WorldWideScience

Sample records for remedial technology effectiveness

  1. Remediation Technology Collaboration Development

    Science.gov (United States)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  2. Effects of gentle remediation technologies on soil biological and biochemical activities - a review.

    Science.gov (United States)

    Marschner, B.; Haag, R.; Renella, G.

    2009-04-01

    Remediation technologies for contaminated sites are generally designed to reduce risks for human health, groundwater or plant quality. While some drastic remediation measures such as soil excavation, thermal treatment or soil washing eliminate or strongly reduce soil life, in-situ treatments involving plants or immobilizing additives may also restore soil functionality by establishing or promoting a well structured and active community of soil organisms. Biological parameters that are sensitive to contaminants and other pedo-environmental conditions and which contribute to biogeochemical nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given remediation approaches. Data from long-term studies on re-vegetated mine spoils show that biological and biochemical activity is enhanced with increasing plant density and diversity. Among the soil amendments, most measures that introduce organic matter or alkalinity to the contaminated soils also improve microbial or faunal parameters. Only few amendments, such as phosphates and chelators have deleterious effects on soil biota. In this review, soil microbial biomass and the activity of the enzymes phosphatase and arylsulphatase are identified as suitable and sensitive biological indicators for soil health. The results and future research needs are are summarized.

  3. Remediation Technologies Eliminate Contaminants

    Science.gov (United States)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  4. Remediation Technology for Contaminated Groundwater

    Science.gov (United States)

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  5. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    Science.gov (United States)

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  6. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  7. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    Science.gov (United States)

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  8. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  9. Remediation technologies for oil-contaminated sediments.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  10. Radioactive Tank Waste Remediation Focus Area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  11. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  12. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    Science.gov (United States)

    2016-03-01

    large investment in groundwater remediation technologies more effective, end-users need quantitative, accurate, and reliable performance and cost ... technologies . The overall objective of this work was to develop a comprehensive remediation performance and cost database. N/A U U U UU 42 Travis...end-users need quantitative, accurate, and reliable performance and cost data for commonly used remediation technologies . While the data from an

  13. Historical hydronuclear testing: Characterization and remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  14. Study on Obstacles to Continuous Cropping of Vegetables and Soil Remediation Technology

    Institute of Scientific and Technical Information of China (English)

    Pingsheng FAN; Gang CHEN; Deli XU; Weimin FENG; Yuyu LU; Anqin GUAN

    2016-01-01

    Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables. Finally,this paper analyzes the effect of applying soil ecological remediation technology in overcoming obstacles to continuous cropping of vegetables.

  15. Deicing/Propylene Glycol (PG) Microbial Remediation Technology

    Science.gov (United States)

    2011-05-01

    Deicing /Propylene Glycol (PG) Microbial Remediation Technology Environment, Energy Security, & Sustainability (E2S2) Symposium & Exhibition Ernest N...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Deicing /Propylene Glycol (PG) Microbial Remediation Technology 5a. CONTRACT...Issues C. PG Remediation Project D. Summary E. Questions 2 3 Background • Aircraft deicing fluids (ADF) work planes fly in the winter o Military

  16. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  17. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  18. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions.

    Science.gov (United States)

    Lim, Mee Wei; Lau, Ee Von; Poh, Phaik Eong

    2016-08-15

    Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies. This paper provides a review on the remediation technologies for soil contaminated with various types of oil, including diesel, crude oil, petroleum, lubricating oil, bitumen and bunker oil. The methods discussed include solvent extraction, bioremediation, phytoremediation, chemical oxidation, electrokinetic remediation, thermal technologies, ultrasonication, flotation and integrated remediation technologies. Each of these technologies was discussed, and associated with their advantages, disadvantages, advancements and future work in detail. Nonetheless, it is important to note that no single remediation technology is considered the best solution for the remediation of oil contaminated soil. This review provides a comprehensive literature on the various remediation technologies studied in the removal of different oil types from soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  20. Possible Applications of Soil Remediation Technologies in Latvia

    Science.gov (United States)

    Burlakovs, Juris; Vircavs, Magnuss

    2011-01-01

    Increasing public concern about deleterious effects of contamination on the environment and human health has led to legislative actions aimed at controlling and regulating the emission of potential contaminants into the environment, but there is still a plethora of territories historically contaminated with different contaminants within the territory of Latvia. The purpose of the present study is to give an overview of the formerly and presently contaminated areas and give some recommendations for remediation. 242 first category contaminated territories (the contamination exceeds the acceptable normative 10 times or more) are mentioned in the National Register of Contaminated Territories, a lot of them are known as contaminated with hazardous contaminants such as heavy metals, oil products, organic compounds and other contaminants in different amounts and concentrations. An overview of soil contamination in Latvia is provided, the planned and recommended research, as well as the planned remediation in pilot case studies, are described, giving a review of the historical contamination situation and of applications of the planned remediation technologies.

  1. Development and applications of groundwater remediation technologies in the USA

    Science.gov (United States)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  2. Effects of remediation amendments on vadose zone microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  3. A TOOL FOR STRATEGIC TARGET SETTING ON DEVELOPMENT AND IMPROVEMENT OF REMEDIATION TECHNOLOGIES

    Science.gov (United States)

    Inoue, Yasushi; Katayama, Arata

    A tool for strategic development and improvement of remediation technologies was proposed to set a target specification by applying the RNSOIL, an evaluation index of remediation technologies for contaminated soil. Under the scenario of agricultural site contamination with dieldrin and its remediation, improving items and the target values of the bioremediation using charcoal material (charcoal bioremediation), as a developing technology, were determined. The development target was that the RNSOIL value of charcoal bioremediation fell below that of high temperature thermal desorption as a competing technology. Sensitivity assessments of the RNSOIL selected a remediation period and an incubation volume for bacterial growth and settlement in the charcoal as improving properties. Risk assessment and life cycle inventory analysis was introduced to determine a human health risk due to contaminant, and a total cost of remediation or a CO2 emission accompanied with remediation, as evaluating factors of RNSOIL, respectively. Assessment based on the RNSOIL was able to show clearly improving items for achieving the target or items with great effect for improvement.

  4. National conference on environmental remediation science and technology: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  5. TREATMENT TECHNOLOGY FOR REMEDIATION OF WOOD PRESERVING SITES: OVERVIEW

    Science.gov (United States)

    This is the first in a series of five articles describing the applicability, performance and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site-specific treatability studies conducted under the supervision of the USEPA NRMRL fro...

