural management practices will be considered. Management data, like crop rotation, depth and intensity of soil tillage and application of fertilizers, manure and composts are collected from farmers during the inventory via questionnaires. It was shown that those data are essential to estimate and extrapolate point data to report soil organic carbon stocks and stock changes on regional scale. The concept of this soil carbon inventory will be presented.

  19. Ferrihydrite in soils

    Vodyanitskii, Yu. N.; Shoba, S. A.


    Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10-20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

  20. Estimation of soil permeability

    Amr F. Elhakim


    Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.

  1. Engineering Properties of Expansive Soil

    DAI Shaobin; SONG Minghai; HUANG Jun


    The components of expansive soil were analyzed with EDAX, and it is shown that the main contents of expansive soil in the northern Hubei have some significant effects on engineering properties of expansive soil. Furthermore, the soil modified by lime has an obvious increase of Ca2+ and an improvement of connections between granules so as to reduce the expansibility and contractility of soil. And it also has a better effect on the modified expansive soil than the one modified by pulverized fuel ash.

  2. Soil microstructure and electron microscopy

    Smart, P.; Fryer, J. R.


    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  3. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.


    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  4. Soil compaction effects on soil health and cropproductivity: an overview.

    Shah, Adnan Noor; Tanveer, Mohsin; Shahzad, Babar; Yang, Guozheng; Fahad, Shah; Ali, Saif; Bukhari, Muhammad Adnan; Tung, Shahbaz Atta; Hafeez, Abdul; Souliyanonh, Biangkham


    Soil compaction causes substantial reduction in agriculture productivity and has always been of great distress for farmers. Intensive agriculture seems to be more crucial in causing compaction. High mechanical load, less crop diversification, intensive grazing, and irrigation methods lead to soil compaction. It is further exasperated when these factors are accompanied with low organic matter, animal trampling, engine vibrations, and tillage at high moisture contents. Soil compaction increases soil bulk density and soil strength, while decreases porosity, aggregate stability index, soil hydraulic conductivity, and nutrient availability, thus reduces soil health. Consequently, it lowers crop performance via stunted aboveground growth coupled with reduced root growth. This paper reviews the potential causes of compaction and its consequences that have been published in last two decades. Various morphological and physiological alterations in plant as result of soil compaction have also been discussed in this review.

  5. Critical state soil constitutive model for methane hydrate soil

    S. Uchida; K. Soga; K. Yamamoto


      This paper presents a new constitutive model that simulates the mechanical behavior of methane hydrate-bearing soil based on the concept of critical state soil mechanics, referred to as the Methane...

  6. Water repellent soils: the case for unsaturated soil mechanics

    Beckett Christopher


    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  7. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  8. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.


    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  9. Structural stability of soil crusts. Consequences for soil erodibility assessment

    Darboux, Frédéric; Le Bissonnais, Yves


    Erosion and sediment transport processes depend on the soil surface properties. Because of water flow and other processes (climate, agricultural practices, biological activity, etc.), the properties of the soil surface can undergo significant changes that affect erosion. As a consequence, understanding of the transport processes and improvement in soil erosion prediction involve a better assessment of soil surface characteristics. Structural stability has been used to evaluate the sensitivity...

  10. Fixation of Soil Using PEC and Separation of Fixed Soil

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  11. Method to measure soil matrix infiltration in forest soil

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu


    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This

  12. Roles of soil biota and biodiversity in soil environment – A concise communication

    Suleiman Usman; Yakubu Muhammad; Alhaji Chiroman


    Soil biota (the living organisms in soil) plays an important role in soil development and soil formation. They are the most important component of soil organic matter decomposition and behave efficiently in the development and formation of soil structure and soil aggregate. Their biodiversity provides many functional services to soil and soil components. They help in dissolving verities of plant and animal materials, which could left as decayed organic matter at the surface soil. Understandin...

  13. An alternative to soil taxonomy for describing key soil characteristics

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon


    We are pleased to see the letter by Schimel and Chadwick (Front Ecol Environ 2013; 11[8]: 405–06), highlighting the importance of soil characterization in ecological and biogeochemical research and explaining the value of soil taxonomy, and we agree with the authors that reporting soil

  14. Soils in Schools: Embedding Soil Science in STEM

    Bryce, Alisa


    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  15. Dependence of sand soil compressibility on soil physical properties

    I.S.Vakhrin; G.P.Kuzmin


    A relationship between soil physical properties and its compressibility has been analyzed. The formulae to determine soil density and porosity have been substantiated in compression tests. The regularity of changes in compressibility of thawed sand soils with various degrees of water content has been experimentally identified.

  16. Soil mechanics experiment

    Mitchell, J. K.; Bromwell, L. G.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.


    The Apollo 15 soil-mechanics experiment has offered greater opportunity for study of the mechanical properties of the lunar soil than previous missions, not only because of the extended lunar-surface stay time and enhanced mobility provided by the lunar roving vehicle (rover), but also because four new data sources were available for the first time. These sources were: (1) the self-recording penetrometer (SRP), (2) new, larger diameter, thin-walled core tubes, (3) the rover, and (4) the Apollo lunar-surface drill (ALSD). These data sources have provided the best bases for quantitative analyses thus far available in the Apollo Program.

  17. Lunar Soil Particle Separator Project

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  18. Allegheny County Soil Type Areas

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at:;...

  19. Allegheny County Soil Type Areas

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at:;...


    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  1. Lunar Soil Particle Separator Project

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  2. World's soils are under threat

    Montanarella, Luca; Pennock, Daniel Jon; McKenzie, Neil; Badraoui, Mohamed; Chude, Victor; Baptista, Isaurinda; Mamo, Tekalign; Yemefack, Martin; Singh Aulakh, Mikha; Yagi, Kazuyuki; Hong, Suk Young; Vijarnsorn, Pisoot; Zhang, Gan-Lin; Arrouays, Dominique; Black, Helaina; Krasilnikov, Pavel; Sobocká, Jaroslava; Alegre, Julio; Henriquez, Carlos Roberto; de Lourdes Mendonça-Santos, Maria; Taboada, Miguel; Espinosa-Victoria, David; AlShankiti, Abdullah; Kazem AlaviPanah, Sayed; El Mustafa Elsheikh, Elsiddig Ahmed; Hempel, Jon; Camps Arbestain, Marta; Nachtergaele, Freddy; Vargas, Ronald


    The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources Report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils - the regions where the most food insecurity among us are found - while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved - the regional assessments in the State of the World's Soil Resources Report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.

  3. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S


    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold


    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website The site will be updated constantly throughout the year.

  5. Bioremediation of Creosote - contaminated Soil

    BYSS, Marius


    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  6. Microanalysis of Deformation of Soil


    load: image analysis. European Train- ing "ourse on Soil Micromorphology , pp.19-33. Winand Staring Centrum. Wageningen. Tovey, N.K. 1991a...Vicrofabric of soils under load: image analysis. International Training Course on Soil Micromorphology , pp.14 3 -157. Agricultural University, Wageningen...mineralogy and microfabric of soiikls and sediments. Proc. 9 Interna- tional Meeting on Soil Micromorphology , Townsville, Australia. In press. Tovey

  7. Soil structural quality assessment for soil protection regulation

    Johannes, Alice; Boivin, Pascal


    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  8. Soil carbon 4 per mille

    Mulder, V.L.


    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  9. Nitrification in Dutch heathland soils.

    Boer, de W.


    This thesis is the result of a study on the production of nitrate in Dutch heathland soils. Most of the heathlands are located on acid, sandy soils. Therefore , it has dealt mainly with the occurrence, nature and mechanisms of nitrification in acid soils. In the Netherlands, the production of nitrat

  10. Soil Ecology and Ecosystem Services

    Wall, D.H.; Bardgett, R.D.; Behan-Pelletier, V.; Herrick, J.E.; Jones, T.H.; Ritz, K.; Six, J.; Strong, D.R.; Putten, van der W.H.


    This book synthesizes contributions from leading soil scientists and ecologists, describing cutting-edge research that provides a basis for the maintenance of soil health and sustainability. It covers these advances from a unique perspective of examining the ecosystem services produced by soil biota

  11. Perspectives of Anaerobic Soil Disinfestation

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.


    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and ir

  12. Good soil: a good start

    Reuler, van H.; Staps, S.; Vermeulen, G.H.


    Soil plays a central role in plant production and the environment. Organic growers depend on the soil’s natural richness and resistance to disease. In order to foster these essential qualities, farmers and researchers are looking at ways to stimulate soil life, optimise soil structure and close nutr

  13. Engineering Significant of Swelling Soils

    Behzad Kalantari


    Full Text Available This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore essential to detect swelling soils from non-problematic foundation soils before any civil engineering projects are constructed over or adjacent to them. The study begins with definition of expansive soils and shows its distributions in the world as well as the basic causes for swelling potential that these type of soils poses. It is also shown that, the most probable depth of expansion to check for possible swelling potential for swelling soils is soil’s active zone. This zone is the most upper depth of expansive soil and it may extend up to 20 ft. (6 m below ground level. The moisture content of soil through active zone varies during different seasons while in lower part of expansive soil the moisture content stays constant during hot and cold season. Among various methods to check for swelling potential, plastic index and liquid limits are two most crucial factors, as these factors tend to increase, the swelling potential increase as well.

  14. Soils [Chapter 4.2

    Daniel G. Neary; Johannes W. A. Langeveld


    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  15. Perspectives of Anaerobic Soil Disinfestation

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.


    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and ir

  16. The threat of soil salinity

    Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J.


    Soil salinisation is one of the major soil degradation threats occurring in Europe. The effects of salinisation can be observed in numerous vital ecological and non-ecological soil functions. Drivers of salinisation can be detected both in the natural and man-made environment, with climate and th

  17. Sensor based soil health assessment

    Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolut...

  18. Mycorrhizas and tropical soil fertility

    Cardoso, I.M.; Kuyper, T.W.


    Major factors that constrain tropical soil fertility and sustainable agriculture are low nutrient capital, moisture stress, erosion, high P fixation, high acidity with aluminium toxicity, and low soil biodiversity. The fragility of many tropical soils limits food production in annual cropping system

  19. Mycorrhizas and tropical soil fertility

    Cardoso, I.M.; Kuyper, T.W.


    Major factors that constrain tropical soil fertility and sustainable agriculture are low nutrient capital, moisture stress, erosion, high P fixation, high acidity with aluminium toxicity, and low soil biodiversity. The fragility of many tropical soils limits food production in annual cropping system

  20. Perspectives of Anaerobic Soil Disinfestation

    Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O.


    Biological soil disinfestation is an environmentally friendly method to disinfest soil. From now on we refer to it as anaerobic soil disinfestation (ASD). With ASD a green manure crop (40 t/ha) is homogeneously incorporated into the topsoil (0-30 cm) after which the field is lightly compacted and

  1. Microorganisms as Indicators of Soil Health

    Nielsen, M. N.; Winding, A.; Binnerup, S.;

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... indicators into soil monitoring programmes as they become applicable....

  2. Soil organic matter stratification as an indicator of soil quality

    Franzluebbers, A.J.


    Metadata only record This paper explores the potential for using a ration of the stratification of soil organic C and N pools by depth as an indicator of soil quality. Stratification ratios offer a more universal indicator of soil quality, allowing comparison of soils across different soil types and climates. The ratios calculated for Georgia, Texas, and Alberta/British Colombia were, respectively, 1.1, 1.2, and 1.9 under conventional tillage, and 3.0, 2.0, and 2.1 under no tillage. High s...

  3. Soil threats and soil protection: the role of biotechnology

    Rubio, J. L.


    The concept of soil conservation/soil protection in its wider sense has undergone important changes through history. Perceptions of soil as a crucial base of life in ancient cultures progressively evolved to a more pragmatic vision, with close connection to food production for survival. For centuries, agrarian production and the provision of food for humankind remained the main and crucial vision of the interaction of societies with soil. However, there are also some other new and important concepts related to soil which have progressively developed. (Author)

  4. Soil-ecological risks for soil degradation estimation

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga


    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  5. Plant–soil feedbacks

    Cortois, Roeland; Schröder-Georgi, Thomas; Weigelt, Alexandra; Putten, van der Wim H.; Deyn, De Gerlinde B.


    1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known.
    2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF,

  6. A soil science renaissance

    Hartemink, A.E.


    The renaissance was an intellectually-rich period following a period of stasis in the medieval period. Something analogous appears to be currently taking place in soil science where novel approaches to thought are combined with a revival of ideas from the past. Renewed interest in agriculture (food,

  7. Soil carbon, multiple benefits

    Milne, E.; Banwart, S.A.; Noellemeyer, E.; Abson, D.J.; Ballabio, C.; Bampa, F.; Bationo, A.; Batjes, N.H.; Bernoux, M.; Bhattacharyya, T.


    In March 2013, 40 leading experts from across the world gathered at a workshop, hosted by the European Commission, Directorate General Joint Research Centre, Italy, to discuss the multiple benefits of soil carbon as part of a Rapid Assessment Process (RAP) project commissioned by Scientific

  8. Seismic Soil Liquefaction Studies.


    Soil Mechanics, series no. 88: Liquefac- tion and cyclic deformation of sands; a critical review, by A. Casagrande. Cambridge, Mass., Jan 1976. 8...Houghton. MI (Haas) MIT Cambridge MA; Cambridge MA (Rm 10-500. Tech. Reports, Engr. Lib.); Cambridge MA (Whitman) NORTHWESTERN UNIV Z.P. Bazant

  9. Soil on Phoenix's MECA


    This image shows soil delivery to NASA's Phoenix Mars Lander's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). At the bottom of the image is the chute for delivering samples to MECA's microscopes. It is relatively clean due to the Phoenix team using methods such as sprinkling to minimize cross-contamination of samples. However, the cumulative effect of several sample deliveries can be seen in the soil piles on either side of the chute. On the right side are the four chemistry cells with soil residue piled up on exposed surfaces. The farthest cell has a large pile of material from an area of the Phoenix workspace called 'Stone Soup.' This area is deep in the trough at a polygon boundary, and its soil was so sticky it wouldn't even go through the funnel. One of Phoenix's solar panels is shown in the background of this image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Infiltration in Unsaturated Soils

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin


    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  11. When soils become sediments

    Vink, Jos P.M.; Zomeren, van Andre; Dijkstra, Joris J.; Comans, Rob N.J.


    Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the

  12. Soils, Pores, and NMR

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard


    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a

  13. Impact of Soil Texture on Soil Ciliate Communities

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.


    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  14. Soil moisture estimation with limited soil characterization for decision making

    Chanzy, A.; Richard, G.; Boizard, H.; Défossez, P.


    Many decisions in agriculture are conditional to soil moisture. For instance in wet conditions, farming operations as soil tillage, organic waste spreading or harvesting may lead to degraded results and/or induce soil compaction. The development of a tool that allows the estimation of soil moisture is useful to help farmers to organize their field work in a context where farm size tends to increase as well as the need to optimize the use of expensive equipments. Soil water transfer models simulate soil moisture vertical profile evolution. These models are highly sensitive to site dependant parameters. A method to implement the mechanistic soil water and heat flow model (the TEC model) in a context of limited information (soil texture, climatic data, soil organic carbon) is proposed [Chanzy et al., 2008]. In this method the most sensitive model inputs were considered i.e. soil hydraulic properties, soil moisture profile initialization and the lower boundary conditions. The accuracy was estimated by implementing the method on several experimental cases covering a range of soils. Simulated soil moisture results were compared to soil moisture measurements. The obtained accuracy in surface soil moisture (0-30 cm) was 0.04 m3/m3. When a few soil moisture measurements are available (collected for instance by the farmer using a portable moisture sensor), significant improvement in soil moisture accuracy is obtained by assimilating the results into the model. Two assimilation strategies were compared and led to comparable results: a sequential approach, where the measurement were used to correct the simulated moisture profile when measurements are available and a variational approach which take moisture measurements to invert the TEC model and so retrieve soil hydraulic properties of the surface layer. The assimilation scheme remains however heavy in terms of computing time and so, for operational purposed fast code should be taken to simulate the soil moisture as with the

  15. Soil compaction: Evaluation of stress transmission and resulting soil structure

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas;

    and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate......, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied......Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few...

  16. Soil physics: a Moroccan perspective

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed


    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet

  17. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)


    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  18. How does soil management affect carbon losses from soils?

    Klik, A.; Trümper, G.


    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  19. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş


    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  20. [Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season].

    Zhang, Fang; Guo, Sheng-Li; Zou, Jun-Liang; Li, Ze; Zhang, Yan-Jun


    On the loess plateau, summer fallow season is a hot rainy time with intensive soil microbe activities. To evaluate the response of soil respiration to soil moisture, temperature, and N fertilization during this period is helpful for a deep understanding about the temporal and spatial variability of soil respiration and its impact factors, then a field experiment was conducted in the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. The experiment included five N application rates: unfertilized 0 (N0), 45 (N45), 90 (N90), 135(N135), and 180 (N180) kg x hm(-2). The results showed that at the fallow stage, soil respiration rate significantly enhanced from 1.24 to 1.91 micromol x (m2 x s)(-1) and the average of soil respiration during this period [6.20 g x (m2 x d)(-1)] was close to the growing season [6.95 g x (m2 x d)(-1)]. The bivariate model of soil respiration with soil water and soil temperature was better than the single-variable model, but not so well as the three-factor model when explaining the actual changes of soil respiration. Nitrogen fertilization alone accounted for 8% of the variation soil respiration. Unlike the single-variable model, the results could provide crucial information for further research of multiple factors on soil respiration and its simulation.

  1. Soil biodiversity and human health

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan


    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  2. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de


    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  3. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    R Michael Lehman; Cynthia A. Cambardella; Diane E. Stott; Veronica Acosta-Martinez; Manter, Daniel K.; Jeffrey S. Buyer; Jude E. Maul; Smith, Jeffrey L.; Harold P. Collins; Jonathan J. Halvorson; Kremer, Robert J.; Jonathan G. Lundgren; Tom F. Ducey; Jin, Virginia L.; Douglas L. Karlen


    Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil ...