  6. A Risk Analysis of Remediation Technologies for a DOE Facility

    Science.gov (United States)

    1998-03-01

    The Department of Energy is responsible for selecting a remediation technology to cleanup the Waste Area Group (WAG) 6 site at the Paducah Gaseous ... Diffusion Plant (PGDP) in Kentucky. WAG 6 is contaminated with an uncertain amount of trichloroethylene (TCE) and technetium-99 (Tc-99). Selecting a

  7. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  8. Environmental Remediation Technologies Derived from Space Industry Research

    Science.gov (United States)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  9. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    Science.gov (United States)

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-01

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.

  10. System description for DART (Decision Analysis for Remediation Technologies)

    Energy Technology Data Exchange (ETDEWEB)

    Nonte, J.; Bolander, T.; Nickelson, D.; Nielson, R.; Richardson, J.; Sebo, D.

    1997-09-01

    DART is a computer aided system populated with influence models to determine quantitative benefits derived by matching requirements and technologies. The DART database is populated with data from over 900 DOE sites from 10 Field Offices. These sites are either source terms, such as buried waste pits, or soil or groundwater contaminated plumes. The data, traceable to published documents, consists of site-specific data (contaminants, area, volume, depth, size, remedial action dates, site preferred remedial option), problems (e.g., offsite contaminant plume), and Site Technology Coordinating Group (STCG) need statements (also contained in the Ten-Year Plan). DART uses this data to calculate and derive site priorities, risk rankings, and site specific technology requirements. DART is also populated with over 900 industry and DOE SCFA technologies. Technology capabilities can be used to match technologies to waste sites based on the technology`s capability to meet site requirements and constraints. Queries may be used to access, sort, roll-up, and rank site data. Data roll-ups may be graphically displayed.

  11. Cost studies of thermally enhanced in situ soil remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.

  12. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  13. Technology needs for environmental restoration remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  14. Developing technology of remediation of oil-contaminated soils

    OpenAIRE

    Shevchyk, Lesya; Romaniuk, Olga

    2013-01-01

    Abstract ? The results of developing technologies for cleaning of soils from oil pollution on the example of Boryslav are shown. The prospects of tree species for the remediation of oil-contaminated soils are studied. The best results of cleaning oil contaminated soils with the application of Hippophae rhamnoides L. plants were obtained. It is a promising measure for restoring the oil-contaminated soils, attractive both from environmental and economical point of view.

  15. Remediation of DNAPLs in Low Permeability Soils. Innovative Technology Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-09-01

    Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U. S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.

  16. Systematic effects in radon mitigation by sump/pump remediation

    Energy Technology Data Exchange (ETDEWEB)

    Groves-Kirkby, C.J.; Denman, A.R. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Groves-Kirkby, C.J.; Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom); Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M. [Northampton Univ., School of Applied Sciences (United Kingdom); Tornberg, R. [Radon Centres Ltd., Grove Farm, Moulton, Northampton (United Kingdom)

    2006-07-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump tology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  17. Fe-Oxides in Water Remediation Technologies

    Science.gov (United States)

    Vaclavikova, M.; Stefusova, K.; Gallios, G. P.

    Water is essential for life, a strategic resource for every country and population. Its availability and sanitary safety is highly connected with the health and economic status of a population. The burden of disease due to polluted water is a major public health problem throughout the world. Many pollutants in water streams have been identified as toxic and harmful to the environment and human health, and among them arsenic, mercury and cadmium are considered those with the highest priority. Iron is the fourth most abundant element in the Earth's crust, and reactions involving iron play a major role in the environmental cycling of a range of important contaminants. Our earlier research has shown that Fe oxides/oxyhydroxides are particularly effective adsorbents of a range of contaminants (toxic metals), due to their high (reactive) specific surface area. It has been proven that Fe is particularly effective in As removal as a chemical bond is created on Fe surface and As is stabilised and can be safely deposited. Removal of contaminants from waste streams through precipitation with (hydrous) ferric oxides is an established methodology in a number of industrial processes (high density sludge systems for arsenic control in effluents from the mining industry, and in the treatment of textile dye effluent).

  18. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

  19. Contaminant plumes containment and remediation focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  20. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    to 75%. Moreover, a number of technology-specific improvements were identified, for instance by the substitution of stainless steel types in wells, heaters, and liners used in thermal conduction heating, thus reducing the nickel consumption by 45%. The combined effect of introducing all the suggested......In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...

  1. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    Science.gov (United States)

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  3. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  4. Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective is Not So Easy

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Lemming, Gitte; Hauschild, Michael Zwicky

    2013-01-01

    Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site...... about the environmental sustainability of remediation technologies....

  5. ICS-UNIDO - Promoting sustainable POPs disposal and remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zinovyev, S.; Lodolo, A.; Miertus, S. [ICS-UNIDO, Trieste (Italy)

    2004-09-15

    It is well known that a significant stock of polychlorinated hazards, including POP and PTS, has been produced and is stored nowadays or dispersed in the environment in many of Developing Countries and Countries with Economies in Transition. The obsolete industrial processes, giving rise to formation of dioxins, as well as former/current POP production/use (e.g. PCBs), coupled with uncontrolled use of polychlorinated pesticides in agriculture and improper storage of POP stockpiles have rendered vast territories in these countries highly contaminated and raised urgent issues of disposal of hazards and remediation of territories. The International Centre for Science and High Technology (ICS), www.ics.trieste.it, is an autonomous institution within the legal framework of the United Nations Industrial Development Organization (UNIDO) promoting a global programme on environmental protection, sustainable chemistry, catalysis, and clean technologies. An important part of its work programme is focused on the promotion of new technologies which can be helpful for the reduction of the formation of POPs (like dioxins and furans) in incineration processes and in obsolete technologies used in some industrial processes. Another hot issue is to promote safe technologies for the destruction of PCBs and polychlorinated pesticides. Particular efforts of ICS-UNIDO are directed towards the transfer of clean technologies to developing/transition countries. ICS-UNIDO, through its initiatives, seeks to establish a dialogue with local administrative, research, NGO, and industrial bodies in order to adopt sustainable technologies for POP disposal and management of contaminated sites.

  6. Evaluation of Groundwater Remediation Technologies Based on Fuzzy Multi-Criteria Decision Analysis Approaches

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-06-01

    Full Text Available Petroleum is an essential resource for the development of society and its production is huge. There is a great risk of leakage of oil during production, refining, and transportation. After entering the environment, the oil pollutants will be a great threat to the environment and may endanger human health. Therefore, it is very important to remediate oil pollution in the subsurface. However, it is necessary to choose the appropriate remediation technology. In this paper, 18 technologies are evaluated through constructing a parameter matrix with each technology and seven performance indicators, and a comprehensive analysis model is presented. In this model, four MCDA methods are used. They are SWA (Simple Weighted Addition Method, WP (Weighted Product Method, CGT (Cooperative Game Theory, and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution. Mean ranking and Borda ranking methods are used to integrate the results of SWA, WP, CGT, and TOPSIS. Then two selection priorities of each method (mean ranking and Borda ranking are obtained. The model is proposed to help decide the best choice of remediation technologies. It can effectively reduce contingency, subjectivity, one-sidedness of the traditional methods and provide scientific reference for effective decision-making.