  4. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    José Paulo Molin; Gustavo Di Chiacchio Faulin


    Soil electrical conductivity (ECa) is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semiv...

  5. Soil Security Assessment of Tasmania

    Field, Damien; Kidd, Darren; McBratney, Alex


    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  6. Phytostabilization of metal contaminated soils.

    Alkorta, I; Becerril, J M; Garbisu, C


    The contamination of soils with heavy metals represents a worldwide environmental problem of great concern. Traditional methods for the remediation of metal contaminated soils are usually very expensive and frequently induce adverse effects on soil properties and biological activity. Consequently, biological methods of soil remediation like phytoremediation (the use of green plants to clean up contaminated sites) are currently receiving a great deal of attention. In particular, chemophytostabilization of metal contaminated soils (the use of metal tolerant plants together with different amendments like organic materials, liming agents, or phosphorus compounds and such) to reduce metal mobility and bioavailability in soils appears most promising for sites contaminated with high levels of several metals when phytoextraction is not a feasible option. During chemophytostabilization processes, one must at all times be cautious with a possible future reversal of soil metal immobilization, with concomitant adverse environmental consequences.

  7. Soil Architecture and Physicochemical Functions

    de Jonge, Lis Wollesen; Møldrup, Per; Vendelboe, Anders Lindblad


    Soils function as Earth's life support system, a thin layer full of life covering most of the terrestrial surfaces. Soils form the foundation of society. Norman Borlaug stated in his Nobel laureate lecture that “the first essential component of social justice is adequate food for all mankind...... research community, including the need for enhanced public awareness of the soil's essential life-support functions, putting value on soil ecosystem services (“capital of soil”), and design of optimal soil-based growth media for long-term missions in space....... generation of environmentalists, soil scientists, and environmental engineers with the best education possible. The 16 papers in this special section on soil architecture and physicochemical functions in the Vadose Zone Journal contribute to these goals by improving and linking measurement, visualization...

  8. Inoculation of soil native cyanobacteria to restore arid degraded soils

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda


    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to

  9. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Huerta, Esperanza


    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  10. Soils in art as a teaching tool in soil science

    Poch, Rosa M.


    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  11. Soil Water Retention Curve

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.


    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  12. Discovering the essence of soil

    Frink, D.


    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  13. Hydrophobicity of soil samples and soil size fractions

    Lowen, H.A.; Dudas, M.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources; Roy, J.L. [Imperial Oil Resources Canada, Calgary, AB (Canada); Johnson, R.L. [Alberta Research Council, Vegreville, AB (Canada); McGill, W.B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources


    The inability of dry soil to absorb water droplets within 10 seconds or less is defined as soil hydrophobicity. The severity, persistence and circumstances causing it vary greatly. There is a possibility that hydrophobicity in Alberta is a symptom of crude oil spills. In this study, the authors investigated the severity of soil hydrophobicity, as determined by the molarity of ethanol droplet test (MED) and dichloromethane extractable organic (DEO) concentration. The soil samples were collected from pedons within 12 hydrophobic soil sites, located northeast from Calgary to Cold Lake, Alberta. All the sites were located at an elevation ranging from 450 metres to 990 metres above sea level. The samples contained compounds from the Chernozemic, Gleysolic, Luvisolic, and Solonetzic soil orders. The results obtained indicated that the MED and DEO were positively correlated in whole soil samples. No relationships were found between MED and DEO in soil samples divided in soil fractions. More severe hydrophobicity and lower DEO concentrations were exhibited in clay- and silt-sized particles in the less than 53 micrometres, when compared to the samples in the other fraction (between 53 and 2000 micrometres). It was concluded that hydrophobicity was not restricted to a particular soil particle size class. 5 refs., 4 figs.

  14. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A


    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  15. Chelant soil-washing technology for metal-contaminated soil.

    Voglar, David; Lestan, Domen


    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  16. Soil phosphorus landscape models for precision soil conservation.

    Hong, Jinseok; Grunwald, Sabine; Vasques, Gustavo M


    Phosphorus (P) enrichment in soils has been documented in the Santa Fe River watershed (SFRW, 3585 km) in north-central Florida. Yet the environmental factors that control P distribution in soils across the landscape, with potential contribution to water quality impairment, are not well understood. The main goal of this study was to develop soil-landscape P models to support a "precision soil conservation" approach combining fine-scale (i.e., site-specific) and coarse-scale (i.e., watershed-extent) assessment of soil P. The specific objectives were to: (i) identify those environmental properties that impart the most control on the spatial distribution of soil Mehlich-1 extracted P (MP) in the SFRW; (ii) model the spatial patterns of soil MP using geostatistical methods; and (iii) assess model quality using independent validation samples. Soil MP data at 137 sites were fused with spatially explicit environmental covariates to develop soil MP prediction models using univariate (lognormal kriging, LNK) and multivariate methods (regression kriging, RK, and cokriging, CK). Incorporation of exhaustive environmental data into multivariate models (RK and CK) improved the prediction of soil MP in the SFRW compared with the univariate model (LNK), which relies solely on soil measurements. Among all tested environmental covariates, land use and vegetation related properties (topsoil) and geologic data (subsoil) showed the largest predictive power to build inferential models for soil MP. Findings from this study contribute to a better understanding of spatially explicit interactions between soil P and other environmental variables, facilitating improved land resource management while minimizing adverse risks to the environment.

  17. Impacts of soil moisture content on visual soil evaluation

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick


    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  18. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;


    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  19. SoilEffects - start characterization of the experimental soil

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    Summary This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010......-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... from a herd of about 25 organically managed dairy cows. This report describes the initial characterization of the soil biology, chemistry and physics, along with the background of the project, the selection process of the research field and the project design. Effects of the manure treatment...

  20. Inference of Soil Hydrologic Parameters from Soil Moisture Monitoring Records

    Chandler, D. G.; Seyfried, M. S.; McNamara, J. P.; Hwang, K.


    Soil moisture is an important control on hydrologic function, as it governs flux through the soil and responds to and determines vertical fluxes from and to the atmosphere, groundwater recharge and lateral fluxes through the soil. Most physically based hydrologic models require parameters to represent soil physical properties governing flow and retention of vadose water. The presented analysis compares four methods of objective analysis to determine field capacity, plant extraction limit (or permanent wilting point) and field saturated soil moisture content from decadal records of volumetric water content. These values are found as either data attractors or limits in the VWC records and may vary with interannual moisture availability. Results are compared to values from pedotransfer functions and discussed in terms of historic methods of measurement in soil physics.

  1. Electrokinetic remediation of unsaturated soils

    Lindgren, E.R.; Kozak, M.W. (Sandia National Labs., Albuquerque, NM (United States)); Mattson, E.D. (SAT-UNSAT, Inc., Albuquerque, NM (United States))


    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. Large spills and leaks can contaminate both the soil above the water table as well as the aquifer itself. Electrodes are implanted in the soil, and a direct current is imposed between the electrodes. The application of direct current leads to a number of effects: ionic species and charged particles in the soil water will migrate to the oppositely charged electrode (electromigration and electrophoresis), and concomitant with this migration, a bulk flow of water is induced, usually toward the cathode (electroosmosis). The combination of these phenomena leads to a movement of contaminants toward the electrodes. The direction of contaminant movement will be determined by a number of factors, among which are type and concentration of contaminant, soil type and structure, interfacial chemistry of the soil-water system, and the current density in the soil pore water. Contaminants arriving at the electrodes may potentially be removed from the soil by one of several methods, such as electroplating or adsorption onto the electrode, precipitation or co-precipitation at the electrode, pumping of water near the electrode, or complexing with ion-exchange resins. Experimental results are described on the removal of sodium dichromate and food dye from soil.

  2. A Handbook on Artificial Soils for Indoor Photovoltaic Soiling Tests

    Burton, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This manuscript is intended to serve as a practical guide to conducting repeatable indoor soiling experiments for PV applications. An outline of techniques, materials and equipment used in prior studies [1-3] is presented. Additional recommendations and practical guidance has been presented. Major sections include techniques to formulate soil simulants, ('standard grime') and feedstocks from traceable components, spray application, and quantitative measurement methodologies at heavy and minimal soil loadings.

  3. Effect of soil reclamation process on soil C fractions.

    Asensio, V; Vega, F A; Covelo, E F


    Mine soils are notable for their low organic matter content. Soils in the depleted copper mine in Touro (Galicia, Spain) were vegetated with trees (eucalyptuses and pines) and amended with wastes (sewage sludge and paper mill residues) to increase their carbon concentration. Two different zones at the mine (settling pond and mine tailing) and their respective treated areas (vegetated and/or amended) were sampled and analysed with the aim of evaluating in depth the effect of the reclamation treatments on both the concentration and quality of soil organic matter under field conditions. The results showed that the two treatments (tree vegetation and waste amendment) significantly increased the organic C in the mine soils from 1.4-6.6 to 10-112 g kg(-1). However, only the soil amended with wastes in the settling pond reached the usual values of undisturbed soils (92-126 g TOC kg(-1) soil). Amending with wastes was also the only treatment that increased the soil humified organic C concentration to proper values and therefore also the microbial biomass C. We recommend the use of organic wastes for amending soils poor in organic matter as well as the regular application of this treatment, as the nitrogen supply can be more limiting for plant growth than the organic C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Soil Moisture Data Assimilation in Soil Water Flow Modeling

    Pachepsky, Y. A.; Guber, A.; Jacques, D.; Pan, F.; van Genuchten, M.; Cady, R. E.; Nicholson, T. J.


    Soil water flow modeling has multiple applications. This modeling is based on simplifications stemming from both conceptual uncertainty and lack of detailed knowledge about parameters. Modern soil moisture sensors can provide detailed information about changes in soil water content in time and with depth. This information can be used for data assimilation in soil water flow modeling. The ensemble Kalman filter appears to be an appropriate method for that. Earlier we demonstrated ensemble simulations of soil water flow by using sets of pedotransfer functions (empirical relationships between soil hydraulic properties and soil basic properties, such as particle size distribution, bulk density, organic carbon content, etc.). The objective of this work was to apply the data assimilation with the ensemble Kalman filter to soil water flow modeling, using soil water content monitoring with TDR probes and an ensemble of soil water flow models parameterized with different pedotransfer functions. Experiments were carried out at the Bekkevoort site, Belgium. Sixty time domain reflectometry (TDR) probes with two rods) were installed along the trench in loamy soil at 12 locations with 50-cm horizontal spacing at five depths (15, 35, 55, 75, and 95 cm). Water content and weather parameters were monitored for one year with 15 min frequency. Soil water flow was simulated using the HYDRUS6 software. Mean daily means of water contents at the observation depths were the measurements used in data assimilation. Eighteen pedotransfer functions for water retention and one for hydraulic conductivity were applied to generate ensembles to evaluate the uncertainty in simulation results, whereas the replicated measurements at each of measurement depths were used to characterize the uncertainty in data. Data assimilation appeared to be very efficient. Even assimilating measurements at a single depth provided substantial improvement in simulations at other observation depths. Results on

  5. Working with soils: soil science continuing professional development

    Hannam, Jacqueline; Thompson, Dick


    The British Society of Soil Science launched the Working with Soils professional competency programme in 2011. This was in response to concerns from practitioners and professionals of a significant skills gap in various sectors that require soil science skills. The programme includes one and two day courses that cover the qualifications, knowledge and skills required of a professional scientist or engineer conducting a range of contract work. All courses qualify for continuing professional development points with various professional practice schemes. Three courses cover the foundations of soil science namely; describing a soil profile, soil classification and understanding soil variability in the field and landscape. Other tailored courses relate to specific skills required from consultants particularly in the planning process where land is assessed for agricultural quality (agricultural land classification). New courses this year include soil handling and restoration that provides practitioners with knowledge of the appropriate management of large volumes of soil that are disturbed during development projects. The courses have so far successfully trained over 100 delegates ranging from PhD students, environmental consultants and government policy advisors.

  6. Soil salinity prediction using electromagnetic induction method in gypsiferous soil

    Bouksila, Fethi; Persson, Magnus; Bahri, Akiça; Berndtsson, Ronny; Ben Slimane, Abir


    In arid and semiarid regions, secondary soil salinization is considered a main danger to the sustainability of irrigated land and agricultural production. Thus, accurate and rapid estimation of soil salinity should be readily available to farmers during crop development to increase productivity and to contribute to sustainable land planning aimed at mitigating soil degradation. Measurement of electrical conductivity in saturated paste extracts (ECe) is a standard method for which other salinity estimation methods are referenced. In the present study, we investigated the possibilities to use the EM38 to predict field ECe in a saline gypsiferous soil of the Saharian-climate Fatnassa oasis (Tunisia) under shallow and saline groundwater. On the 114 ha oasis, an experimental network system of 27 agricultural plots was chosen for monitoring soil properties (ECa-EM38, soil particle size, gypsum content, soil moisture, and ECe) and groundwater (depth, Dgw, electrical conductivity, and ECgw). Samples were taken during 4 years (2001 to 2004) at experimental plots and soil profiles were sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The results showed that significant lnECe-EM relationships could be developed. However, results also indicated that for better accuracy of soil salinity prediction using the EM38, it is advisable to perform calibrations for each measurement period.

  7. Soil organic carbon distribution in roadside soils of Singapore.

    Ghosh, Subhadip; Scharenbroch, Bryant C; Ow, Lai Fern


    Soil is the largest pool of organic carbon in terrestrial systems and plays a key role in carbon cycle. Global population living in urban areas are increasing substantially; however, the effects of urbanization on soil carbon storage and distribution are largely unknown. Here, we characterized the soil organic carbon (SOC) in roadside soils across the city-state of Singapore. We tested three hypotheses that SOC contents (concentration and density) in Singapore would be positively related to aboveground tree biomass, soil microbial biomass and land-use patterns. Overall mean SOC concentrations and densities (0-100 cm) of Singapore's roadside soils were 29 g kg(-1) (4-106 g kg(-1)) and 11 kg m(-2) (1.1-42.5 kg m(-2)) with median values of 26 g kg(-1) and 10 kg m(-2), respectively. There was significantly higher concentration of organic carbon (10.3 g kg(-1)) in the top 0-30 cm soil depth compared to the deeper (30-50 cm, and 50-100 cm) soil depths. Singapore's roadside soils represent 4% of Singapore's land, but store 2.9 million Mg C (estimated range of 0.3-11 million Mg C). This amount of SOC is equivalent to 25% of annual anthropogenic C emissions in Singapore. Soil organic C contents in Singapore's soils were not related to aboveground vegetation or soil microbial biomass, whereas land-use patterns to best explain variance in SOC in Singapore's roadside soils. We found SOC in Singapore's roadside soils to be inversely related to urbanization. We conclude that high SOC in Singapore roadside soils are probably due to management, such as specifications of high quality top-soil, high use of irrigation and fertilization and also due to an optimal climate promoting rapid growth and biological activity.

  8. The effect of intrinsic soil properties on soil quality assessments

    Alessandro Samuel-Rosa


    Full Text Available The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density under different land uses (native forest, no-tillage and conventional agriculture on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

  9. Soil-water interaction in unsaturated expansive soil slopes

    ZHAN Liangtong


    The intensive soil-water interaction in unsatura- ted expansive soil is one of the major reasons for slope fail- ures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrat- ed that the soil-water interaction induced by seasonal wetting- drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deforma- tion and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

  10. Stochastic Modeling of Soil Salinity

    Suweis, S; Van der Zee, S E A T M; Daly, E; Maritan, A; Porporato, A; 10.1029/2010GL042495


    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a single stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trend...

  11. Applications of visual soil evaluation

    Ball, Bruce C; Munkholm, Lars Juhl; Batey, Tom


    assessment, to encourage their wider use and to foster international cooperation. The previous main meeting of the group in 2005 at Peronne, France, brought together, for the first time, a group of soil scientists who had each developed a method to evaluate soil structure directly in the field (Boizard et al......., 2006). Ten visual and tactile methods were used to assess soil structure on the same soil. This stimulated significant ongoing cooperation between participants and several authors have since modified and developed their procedures (Mueller et al., 2009 and Shepherd, 2009). Cooperation also led...... to the re-development of the Peerlkamp numeric method of assessment of soil structure into the Visual Evaluation of Soil Structure (VESS) spade test (Ball et al., 2007 and Guimarães et al., 2011). The meeting also recommended further cooperation between members of the Working Group. The evaluation...

  12. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.


    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  13. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou


    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  14. ICRAF-ISRIC Soil VNIR Spectral Library

    Batjes, N.H.


    The ICRAF-ISRIC Soil VNIR Spectral Library contains visible near infrared spectra of 4,438 soils selected from the Soil Information System (ISIS) of the International Soil Reference and Information Centre (ISRIC). The samples consist of all physically archived samples at ISRIC in 2004 for which soil

  15. ICRAF-ISRIC Soil VNIR Spectral Library

    Batjes, N.H.


    The ICRAF-ISRIC Soil VNIR Spectral Library contains visible near infrared spectra of 4,438 soils selected from the Soil Information System (ISIS) of the International Soil Reference and Information Centre (ISRIC). The samples consist of all physically archived samples at ISRIC in 2004 for which soil

  16. Guidelines for soil description, 4th edition

    Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P.


    Soils are affected by human activities, such as industrial, municipal and agriculture, that often result in soil degradation and loss. In order to prevent soil degradation and to rehabilitate the potentials of degraded soils, reliable soil data are the most important prerequisites for the design of

  17. Vital soil; function, value and properties

    Doelman, P.; Eijsackers, H.J.P.


    Healthy soil, with active soil life, deters long-term soil degradation and ensures that geo-physical processes are undisturbed. Is the vitality of soil under threat due to human civilization? Or is it due to contamination, intensification, and deforestation? Vital Soil aims to look at the effects so

  18. Vital soil; function, value and properties

    Doelman, P.; Eijsackers, H.J.P.


    Healthy soil, with active soil life, deters long-term soil degradation and ensures that geo-physical processes are undisturbed. Is the vitality of soil under threat due to human civilization? Or is it due to contamination, intensification, and deforestation? Vital Soil aims to look at the effects

  19. Acoustic behaviors of unsaturated soils

    Lu, Z.