  7. Emerging Technologies and Techniques for Wide Area Radiological Survey and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhao, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-24

    Technologies to survey and decontaminate wide-area contamination and process the subsequent radioactive waste have been developed and implemented following the Chernobyl nuclear power plant release and the breach of a radiological source resulting in contamination in Goiania, Brazil. These civilian examples of radioactive material releases provided some of the first examples of urban radiological remediation. Many emerging technologies have recently been developed and demonstrated in Japan following the release of radioactive cesium isotopes (Cs-134 and Cs-137) from the Fukushima Dai-ichi nuclear power plant in 2011. Information on technologies reported by several Japanese government agencies, such as the Japan Atomic Energy Agency (JAEA), the Ministry of the Environment (MOE) and the National Institute for Environmental Science (NIES), together with academic institutions and industry are summarized and compared to recently developed, deployed and available technologies in the United States. The technologies and techniques presented in this report may be deployed in response to a wide area contamination event in the United States. In some cases, additional research and testing is needed to adequately validate the technology effectiveness over wide areas. Survey techniques can be deployed on the ground or from the air, allowing a range of coverage rates and sensitivities. Survey technologies also include those useful in measuring decontamination progress and mapping contamination. Decontamination technologies and techniques range from non-destructive (e.g., high pressure washing) and minimally destructive (plowing), to fully destructive (surface removal or demolition). Waste minimization techniques can greatly impact the long-term environmental consequences and cost following remediation efforts. Recommendations on technical improvements to address technology gaps are presented together with observations on remediation in Japan.

  8. In Situ Remediation Integrated Program: Evaluation and assessment of containment technology

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Fayer, M.J.

    1994-06-01

    Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

  9. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  10. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  11. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  12. Soil washing as a potential remediation technology for contaminated DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Devgun, J.S.; Beskid, N.J. [Argonne National Lab., IL (United States); Natsis, M.E. [Princeton Univ., NJ (United States); Walker, J.S. [USDOE, Washington, DC (United States)

    1993-03-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  13. Soil washing as a potential remediation technology for contaminated DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Devgun, J.S.; Beskid, N.J. (Argonne National Lab., IL (United States)); Natsis, M.E. (Princeton Univ., NJ (United States)); Walker, J.S. (USDOE, Washington, DC (United States))

    1993-01-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  14. Functional remediation components: A conceptual method of evaluating the effects of remediation on risks to ecological receptors

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer

    2016-08-30

    Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.

  15. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  16. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  17. [Research on the Screening Method of Soil Remediation Technology at Contaminated Sites and Its Application].

    Science.gov (United States)

    Bai, Li-ping; Luo, Yun; Liu, Li; Zhou, You-ya; Yan, Zeng-guang; Li, Fa-sheng

    2015-11-01

    Soil remediation technology screening is an important procedure in the supervision of contaminated sites. The efficiency and costs of contaminated site remediation will be directly affected by the applicability of soil remediation technology. The influencing factors include characteristics of contaminants, site conditions, remediation time and costs should be considered to determine the most applicable remediation technology. The remediation technology screening was commonly evaluated by the experienced expert in China, which limited the promotion and application of the decision making method. Based on the supervision requirements of contaminated sites and the research status at home and abroad, the screening method includes preliminary screening and explicit evaluation was suggested in this paper. The screening index system was constructed, and the extension theory was used to divide the technology grade. The extension theory could solve the problem of human interference in the evaluation process and index value assignment. A chromium residue contaminated site in China was selected as the study area, and the applicable remediation technologies were suggested by the screening method. The research results could provide a scientific and technological support for the supervision and management of contaminated sites in China.

  18. Horizontal directional drilling: a green and sustainable technology for site remediation.

    Science.gov (United States)

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  19. The Effects of Remedial Mathematics on the Learning of Economics

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students and unavaila...

  20. Sustainable exposure prevention through innovative detection and remediation technologies from the NIEHS Superfund Research Program.

    Science.gov (United States)

    Henry, Heather F; Suk, William A

    2017-03-01

    Innovative devices and tools for exposure assessment and remediation play an integral role in preventing exposure to hazardous substances. New solutions for detecting and remediating organic, inorganic, and mixtures of contaminants can improve public health as a means of primary prevention. Using a public health prevention model, detection and remediation technologies contribute to primary prevention as tools to identify areas of high risk (e.g. contamination hotspots), to recognize hazards (bioassay tests), and to prevent exposure through contaminant cleanups. Primary prevention success is ultimately governed by the widespread acceptance of the prevention tool. And, in like fashion, detection and remediation technologies must convey technical and sustainability advantages to be adopted for use. Hence, sustainability - economic, environmental, and societal - drives innovation in detection and remediation technology. The National Institute of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) is mandated to advance innovative detection, remediation, and toxicity screening technology development through grants to universities and small businesses. SRP recognizes the importance of fast, accurate, robust, and advanced detection technologies that allow for portable real-time, on-site characterization, monitoring, and assessment of contaminant concentration and/or toxicity. Advances in non-targeted screening, biological-based assays, passive sampling devices (PSDs), sophisticated modeling approaches, and precision-based analytical tools are making it easier to quickly identify hazardous "hotspots" and, therefore, prevent exposures. Innovation in sustainable remediation uses a variety of approaches: in situ remediation; harnessing the natural catalytic properties of biological processes (such as bioremediation and phytotechnologies); and application of novel materials science (such as nanotechnology, advanced

  1. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  2. Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil augmentation with microbial degraders immobilized on carriers is evaluated as a potential remediation technology using a mathematical model that includes degradation within spatially distributed carriers and diffusion or advectiondispersion as contaminant mass transfer mechanisms. The total...... to determine whether the spatially distributed model is required. Results show that field scale applications of immobilized degraders will be limited by the amount of carriers required to reach acceptable degradation rates....... degraders have low intrinsic degradation rates and that only limited carrier to soil volume ratios are practically feasible, bioaugmented soils are characterized by low effective degradation ratesandcanbeconsidered fully mixed. A simple exponential model is then sufficient to predict biodegradation...

  3. Use of iron-based technologies in contaminated land and groundwater remediation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, Andrew B. [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)], E-mail: A.Cundy@brighton.ac.uk; Hopkinson, Laurence [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Whitby, Raymond L.D. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2008-08-01

    Reactions involving iron play a major role in the environmental cycling of a wide range of important organic, inorganic and radioactive contaminants. Consequently, a range of environmental clean-up technologies have been proposed or developed which utilise iron chemistry to remediate contaminated land and surface and subsurface waters, e.g. the use of injected zero zero-valent iron nanoparticles to remediate organic contaminant plumes; the generation of iron oxyhydroxide-based substrates for arsenic removal from contaminated waters; etc. This paper reviews some of the latest iron-based technologies in contaminated land and groundwater remediation, their current state of development, and their potential applications and limitations.

  4. Scale-up on electrokinetic remediation: Engineering and technological parameters.

    Science.gov (United States)

    López-Vizcaíno, Rubén; Navarro, Vicente; León, María J; Risco, Carolina; Rodrigo, Manuel A; Sáez, Cristina; Cañizares, Pablo

    2016-09-05

    This study analyses the effect of the scale-up of electrokinetic remediation (EKR) processes in natural soils. A procedure is proposed to prepare soils based on a compacting process to obtaining soils with similar moisture content and density to those found in real soils in the field. The soil used here was from a region with a high agrarian activity (Mora, Spain). The scale-up study was performed in two installations at different scales: a mock-up pilot scale (0.175m(3)) and a prototype with a scale that was very similar to a real application (16m(3)). The electrode configuration selected consisted of rows of graphite electrodes facing each other located in electrolyte wells. The discharge of 20mg of 2,4-dichlorophenoxyacetic acid [2,4-D] per kg of dry soil was treated by applying an electric potential gradient of 1Vcm(-1). An increase in scale was observed to directly influence the amount of energy supplied to the soil being treated. As a result, electroosmotic and electromigration flows and electric heating are more intense than in smaller-scale tests (24%, 1% and 25%, respectively respect to the values in prototype). In addition, possible leaks were evaluated by conducting a watertightness test and quantifying evaporation losses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

  6. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils.

  7. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering

    OpenAIRE

    Salman, Madiha; Gerhard, Jason I.; Major, David W.; Pironi, Paolo; Hadden, Rory

    2015-01-01

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale exper...

  8. Communicative and remedial effects of social blushing

    NARCIS (Netherlands)

    de Jong, Peter

    1999-01-01

    Three experiments (N = 90; N = 78; N = 52) examined the communicative and remedial properties of blushing. in Experiments 1 and 2, participants read scripts describing incidents that took place in shops. Following the mishap the actor left while displaying a blush (target condition), left the shop w

  9. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  10. Heating Unsaturated Sediments Using Solar Energy to Enhance Passive Sediment Remediation Technologies

    Science.gov (United States)

    Rossman, A.

    2002-12-01

    Sediment heating has been shown to enhance passive sediment remediation technologies such as bioremediation and barometric pumping (passive soil venting). Sediment heating raises the slow remediation rates that often limit the widespread use of these technologies. In bioremediation applications, a 10 degree C increase in subsurface temperature is expected to double the microbial activity, and thus the remediation rate. The removal rate of tetracholorethylene (PCE - a common subsurface contaminant) by passive soil vapor extraction is expected to nearly double in low-permeable sediments when the subsurface is heated 10 degree C from ambient temperatures due to an increased vapor pressure in the PCE. When the sediment is heated using renewable energy sources, these thermally enhanced remediation technologies can be environmentally benign alternatives to conventional remediation techniques that rely on large external energy inputs. The thermally enhanced passive technologies may be particularly useful for remediating unsaturated, low-permeable lenses that are troublesome to most conventional remediation technologies such as conventional soil vapor extraction and co-solvent flushes. The main objective of this work was to quantify subsurface sediment heating using a solar powered heat injection well. To do this, a pilot sediment heating system was installed in Vermont and high resolution meteorological and sediment temperature data were collected using a stand-alone data acquisition system. Unsaturated, silty sediments were heated in-situ by converting the direct and indirect solar energy available at the surface to heat energy in the subsurface using stand-alone renewable energy sources and a resistive element heat injection well. The heat injection well was powered by a 600-W passively tracking photovoltaic (PV) array and a small 1.2-m swept area wind turbine. It is envisioned that the heat injection well would be placed directly into an area of high subsurface

  11. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    , most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  12. Engaging with residents' perceived risks and benefits about technologies as a way of resolving remediation dilemmas.

    Science.gov (United States)

    Prior, Jason; Rai, Tapan

    2017-12-01

    In recent decades the diversity of remediation technologies has increased significantly, with the breadth of technologies ranging from dig and dump to emergent technologies like phytoremediation and nanoremediation. The benefits of these technologies to the environment and human health are believed to be substantial. However, they also potentially constitute risks. Whilst there is a growing body of knowledge about the risks and benefits of these technologies from the perspective of experts, little is known about how residents perceive the risks and benefits of the application of these technologies to address contaminants in their local environment. This absence of knowledge poses a challenge to remediation practitioners and policy makers who are increasingly seeking to engage these affected local residents in choosing technology applications. Building on broader research into the perceived benefits and risks of technologies, and data from a telephone survey of 2009 residents living near 13 contaminated sites in Australia, regression analysis of closed-ended survey questions and coding of open-ended questions are combined to identify the main predictors of resident's perceived levels of risk and benefit to resident's health and to their local environment from remediation technologies. This research identifies a range of factors associated with the residents' physical context, their engagement with institutions during remediation processes, and the technologies which are associated with residents' level of perceived risk and benefit for human health and the local environment. The analysis found that bioremediation technologies were perceived as less risky and more beneficial than chemical, thermal and physical technologies. The paper also supports broader technology research that reports an inverse correlation between levels of perceived risks and benefits. In addition, the paper reveals the types of risks and benefits to human health and the local environment that

  13. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology.

    Science.gov (United States)

    Kim, Seungjin; Krajmalnik-Brown, Rosa; Kim, Jong-Oh; Chung, Jinwook

    2014-11-01

    The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil.

  14. Acoustic Cavitation: A Potential Remediation Technology for On-Site Elimination of Perfluorinated Contaminants

    Science.gov (United States)

    Vecitis, C. D.; Cheng, J.; Park, H.; Hoffmann, M. R.

    2006-12-01

    Perfluorinated chemicals are emerging as globally ubiquitous contaminants which are recalcitrant to the conventional remediation techniques of adsorption and chemical oxidation. The release of these chemicals to the environment occurs from specific sites such as manufacturing plants, fire-fighting foams at airports and contaminated landfills. Even though these compounds are widely recognized as potentially hazardous, disposal regulations have been limited due to the ineffectiveness of current pump and treat technologies towards these species. We have shown that ultrasonically induced acoustic cavitation can effectively mineralize aqueous perfluorinated acid and sulfonate species by in situ pyrolysis and chemical oxidation at the lab and pilot scale. Efficiency has been tested on a variety of matrices such as tap water, groundwater and landfill pump-out with VOC content being the major detriment towards remediation. Advanced oxidation by the simultaneously application of ozone and ultrasound seems to partially eliminate this barrier by enhancing the rate of VOC mineralization. Application of this technology to a contaminated field site and the obstacles of scaling to such a degree are discussed.