    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  20. Soil vulnerability for cesium transfer.

    Vandenhove, Hildegarde; Sweeck, Lieve


    The recent events at the Fukushima Daiichi nuclear power plant in Japan have raised questions about the accumulation of radionuclides in soils and the possible impacts on agriculture surrounding nuclear power plants. This article summarizes the knowledge gained after the nuclear power plant accident in Chernobyl, Ukraine, on how soil parameters influence soil vulnerability for radiocesium bioavailability, discusses some potential agrochemical countermeasures, and presents some predictions of radiocesium crop concentrations for areas affected by the Fukushima accident.

  1. Enzymatic activities in a semiarid soil amended with different soil treatment: Soil quality improvement

    Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose


    The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage

  2. Two-Dimensional Porosity of Crusted Silty Soils: Indicators of Soil Quality in Semiarid Rangelands?


    Little is known about the morphological characteristics of pores in soil crusts. The objective was to characterize the 2D-porosity (amount, shape, size and area of pores) of soil crusts to ascertain their potential as indicators of soil quality for natural crusted soils. 2D-porosity was described in thin sections and measured by image analysis of polished resin-impregnated soil blocks. Physical soil crust and incipient biological soil crusts appear to be the lowest-quality soil...

  3. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Andrea Koch; Adrian Chappell; Michael Eyres; Edward Scott


    The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condi...

  4. Magnetic beneficiation of lunar soils

    Mckay, D. S; Oder, R. R.; Graf, J.; Taylor, L. A.


    We will present a review of recent laboratory results obtained in dry magnetic separation of one gram samples of the minus 1 mm size fraction of five lunar soils of widely differing maturities. Two highland soils were investigated as potential sources of low iron content feed stocks for space manufacture of metals, including aluminum, silicon, and calcium. Pure anorthite was separated from the diamagnetic fraction of immature highland regolith. Three high titanium mare soils were investigated as potential sources of ilmenite for production of hydrogen and for recovery of He-3. Ilmenite and pyroxene were separated from the paramagnetic fractions of the mare basalts. Agglutinates and other fused soil components containing metallic iron were separated from the strongly magnetic fractions of all soils. We will present conceptual magnetic separation flow sheets developed from the laboratory data and designed for production of anorthite from highland soils and for production of ilmenite from mare soils. Using these flow sheets, we will discuss problems and opportunities associated with the magnetic separation of lunar soils. Separation of high-grade anorthite or other diamagnetic components at moderately high recovery can be achieved in processing immature highland soils. Further, while magnet weight is always an issue in magnetic separation technology, recent developments in both low temperature and high temperature superconductivity present unusual opportunities for magnet design specific to the lunar environment.

  5. Micromorphology of pelletized soil conditioners

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas


    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (, soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  6. Indicators for Monitoring Soil Biodiversity

    Bispo, A.; Cluzeau, D.; Creamer, R.


    is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living...... indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore...

  7. Frost Heave in Colloidal Soils

    Peppin, Stephen


    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  8. Puerto Rico Soil Erodibility (Kffact)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puerto Rico soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  9. Reduction of soil tare by improved uprooting of sugar beet : a soil dynamic approach

    Vermeulen, G.D.


    The relative amount of soil in sugar beet lots, called soil tare, should be reduced to curtail the cost and negative aspects of soil tare. Highest soil tare occurs in beet lots harvested out of wet clay soil. The main problem is that commonly-used share lifters press the soil against the

  10. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Felipe G. Sanchez


    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  11. Adopting soil organic carbon management practices in soils of varying quality

    Merante, Paolo; Dibari, Camilla; Ferrise, Roberto; Sánchez, Berta; Iglesias, Ana; Lesschen, Jan Peter; Kuikman, Peter; Yeluripati, Jagadeesh; Smith, Pete; Bindi, Marco


    Soil organic carbon (SOC) content can greatly affect soil quality by determining and maintaining important soil physical conditions, properties and soil functions. Management practices that maintain or enhance SOC affect soil quality and may favour the capacity of soils to sequester further organ

  12. SOIL moisture data intercomparison

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre


    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  13. Solos urbanos Urban soils

    Fabrício de Araújo Pedron


    Full Text Available A forte pressão provocada pela expansão urbana desordenada sobre os recursos naturais, principalmente os solos, tem provocado danos, muitas vezes de difícil reparo. A grande concentração populacional em centros urbanos cada vez maiores tem dirigido a atenção de diferentes profissionais para o recurso solo, no sentido de entender sua dinâmica para minimizar sua degradação. No entanto, a falta de conhecimento sobre as propriedades, bem como sobre a aptidão dos solos sob uso urbano tem provocado o seu mau uso, resultando em processos como compactação, erosão, deslizamentos e inundações, assim como poluição com substâncias orgânicas, inorgânicas e patógenos, aumentando os custos do desenvolvimento afetando toda a sociedade. Neste sentido, este texto discute como o conhecimento pedológico pode diminuir os efeitos negativos provocados pelo processo de urbanização.The strong pressure caused by the disordered urban expansion over the natural resources, mainly the soils, has caused damages, many times difficult to repair. The great population concentration in urban centers getting larger and larger has been driving the attention of different professionals to soil resource, in the sense of understanding its dynamics to minimize its degradation. The lack of knowledge related to the soils properties and capability promote their inappropriate use, resultig in degrading processes as compaction, erosion, sliding, floods, and organic, inorganic and patogenic pollution, increasing the cost of development and affecting the whole society. This text discusses how pedologic knowledge can reduce the negative effects caused by the urbanization process.

  14. Soil on Phoenix's TEGA


    This image shows soil on the doors of the Thermal and Evolved Gas Analyzer (TEGA) onboard NASA's Phoenix Mars Lander. The image was taken by the lander's Robotic Arm Camera on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). This sample delivered to TEGA was named 'Rosy Red.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Hydrolysis of nitriles by soil bacteria: variation with soil origin

    Rapheeha, OKL


    Full Text Available . To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long...

  16. Biological soil crusts as soil stabilizers: Chapter 16

    Belnap, Jayne; Buedel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne


    Soil erosion is of particular concern in dryland regions, as the sparse cover of vascular plants results in large interspaces unprotected from the erosive forces of wind and water. Thus, most of these soil surfaces are stabilized by physical or biological soil crusts. However, as drylands are extensively used by humans and their animals, these crusts are often disturbed, compromising their stabilizing abilities. As a result, approximately 17.5% of the global terrestrial lands are currently being degraded by wind and water erosion. All components of biocrusts stabilize soils, including green algae, cyanobacteria, fungi, lichens, and bryophytes, and as the biomass of these organisms increases, so does soil stability. In addition, as lichens and bryophytes live atop the soil surface, they provide added protection from raindrop impact that cyanobacteria and fungi, living within the soil, cannot. Much research is still needed to determine the relative ability of individual species and suites of species to stabilize soils. We also need a better understanding of why some individuals or combination of species are better than others, especially as these organisms become more frequently used in restoration efforts.

  17. Soil water balance scenario studies using predicted soil hydraulic parameters

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.


    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in ter

  18. Online Soil Science Lesson 3: Soil Forming Factors

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  19. Desert soil collection at the JPL soil science laboratory

    Blank, G. B.; Cameron, R. E.


    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  20. Inference of Soil Hydrologic Parameters from Electronic Soil Moisture Records

    Chandler, David G.; Seyfried, Mark S.; McNamara, James P.; Hwang, Kyotaek


    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity and permanent wilting point have been determined by laboratory methods. This approach is challenged by issues of scale, boundary conditions and soil disturbance. We develop and compare four methods to determine values of field saturation, field capacity, plant extraction limit and initiation of plant water stress from long term in-situ monitoring records of TDR-measured volumetric water content (Q). The monitoring sites represent a range of soil textures, soil depths, effective precipitation and plant cover types in a semi-arid climate. The Q records exhibit attractors (high frequency values) that correspond to field capacity and the plant extraction limit at both annual and longer time scales, but the field saturation values vary by year depending on seasonal wetness in the semi-arid setting. The analysis for five sites in two watersheds is supported by comparison to values determined by a common pedotransfer function and measured soil characteristic curves. Frozen soil is identified as a complicating factor for the analysis and users are cautioned to filter data by temperature, especially for near surface soils.

  1. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi


    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  2. Evaluation of soil structure in the framework of an overall soil quality rating

    Mueller, L; Shepherd, T G; Schindler, U;


    Soil structure is an important aspect of agricultural soil quality, and its preservation and improvement are key to sustaining soil functions. Methods of overall soil quality assessment which include visual soil structure information can be useful tools for monitoring and managing the global soil...... resource. The aim of the paper is: (i) to demonstrate the role of visual quantification of soil structure within the procedure of the overall soil quality assessment by the Muencheberg Soil Quality Rating (M-SQR), (ii) to quantify the magnitude and variability of soil structure and overall M......-SQR on a number of agricultural research sites and (iii) to analyse the correlations of soil quality rating results with crop yields. We analysed visual soil structure and overall soil quality on a range of 20 experimental sites in seven countries. To assess visual soil structure we utilised the Visual Soil...

  3. Chemical evaluation of soil-solution in acid forest soils

    Lawrence, G.B.; David, M.B.


    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled


    Dragutin A. Đukić


    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  5. Anthropogenic effects on soil micromycetes

    Đukić Dragutin A.


    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  6. Thermal stability of soils and detectability of intrinsic soil features

    Siewert, Christian; Kucerik, Jiri


    Soils are products of long term pedogenesis in ecosystems. They are characterized by a complex network of interactions between organic and inorganic constituents, which influence soil properties and functions. However, the interrelations cannot easily be determined. Our search for unifying principles of soil formation focuses on water binding. This approach was derived from water-dependent soil formation. It considers the importance of water binding in theories about the origin of genes, in the structural arrangement and functionality of proteins, and in the co-evolution of organism species and the biosphere during the history of earth. We used thermogravimetry as a primary experimental technique. It allows a simple determi-nation of bound water together with organic and inorganic components in whole soil samples without a special preparation. The primary goal was to search for fingerprinting patterns using dynamics of thermal mass losses (TML) caused by water vaporization from natural soils, as a reference base for soil changes under land use. 301 soil samples were collected in biosphere reserves, national parks and other areas as-sumingly untouched by human activity in Siberia, North and South America, Antarctica, and in several long term agricultural experiments. The results did not support the traditional data evaluation procedures used in classical differ-ential thermogravimetry. For example, peak positions and amplitudes did not provide useful information. In contrast, using thermal mass losses (TML) in prefixed smaller, e.g. 10 °C temperature intervals allowed the determination of the content of carbon, clay, nitrogen and carbonates with high accuracy. However, this approach was applicable for soils and neither for soil-like carbon containing mineral substrates without pedogenetic origin, nor for plant residues or soils containing ashes, cinder, or charcoal. Therefore, intrinsic soil regulation processes are discussed as a possible factor causing

  7. Soil fungi as indicators of pesticide soil pollution

    Mandić Leka


    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  8. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu


    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  9. Soil Resources Degradation and Conservation Techniques Adopted ...

    include among others: pedestals, armour layers and tree moulds which lead ... soil management practices adopted by the farmers ... observation of the soil management practices adopted .... The pH values of the soils under the different land.

  10. Relating soil biochemistry to sustainable crop production

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  11. Probing soil respiration process of grasslands


    @@ Soil respiration, which is primarily the only output approach for CO2 exchanges in soils between the global terrestrial ecosystem and the atmosphere,exerts a direct influence on the speed of carbon turnover rate of the soil.

  12. Biogeochemistry: Soil carbon in a beer can

    Davidson, Eric A.


    Decomposition of soil organic matter could be an important positive feedback to climate change. Geochemical properties of soils can help determine what fraction of soil carbon may be protected from climate-induced decomposition.

  13. KBRA OPWP Soil Depth to Water

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  14. A method to detect soil carbon degradation during soil erosion

    F. Conen


    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500–600 and 350–400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  15. A method to detect soil carbon degradation during soil erosion

    C. Alewell


    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  16. Soil physical land degradation processes

    Horn, Rainer


    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  17. Managing soil remediation problems.

    Okx, J P; Hordijk, L; Stein, A


    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  18. Stress transmission in soil

    Lamandé, Mathieu; Schjønning, Per

    the soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports......We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals....... The tests took place in the spring at field capacity when the topsoil had not been tilled for 1½ year. Two Nokian ELS Radial-ply tyres (800/50R34 and 560/45R22.5) were loaded with two specific loads (30 kN and 60 kN). We used rated tyre inflation pressures for traffic in the field (≤10 km h-1 driving speed...

  19. Soil Respiration: Concept and Measurement Methods



    Full Text Available Soil respiration is the main element in the carbon cycle that makes possible for plants carbon plants to return inthe atmosphere. The objective of this work was to present and discuss some aspects of the soil CO2 efflux. We definedherein, some terms associated to the soil respiration concept, we tackled some aspects regarding the influence oftemperature, humidity and soil pH on soil respiration and we presented the principle of soil respiration measurement byusing dynamic closed chamber system.

  20. Soil biodiversity for agricultural sustainability

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.


    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does conf

  1. Soil remediation : a systems approach

    Okx, J.P.


    Soil remediation has only a short history, but the problem addressed is a significant one. When solving soil remediation problems we have to deal with a large number of scientific disciplines, however solutions are often presented from the viewpoint of just one discipline. In order to

  2. Monitoring and evaluating soil quality

    Bloem, J.; Schouten, A.J.; Sørensen, S.J.; Rutgers, M.; Werf, van der A.K.; Breure, A.M.


    This book provides a selection of microbiological methods that are already applied in regional or national soil quality monitoring programs. It is split into two parts: part one gives an overview of approaches to monitoring, evaluating and managing soil quality. Part two provides a selection of meth


    The transport of microorganisms in soils is of major importance for bioremediation of subsurface polluted zones and for pollution of groundwater with pathogens. A procedure for evaluating the relative mobility and recovery of bacteria in the soil matrix was developed. In the meth...

  4. Survival of shigellae in soil.

    Leonardopoulos, J; Papakonstantinou, A; Kourti, H; Papavassiliou, J


    The survival of four Shigella strains in soil (Sh. sonnei, Sh. boydii, Sh. flexneri and Sh. dysenteriae) was studied under various conditions. Their survival period was tested in two different types of sterile soil at 18-20 degrees C and in one type of soil at 4 and 37 degrees C. This latter type of soil, after enrichment with casaminoacids or (NH4)2HPO4 was also used for testing again the survival of the strains at 18-20 degrees C. Though the initial number of the inoculated microorganisms was quite high (10(7) to 10(8) micr. per g of soil) the survival periods were generally short (6 to 39 days). It was found that their viability depended mainly on the bacterial species and not so much on the type of soil, enriched or not, and the temperature. Thus the survival period in soil was always longer for Sh. sonnei and Sh. boydii and shorter for Sh. flexneri and Sh. dysenteriae. The incubations at 4 degrees C or in enriched soil increased and in 37 degrees C decreased the longevity of the strains but for a few days.

  5. Soil Microbiology, Ecology, and Biochemistry

    The 4th edition of Soil Microbiology, Ecology, and Biochemistry Edited by Eldor Paul continues in the vein of the 3rd edition by providing an excellent, broad-reaching introduction to soil biology. The new edition improves on the previous by providing extensive supplementary materials, links to outs...

  6. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.


    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  7. The Science of Soil Textures

    Bigham, Gary


    Off-road motorcycle racing and ATV riding. Gardening and fishing. What do these high-adrenaline and slower-paced pastimes have in common? Each requires soil, and the texture of that soil has an effect on all of them. In the inquiry-based lessons described here, students work both in the field or laboratory and in the classroom to collect soil…

  8. Approved Practices in Soil Conservation.

    Foster, Albert B.

    This book is written for individuals who wish to apply conservation practices, especially those of soil and water conservation, without technical assistance, to meet one's own conditions, and within his own capability to apply them. To meet these needs, the book includes a discussion and description of soil and water conservation methods for the…

  9. Soil strength and forest operations.

    Beekman, F.


    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed.

  10. The impact of soil degradation on soil functioning in Europe

    Montanarella, Luca


    The European Commission has presented in September 2006 its Thematic Strategy for Soil Protection.The Thematic Strategy for Soil Protection consists of a Communication from the Commission to the other European Institutions, a proposal for a framework Directive (a European law), and an Impact Assessment. The Communication (COM(2006) 231) sets the frame. It defines the relevant soil functions for Europe and identifies the major threats. It explains why further action is needed to ensure a high level of soil protection, sets the overall objective of the Strategy and explains what kind of measures must be taken. It establishes a ten-year work program for the European Commission. The proposal for a framework Directive (COM(2006) 232) sets out common principles for protecting soils across the EU. Within this common framework, the EU Member States will be in a position to decide how best to protect soil and how use it in a sustainable way on their own territory. The Impact Assessment (SEC (2006) 1165 and SEC(2006) 620) contains an analysis of the economic, social and environmental impacts of the different options that were considered in the preparatory phase of the strategy and of the measures finally retained by the Commission. Since 2006 a large amount of new evidence has allowed to further document the extensive negative impacts of soil degradation on soil functioning in Europe. Extensive soil erosion, combined with a constant loss of soil organic carbon, have raised attention to the important role soils are playing within the climate change related processes. Other important processes are related to the loss of soil biodiversity, extensive soil sealing by housing and infrastructure, local and diffuse contamination by agricultural and industrial sources, compaction due to unsustainable agricultural practices and salinization by unsustainable irrigation practices. The extended impact assessment by the European Commission has attempted to quantify in monetary terms the


    A. A. Batukaev


    Full Text Available Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs CaCO30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. Calculation method is proposed for quantitative assessment of real ion forms in the soil solution of chestnut solonetz soil complex. Were proposed equations to calculate free and associated forms of ions. To solve the equations were used an iteration, a linear interpolation of equilibrium constants, a Method of Ionic Pairs including a law of initial concentration preservation, a law of the operating masses of equilibrium system, the concentration constants of ion pair dissociation on the law of operating masses. Was determined the quantity of ion free form and a coefficient of ion association as ratio of ions free form to analytical content ?e = Cass/Can. The association of ions varies in individual soils and soil layer. Increasing soil solution salinity amplifies the ions association. In form of ionic pairs in soil solution are: 11.8-53.8% of Ca2+; 9.4-57.3% of Mg2+; 0.7-11.9% of Na+; 2.2-22.3% of HCO3-, 11.8-62.7% of SO42-. The ion CO32- is high associated, the share of ions in associated form is up to 92.7%. The degree of soil solution saturation was obtained for three level of approximation accounting on analytical concentration, calculated association coefficient, calculated coefficient of association. Relating to thermodynamic solubility product S0, the mathematical product of analytical ionic pairs

  12. Mapping specific soil functions based on digital soil property maps

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor


    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" ( numerous soil property maps have been compiled so far with proper DSM techniques partly according to specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in


    S. K. Saha


    Full Text Available Information of spatial and temporal variations of soil quality (soil properties is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial estimation of soil properties. However, limited research studies have been carried out showing the potential of microwave remote sensing data for spatial estimation of various soil properties except soil moisture. This paper reviews the status of microwave remote sensing techniques (active and passive for spatial assessment of soil quality parameters such as soil salinity, soil erosion, soil physical properties (soil texture & hydraulic properties; drainage condition; and soil surface roughness. Past and recent research studies showed that both active and passive microwave remote sensing techniques have great potentials for assessment of these soil qualities (soil properties. However, more research studies on use of multi-frequency and full polarimetric microwave remote sensing data and modelling of interaction of multi-frequency and full polarimetric microwave remote sensing data with soil are very much needed for operational use of satellite microwave remote sensing data in soil quality assessment.