  15. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  16. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies.

    Science.gov (United States)

    Franzetti, Andrea; Caredda, Paolo; Ruggeri, Claudio; La Colla, Paolo; Tamburini, Elena; Papacchini, Maddalena; Bestetti, Giuseppina

    2009-05-01

    A wide range of structurally different surface active compounds (SACs) is synthesised by many prokaryotic and eukaryotic microorganisms. Due to their properties, microbial SACs have been exploited in environmental remediation techniques. From a diesel-contaminated soil, we isolated the Gordonia sp. strain BS29 which extensively grows on aliphatic hydrocarbons and produces two different types of SACs: extracellular bioemulsans and cell-bound biosurfactants. The aim of this work was to evaluate the potential applications of the strain BS29 and its SACs in the following environmental technologies: bioremediation of soils contaminated by aliphatic and aromatic hydrocarbons, and washing of soils contaminated by crude oil, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Microcosm bioremediation experiments were carried out with soils contaminated by aliphatic hydrocarbons or PAHs, while batch soil washing experiments were carried out with soils contaminated by crude oil, PAHs or heavy metals. Bioremediation results showed that the BS29 bioemulsans are able to slightly enhance the biodegradation of recalcitrant branched hydrocarbons. On the other hand, we obtained the best results in soil washing of hydrocarbons. The BS29 bioemulsans effectively remove crude oil and PAHs from soil. Particularly, crude oil removal by BS29 bioemulsans is comparable to the rhamnolipid one in the same experimental conditions showing that the BS29 bioemulsans are promising washing agents for remediation of hydrocarbon-contaminated soils.

  17. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  18. Remediation Technologies for Marine Oil Spills: A Critical Review and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    D. Dave

    2011-01-01

    Full Text Available Problem statement: Anthropogenic activities pollute the oceans with oil through land run off, vessels accidents, periodic tanker discharges and bilge discharges. Oil spills are environmental disasters that impact human, plants and wild life including birds, fish and mammals. Approach: In this study, the International Guidelines for Preventing Oils Spills and Response to Disasters were reviewed and the characteristics of oil spills were discussed. The advantages and disadvantages of various oil spill response methods were evaluated. A comparative analysis were performed on the currently available remediation technologies using 10 evaluation criteria that included cost, efficiency, time, impact on wild life, reliability, level of difficulty, oil recovery, weather, effect on physical/chemical characteristics of oil and the need for further treatment. The advantages and disadvantages of each response method were used to determine the score assigned to that method. Results: There are many government regualtions for individual countries that serve as prevention mesures for oil spills in the offshore environment. They have to do with the design of equipment and machinery used in the offshore environment and performing the necessary safety inspections. The primary objectives of response to oil spill are: to prevent the spill from moving onto shore, reduce the impact on marine life and speed the degradation of any unrecovered oil. There are several physical, chemical, thermal and biological remediation technologies for oil spills including booms, skimmers, sorbents, dispersants, in-situ burning and bioremediation. Each technique has its advantages and disadvantages and the choice of a particular technique will depend on: type of oil, physical, biological and economical characteristics of the spill, location, weather and sea conditions, amount spilled and rate of spillage, depth of water column, time of the year and effectiveness of technique. Coclusion

  19. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  20. A Fundamental study of remedial technology development to prevent stress corrosion cracking of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Gyu; Lee, Chang Soon [Sunmoon University, Asan (Korea)

    1998-04-01

    Most of the PWR Steam generators with tubes in Alloy 600 alloy are affected by Stress Corrosion Cracking, such as PWSCC(Primary Water Stress Corrosion Cracking) and ODSCC(Outside Diameter Stress Corrosion Cracking). This study was undertaken to establish the background for remedial technology development to prevent SCC. in the report are included the following topics: (1) General: (i) water chemistry related factors, (ii) Pourbaix(Potential-pH) Diagram, (iii) polarization plot, (iv) corrosion mode of Alloy 600, 690, and 800, (v) IGA/SCC growth rate, (vi) material suspetibility of IGA/SCC, (vii) carbon solubility of Alloy 600 (2) Microstructures of Alloy 600 MA, Alloy 600 TT, Alloy 600 SEN Alloy 690 TT(Optical, SEM, and TEM) (3) Influencing factors for PWSCC initiation rate of Alloy 600: (i) microstructure, (ii) water chemistry(B, Li), (iii) temperature, (iv) plastic deformation, (v) stress relief annealing (4) Influencing factors for PWSCC growth rate of Alloy 600: (i) water chemistry(B, Li), (ii) Scott Model, (iii) intergranular carbide, (iv) temperature, (v) hold time (5) Laboratory conditions for ODSCC initiation rate: 1% NaOH, 316 deg C; 1% NaOH, 343 deg C; 50% NaOH, 288 deg C; 10% NaOH, 302 deg C; 10% NaOH, 316 deg C; 50% NaOH, 343 deg C (6) Sludge effects for ODSCC initiation rate: CuO, Cr{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} (7) Influencing factors for PWSCC growth rate of Alloy 600: (i) Caustic concentration effect, (ii) carbonate addition effect (8) Sulfate corrosion: (i) sulfate ratio and pH effect, (ii) wastage rate of Alloy 600 and Alloy 690 (9) Crevice corrosion: (i) experimental setup for crevice corrosion, (ii) organic effect, (iii) (Na{sub 2}SO{sub 4} + NaOH) effect (10) Remedial measures for SCC: (i) Inhibitors, (ii) ZnO effect. (author). 30 refs., 174 figs., 51 tabs.

  1. Alternative technologies for remediation of technogenic barrens in the Kola Subarctic

    Science.gov (United States)

    Koptsik, G. N.; Koptsik, S. V.; Smirnova, I. E.

    2016-11-01

    The efficiency of remediation of technogenic barrens under the reduction of air pollutant emissions from the Severonikel smelter in the Kola Subarctic is determined largely by the soil state and the technology applied. The covering of the contaminated soils with artificially made material based on organomineral substrates and the following liming and fertilization promoted a sharp and long-term reduction of acidity, decrease in the biological availability of heavy metals, increase in the supply with nutrients, and improvement of the life state of willow and birch plantations. The effect of economically more profitable chemo-phytostabilization is short-term; it requires constant maintenance. Under the current production and a high level of soil contamination, repeated measures are required to optimize the soil reaction, supply with nutrients, and to correct the availability of heavy metals in the soils based on the results of continuous monitoring

  2. A review on the geoenvironmental and geoecological integrated technology for environmental remediation in Vietnam: approaches, contributions, challenges and perspectives

    Science.gov (United States)

    Trong Nhuan, Mai; Hoang Ha, Nguyen Thi; Hoai, Ta Thi; Dang Quy, Tran

    2017-06-01

    Geoenvironmental and geoecological integrated technology (GGIT) is a cost-effective and environment-friendly technology that encompasses the applications of earth science principles and functions of geological environment and ecosystems to assimilate and minimize the spread of pollutants, to enhance the sorption capacity and environmental remediation. On the basis of the integrated approaches such as system, anthropogenic activities - ecosystem - environment interaction, effectiveness and feasibility, GGIT has provided significant applications in Vietnam such as waste containment and remediation and environmental protection. The results of a pilot scale using iron mine drainage sludge and common reed (Phragmites australis) for wastewater treatment in a Pb-Zn mine in northern Vietnam indicated the effective and potential application of GGIT. However, GGIT has many challenges in limited funding conditions, constraints in the initial development of GGIT, incomplete transfer to users, and quantitative assessment of pollutant cleanup by natural environments and ecosystems. Environmental pollution quote, impacts to exposed organisms, increasing demands for application of low-cost technologies, the availability of potential sorbents, indigenous plants, and ecosystems for environmental remediation, and collaboration will promote development, contribution, and implementation of GGIT applications in Vietnam.

  3. Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application

    Science.gov (United States)

    Gerhard, J.; Kinsman, L.; Torero, J. L.

    2015-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition

  4. Remedial actions: A discussion of technological, regulatory and construction issues

    Energy Technology Data Exchange (ETDEWEB)

    Manrod, W.E.; Miller, R.A.; Barton, W.D. III; Pierce, T.J. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

    1989-11-01

    The Oak Ridge Reservation consists of approximately 35,252 acres located in the Ridge and Valley Province of the Appalachian Mountains in Eastern Tennessee. Three Department of Energy facilities are located on the Reservation: the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant and the Oak Ridge National Laboratory. The plants have, over the years, disposed of low-level and mixed waste in various areas on the reservation principally with shallow land burial. A discussion is presented of some of the actions to remediate and close areas used for disposal of waste in the past. Current or planned activities for waste disposal and storage are also discussed. Closures completed to date have complied with Resource Conservation and Recovery Act Regulations. The new approach for disposal and storage has adopted ideas that have been successfully used by the French to dispose of low-level waste, as well as, improved on older shallow burial disposal techniques.

  5. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory; Successful Integration & Deployment of Technologies Results in Remediated Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, K.; Bolling, D.

    2002-02-27

    This paper presents an overview of the underground technologies deployed during the cleanup of nine large underground storage tanks (USTs) that contained residual radioactive sludge, liquid low-level waste (LLLW), and other debris. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory (ORNL) was successfully completed in 2001, ending with the stabilization of the USTs and the cleanup of the South Tank Farm. This U.S. Department of Energy (DOE) project was the first of its kind completed in the United States of America. The Project integrated robotic and remotely operated technologies into an effective tank waste retrieval system that safely retrieved more than 348 m3 (92,000 gal) of radioactive sludge and 3.15E+15 Bq (85,000 Ci) of radioactive contamination from the tanks. The Project successfully transferred over 2,385 m3 (630,000 gal) of waste slurry to ORNL's active tank waste management system. The project team avoided over $120 Million in costs and shortened the original baseline schedule by over 10 years. Completing the Gunite Tanks Remediation Project eliminated the risks posed by the aging USTs and the waste they contained, and avoid the $400,000 annual costs associated with maintaining and monitoring the tanks.

  6. Soil and Sediment remediation, mechanisms, technologies and applications

    NARCIS (Netherlands)

    Lens, P.N.L.; Grotenhuis, J.T.C.; Malina, G.; Tabak, H.H.

    2005-01-01

    Technologies for the treatment of soils and sediments in-situ (landfarming, bioscreens, bioventing, nutrient injection, phytoremediation) and ex-situ (landfarming, bio-heap treatment, soil suspension reactor) will be discussed. The microbiological, process technological and socio-economical aspects

  7. Soil and Sediment remediation, mechanisms, technologies and applications

    NARCIS (Netherlands)

    Lens, P.N.L.; Grotenhuis, J.T.C.; Malina, G.; Tabak, H.H.

    2005-01-01

    Technologies for the treatment of soils and sediments in-situ (landfarming, bioscreens, bioventing, nutrient injection, phytoremediation) and ex-situ (landfarming, bio-heap treatment, soil suspension reactor) will be discussed. The microbiological, process technological and socio-economical aspects

  8. The Effects of Remedial Mathematics on the Learning of Economics

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students...... and unavailable for the others, controlling for background variables. They found that, consistent with previous studies, the level of and performance in secondary school mathematics have strong predictive power on students' performances at university-level economics. However, they found relatively little evidence...

  9. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  10. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures with QA/QC

    Science.gov (United States)

    2015-05-01

    GUIDANCE DOCUMENT Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures... Groundwater Monitoring for Site Remediation and Management 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Halden, R.U., Roll, I.B. 5d...DEPLOYMENT WORK As with any groundwater sampling method, the decision to apply the IS2 technology is based on the site characteristics and the type

  11. Bioslurping technology applications at Naval fuel remediation sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppel, R.; Goetz, F. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States); Zwick, T.; Kittel, J. [Battelle Memorial Inst., Columbus, OH (United States); Julio, S.D. [California State Univ., Northridge, CA (United States)

    1996-12-01

    Bioventing accelerates the biodegradation of both high and low volatility fuels immobilized in the vadose zone by satisfying the high oxygen demand of in situ microorganisms through forced aeration of subsurface soils. However, many Naval field sites have light non-aqueous phase liquid (LNAPL) residing at and above the groundwater table. In such cases biodegradation of the LNAPL may be a very slow process because bioemulsification and bioavailability are impeded. Bioslurper systems are designed to recover LNAPL via vacuum-assisted pumping, while simultaneously promoting the remediation of vadose zone soil contamination via bioventing. Bioslurping has been ongoing at NAS Fallon, Nevada, for over three years and was initiated at Marine Corps Base Hawaii last summer. The sites have low volatility JP-5 jet fuel on the groundwater table in low to medium permeability soils. An arid bioventing site at Twentynine Palms, CA, appears to be moisture limited. Subsurface irrigation of the 190 ft vadose zone has increased mixed fuel biodegradation rates about 10-fold but wetting the contaminated zone has been a slow process.

  12. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    OpenAIRE

    Maria Ángeles Fernández de Dios; Olaia Iglesias; Marta Pazos; Maria Ángeles Sanromán

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel c...