  14. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick


    This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and

  15. Phytoremediation for Oily Desert Soils

    Radwan, Samir

    This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

  16. Soil Erosion Threatens Food Production

    Michael Burgess


    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.

  17. The Presence of Plants Alters the Effect of Soil Moisture on Soil C Decomposition in Two Different Soil Types

    Dijkstra, F. A.; Cheng, W.


    While it is well known that soil moisture directly affects microbial activity and soil C decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on soil C decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45 and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils with on average a greater priming effect in the high soil moisture treatment (60% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (37% increase). Greater plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher after correcting for plant biomass. Possibly, root exudation of labile C may have increased more than plant biomass and may have become more effective in stimulating microbial decomposition in the higher soil moisture treatment. Our results indicate that changing soil moisture conditions can significantly alter rhizosphere effects on soil C decomposition.

  18. Evaluation of soil washing for radiologically contaminated soils

    Gombert, D. II


    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  19. Relationship Between Soil Properties and Different Fractions of Soil Hg


    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (r = 0.684*). Organic Hg, the sum of acid-soluble organic Hg. and alkali-soluble Hg, was positively affected by silt (2~20μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  20. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    Ahmed, Ashour; Kühn, Oliver


    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil+3 HWE < soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  1. Helping People Understand Soils - Perspectives from the US National Cooperative Soil Survey

    Reich, Paul; Cheever, Tammy; Greene, Linda; Southard, Susan; Levin, Maxine; Lindbo, David L.; Monger, Curtis


    Throughout the history of the US National Cooperative Soil Survey (NCSS), soil science education has been a part of the mission to better understand one of our most precious natural resources: the Soil. The poster will highlight the many products and programs related to soils that USDA NRCS ( has developed over the years for K-12 and college/professional education. NRCS scientific publications covering topics on soil properties, soil classification, soil health and soil quality have become an important part of the university soil science curriculum. Classroom lesson plans and grade appropriate materials help K-12 teachers introduce soil concepts to students and include detailed instructions and materials for classroom demonstrations of soil properties. A Handbook for Collegiate Soils Contests support universities that conduct Collegiate Soil Judging contests.

  2. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen


    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  3. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Sanderman, Jonathan; Chappell, Adrian


    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.


    Vincenzo Bagarello


    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  5. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    Poulsen, Tjalfe

    designing and operating remediation systems. Simple and accurate models for estimating soil properties from soil parameters that are easy to measure are useful in connection with preliminary remedial investigations and evaluation of remedial technologies. In this work simple models for predicting transport...

  6. Developments and departures in the philosophy of soil science

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  7. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring

    Nocita, M.; Stevens, A.; van Wesemael, Bas


    The soil science community is facing a growing demand of regional, continental, and worldwide databases in order to monitor the status of the soil. However, the availability of such data is very scarce. Cost-effective tools to measure soil properties for large areas (e.g., Europe) are required...... in analytical costs, and an increased comparability of results between laboratories. This ambitious project will materialize only through (1) the establishment of local and regional partnerships among existent institutions able to generate the necessary technical competence, and (2) the support of international...

  8. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    Ridvan Kizilkaya; Tayfun Aşkin


    Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geosta...

  9. Stress transmission in soil

    Lamandé, Mathieu; Schjønning, Per

    . The tests took place in the spring at field capacity when the topsoil had not been tilled for 1½ year. Two Nokian ELS Radial-ply tyres (800/50R34 and 560/45R22.5) were loaded with two specific loads (30 kN and 60 kN). We used rated tyre inflation pressures for traffic in the field (≤10 km h-1 driving speed...... the soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports...

  10. Soil on Phoenix Deck


    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image. This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Tracing soil erosion impacts on soil organisms using 137Cs and soil nematodes

    Baxter, Craig; Rowan, John S.; McKenzie, Blair M.; Neilson, Roy


    The application of environmental radionuclides in soil tracing and erosion studies is now well established in geomorphology. Sediment and erosion-tracing studies are undertaken for a range of purposes in the earth sciences but until now few studies have used the technique to answer biological questions. An experiment was undertaken to measure patterns of soil loss and gain over 50 years, effectively calculating a field-scale sediment budget, to investigate soil erosion relationships between physical and biological soil components. Soil nematodes were identified as a model organism, a ubiquitous and abundant group sensitive to disturbance and thus useful indicator taxa of biological and physico-chemical changes. A field site was selected at the James Hutton Institute's experimental Balruddery Farm in NE Scotland. 10 metre-resolution topographical data was collected with differential GPS. Based on these data, a regular 30 m-resolution sampling grid was constructed in ArcGIS, and a field-sampling campaign undertaken. 104 soil cores (~50 cm-deep) were collected with a percussion corer. Radio-caesium (137Cs) activity concentrations were measured using high-purity germainum gamma-ray spectroscopy, and 137Cs areal activities derived from these values. Organic matter content by loss on ignition and grain-size distribution by laser granulometry were also measured. Additional samples were collected to characterise the soil nematode community, both for abundance and functional (trophic) composition using a combination of low-powered microscopy and molecular identification techniques (dTRFLP). Results were analysed with ArcGIS software using the Spatial Analyst package. Results show that spatial relationships between physical, chemical and biological parameters were complex and interrelated. Previous field management was found to influence these relationships. The results of this experiment highlight the role that soil erosion processes play in medium-term restructuring of the

  12. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas


    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  13. A Review of Fishpond Soil Management Principles in Nigeria

    A.T. Ekubo; J.F.N. Abowei


    The suitability of sites for culture fisheries depends on the soil. There is therefore the need to have proper background on the nature and properties of soils. The pond oils, soil functions in fish pond, soil characterization, components and soil mineral constituents, oil profile soil classification, soil fertility, nutrients, primary and secondary nutrients, soil organic matter, common soil problems, field and laboratory methods in acid sulphate soil identification, management of acid sulph...

  14. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Keesstra, Saskia; Cerdà, Artemi; Brevik, Eric C.


    Soil management has important effects on soil properties, runoff, soil losses and soil quality. Traditional olive grove (OG) management is based on reduced tree density, canopy size shaped by pruning and weed control by ploughing. In addition, over the last several decades, herbicide use has been

  15. Finnish Society of Soil Sciences

    Rankinen, Katri; Hänninen, Pekka; Soinne, Helena; Leppälammi-Kujansuu, Jaana; Salo, Tapio; Pennanen, Taina


    In 1998 the organization of the International Union of Soil Sciences (IUSS) was renewed to better support national activities. That was also the new start in the operation of the Finnish Society of Soil Sciences, which became affiliated to the IUSS. The society was originally established in 1971 but it remained relatively inactive. Currently, there are around 200 members in the Finnish Society of Soil Sciences. The members of the executive board cover different fields of soil science from geology to microbiology. Mission statement of the society is to promote the soil sciences and their application in Finland, to act as a forum for creation of better links between soil scientists, interested end users and the public, and to promote distribution and appreciation of general and Finnish research findings in soil science. Every second year the society organizes a national two-day long conference. In 2017 the theme 'circular economy' collected all together 57 presentations. The members of the incoming student division carried responsibility in practical co-ordination committee, acting also as session chairs. In the intervening years the society organizes a weekend excursion to neighboring areas. Lately we have explored the use of biochar in landscaping of Stockholm.

  16. Decomposition of Diethylstilboestrol in Soil

    Gregers-Hansen, Birte


    The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after the e...... not inhibit the CO2 production from the soil.Experiments with γ-sterilized soil indicated that enzymes present in the soil are able to attack DES.......The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after...

  17. The soil reference shrinkage curve

    Chertkov, V Y


    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...

  18. Hydroxyatrazine in soils and sediments

    Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.


    Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.

  19. Soil carbon determination by thermogravimetrics.

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex B


    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  20. Soil carbon determination by thermogravimetrics

    Robert Pallasser


    Full Text Available Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  1. Remediation of contaminated soil using soil washing-a review



    Full Text Available Pb, Zn, Ni, Cu, Mn and Cd are heavy metals occur naturally as trace elements in many soils. The present paper reviews the remediation of heavy metals of contaminated soil by soil washing using different agents. It was noted that the contact time, pH, concentration of extract ant and agitation speed were affected the process while remediation, so accordingly select the conditions to obtain efficiency which is mainly depend upon the type of soil, contaminationtype, contamination period and metals present in it.EDTA is effective when compared with other chelating agents for heavy metals especially for lead but it has low biodegradation. Because of the nature of low biodegradability, EDTA can be reusedfurther by membrane separation and electrochemical treatment, or degraded by advanced oxidation processes.

  2. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.


    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  3. Biochar degradation in different soils

    Wilske, B.; Bai, M.; Eckhardt, C.; Kammann, C.; Kraft, P.; Bach, M.; Frede, H.-G.; Breuer, L.


    Current expectations in biochar products (BC) are numerous, e.g., including improved soil fertility & plant growth, support to combat desertification, and an increase in the carbon sequestration of soils. Costs for biochar production & application must be covered by a positive budget of benefits, which may crucially depend on the residence time (or half life T1/2, yr) of BC in soils. The objective of the present study was to assess the biodegradation rates of BC in different soils by means of a cost-efficient and standardized laboratory method. Investigated BC were from the source material of the C4 plant Miscanthus, and converted via (1) pyrolysis (pyrBC) and (2) hydrothermal carbonization (htcBC). The high-labelling of the educt allowed the quantification of degradation by measurement of the 13CO2 efflux. The pyrBC and htcBC were mixed with four different agricultural soils ranging in texture from sand to loam and in soil organic carbon (SOC) from 0.63% to 2.53%. Four samples of each BC-soil combination (1% BC wt/wt in a 300-g sample mixture) and soil-only reference were incubated in 1-L glass bottles at 40% water holding capacity and 25° C. Biodegradation of BC was monitored weekly over a period of 7 months using an automated open-dynamic chamber system. The system couples the batch of samples to microprocessor- controlled valves, by which flushing is provided for the batch, while individual samples are consecutively connected through to a wavelength scan cavity ring down spectrometer (WS-CRDS). Net 13CO2 efflux from BC was obtained by subtracting the 13CO2 efflux from "soil-only" samples. T1/2 was calculated based on the ln(k)-based algorithm recently suggested by Zimmerman et al. (2010). Results show an orders-of-magnitude larger T1/2 of BC in poor sandy soil than in SOC-richer soils (T1/2 up to 106 yrs) but not a statistically clear trend of biodegradability along the four-point SOC gradient. This was similar in both BC types, although T1/2 was generally

  4. Dynamic Soil-Structure-Interaction

    Kellezi, Lindita


    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...... represents an attempt to construct a local stiffness for the unbounded soil domain....

  5. Uniaxial Tensile Test for Soil.


    1370 UNIAXIAL TENSILE TEST FOR SOIL(U) ARMY’ ENGINEER 1/2 LD D A LEAVELL ET AL. APR 67 I4ES/TR/GL-67-14 UNCLSED F/ 9/10NL Eammhhmhhhml mommomhhhhmhl...mmohhhmmhmhhl mmohhmhhhomhl mhhhhhhhhhhhomu 3Wo HhII~ "’OM U1.2 1111 . 111.6 U- TECHNICAL REPORT GL-87-10 UNIAXIAL TENSILE TEST FOR SOIL by Daniel A...Classification) Uniaxial Tensile Test for Soil 12 PERSONAL AUTHOR(S) Leavell, Daniel A.; Peters, John F. 13a. TYPE OF REPORT 1 3b TIME COVERED 14. DATE OF

  6. Selected soil thermal conductivity models

    Rerak Monika


    Full Text Available The paper presents collected from the literature models of soil thermal conductivity. This is a very important parameter, which allows one to assess how much heat can be transferred from the underground power cables through the soil. The models are presented in table form, thus when the properties of the soil are given, it is possible to select the most accurate method of calculating its thermal conductivity. Precise determination of this parameter results in designing the cable line in such a way that it does not occur the process of cable overheating.

  7. Passive microwave soil moisture research

    Schmugge, T.; Oneill, P. E.; Wang, J. R.


    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  8. Soil Albedo in Relation to Soil Color, Moisture and Roughness

    Fontes, Adan Fimbres

    Land surface albedo is the ratio of reflected to incident solar radiation. It is a function of several surface parameters including soil color, moisture, roughness and vegetation cover. A better understanding of albedo and how it changes in relation to variations in these parameters is important in order to help improve our ability to model the effects of land surface modifications on climate. The objectives of this study were (1) To determine empirical relationships between smooth bare soil albedo and soil color, (2) To develop statistical relationships between albedo and ground-based thematic mapper (TM) measurements of spectral reflectances, (3) To determine how increased surface roughness caused by tillage reduces bare soil albedo and (4) To empirically relate albedo with TM data and other physical characteristics of mixed grass/shrubland sites at Walnut Gulch Watershed. Albedos, colors and spectral reflectances were measured by Eppley pyranometer, Chroma Meter CR-200 and a Spectron SE-590, respectively. Measurements were made on two field soils (Gila and Pima) at the Campus Agricultural Center (CAC), Tucson, AZ. Soil surface roughness was measured by a profile meter developed by the USDA/ARS. Additional measurements were made at the Maricopa Agricultural Center (MAC) for statistical model testing. Albedos of the 15 smooth, bare soils (plus silica sand) were determined by linear regression to be highly correlated (r^2 = 0.93, p > 0.01) with color values for both wet and dry soil conditions. Albedos of the same smooth bare soils were also highly correlated (r^2>=q 0.86, p > 0.01) with spectral reflectances. Testing of the linear regression equations relating albedo to soil color and spectral reflectances using the data from MAC showed a high correlation. A general nonlinear relationship given by y = 8.366ln(x) + 37.802 r^2 = 0.71 was determined between percent reduction in albedo (y) and surface roughness index (x) for wet and dry Pima and Gila field soils

  9. Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields


    LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/ polyacrylamide copolymers in granular form that also gel in the presence...with the soil water and cure. Unlike strength loss due to the fibers bunching, adding the cement on the second day only results in a reduction of the...the method of treatment, which Maclean (1956) has found to have significantly different correlated CBR and UCS values, where soils with higher friction

  10. Soils of Walker Branch Watershed

    Lietzke, D.A.


    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  11. Progress towards soil database of Denmark

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog


    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This stu...... content mapping, the plans for future soil mapping activities in support to project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  12. Soil Erosion. LC Science Tracer Bullet.

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  13. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    Bouma, T.J.; Bryla, D.R.


    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respira

  14. Nematode survival in relation to soil moisture

    Simons, W.R.


    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival of nematode

  15. Soil erosion in humid regions: a review

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover


    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  16. Humble View on Soil Water Resources



    Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.

  17. Careers in Science: Being a Soil Scientist

    Bryce, Alisa


    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  18. Degradation of Soil Nutrients in Southeast China


    A total of 2190 soil nutrient data in the Second National Soil Survey of China were collected to assess the degradation of soil nutrients in the hilly region of Southeast China. The definition of soil nutrient degradation is suggested firstly, then the evaluation criteria are set up and the current status of degradation of red soil and latosol is assessed. The percentages of areas in four grades of soil nutrient degradation, i.e., slightly deficient, medium deficient, severely deficient and extremely deficient, were 21.3%, 43.3%, 16.2% and 3.0% for soil total N; 0.7%, 6.4%, 16.7% and 76.2% for soil available P; and 25.4%, 26.3%, 8.6% and 5.0% for soil available K, respectively. The severity of soil nutrient degradation was in the order of P > N > K. The major factors leading to the degradation of soil nutrients in quantity include soil erosion, leaching and the consumption by crops. And the principal factor affecting the degradation of soil nutrients in availability is the fixation of N, P and K, especially the fixation of phosphorus. The average amount of P fixed by soils is 408 mg kg-1, and upland soils can fix more P than paddy soils.

  19. Progress of Soil Research in China


    @@ Soil,as a survival natural resource for the existent of human beings,is always highly concerned by contemporary scientists.Being a tag to symbolize the development level of soil science,research in soil classification is a focus in today's international soil science.

  20. Vital Soil: Function, Value and Properties.

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  1. Occurrence of entomopathogenic fungi in arable soil

    Ryszard Miętkiewski


    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  2. Nematode survival in relation to soil moisture

    Simons, W.R.