  13. Assessment and remediation of a historical pipeline release : tools, techniques and technologies applied to in-situ/ex-situ soil and groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Kohlsmith, B. [Kinder Morgan Canada Inc., Calgary, AB (Canada)

    2008-07-01

    Tools, techniques, and technologies applied to in-situ/ex-situ soil and groundwater remediation were presented as part of an assessment and remediation of a historical pipeline release. The presentation discussed the initial assessment, as well as a discussion of remediation of hydrophobic soils, re-assessment, site specific criteria, a remediation trial involving bioventing and chemical oxidation, and a full scale remediation. The pipeline release occurred in the summer of 1977. The event was followed by a complete surface remediation with a significant amount of topsoil being removed and replaced. In 2004, a landowner complained of poor crop growth in four patches near the area of the historical spill. An initial assessment was undertaken and several photographs were presented. It was concluded that a comprehensive assessment set the base for a careful staged approach to the remediation of the site including the establishment of site specific criteria. The process was made possible with a high level of communication between all stakeholders. In addition, the most appropriate solution for the site was realized. figs.

  14. Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2015 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Mayes, Melanie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Johs, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Poteat, Monica D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Mehlhorn, Tonia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Lester, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Morris, Jesse [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Lowe, Kenneth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eller, Virginia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2016-04-01

    Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM) because of large historical losses of mercury within buildings and to soils and surface waters at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the downstream environment, the success of conventional options for mercury remediation in lower East Fork Poplar Creek (EFPC) is uncertain. A phased, adaptive management approach to remediation of surface water includes mercury treatment actions at Y-12 in the short-term and research and technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014b).

  15. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  16. Remediation of oil-contaminated soil using the CLEANSOIL technology

    Science.gov (United States)

    Zakharchenko, A. V.; Korzhov, Yu. V.; Lapshina, E. D.; Kul'Kov, M. G.; Yarkov, D. M.; Khoroshev, D. I.

    2011-04-01

    Approbation data of the innovative CLEANSOIL technology of soil purification after oil pollution are given. Drainage pipes filled with an adsorbent with microorganisms placed in the soil are used. It is revealed that the content of hydrocarbons under the technological constructions (metal columns and reservoirs) rises in comparison with the open oil-polluted areas. It is shown that the oil is destroyed quicker under the constructions versus in the open areas. The microorganisms better assimilate the n-alkanes with C14 chains than the C32-40 hydrocarbons. The application of a combined technology based on the sorption and reduction of the hydrocarbons by microorganisms makes it possible to quickly reduce the soil pollution by oil products without the soil cover's disturbance.

  17. Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies.

    Science.gov (United States)

    Frutos, F J García; Pérez, R; Escolano, O; Rubio, A; Gimeno, A; Fernandez, M D; Carbonell, G; Perucha, C; Laguna, J

    2012-01-15

    The usual fate of highly contaminated fine products (silt-clay fractions) from soil washing plants is disposal in a dump or thermal destruction (organic contaminants), with consequent environmental impacts. Alternative treatments for these fractions with the aim of on-site reuse are needed. Therefore, the feasibility of two technologies, slurry bioremediation and landfarming, has been studied for the treatment of sludge samples with a total petroleum hydrocarbon (TPH) content of 2243 mg/kg collected from a soil washing plant. The treatability studies were performed at the laboratory and pilot-real scales. The bioslurry assays yielded a TPH reduction efficiency of 57% and 65% in 28 days at the laboratory and pilot scale, respectively. In the landfarming assays, a TPH reduction of 85% in six months was obtained at laboratory scale and 42% in three months for the bioremediation performed in the full-scale. The efficiency of these processes was evaluated by ecotoxicity assessments. The toxic effects in the initial sludge sample were very low for most measured parameters. After the remediation treatments, a decrease in toxic effects was observed in earthworm survival and in carbon mineralisation. The results showed the applicability of two well known bioremediation technologies on these residues, this being a novelty.

  18. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  19. BioKonversion technology recovers, remediates and reuses waste and hydrocarbons from oil drilling

    Energy Technology Data Exchange (ETDEWEB)

    Topf, A.

    2008-01-15

    Houston-based Nopal Group has developed a solution to dispose of oilfield waste in a safe and cost-effective manner. The company is actively engaged in a large-scale project to remediate a 400-hectare site on the Aspheron Peninsula in Azerbaijan. The site is currently regarded as the most polluted place in the world after a century of oil extraction with little regard for the surrounding environment. The Nopal Group will use its patented BioKonversion technology, which cleanses the soil of hydrocarbons in a two-part process using a large machine known as the Green Machine. Several pipelines will need to be relocated, and ancient drilling rigs that have been there as long as 100 years will have to be dealt with. The cleanup cost has been estimated at between $20 million to $40 million, and will take between 18 and 36 months, depending on how deep into the ground the machines have to dig for hydrocarbons. The 90-foot by 40-foot machine processes drill cuttings, contaminated soil and drill fluids by first separating the dirt from the liquid hydrocarbons, which can be recycled or refined for resale. The remaining dirt, which still contains 3 to 7 percent oil, is then placed into a centrifuge and mixed with a heating agent and other elements, including naturally oleophilic kenaf powder. The process micronizes and absorbs hydrocarbons. Once the process is finished, the hydrocarbons are immediately non-detectable and non-leachable. The leftover benign dirt can be used as landfill cover, or mixed with road aggregate. BioKonversion can also be adapted for use on oil rigs. This article demonstrated that the process has clear advantages over traditional oilfield remediation methods such as land farming. Opportunities exist to utilize the process in Venezuela and Kuwait. 1 fig.

  20. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites.

    Science.gov (United States)

    Sandu, Ciprian; Popescu, Marius; Rosales, Emilio; Bocos, Elvira; Pazos, Marta; Lazar, Gabriel; Sanromán, M Angeles

    2016-08-01

    The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bioremediation, an environmental remediation technology for the bioeconomy.

    Science.gov (United States)

    Gillespie, Iain M M; Philp, Jim C

    2013-06-01

    Bioremediation differs from other industrial biotechnologies in that, although bioremediation contractors must profit from the activity, the primary driver is regulatory compliance rather than manufacturing profit. It is an attractive technology in the context of a bioeconomy but currently has limitations at the field scale. Ecogenomics techniques may address some of these limitations, but a further challenge would be acceptance of these techniques by regulators.