    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival

  3. Principles of soil conservation and management

    Blanco, Humberto; Lal, R


    ... of erosion. Yet, a state-of-the-science textbook for graduate and undergraduate students with emphasis on soil management to address the serious problems of soil erosion and the attendant environmental pollution is needed. Managing soils under intensive use and restoring eroded/degraded soils are top priorities to a sustained agronomic and forestry pr...

  4. Refining soil survey information for a Dutch soil series using land use history

    Sonneveld, M.P.W.; Bouma, J.; Veldkamp, A.


    Differences in land-use history within soil series, although not influencing soil classification, lead to variability of non-diagnostic soil properties in soil databases. Regional studies that use soil databases are confronted with this considerable variability. This has, for example, been reported

  5. Soil dynamics of the origination of soil tare during sugar beet lifting

    Vermeulen, G.D.; Koolen, A.J.


    High soil tare of sugar beet on wet clay soil after uprooting with share lifters is usually attributed to the fact that the soil becomes sticky due to mechanical impact during uprooting. Results of field experiments have shown good potential for obtaining low soil tare of sugar beet on wet clay soil

  6. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Thiet, Rachel K.


    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  7. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Thiet, Rachel K.


    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  8. Effects of environmental factors and soil properties on topographic variations of soil respiration

    K. Tamai


    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  9. EuroSoil2012: Soil science for the benefit of mankind and environment

    EuroSoil2012 was convened in Bari ITALY from 2-6 July 2012 as the 4th International Congress of the European Confederation of Soil Science Societies (ECSSS). The theme of EuroSoil2012 as “soil science for the benefit of mankind and environment” aimed to cover several broad aspects of soil science w...

  10. Economic Analysis on Monetization of Soil Functions

    Zenglei; XI; Shaoqing; ZHANG


    On the basis of making clear diversity characteristics of soil functions and multiple characteristics of income, this paper points out that the monetization of soil functions based functional maintenance and change decision process can be regarded as a game process of different utilization methods at the background of different functions. The balance of this game process will determine monetary value of soil functions. After understanding money and monetization concepts, it introduces that measurability and exchangeability of soil functions provide objective conditions for monetization of soil functions. Finally, it discusses that usefulness value of soil functions provide basis for monetization of soil functions.

  11. Microorganisms as Indicators of Soil Health

    Nielsen, M. N.; Winding, A.; Binnerup, S.

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... ecosystem parameters representing policy relevant end points. It is further recommended to identify a specific minimum data set for specific policy relevant end points, to carefully establish baseline values, to improve scientific knowledge on biodiversity and modelling of soil data, and to implement new...... indicators into soil monitoring programmes as they become applicable....

  12. Worldwide organic soil carbon and nitrogen data

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)


    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  13. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.


    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  14. Impact of soil properties on selected pharmaceuticals adsorption in soils

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej


    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  15. Thermo-diffusional radon waves in soils.

    Minkin, Leonid; Shapovalov, Alexander S


    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown.

  16. Effect of Biochar on Soil Physical Characteristics

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  17. Soil and Rock Mechanics Lab

    Federal Laboratory Consortium — The 10,000-sq ft soil mechanics research facility is the largest in the Department of Defense and has a loading capability of 250,000 lb on triaxial specimens up to...

  18. Ash in the Soil System

    Pereira, P.


    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  19. Biochar as a soil amendment

    Medyńska-Juraszek Agnieszka


    Full Text Available Biochar is a carbonaceous product of biomass pyrolysis under limited oxygen conditions. Due to the very good sorption properties material is used as a soil amendment. In recent years, much attention has been paid to biochar as a potential tool improving soil properties and fertility. The most important benefits of its use in agriculture is a significant increase of sorption capacity, reduced nutrient leaching, as well as slow release of macro- and microelements essential for plant growth, liming effect, increased water holding capacity, improved biological properties, resulting in an increase in crop yields. The aim of the study is to summarize the knowledge about the impact of biochar on soil environment, as well as identify areas and directions for future research on biochar application in soils impacted by human activities


    one billion people in the world are physical activity and poor growth infected with soil ... and growth. STH causes major human illness .... group could also be due to the route of infection ... human in a hyperendemic area of southern. Nigeria.

  1. Phytoremediation of Soil Trace Elements

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  2. Colloid Release from Soil Aggregates

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per;


    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  3. NWCA 2011 Soil Chemistry - Data

    U.S. Environmental Protection Agency — NWCA 2011 Soil Chemistry Data. This dataset is associated with the following publication: Nahlik, A., and M.S. Fennessy. Carbon storage in US wetlands. Nature...

  4. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    Coates, Victoria; Pattison, Ian; Sander, Graham


    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  5. Using nematodes in soil ecotoxicology.

    Sochová, Ivana; Hofman, Jakub; Holoubek, Ivan


    Nematodes represent a very abundant group of soil organisms and non-parasitic species are important for soil quality and in the soil food web. In recent years, it has been shown that nematodes are appropriate bioindicators of soil condition and they are also suitable organisms for laboratory toxicity testing. The aims of this paper are to overview and critically assess methods and approaches for researching soil nematode ecotoxicology. In natural ecosystems, nematode abundance and community structure analyses were proved to be sensitive indicators of stress caused by soil pollutants and ecological disturbance. Community structure analyses may be approached from a functional or ecological point of view; species are divided into groups according to their feeding habits or alternatively the maturity index is calculated according to their ecological strategy. Many environmental factors have the potential to affect nematode community, which consequently results in high space and time variability. This variance is major handicap in field ecotoxicological studies because pollutant-nematode relationships are obscured. For prospective risk assessment of chemicals, several toxicity tests with nematodes were developed and are increasingly used. Sensitivity of these tests is comparable to tests with other soil species (e.g. enchytraeids, earthworms and springtails) while tests are less demanding to space and time. Most studies have focused on metal toxicity but organic compounds are almost overlooked. Endpoints used in tests were often mortality, reproduction or movement, but more sublethal endpoints such as feeding or biomarkers have been used recently too. Although there is an increasing amount of knowledge in soil nematode ecotoxicology, there is still a lot of various issues in this topic to research.

  6. Structure and composition of soils

    Snežana Nenadović


    Full Text Available This paper presents a study of soils structure and composition using up to date technique, such as scanning electronic microscopy, atomic force microscopy, X-ray diffraction, X-ray fluorescence, as well as some other characterization methods. It was shown that soil particles have porous structure and dimensions in the range from several millimeters to several hundreds of nanometers and consist of different minerals such as kaolin, quartz and feldspate.

  7. Permafrost soils and carbon cycling

    Ping, C. L.; J. D. Jastrow; Jorgenson, M. T.; G. J. Michaelson; Y. L. Shur


    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This...

  8. Visual soil assessment: field guide for cropping

    Shepherd, Graham


    Visual assessments provide an immediate diagnostic tool to evaluate soil quality, as many physical, biological (and to a lesser degree chemical) soil characteristics show up as visual characteristics. Results are easy to interpret and understand. The Visual Soil Assessment (VSA) method has been developed to help land managers assess soil quality easily, quickly, reliably and cheaply on a paddock scale. It requires little equipment, training or technical skills. Part I, “VSA of soil qu...

  9. Enzyme activity in forest peat soils

    Błońska, Ewa


    The aim of the study was to determine the activity of dehydrogenases and urease in forest peat soils of different fertility. There were selected 23 experimental plots localised in central and northern Poland. The research was conducted on forest fens, transition bogs and raised bogs. The biggest differences in soil physical and chemical properties were detected between fen and raised bog soils while raised bog soils and transition bog soils differed the least. Statistically significant dif...

  10. Geotehnical Properties of Plastic Stabilized Lateritic Soil

    Akinola Johnson Olarewaju


    Stabilization is the combination of soils and additives to change its properties and remain in its stable compacted state without undergoing any change under effect of exposure to weather and traffic. Soil stabilization through the reinforced soil construction is an efficient and reliable technique for improving the strength and stability of soils. The lateritic soil used in this study was taken along Papa-Ilaro road Ajegunle at Abalabi, Ogun State, Nigeria and the solid plastic wastes were t...

  11. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Lal, R.


    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  12. Photodissolution of soil organic matter

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.


    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  13. Brazilian Cerrado Soil Actinobacteria Ecology

    Monique Suela Silva


    Full Text Available A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil. The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora and 92 distinct species in both seasons studied (rainy and dry. The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  14. Early Soil Moisture Field Experiments

    Schmugge, T.


    Before the large scale field experiments described in the call for papers, there were a number of experiments devoted to a single parameter, e.g. soil moisture. In the early 1970's, before the launch of the first microwave radiometer by NASA, there were a number of aircraft experiments to determine utility of these sensors for land observations. For soil moisture, these experiments were conducted in southwestern United States over irrigated agricultural areas which could provide a wide range of moisture conditions on a given day. The radiometers covered the wavelength range from 0.8 to 21 cm. These experiments demonstrated that it is possible to observe soil moisture variations remotely using a microwave radiometer with a sensitivity of about 3 K / unit of soil moisture. The results also showed that the longer wavelengths were better, with a radiometer at the 21 cm wavelength giving the best results. These positive results led to the development of Push Broom Microwave Radiometer (PBMR) and the Electrically Scanned Thinned Array Radiometer (ESTAR) instruments at the 21-cm wavelength. They have been used extensively in the large-scale experiments such as HAPEX-MOBILHY, FIFE, Monsoon90, SMEX, etc. The multi-beam nature of these instruments makes it possible to obtain more extensive coverage and thus to map spatial variations of surface soil moisture. Examples of the early results along with the more recent soil moisture maps will be presented.

  15. Phytoremediation of petroleum polluted soil

    Wang Jing; Zhang Zhongzhi; Su Youming; He Wei; He Feng; Song Hongguang


    An experimental study of the rhizosphere effect on phytoremediation of petroleum polluted soil was carried out with three species of grasses,namely Pannicum,Eleusine indica (L.) Gaerth,and Tall Fescue.After a period of 150 days,this pot experiment showed that the rhizosphere of these three species accelerated the degradation of petroleum hydrocarbons to different extents.The results showed that the number of microorganisms in the rhizosphere increased by three orders of magnitude.The induction of the plant rhizosphere and the coercion influence of petroleum changed the species and activity of microorganisms.The degradation of petroleum hydrocarbons in the rhizosphere was 3-4 times that in unplanted soil.The dehydrogenase activity in the rhizosphere was 1.61-2.20 times that in unplanted soil,but the catalase activity was 0.90-0.93 times that in unplanted soil,and soil moisture content increased by 5% compared with the unplanted soil.

  16. Nuclear forensics: Soil content

    Beebe, Merilyn Amy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  17. Roles of soil biota and biodiversity in soil environment – A concise communication

    Suleiman Usman


    Full Text Available Soil biota (the living organisms in soil plays an important role in soil development and soil formation. They are the most important component of soil organic matter decomposition and behave efficiently in the development and formation of soil structure and soil aggregate. Their biodiversity provides many functional services to soil and soil components. They help in dissolving verities of plant and animal materials, which could left as decayed organic matter at the surface soil. Understanding the vital role of soil organisms would undoubtedly helps to increase food production and reduces poverty, hunger and malnutrition. Soil biota and biodiversity research in sub-Saharan Africa would play an important role in sustaining food security, environmental health, water quality and forest regeneration. This paper, briefly highlighted some of the biological functions of soil biota and suggests that proper understandings of biota and their biodiversity in soil environment would provide ways to get better understanding of soil health, soil function, soil quality and soil fertility under sustainable soil management activities in agricultural production.

  18. Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives

    Iñigo Virto


    Full Text Available The extent and causes of chemical, physical and biological degradation of soil, and of soil loss, vary greatly in different countries in Western Europe. The objective of this review paper is to examine these issues and also strategies for soil protection and future perspectives for soil quality evaluation, in light of present legislation aimed at soil protection. Agriculture and forestry are the main causes of many of the above problems, especially physical degradation, erosion and organic matter loss. Land take and soil sealing have increased in recent decades, further enhancing the problems. In agricultural land, conservation farming, organic farming and other soil-friendly practices have been seen to have site-specific effects, depending on the soil characteristics and the particular types of land use and land users. No single soil management strategy is suitable for all regions, soil types and soil uses. Except for soil contamination, specific legislation for soil protection is lacking in Western Europe. The Thematic Strategy for Soil Protection in the European Union has produced valuable information and has encouraged the development of networks and databases. However, soil degradation is addressed only indirectly in environmental policies and through the Common Agricultural Policy of the European Union, which promotes farming practices that support soil conservation. Despite these efforts, there remains a need for soil monitoring networks and decision-support systems aimed at optimization of soil quality in the region. The pressure on European soils will continue in the future, and a clearly defined regulatory framework is needed.

  19. Hydrolysis of nitriles by soil bacteria: variation with soil origin.

    Rapheeha, O K L; Roux-van der Merwe, M P; Badenhorst, J; Chhiba, V; Bode, M L; Mathiba, K; Brady, D


    The aim of this study was to explore bacterial soil diversity for nitrile biocatalysts, in particular, those for hydrolysis of β-substituted nitriles, to the corresponding carboxamides and acids that may be incorporated into peptidomimetics. To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long transect of South Africa, including agricultural soil, a gold mine tailing dam and uncultivated soil. The substrate profile of these isolates was determined through element-limited growth studies on seven different aliphatic or aromatic nitriles. A subset of these organisms expressing broad substrate ranges was evaluated for their ability to hydrolyse β-substituted nitriles (3-amino-3-phenylpropionitrile and 3-hydroxy-4-phenoxybutyronitrile) and the active organisms were found to be Rhodococcus erythropolis from uncultivated soil and Rhodococcus rhodochrous from agricultural soils. The capacity for hydrolysis of β-substituted nitriles appears to reside almost exclusively in Rhodococci. Land use has a much greater effect on the biocatalysis substrate profile than geographical location. Enzymes are typically substrate specific in their catalytic reactions, and this means that a wide diversity of enzymes is required to provide a comprehensive biocatalysis toolbox. This paper shows that the microbial diversity of nitrile hydrolysis activity can be targeted according to land utilization. Nitrile biocatalysis is a green chemical method for the enzymatic production of amides and carboxylic acids that has industrial applications, such as in the synthesis of acrylamide and nicotinamide. The biocatalysts discovered in this study may be applied to the synthesis of peptidomimetics which are an important class of therapeutic compounds. © 2016 The Society for Applied Microbiology.

  20. Relationship Between Soil Properties and Different Fractions of Soil Hg



    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing,China,Results showed that clay(<2m) could increase water-soluble Hg(r=0.700*).Soil organic matter (OM) could enhance the increase of elemental Hg(r=0.674*),The higher the base saturation percentage (BSP) ,the more the residual Hg(R=0.684*) .Organic Hg,the sum of said-soluble organic He and alkali-soluble Hg,was positively affected by silt(2-20μm)but negatively affected by pH,with the direct path coefficients amounting to 1.0487 and 0.5121,respectively .The positive effect of OM and negative effect of BSP on organic Hg were the most significant ,with the direct path coefficients being 0.7614 and -0.8527,respectively. The indirect effect of clay(<2μm) iva BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) via BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) on acid-soluble organic Hw was BSP.since the available Hg fraction,water-soluble Hg,was positively affected by soil clay content,and the quite immobile and not bioavailable residual Hg by soil BSP,suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  1. Soil hydrologic characterization for modeling large scale soil remediation protocols

    Romano, Nunzio; Palladino, Mario; Di Fiore, Paola; Sica, Benedetto; Speranza, Giuseppe


    In Campania Region (Italy), the Ministry of Environment identified a National Interest Priority Sites (NIPS) with a surface of about 200,000 ha, characterized by different levels and sources of pollution. This area, called Litorale Domitio-Agro Aversano includes some polluted agricultural land, belonging to more than 61 municipalities in the Naples and Caserta provinces. In this area, a high level spotted soil contamination is moreover due to the legal and outlaw industrial and municipal wastes dumping, with hazardous consequences also on the quality of the water table. The EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS) has the major aim of defining an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of crops extracting pollutants to be used as biomasses for renewable energy production. In the framework of this project, soil hydrologic characterization plays a key role and modeling water flow and solute transport has two main challenging points on which we focus on. A first question is related to the fate of contaminants infiltrated from stormwater runoff and the potential for groundwater contamination. Another question is the quantification of fluxes and spatial extent of root water uptake by the plant species employed to extract pollutants in the uppermost soil horizons. Given the high variability of spatial distribution of pollutants, we use soil characterization at different scales, from field scale when facing root water uptake process, to regional scale when simulating interaction between soil hydrology and groundwater fluxes.

  2. Remote assessment of the degree of soil degradation from radiation properties of soils

    Romanov, A. N.


    The effect of the water and salt contents, the soil texture, and the groundwater level on the radiation properties of soils was studied. A methodology was developed for the remote assessment of the degree of soil degradation on the basis of measuring the brightness temperature and emissivity of soils in the microwave region. Criteria based on the remote measurements of radiation parameters of soils for recording changes in the water-physical and other properties of soils, which are necessary for detecting degradation processes at early stages, were substantiated. For the remote assessment of soil degradation, it was proposed to analyze trends in changes with time concerning the emissivities of unfrozen soils occurring at a positive temperature (depending on the soil water content and the groundwater level), the emissivities of frozen nonsaline soils (depending on the soil texture and thermodynamic temperature), and the brightness temperature (depending on the soil salinity and thermodynamic temperature).

  3. The soil management assessment framework: A potential soil health assessment tool

    The Soil Management Assessment Framework (SMAF) was developed in the 1990s utilizing Systems Engineering and Ecology experiences with scoring functions to normalize disparate soil physical, chemical, and biological indicator data representing critical properties and processes associated with soil qu...

  4. Pyrosequencing-based assessment of soil bacterial communities within soil aggregates: Linking structure to C storage

    Alterations in soil structural properties created by agricultural management practices have a significant influence on soil aggregation, which manages the chemical and physical heterogeneity of soil properties, and, consequently, the distribution of microorganisms and their activity among aggregates...

  5. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong


    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  6. Bioindication in Urban Soils in Switzerland

    Amossé, J.; Le Bayon, C.; Mitchell, E. A. D.; Gobat, J. M.


    Urban development leads to profound changes in ecosystem structure (e.g. biodiversity) and functioning (e.g. ecosystem services). While above-ground diversity is reasonably well studied much less is known about soil diversity, soil processes and more generally soil health in urban settings. Soil invertebrates are key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services. These functions may be even more vital in stressed environments such as urban ecosystems. Despite the general recognition of the importance of soil organisms in ecosystems, soil trophic food webs are still poorly known and this is especially the case in urban settings. As urban soils are characterised by high fragmentation and stress (e.g. drought, pollution) the structure and functioning of soil communities is likely to be markedly different from that of natural soils. It is for example unclear if earthworms, whose roles in organic matter transformation and soil structuration is well documented in natural and semi-natural soils, are also widespread and active in urban soils. Bioindication is a powerful tool to assess the quality of the environment. It is complementary to classical physicochemical soil analysis or can be used as sole diagnostic tool in cases where these analyses cannot be performed. However little is known about the potential use of bioindicators in urban settings and especially it is unclear if methods developped in agriculture can be applied to urban soils. The development of reliable methods for assessing the quality of urban soils has been identified as a priority for policy making and urban management in Switzerland, a high-urbanized country. We therefore initiated a research project (Bioindication in Urban Soil - BUS). The project is organised around four parts: (i) typology of urban soils in a study Region (Neuchâtel), (ii) sampling of soil fauna and analysis of soil physicochemical properties, (iii) comparison of the

  7. Soil Quality Indicator: a new concept

    Barão, Lúcia; Basch, Gottlieb


    During the last century, cultivated soils have been intensively exploited for food and feed production. This exploitation has compromised the soils' natural functions and many of the soil-mediated ecosystems services, including its production potential for agriculture. Also, soils became increasingly vulnerable and less resilient to a wide range of threats. To overcome this situation, new and better management practices are needed to prevent soil from degradation. However, to adopt the best management practices in a specific location, it is necessary to evaluate the soil quality status first. Different soil quality indicators have been suggested over the last decades in order to evaluate the soil status, and those are often based on the performance of soil chemical, physical and biological properties. However, the direct link between these properties and the associated soil functions or soil vulnerability to threats appears more difficult to be established. This present work is part of the iSQAPER project- Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience, where new soil quality concepts are explored to provide better information regarding the effects of the most promising agricultural management practices on soil quality. We have developed a new conceptual soil quality indicator which determines the soil quality status, regarding its vulnerability towards different threats. First, different indicators were specifically developed for each of the eight threats considered - Erosion, SOM decline, Poor Structure, Poor water holding capacity, Compaction, N-Leaching, Soil-borne pests and diseases and Salinization. As an example for the case of Erosion, the RUSLE equation for the estimate of the soil annual loss was used. Secondly, a reference classification was established for each indicator to integrate all possible results into a Good, Intermediate or Bad classification. Finally, all indicators were

  8. Modeling soil moisture memory in savanna ecosystems

    Gou, S.; Miller, G. R.


    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  9. Do current European policies support soil multifunctionality?

    Helming, Katharina; Glaesner, Nadia; de Vries, Wim


    Soils are multifunctional. Maximising one function, e.g. production of biomass, is often at the costs of the other functions, e.g. water purification, carbon sequestration, nutrient recycling, habitat provision. Sustainable soil management actually means the minimization of trade-offs between multiple soil functions. While Europe does not have a policy that explicitly focuses on soil functions, a number of policies exist in the agricultural, environmental and climate domains that may affect soil functions, in particular food production, water purification, climate change mitigation, biodiversity conservation. The objective of this study was to identify gaps and overlaps in existing EU legislation that is related to soil functions. We conducted a cross-policy analysis of 19 legislative policies at European level. Results revealed two key findings: (i) soil functions are addressed in existing legislation but with the approach to their conservation rather than their improvement. (ii) Different legislations addressed isolated soil functions but there is no policy in place that actually addressed the soil multifunctionality, which is the integrated balancing of the multitude of functions. Because soil degradation is ongoing in Europe, it raises the question whether existing legislation is sufficient for maintaining soil resources and achieving sustainable soil management. Addressing soil functions individually in various directives fails to account for the multifunctionality of soil. Here, research has a role to play to better reveal the interacting processes between soil functions and their sensitivity to soil management decisions and to translate such understanding into policy recommendation. We conclude the presentation with some insights into a research approach that integrates the soil systems into the socio-economic systems to improve the understanding of soil management pressures, soil functional reactions and their impacts on societal value systems, including

  10. Soil Carbon 4 per mille

    Minasny, Budiman; van Wesemael, Bas


    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  11. Simulation of Soil Water Content Variability in a Heavy Clay Soil under Contrasting Soil Managements

    Pedrera, A.; Vanderlinden, K.; Martínez, G.; Espejo, A. J.; Giráldez, J. V.


    Soil water content (SWC) is a key variable for numerous physical, chemical and biological processes that take place at or near the soil surface. Understanding the spatial and temporal variability of SWC at the field scale is of prime importance for implementing efficient measurement strategies in applications. The aim of this study was to characterize the spatial and temporal variation of gravimetric SWC in a heavy clay soil, in a wheat-sunflower-legume rotation under conventional (CT) and no-till (NT) using a simple water balance model. An experimental field in SW Spain, where conventional (CT) and no-till (NT) management of a heavy clay soil are being compared since 1983, was sampled for gravimetric SWC on 38 occasions during 2008 and 2009. Topsoil clay content across the six plots was on average 55%, with a standard deviation of 2.7%. The soil profile was sampled at 54 locations, evenly distributed over the three CT and NT plots, at depths of 0-10, 25-35, and 55-65 cm. Topsoil water retention curves (SWRC) were determined in the laboratory on undisturbed soil samples from each of the 54 locations. A weather station recorded daily precipitation and evapotranspiration, as calculated by the Penman-Monteith FAO equation. The water balance was calculated using the Thornthwaite-Mather model with a daily time step. Three parameters, water holding capacity, and water evaporation corrector coefficients for each of the two years, were inversely estimated at the 54 SWC observation points and probability density functions were identified. Spatial variability of SWC was estimated using a Monte Carlo approach, and simulated and observed variability were compared. This Monte Carlo scheme, using a simple water balance model with only three parameters, was found to be useful for evaluating the influence of soil management on the variability of SWC in heavy clay soils.

  12. Impact of soil management practices on soil fertility and disease suppressiveness

    Tamm, Lucius; Bruns, Christian; Leifert, Carlo; Fuchs, Jacques G.; Thürig, Barbara; Specht, Nicole; Fliessbach, Andreas


    Soil management practices are targeted to provide adequate crop nutrition and to ensure durable soil fertility and to avoid negative environmental impacts. Soil management also aims to reduce pest and disease pressure on crops. Organic farming is believed to increase soil suppressiveness towards soil-borne diseases as well aerial diseases. In this paper we will discuss the potential of soil manage-ment as a tool to improve disease suppressiveness in practice.

  13. Prediction the soil erodibility and sediments load using soil attributes

    Uones Mazllom


    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study was to estimate the soil erodibility in Sanganeh area located in Naderi Kalat, Khorasan Razavi Province of northeastern Iran. The sediments load collected during the 17 rainfall events were measured at the end of 12 plots during 2009-2012. The K factor was calculated according to the USLE for each plot and rainfall event. The relationships between K factor and measured sediments load with soil attributes were studied. The results showed that calcium carbonate, SAR (sodium absorption ratio, silt, clay contents, and SI (structural stability index were the most effective soil attributes for estimating the sediments load and OM (organic matter, sand, SI and calcium carbonate, silt, clay contents, and SI for K factor. The results of stepwise regression equations showed that the precision of regression equation derived from PCA for estimating the K factor and sediments load were more than ones derived from correlation test. According to the results of this research, it’s recommended that PCA be applied for determination the effective soil attributes for estimating the K factor in USLE and sediments load in studied area.

  14. Colloid Release From Differently Managed Loess Soil

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per


    of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had......The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA...

  15. Managing for soil health can suppress pests

    Amanda Hodson


    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  16. Human land-use and soil change

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn


    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems

  17. Soil Water and Temperature System (SWATS) Handbook

    Bond, D


    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  18. Stocks of organic carbon in Estonian soils

    Kõlli, Raimo


    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  19. Speciation of Pb in industrially polluted soils

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Pedersen, Anne Juul


    This study was aimed at elucidating the importance of original Pb-speciation versus soil-characteristics to mobility and distribution of Pb in industrially polluted soils. Ten industrially polluted Danish surface soils were characterized and Pb speciation was evaluated through SEM-EDX studies......, examination of pH-dependent desorption, distribution in grain-size fractions and sequential extraction. Our results show that the first factors determining the speciation of Pb in soil are: (1) the stability of the original speciation and (2) the contamination level, while soil characteristics...... are of secondary importance. In nine of ten soils Pb was concentrated strongly in the soil fines (soils, particles with a highly concentrated Pb-content were observed during SEM-EDX. In eight of the soils, the particles contained various Pb-species with aluminum/iron, phosphate, sulfate...

  20. Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris


    Secondary metabolites like pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. We studied the effects of soil-borne microorganisms and soil-type on pyrrolizidine alkaloids in roots and shoots of Jacobaea vulgaris. We used clones of two genotypes from a dune area (Meijendel), propagated by tissue culture and grown on two sterilized soils and sterilized soils inoculated with 5% of non-sterilized soil of either of the two soil-types. Soil-borne microorganisms and soil-type affect...

  1. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil

    Turtola, Eila; Alakukku, Laura; Uusitalo, Risto; Kaseva, Antti


    Conservation tillage practices were tested against autumn mouldboard ploughing for differences in physical properties of soil, surface runoff, subsurface drainflow and soil erosion. The study (1991-2001...

  2. Continuous Mapping of Soil pH Using Digital Soil Mapping Approach in Europe

    Ciro Gardi; Yusuf Yigini


    Soil pH is one of the most important chemical parameters of soil, playing an essential role on the agricultural production and on the distribution of plants and soil biota communities. It is the expression of soil genesis that in turns is a function of soil forming factors and influences all the chemical, physical and biological processes that occur in the soil. Thus it shapes the entire soil ecosystem. Due to any of the above reasons, mapping of soil pH becomes very important to provide harm...

  3. Impacts of Soil Moisture Content and Vegetation on Shear Strength of Unsaturated Soil

    YANG Yong-hong; ZHANG Jian-guo; ZHANG Jian-hui; LIU Shu-zhen; WANG Cheng-hua; XIAO Qing-hua


    It is analyzed that the impacts of vegetation type and soil moisture content on shear strength of unsaturated soil through direct shearing tests for various vegetation types, different soil moisture contents and different-depth unsaturated soil. The results show that the cohesion of unsaturated soil changes greatly, and the friction angle changes a little with soil moisture content. It is also shown that vegetation can improve shear strength of unsaturated soil, which therefore provides a basis that vegetation can reinforce soil and protect slopes.

  4. Soil Degradation and Soil Value in Slovakia – Two Problems with Common Denominator

    Radoslav Bujnovský


    Full Text Available Soil use is oft en accompanied by its degradation. Immediate reason of soil degradation in agriculture is the non-respecting the principles of good agricultural practice. Giving long-term precedence to production function over remaining ecological ones as well as supporting the land consumption for economy development by governmental bodies are next reasons of soil degradation and mirror the societal values and priorities.Soil provides many services that in soil science are defined as soil functions. Besides biomass production the soil provides ecological and socio-economic functions. Use of soil and its functions is closely linked to soil ecological, societal and economic values. Preference to economic interests together with reluctance to search compromise solutions is oft en manifesting in soil degradation. Economic valuation of soil and its ecological functions is considered a possible way for improvement of soil protection especially in modification of soil price at its permanent consumption. In spite of that financial values can not be used as a base for forming of ethical values, which are imminently connected with human approach towards soil and its degradation, and which are essentially needed by global society. Ethical human values, based on basic beliefs and convictions, influence of human attitude to the soil, and they influence on soil use can be considered as common denominator of soil degradation and soil value, respectively.

  5. Clay-illuvial soils in the Polish and international soil classifications

    Kabała Cezary


    Full Text Available Soil with a clay-illuvial subsurface horizon are the most widespread soil type in Poland and significantly differ in morphology and properties developed under variable environmental conditions. Despite the long history of investigations, the rules of classification and cartography of clay-illuvial soils have been permanently discussed and modified. The distinction of clay-illuvial soils into three soil types, introduced to the Polish soil classification in 2011, has been criticized as excessively extended, non-coherent with the other parts and rules of the classification, hard to introduce in soil cartography and poorly correlated with the international soil classifications. One type of clay-illuvial soils (“gleby płowe” was justified and recommended to reintroduce in soil classification in Poland, as well as 10 soil subtypes listed in a hierarchical order. The subtypes may be combined if the soil has diagnostic features of more than one soil subtypes. Clear rules of soil name generalization (reduction of subtype number for one soil were suggested for soil cartography on various scales. One of the most important among the distinguished soil sub-types are the “eroded” or “truncated” clay-illuvial soils.

  6. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    José Paulo Molin


    Full Text Available Soil electrical conductivity (ECa is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semivariogram models, adjusted for soil moisture, had strong spatial dependence, but the relationship between soil moisture and soil ECa was obtained only in one of the experimental fields, where soil moisture and clay content range was higher. In this same field, coefficients of determinations between soil moisture and clay content were above 0.70. In the second field, the low soil moisture and clay content range explain the absence of a relationship between soil ECa and soil moisture. Data repetition over the years, suggested that ECa is a qualitative indicator in areas with high spatial variability in soil texture.

  7. How to attract pupils for soil education

    Houskova, Beata


    At present time is the protection of the environment more and more important. Soil as integral part of the environment has to be protected and exploited according to the principles of sustainability. Soil is considered as non renewable resource because of very long time (more than the human life) of its creation. Also degradation processes of soil need very long time for removal of their effect and the result is not always the same soil as it was before degradation - quality of many soil properties is lost and the recovery process is time and many consuming. People simply need healthy soil for their existence of the Earth. Because of these facts the soil protection and sustainable use is crucial. Thus crucial is also education of young generation to be able to understand the value of soil for human beings.Soil is very multifunctional subject, thus also education of its protection can be variable. One way which we used was to attract children via painting competition with the topic: Soil importance and protection. Children had to create pictures by use colours made directly from different soils. The response was very positive. Children understand very well the importance of soil protection. What they do not understand, but what they recognized is that sometimes adults use soil in such a way which leads to soil degradation.

  8. An Overview of Soils and Human Health

    Brevik, Eric C.


    Few people recognize the connection between soils and human health, even though soils are actually very important to health. Soils influence health through the nutrients taken up by plants and the animals that eat those plants, nutrients that are needed for adequate nutrition for growth and development. Soils can also act to harm human health in three major ways: i) toxic levels of substances or disease-causing organisms may enter the human food chain from the soil ii) humans can encounter pathogenic organisms through direct contact with the soil or inhaling dust from the soil, and iii) degraded soils produce nutrient-deficient foods leading to malnutrition. Soils have also been a major source of medicines. Therefore, soils form an integral link in the holistic view of human health. In this presentation, soils and their influence on human health are discussed from a broad perspective, including both direct influences of soils on health and indirect influences through things such as climate change, occupational exposure to soil amendments, and the role of soils in providing food security.

  9. Some plant extracts retarde nitrification in soil

    Abdul–Mehdi S. AL-ANSARI


    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  10. Optimization of nitrogen for soil bioventing of gasoline contaminated soil

    Shewfelt, K.; Zytner, R. G. [University of Guelph, School of Engineering, Guelph, ON (Canada); Lee, H. [University of Guelph, Dept. of Environmental Biology, Guelph, ON (Canada)


    Bioventing, a promising in situ technology that uses low or intermittent airflow rates to produce oxygen-rich conditions in the aerated zone of the soil, promotes the growth of indigenous microorganisms, which degrade hydrocarbon contaminants that are frequently found around underground storage tanks. This study was undertaken to determine the optimum form and concentration of nitrogen that will effectively stimulate naturally occurring bacteria and fungi to obtain the highest degradation possible in a soil system using bioventing to treat gasoline-contaminated soil. Results showed that biodegradation was limited at high C:N ratios by the availability of nitrogen and at low C:N ratios by acidification. Aerobic bacteria were responsible for most of the biodegradation that occurred. Indigenous fungi had no significant effect on the rate of biodegradation. 47 refs., 7 tabs., 1 fig.

  11. Surface soil factors and soil characteristics in geo-physical milieu of Kebbi State Nigeria

    Suleiman Usman


    Full Text Available Soil erodibility (K factor is the most important tool for estimation the erosion. The aim of this study Soil factors and surface soil characteristics are important components of agricultural environment. They support surface and subsurface soils to perform many functions to agriculture and economic human developments. Understanding these factors would aid to the recognition of the values that our soil and land offered to humanity. It is therefore, aim of this study to visualise and examine the soil factors and surface soil characteristics in Kebbi State Nigeria. An Integrated Surface Soil Approach (ISSA was used in the classification and description of soil environment in the study region. The factors constituted in the ISSA are important components of soil science that theories and practice(s noted to provide ideas on how soil environment functioned. The results indicate that the surface soil environments around Arewa, Argungu, Augie, Birnin Kebbi and Dandi are physically familiar with the following surface soil characteristics: bad-lands, blown-out-lands, cirque-lands, fertile-lands, gullied-lands, miscellaneous and rock-outcrops.The major soil factors observed hat played an important role in surface soil manipulations and soil formation are alluvial, colluvial, fluvial and lacustrine; ant, earthworms and termite; and various forms of surface relief supported by temperature, rainfall, relative humidity and wind. Overall, the surface soil environment of the region was describe according to their physical appearance into fadama clay soils, fadama clay-loam soils, dryland sandy soils, dryland sandy-loam soils, dryland stony soils and organic-mineral soils.

  12. Spatial assessment of soil nitrogen availability and varying effects of related main soil factors on soil available nitrogen.

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun


    To effectively understand the availability of soil nitrogen and assist in soil nitrogen control at the regional scale, it is essential to understand the accurate spatial distribution patterns of the three soil nitrogen parameters [i.e., total nitrogen (TN), available nitrogen (AN) and nitrogen availability ratio (NAR)] and explore the spatially varying influences of major impact factors on soil AN. Land use affects the spatial distributions of soil TN, AN and NAR (i.e., AN/TN). To explore the effects of different land use types and improve mapping accuracy, residual kriging with land use information and ordinary kriging (without land use information) were compared based on the sample data of soil TN and AN in Hanchuan county, China. A local regression technique, geographically weighted regression (GWR), was adopted to explore the varying relationships between soil AN and its major impact factors in soil (i.e., soil TN and soil pH), due to the advantages of GWR over the traditional ordinary least squares regression (OLS) model. The results showed that (1) land use types as auxiliary information obviously improved the prediction accuracies of the three soil nitrogen parameters; (2) GWR performed much better than OLS in terms of fitting accuracy; and (3) GWR effectively revealed the spatially varying influences of the impact factors on soil AN, which were ignored by OLS. Based on the results, suggestions for soil nitrogen control measures in different subareas were proposed.

  13. Speciation of vanadium in soil.

    Połedniok, Justyna; Buhl, Franciszek


    A method for speciation of vanadium in soil is presented in this work. The sequential extraction analysis procedure of Tessier et al. for heavy metals was used for the vanadium separation. The method consists of sequential leaching of the soil samples to separate five fractions of metals: (1) exchangeable, (2) bound to carbonates, (3) bound to Fe-Mn oxides, (4) bound to organic matter and (5) residual. The leaching solutions of Tessier were used for the vanadium extraction, only for the residual fraction the HClO(4) was replaced with H(2)SO(4). The optimum conditions for leaching of vanadium from soil (weight of sample, concentration and volume of extractants, time of extraction) were chosen for each fraction. A sensitive, spectrophotometric method based on the ternary complex V(IV) with Chrome Azurol S and benzyldodecyldimethylammonium bromide (epsilon=7.1x10(4) l mol(-1) cm(-1)) was applied for the vanadium determination after separation of V(V) by solvent extraction using mesityl oxide and reduction of V(V) using ascorbic acid. This method was applied for vanadium speciation in soil from two different regions of Poland: Upper Silesia (industrial region) and Podlasie (agricultural region). The content of vanadium in the fractions of Upper Silesia soil was respectively (in 10(-3)%): I, 3.39; III, 4.53; IV, 10.70; V, 8.70 and it was the highest in the organic fraction, indicating input by anthropogenic activities. The content of vanadium in Podlasie soil was clearly lower and it was (in 10(-3)%): I, 2.07; III, 0.92; IV, 0.69; V, 1.23. The concentration of vanadium in fraction 2 of both soils was less than detection limit of applied method. The total content of vanadium in the five soil fractions was in good correlation with the total content of this element in both soils found after HF-H(2)SO(4) digestion. Analysis using the ICP-AES method gave comparable results.

  14. A geotechnical characterization of lunar soils and lunar soil simulants

    Graf, John Carl

    Many of the essential materials needed for the construction of a lunar base can be produced from the resources found on the lunar surface. Processing natural resources on the moon into useful products will reduce the need, and the cost, to bring everything from earth. The lunar regolith has been intensely studied with respect to understanding the formation of the moon and the earth, but as a construction material, the regolith is poorly characterized and poorly understood. To better understand how to 'work' with the lunar regolith, four loosely related research projects were conducted. Two projects relate to characterizing and understanding the geotechnical properties of regolith, two projects relate to manipulating and processing granular materials in the lunar environment. The shapes of lunar soil grains are characterized using fractals - results directly and quantitatively describe the rugged reentrant nature of the large scale structure and the relatively smooth surface texture of lunar soil grains. The nature of lunar soil cohesion is considered using tensile strength measurements of lunar soil simulant. It is likely that mechanical interlocking of irregular grains is the primary cause of lunar soil cohesion. This mechanism is highly sensitive to grain shape, but relatively insensitive to particle packing density. A series of experiments are conducted to try to understand how granular particles might sort by size in a vacuum. Even in a vacuum, fine particle subjected to shear strain segregate by a mechanism called the random fluctuating sieve The random fluctuating sieve also controls particle motion that determines the structure of wind-blown sand ripples. Hybrid microwave heating was used to sinter large structural bricks from lunar soil stimulant. While heating was prone to thermal runaway, microwave heating holds great promise as a simple, direct method of making sintered structural bricks.

  15. Developing a Global Soil Regime

    Ben Boer


    Full Text Available From the 1960s onwards, the global community became more aware of the phenomena of air and water pollution. More recently, the issues of climate change, loss of biodiversity, desertification, drought, and land degradation have become more prominent. While biodiversity loss and climate change have garnered close attention, issues of land degradation and sustainability of soils has attracted less focus in international fora and by national governments. We argue here that soil, as a vital biological and cultural resource, demands attention on the same level as biological diversity and climate change, and that this should be reflected in both international law and in legislation at national level. This article explores the elements that could form the basis of a global instrument for the conservation and sustainable use of soil, and sets out the premise for the community of nations to support the negotiation and drafting of such an instrument. It does so in light of the recent discussion on the introduction of a provision in the United Nations Sustainable Development Goals on the achievement of zero net land degradation, the revision of the World Soil Charter as well as the work of the UN Special Rapporteur on the Right to Food. It also briefly explores other complementary mechanisms that can be used for promoting the sustainable use of soils.

  16. Filtrating forms of soil bacteria

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.


    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  17. Developing a Global Soil Regime

    Ben Boer


    Full Text Available From the 1960s onwards, the global community became more aware of the phenomena of air and water pollution. More recently, the issues of climate change, loss of biodiversity, desertification, drought, and land degradation have become more prominent. While biodiversity loss and climate change have garnered close attention, issues of land degradation and sustainability of soils has attracted less focus in international fora and by national governments. We argue here that soil, as a vital biological and cultural resource, demands attention on the same level as biological diversity and climate change, and that this should be reflected in both international law and in legislation at national level. This article explores the elements that could form the basis of a global instrument for the conservation and sustainable use of soil, and sets out the premise for the community of nations to support the negotiation and drafting of such an instrument. It does so in light of the recent discussion on the introduction of a provision in the United Nations Sustainable Development Goals on the achievement of zero net land degradation, the revision of the World Soil Charter as well as the work of the UN Special Rapporteur on the Right to Food. It also briefly explores other complementary mechanisms that can be used for promoting the sustainable use of soils.

  18. Innovative technologies for soil cleanup

    Yow, J.L. Jr.


    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested.

  19. An Alaska Soil Carbon Database

    Johnson, Kristofer; Harden, Jennifer


    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network ( Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  20. Soils and public health: the vital nexus

    Pachepsky, Yakov


    Soils sustain life. They affect human health via quantity, quality, and safety of available food and water, and via direct exposure of individuals to soils. Throughout the history of civilization, soil-health relationships have inspired spiritual movements, philosophical systems, cultural exchanges, and interdisciplinary interactions, and provided medicinal substances of paramount impact. Given the climate, resource, and population pressures, understanding and managing the soil-health interactions becomes a modern imperative. We are witnessing a paradigm shift from recognizing and yet disregarding the 'soil-health' nexus complexity to parameterizing this complexity and identifying reliable controls. This becomes possible with the advent of modern research tools as a source of 'big data' on multivariate nonlinear soil systems and the multiplicity of health metrics. The phenomenon of suppression of human pathogens in soils and plants presents a recent example of these developments. Evidence is growing about the dependence of pathogen suppression on the soil microbial community structure which, in turn, is affected by the soil-plant system management. Soil eutrophication appears to create favorable conditions for pathogen survival. Another example of promising information-rich research considers links and feedbacks between the soil microbial community structure and structure of soil physical pore space. The two structures are intertwined and involved in the intricate self-organization that controls soil services to public health. This, in particular, affects functioning of soils as a powerful water filter and the capacity of this filter with respect to emerging contaminants in both 'green' and 'blue' waters. To evaluate effects of soil services to public health, upscaling procedures are needed for relating the fine-scale mechanistic knowledge to available coarse-scale information on soil properties and management. More needs to be learned about health effects of soils

  1. Tillage Effects on Soil Properties & Respiration

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia


    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  2. Phytoremediation of carbofuran residues in soil

    Mullika Teerakun


    Full Text Available In this study, the ability of plants to clean up carbofuran residues in rice field soil was examined. Plants were grown in 8 inches diameter plastic pots filled with soils containing 5 mg/kg carbofuran. Phytoremediated samples were analyzed for carbofuran concentration. The results showed that carbofuran was rapidly degraded under planted soil and non-planted soil with half-lives ranging from 2-7 days. These facts suggest that phytoremediation could accelerate the degradation of carbofuran residues in soil and carbofuran was not persistent in the soil environment.

  3. Establishing soil loss tolerance: an overview

    Costanza Di Stefano


    Full Text Available Soil loss tolerance is a criterion for establishing if a soil is potentially subjected to erosion risk, productivity loss and if a river presents downstream over-sedimentation or other off-site effects are present at basin scale. At first this paper reviews the concept of tolerable soil loss and summarises the available definitions and the knowledge on the recommended values and evaluating criteria. Then a threshold soil loss value, at the annual temporal scale, established for limiting riling was used for defining the classical soil loss tolerance. Finally, some research needs on tolerable soil loss are listed.

  4. Numerical analysis of soil bearing capacity by changing soil characteristics

    Mehdi Khodashenas Pelko


    Full Text Available In this research work by changing different parameters of soil foundation like density, cohesion and foundation depth and width of square foundation at angle of friction of 0° to 50° with increment of 5°, numerically safe bearing capacity of soil foundation is calculated and it is attempted to assess economical dimension of foundation as well as understanding variation range of bearing capacity at different degree. It could help of civil engineering in design of foundations at any situation.

  5. Deformation Parameters of Macrofragment Soils in Soil Dams

    Sainov Mikhail Petrovich


    Full Text Available The author tries to generalize the results of testing of macrofragment soils, made by other authors and to give recommendations on defining nonlinear model soils parameters. The article gives definitions of volume weight of gravel and pebble ground and mined rock. It’s shown that starting shift modules depending on stress due to prestress can be described in power formula. The author confirms Professor L.N. Rasskazov’s idea about the possibility of describing volume deformation in contraction through intensity of tangent deformation.

  6. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics.

    Lombard, Nathalie; Prestat, Emmanuel; van Elsas, Jan Dirk; Simonet, Pascal


    Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. Its physicochemical properties affect microbial distributions inside the soil matrix, metagenome extraction and its subsequent analyses. To better understand the bias inherent to soil metagenome 'processing', we focus on soil physicochemical properties and their effects on the perceived bacterial distribution. In the light of this information, each step of soil metagenome processing is then discussed, with an emphasis on strategies for optimal soil sampling. Then, the interaction of cells and DNA with the soil matrix and the consequences for microbial DNA extraction are examined. Soil DNA extraction methods are compared and the veracity of the microbial profiles obtained is discussed. Finally, soil metagenomic sequence analysis and exploitation methods are reviewed.

  7. Physical Components of the Shear Strength of Saturated Clays.


    between p1 and pm is Pm -l 3Pl ) (51) The data presented by CASAGRANDE and WILSON (1951) yield the following coefficients of decrease of the undrained...published. MARSAL (1957) presents stress-displacement diagrams obtained by vane tests in the volcanic clays of Mexico City. The residual strengths...8217Ing., Mexico City. HVORSLEV, M. J. (1936). "Conditions of failure for remolded cohesive soils." Proc. First Int. Conf. Soil Mech. Found. Eng

  8. [GIS-based evaluation of farmland soil fertility and its relationships with soil profile configuration pattern].

    Li, Mei; Zhang, Xue-Lei


    Taking the mid and low yielding fields in Yanjin County, Henan Province as a case, and selecting soil organic matter, total N, total P, total K, available N, available P, available K, pH value, and cation exchange capacity as indicators, a comprehensive evaluation on soil fertility was conducted by the method of fuzzy mathematics and using software ArcGIS 9.2. Based on this evaluation, the differences in the soil fertility level under different soil profile configuration pattern were analyzed. In the study region, soils were slightly alkaline, poorer in total N, total P, available N, cation exchange capacity, organic matter, and available K, and medium in available P and total K. The integrated fertility index was 0.14-0.63, indicating that the soil fertility in the region was on the whole at a lower level. There existed significant differences in all indicators except available P and total K under different soil profile configuration patterns (P soil fertility and soil profile configuration. The soil profile loamy in surface soil and clayey in subsurface soil had a higher level of soil fertility, followed by that loamy in surface soil and sandy in subsurface soil, and sandy in both surface and surface soil. Overall, the soils in the region were bad in profile configuration, poor in water and nutrient conservation, and needed to be ameliorated aiming at these features.

  9. Soil water repellency affects production and transport of CO2 and CH4 in soil

    Urbanek, Emilia; Qassem, Khalid


    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  10. Relationships Between Agronomic and Environmental Soil Test Phosphorus in Three Typical Cultivated Soils in China

    WANG Xin-Min; JIE Xiao-Lei; ZHU Yong-Guan; HOU Yan-Lin; ZHANG Tie-Quan


    A study was conducted to determine the relationships between agronomic soil test P and environmental soil test P in three soils predominately distributing in three typical agricultural production areas of China. Soil P was analyzed using Bray-1 (BP), Oisen (OP), and Mehlich-3 (MP) methods as agronomic tests, and using Fe-oxide impregnated filter paper (FeP), anion-exchange resin membrane (RP), and water (WP) as environmental tests. There were linear relationships between soil P extractable with all the tests evaluated. The regression coefficients, R2, ranged from 0.8164 to 0.9409 between each two of thc agronomic soil test P, and ranged from 0.4702 to 0.8990 between each two of the environmental soil test P, when the three soils were considered separately. When soil test P was analyzed across all the three soils, the highest regression R2 was found between OP and MP (0.7940) amongst agronomic soil test P, and between FeP and RP amongst environmental soil test P (0.8842). While all of the three agronomic soil test P was linearly related to each of the environmental soil test P across the three soils, strongest relationships were found between OP and environmental soil test P. Agronomic OP may be adopted as an analytical tool for environmental prediction of soil P.

  11. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian


    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted

  12. Impact of water content and decomposition stage on the soil water repellency of peat soils

    Dettmann, Ullrich; Sokolowsky, Liv; Piayda, Arndt; Tiemeyer, Bärbel; Bachmann, Jörg


    Soil water repellency is widely reported for all kinds of soils and mainly caused by hydrophobic organic compounds. It has a substantial influence on soil hydraulic processes such as water infiltration, preferential flow paths and evaporation and therefore on hydrological processes in general. The severity of soil water repellency strongly depends on the soil water content and the amount of soil organic carbon. Although peat soils are characterized by high soil organic carbon contents, studies about peat soils are rare and mostly available for horticultural substrates. Here, we present soil water repellency measurements for peat soils with varying porosities, bulk densities and stages of decomposition. The peat soils were sampled at two different sites in a bog complex. The sites have been drained for 1 and 100 years. Samples were taken from each soil layer and, additionally, in a vertical resolution of 0.03 m. To determine the soil water contents at which the peat becomes water repellent, we applied the commonly used water drop penetration time test on progressively dewatered samples. In order to identify the influence of the decomposition stage as determined by the depth within the soil profile and duration of drainage, the potential soil water repellency was measured at air-dried sieved samples by the sessile drop method. First results show that the soil water repellency of peat soils is strongly dependent on the soil water content. For air-dried peat samples, the influence of different decomposition stages of the bog peat is negligible. All air-dried samples are extremely water repellent with contact angles > 130°. However, comparing the results with the soil organic matter content shows a slightly tendency of increasing soil water repellency with increasing soil organic matter contents.

  13. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Andrea Koch


    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  14. Soil and public health: invisible bridges

    Pachepsky, Yakov


    Public health institutions, as ancient as civilizations itself, are intrinsically connected with soils. The massive body of the empirical knowledge about this connection has been accumulated. Recently unraveling the underlying mechanisms of this link has begun, and many of them appear to have the microbiological origin. The impressive progress in understanding the nexus between soil and health has been achieved by experimentation with preserved soil microbial systems functioning along with the metagenomic characterization. The objective of this work is to present an overview of some recent onsets. In the food safety arena, survival of human pathogens in soils has been related to the degree of soil eutrophication and/or related structure of soil microbial communities. Soil microbial systems affect the affinity of plants to internalizing pathogenic organisms. Pharmaceutical arsenals benefit from using field soil environment for developing antibiotics. Enzyme production by soil bacteria is used as the signal source for drug activation. Sanitary functions of sols are dependent on soil microbial system workings. The healthy living can be enhanced by the human immune system training received from direct contact with soils. The hygiene hypothesis considers the microbial input due to exposure to soil as the essential ecosystem service. The invisible links between soil and public health result in large-scale consequences. Examples of concurrent degradation of soil and public health are worth scrutinizing. Public health records can provide valuable sources of 'soil-public health' interactions. It may be worthwhile to examine current assessments of soil health from the public health standpoint. Soil management can be an efficient instrument of public health control.

  15. Challenges of pedodiversity in soil science

    Toomanian, N.; Esfandiarpoor, I.


    Soil diversity is not a completely new concept in soil science. It has been discussed from early times but it was not challenged this much broad. Ibañez with introducing the pedodiversity opened a new conceptual window to ease the induction of the soils complexity, spatial and temporal evolution and distribution. Pedodiversity now attracts more attention and goes to open new windows in soil science. Pedodiversity faces now with different challenges, which could be critical in its way on. Do the current soil diversity indices conceptually define all aspects of soil variability, or do we need to bind them with other characteristics like taxonomic distances? How is the soil individualism defined within the context of spatial variability and soil continuum? How are pedocomplexity, connectance, pedodiversity and soil spatial structure related? Can the changes of soil diversity be accounted as the rate of soil development? Can a range of pedodiversity index be a scale for soil series definition? Initial and some of current pedodiversity studies were/are focused on the concepts and measurement of pedodiversity and soil complexity indices of soilscape compared with the biological diversity and complexity. However, for the pedogenetic studies, the most important issues are the evolutionary concerns out of this approach compared with the other biotic systems. The new contexts, which should be more undertaken in future studies are: functional diversity, temporal diversity, study of soil and landform extinction and preservation. The last question could be: how pedodiversity could be changed under different understanding levels? A case study has been carried out in Charmahal and Bakhtiary province, Iran. Its objectives are the following: comparing the pedodiversity indices combined with and without taxonomic distances within tow replication of a geomorphic surface (Pi 111). What the pedodiversity says here? Did the unique calcification process which rules the soil formation

  16. Bioaccessibility of metals in urban playground soils.

    Ljung, Karin; Oomen, Agnes; Duits, Menno; Selinus, Olle; Berglund, Marika


    Children ingest soil. The amount ingested varies with the child's behaviour, and daily ingestion rates have been calculated to be between 39 and 270 mg day(-1). During play, children ingest soil both involuntarily and deliberately, and it can be assumed that the latter may result in ingestion of a larger soil particle size fraction and a larger soil mass than the former. Measurements of soil metal contents commonly display the total metal content, where soil sieved to soil masses. Moreover, it does not consider the difference between bioaccessible and total metal content, possibly resulting in an incorrect evaluation of the potential health risks from soil intake. Intervention and guideline values are commonly calculated via tolerable daily intake values, in turn derived from toxicological studies where the contaminant is administered to a test animal in feed or water. It is then assumed that the bioavailability of a contaminant in soil equals the bioavailability in the matrix used in the toxicology study. However, the complexity and heterogeneity of soil often results in a lower bioavailability than from food or water. The current study investigated the bioaccessibility of soil As, Cd, Cr, Ni and Pb from two different particle size fractions representing deliberate (soil masses representing deliberate soil intake; 2 g for a child with pica behaviour and 0.6 g for a non-pica child. The bioaccessibility was investigated using an in vitro digestion model and urban playground soils collected away from any point pollution sources. The bioaccessibility (%) of the different metals increased in the order Ni=Cr=Pbsoil is not always related to particle size or to soil mass in soils with low contaminant levels. Factors such as pH dependence of the metal and the soil's clay content are also significant in determining bioaccessibility.

  17. Plant biodiversity impacts on soil stability

    Gould, Iain; Quinton, John; Bardgett, Richard


    In recent times, growing threats to global biodiversity have raised awareness from the scientific community, with particular interest on how plant diversity impacts on ecosystem functioning. In the field of plant-soil interactions, much work has been done to research the implications of species loss, primarily focussing on biological processes such as plant productivity, microbial activity and carbon cycling. Consequently, virtually nothing is known about how plant diversity might impact on soil physical properties, and what mechanisms might be involved. This represents a serious gap in knowledge, given that maintaining soils with good structural integrity can reduce soil erosion and water pollution, and can lead to improved plant yield. Therefore, there is a need for a greater understanding of how plant communities and ecological interactions between plant roots and soils can play a role in regulating soil physical structure. Soil aggregation is an important process in determining soil stability by regulating soil water infiltration and having consequences for erodibility. This is influenced by both soil physical constituents and biological activity; including soil organic carbon content, microbial growth, and increased plant rooting. As previously mentioned, plant diversity influences carbon dynamics, microbial activity and plant growth, therefore could have substantial consequences for soil aggregate stability. Here, we present results from a series of plant manipulation experiments, on a range of scales, to understand more about how plant diversity could impact on soil aggregate stability. Soils from both a plant manipulation mesocosm experiment, and a long term biodiversity field study, were analysed using the Le Bissonnais method of aggregate stability breakdown. Increasing plant species richness was found to have a significant positive impact on soil aggregate stability at both scales. In addition to this, the influence of species identity, functional group

  18. Soil quality assessment under emerging regulatory requirements.

    Bone, James; Head, Martin; Barraclough, Declan; Archer, Michael; Scheib, Catherine; Flight, Dee; Voulvoulis, Nikolaos


    New and emerging policies that aim to set standards for protection and sustainable use of soil are likely to require identification of geographical risk/priority areas. Soil degradation can be seen as the change or disturbance in soil quality and it is therefore crucial that soil and soil quality are well understood to protect soils and to meet legislative requirements. To increase this understanding a review of the soil quality definition evaluated its development, with a formal scientific approach to assessment beginning in the 1970s, followed by a period of discussion and refinement. A number of reservations about soil quality assessment expressed in the literature are summarised. Taking concerns into account, a definition of soil quality incorporating soil's ability to meet multifunctional requirements, to provide ecosystem services, and the potential for soils to affect other environmental media is described. Assessment using this definition requires a large number of soil function dependent indicators that can be expensive, laborious, prone to error, and problematic in comparison. Findings demonstrate the need for a method that is not function dependent, but uses a number of cross-functional indicators instead. This method to systematically prioritise areas where detailed investigation is required, using a ranking based against a desired level of action, could be relatively quick, easy and cost effective. As such this has potential to fill in gaps and compliment existing monitoring programs and assist in development and implementation of current and future soil protection legislation.

  19. Afforestation effects on soil carbon

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... respiration. In Denmark chronosequences (i.e. space-for-time substitution) of oak and Norway spruce stands at the Vestskoven site were the tool used to explore these changes. Soil OC dynamics predicted by the chronosequence approach have often been used, however they never been validated by resampling before...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...

  20. Biosurfactant-enhanced soil bioremediation

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)


    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  1. Accuracy of quantitative visual soil assessment

    van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne


    Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7

  2. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik


    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation.

  3. The UK Soil Observatory (UKSO) and mySoil app: crowdsourcing and disseminating soil information.

    Robinson, David; Bell, Patrick; Emmett, Bridget; Panagos, Panos; Lawley, Russell; Shelley, Wayne


    Digital technologies in terms of web based data portals and mobiles apps offer a new way to provide both information to the public, and to engage the public in becoming involved in contributing to the effort of collecting data through crowdsourcing. We are part of the consortium which is a global partnership committed to developing and supporting the adoption of freely available technology and tools for sustainable land use management, monitoring, and connecting people across the globe. The mySoil app was launched in 2012 and is an example of a free mobile application downloadable from iTunes and Google Play. It serves as a gateway tool to raise interest in, and awareness of, soils. It currently has over 50,000 dedicated users and has crowd sourced more than 4000 data records. Recent developments have expanded the coverage of mySoil from the United Kingdom to Europe, introduced a new user interface and provided language capability, while the UKSO displays the crowd-sourced records from across the globe. We are now trying to identify which industry, education and citizen sectors are using these platforms and how they can be improved. Please help us by providing feedback or taking the survey on the UKSO website. The UKSO is a collaboration between major UK soil-data holders to provide maps, spatial data and real-time temporal data from observing platforms such as the UK soil moisture network. Both UKSO and mySoil have crowdsourcing capability and are slowly building global citizen science maps of soil properties such as pH and texture. Whilst these data can't replace professional monitoring data, the information they provide both stimulates public interest and can act as 'soft data' that can help support the interpretation of monitoring data, or guide future monitoring, identifying areas that don't correspond with current analysis. In addition, soft data can be used to map soils with machine learning approaches, such as SoilGrids.

  4. Evaluation of soil nutrient status in poplar forest soil by soil nutrient systematic approach

    YUChang-bing; CHENFang; LUOZhi-jian; CHENWei-wen


    A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach(SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P,K, Zn), -N(P, K, Zn), -P(N, K, Zn), -K(N, P, Zn), +Mg(N, P, K, Zn, Mg), -Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar.The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform perfectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.

  5. Extinction risk of soil biota.

    Veresoglou, Stavros D; Halley, John M; Rillig, Matthias C


    No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology.

  6. Afforestation effects on soil carbon

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...

  7. Soil physical chemistry, Second edition

    Sparks, D.L.


    With comprehensive and contemporary discussions on equilibrium and kinetic aspects of major soil chemical processes and reactions, this excellent reference presents new chapters on precipitation/dissolution, modeling of adsorption reactions at the mineral/water interface, and the chemistry of humic substances. An emphasis is placed on understanding soil chemical reactions from a microscopic point of view such as the use of modern in situ surface chemical probes and based on rigorous theoretical developments. X-ray absorption fine structure (XAFS), Fourier transform infrared (FTIR) spectroscopies, and scanning probe microscopies (SPM) are discussed.

  8. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types

    Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; Oenema, O.; Zhang, F.S.


    Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P

  9. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils.

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Keesstra, Saskia; Cerdà, Artemi; Brevik, Eric C


    Soil management has important effects on soil properties, runoff, soil losses and soil quality. Traditional olive grove (OG) management is based on reduced tree density, canopy size shaped by pruning and weed control by ploughing. In addition, over the last several decades, herbicide use has been introduced into conventional OG management. These management strategies cause the soil surface to be almost bare and subsequently high erosion rates take place. To avoid these high erosion rates several soil management strategies can be applied. In this study, three strategies were assessed in OG with conventional tillage in three plots of 1ha each. Soil properties were measured and soil erosion rates were estimated by means of the RUSLE model. One plot was managed with no amendments (control), and the other two were treated with olive leaves mulch and oil mill pomace applied yearly from 2003 until 2013. The control plot experienced the greatest soil loss while the use of olive leaves as mulch and olive mill pomace as an amendment resulted in a soil loss reduction of 89.4% and 65.4% respectively (assuming a 5% slope). In addition, the chemical and physical soil properties were improved with the amendments. This combined effect will created a higher quality soil over the long term that it is more resilient to erosion and can provide better ecosystem services, as its functions are improved.

  10. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng


    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  11. Corn stover harvest changes soil hydrology and soil aggregation

    In the United States, commercial-scale cellulosic-ethanol production using corn (Zea Mays L.) stover has become a reality. As the industry matures and demand for stover increases, a clear understanding of how reducing the rate of stover remaining in the field impacts soil properties is critical. Sto...

  12. Degradation kinetics of ptaquiloside in soil and soil solution

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun


    by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled...

  13. The role of soil microbiology in soil health

    Microbial diversity in the rhizosphere is enormous. The complex plant-associated microbial community, or second genome of the plant, is crucial for plant health and soil function. Microbes are active in decomposition, release mineralizable nutrients, synthesize plant growth regulators, degrade/inact...

  14. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    Jhorar, R.K.; Dam, van J.C.; Bastiaanssen, W.G.M.; Feddes, R.A.


    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous

  15. Biogeochemistry: The soil carbon erosion paradox

    Sanderman, Jonathan; Berhe, Asmeret Asefaw


    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  16. Transformation functions of soil color and climate

    杨胜利; 方小敏; 李吉均; 安芷生; 陈诗越; HitoshiFukusawa


    Measurements on modern soil color suggest well functional relationships between the soil formation process and the present climatic factors. The redness and yellowness of soil are chiefly caused by the contents of hematite and fullonite, and their correlations to climate are the best in humid regions in tropic and warm temperate regions. The lightness of soil mainly correlates to the organic accumulation, humification and carbonatization processes, and its correlation to climate can only be found in the humid-arid extratropical belt. The humidity and surface roughness of soil have so strong influence on soil color that there are great errors on the measurement of colorness in the field. The study on soil colors of typical loess sections shows that soil color can record the characteristics of Asia monsoon and the global climatic fluctuations well at millennial and ten-thousand-year scales. It can also indicate the pedogenesis and the climatic characteristics which magnetic susceptibility could not be refl

  17. Persistence of plasmid DNA in different soils



    Aug 4, 2008 ... ... transformation in bacteria (Davison, 1999), binding of DNA from Bacillus subtilis on clay mineral montmorillonite, and the ability of ... soil was taken and soil extract was prepared with sterile water the DNA was isolated and.

  18. Microbial community composition affects soil fungistasis

    De Boer, W.; Verheggen, P.; Klein Gunnewiek, P.J.A.; Kowalchuk, G.A.; Van Veen, J.A.


    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis)

  19. Remediation of heavy metal contaminated soil | Nanda |

    Remediation of heavy metal contaminated soil. ... in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. ... This paper investigates the plant-microbial interactions in reclaiming the metal ...


    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...


    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  2. Multiscale soil-landscape process modeling

    Schoorl, J.M.; Veldkamp, A.


    The general objective of this chapter is to illustrate the role of soils and geomorphological processes in the multiscale soil-lanscape context. Included in this context is the fourth dimension (temporal dimension) and the human role (fifth dimension)

  3. Effects of sulfadiazine on soil bacterial communities

    Hangler, Martin

    as fertilizers on agricultural lands they represent a route for antibiotics into the soil environment where they may persist and affect levels of antibiotic resistance in soil microbial communities over time. In this work the level of tolerance to the antibiotic sulfadiazine (SDZ) was studied in a number......-threshold, of a non-contaminated soil environment at various pH of which to compare other soils. Soil samples representing a broad range of natural pH were collected from the pH gradient at the Hoosfield acid strip, part of the long-term field experiment at the Rothamstead Research Station (UK) and exposed...... and transport of SDZ at the interphase between dewatered SDZ-amended sewage sludge and soil. SDZ was not mineralized within sludge aggregates and travelled more than 10 mm into the surrounding soil. The strongest PICT response was observed in soils fertilized with organic fertilizers or inorganic NPK fertilizer...

  4. Soil Carbon Data: long tail recovery


    The software is intended to be part of an open source effort regarding soils data. The software provides customized data ingestion scripts for soil carbon related data sets and scripts for output databases that conform to common templates.

  5. Effects of sulfadiazine on soil bacterial communities

    Hangler, Martin

    as fertilizers on agricultural lands they represent a route for antibiotics into the soil environment where they may persist and affect levels of antibiotic resistance in soil microbial communities over time. In this work the level of tolerance to the antibiotic sulfadiazine (SDZ) was studied in a number...... of soils applying the pollution-induced community tolerance (PICT)-approach. As SDZ is amphoteric and thus exist on either neutral, anionic or cationic form soil pH is likely to influence the toxicity and bioavailability of SDZ to soil bacteria. In manuscript I the aim was to set a baseline, a PICT...... designed to test effects on soil quality of a range of different fertilizers in agriculture. In manuscript II extracted bacteria from soil samples representing a broad range of natural soil pH values were tested for their toxicity response to SDZ when amended at different assay pH. Toxicity clearly...

  6. Sorption of Phenanthrene on Agricultural Soils

    Soares, Antonio Alves; Møldrup, Per; Minh, Luong Nhat


    Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively...... low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils...... (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (KNCOC) could be markedly higher than the COC-based partition coefficient (KCOC) for soils with a clay/OC ratio

  7. Framing a future for soil science education.

    Field, Damien


    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  8. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum

    Relationships among biological indicators of soil quality and soil organic matter characteristics in a claypan soil were evaluated across a continuum of long-term agricultural practices in Missouri, USA. In addition to chemical and physical soil quality indicators, dehydrogenase and phenol oxidase a...

  9. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phospha...

  10. [Priming Effects of Soil Moisture on Soil Respiration Under Different Tillage Practices].

    Zhang, Yan; Liang, Ai-zhen; Zhang, Xiao-ping; Chen, Sheng-long; Sun, Bing-jie; Liu, Si-yi


    In the early stage of an incubation experiment, soil respiration has a sensitive response to different levels of soil moisture. To investigate the effects of soil moisture on soil respiration under different tillage practices, we designed an incubation trial using air-dried soil samples collected from tillage experiment station established on black soils in 2001. The tillage experiment consisted of no-tillage (NT), ridge tillage (RT), and conventional tillage (CT). According to field capacity (water-holding capacity, WHC), we set nine moisture levels including 30%, 60%, 90%, 120%, 150%, 180%, 210%, 240%, 270% WHC. During the 22-day short-term incubation, soil CO₂ emission was measured. In the early stage of incubation, the priming effects occurred under all tillage practices. There were positive correlations between soil respiration and soil moisture. In addition to drought and flood conditions, soil CO₂ fluxes followed the order of NT > RT > CT. We fitted the relationship between soil moisture and soil CO₂ fluxes under different tillage practices. In the range of 30%-270% WHC, soil CO₂ fluxes and soil moisture fitted a quadratic regression equation under NT, and linear regression equations under RT and CT. Under the conditions of 30%-210% WHC of both NT and RT, soil CO₂ fluxes and soil moisture were well fitted by the logarithmic equation with fitting coefficient R² = 0.966 and 0.956, respectively.

  11. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine;


    densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  12. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg


    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  13. Stratification of soil organic matter and its importance on soil and water quality

    Soil organic matter is a key component of soil quality that sustains many important soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infilt...

  14. Biochar application does not improve the soil hydrological function of a sandy soil

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, L.; Van Groenigen, J.W.


    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  15. Effect of Plant-derived Hydrophobic Compounds on Soil Water. Repellency in Dutch Sandy Soils

    Mao, J.|info:eu-repo/dai/nl/363508287; Dekker, S.C.|info:eu-repo/dai/nl/203449827; Nierop, K.G.J.|info:eu-repo/dai/nl/182329895


    Soil water repellency or hydrophobicity is a common and important soil property, which may diminish plant growth and promotes soil erosion leading to environmentally undesired situations. Hydrophobic organic compounds in the soil are derived from vegetation (leaves, roots, mosses) or microorganisms

  16. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  17. On the role of soil fauna in providing soil functions - a meta study

    Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute


    Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.

  18. Progress towards soil database of Denmark

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog;


    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This stu...

  19. July: "Soils are living: Overview of soil biodiversity, global issues, and new resources"

    The July poster will provide an overview of soil biology and the many ecosystem functions that soil organisms drive including their impact on global biodiversity, climate regulation, soil health/stability, and plant growth. Five main global issues related to soil biodiversity will be presented such ...

  20. Soil [N] modulates soil C cycling in CO2-fumigated tree stands

    Dieleman, W. I. J.; Luyssaert, S.; Rey, A.


    Under elevated atmospheric CO2 concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO2 effect on soil C inputs with time. We com...