  2. Decision support tools for evaluation and selection of technologies for soil remediation and disposal of halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, O.; Zinovyev, S.; Lodolo, A.; Vranes, S.; Miertus, S. [ICS-UNIDO, Trieste (Italy)

    2004-09-15

    One of the most justified demands in abating the pollution created by polychlorinated substances is the remediation of contaminated sites, mainly soil remediation, which is also the most complex technical task in removing pollution because of the necessity to process huge quantities of matrix and to account for numerous side factors. The commercial technologies are usually based on rather direct and simplified but also secure processes, which often approach remediation in a general way, where different types of pollutants can be decontaminated at the same time by each technology. A number of different soil remediation technologies are nowadays available and the continuous competition among environmental service companies and technology developers generates a further increase in the clean-up options. The demand for decision support tools that could help decision makers in selecting the most appropriate technology for the specific contaminated site has consequently increased. These decision support tools (DST) are designed to help decision makers (site owners, local community representatives, environmentalists, regulators, etc.) to assess available technologies and preliminarily select the preferred remedial options. The analysis for the identification of the most suitable options in the DST is based on technical, economic, environmental, and social criteria. These criteria are ranked by all parties involved in the decision process to determine their relative importance for a particular remediation project. The aim of the present paper is to present the new approach for building decision support tool to evaluate different technologies for remediation and disposal of halogenated waste.

  3. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic

    Directory of Open Access Journals (Sweden)

    Danielle Camenzuli

    2015-09-01

    Full Text Available Petroleum hydrocarbon contaminated sites, associated with the contemporary and legacy effects of human activities, remain a serious environmental problem in the Antarctic and Arctic. The management of contaminated sites in these regions is often confounded by the logistical, environmental, legislative and financial challenges associated with operating in polar environments. In response to the need for efficient and safe methods for managing contaminated sites, several technologies have been adapted for on-site or in situ application in these regions. This article reviews six technologies which are currently being adapted or developed for the remediation of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Bioremediation, landfarming, biopiles, phytoremediation, electrokinetic remediation and permeable reactive barriers are reviewed and discussed with respect to their advantages, limitations and potential for the long-term management of soil and groundwater contaminated with petroleum hydrocarbons in the Antarctic and Arctic. Although these technologies demonstrate potential for application in the Antarctic and Arctic, their effectiveness is dependent on site-specific factors including terrain, soil moisture and temperature, freeze–thaw processes and the indigenous microbial population. The importance of detailed site assessment prior to on-site or in situ implementation is emphasized, and it is argued that coupling of technologies represents one strategy for effective, long-term management of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic.

  4. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  5. Application of electro-Fenton technology to remediation of polluted effluents by self-sustaining process.

    Science.gov (United States)

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.

  6. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Directory of Open Access Journals (Sweden)

    Maria Ángeles Fernández de Dios

    2014-01-01

    Full Text Available The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.

  7. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... and technological competences, which helps to anchor the owner within the genealogical community....

  8. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    Science.gov (United States)

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community.

  9. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  10. Anthropology and decision making about chronic technological disasters: Mixed waste remediation on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A.K.; Schweitzer, M.

    1996-12-31

    This paper discusses two related case studies of decision making about the remediation of mixed (hazardous and radioactive) wastes on the Oak Ridge Reservation in Tennessee. The three goals of the paper are to (1) place current decision-making efforts in the varied and evolving social, political, regulatory, economic, and technological contexts in which they occur; (2) present definitions and attributes of {open_quotes}successful{close_quotes} environmental decision making from the perspectives of key constituency groups that participate in decision making; and (3) discuss the role of anthropology in addressing environmental decision making. Environmental decision making about remediation is extraordinarily complex, involving human health and ecological risks; uncertainties about risks, technological ability to clean up, the financial costs of clean up; multiple and sometimes conflicting regulations; social equity and justice considerations; and decreasing budgets. Anthropological theories and methods can contribute to better understanding and, potentially, to better decision making.

  11. Towards successful bioaugmentation with entrapped cells as a soil remediation technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil remediation technologies are proposed that rely on inoculation with degrading microorganisms entrapped in protective carriers. A mathematical model developed to model entrapped cell bioaugmentation describes the 3-D diffusion-driven mass transfer of benzoate, and its mineralization by Pseudo......Soil remediation technologies are proposed that rely on inoculation with degrading microorganisms entrapped in protective carriers. A mathematical model developed to model entrapped cell bioaugmentation describes the 3-D diffusion-driven mass transfer of benzoate, and its mineralization...... saturation 7%) and agree satisfactory well with model predictions. In contrast, much larger mineralization rates are measured for wet conditions (water saturation of 68%). This discrepancy originates from extensive cell dispersal, not accounted for in the model, which occurs in wet conditions...

  12. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  13. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process.

  14. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    Science.gov (United States)

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy.

  15. Bioslurping technology applications at naval middle distillate fuel remediation sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppel, R.E.; Goetz, F.E. [Naval Facilities Engineering Services Center, Port Hueneme, CA (United States); Kittel, J.A.; Hinchee, R.E.; Abbott, J.E. [Battelle Columbus, OH (United States)

    1995-12-31

    Bioslurping technology, a combination of bioventing and vacuum-enhanced free-product recovery of light, nonaqueous-phase liquid (LNAPL), has been employed at Fallon Naval Air Station, Nevada, for over 2 years and was initiated at Marine Corps Base Hawaii and a radar station near Hofn, Iceland. These sites have low-volatility fuels on the groundwater table in low- to medium-permeability soils. LNAPL recovery rates from 48 wells in silty fine sand to clay loam profiles at Fallon have ranged from 57 to 227 L/day with an average of 170 L/day at 10 to 30 cm of mercury vacuum. Mass discharge from the bioslurper system for LNAPL and vapor averaged 97% and 2.7%, respectively, with an average soil gas extraction rate of 0.024 m{sup 3}/min. Based on periodic soil gas analyses from 90 isolated soil gas sampling points in the vadose zone of the treatment plot, bioslurping appeared to satisfy O{sub 2} limitations i the contaminated soil profile. Despite no apparent O{sub 2} limitations in the contaminated soil profile. Despite no apparent O{sub 2} limitation for fuel biodegradation, low oxygen utilization rates were observed while performing in situ respiration tests following system shutdown. Preliminary in situ respirometry, soil gas, laboratory microcosm, stable carbon isotope, and soil characterization data indicate that both a low fuel surface area to volume ratio and bacterial cell damage may be involved in the observed low LNAPL bioemulsification and biodegradation rates.

  16. MGP remediation using thermal desorption: emerging technology yields a permanent solution

    Energy Technology Data Exchange (ETDEWEB)

    Umfleet, D.E.; Bachman, S.A.; Highland, E. [Barr Engineering Company, Ann Arbor, MI (United States)

    1997-12-01

    An investigation of a former manufactured gas plant (MGP) at the site for Northwestern Public Service`s new operations buildings uncovered evidence of MGP residuals in the moist, clay-rich soils. On site-thermal desorption was selected as the remedial method. A low-temperature, counter-flow, direct-fired rotary desorber heats soils up to 1200{degree}F to volatilize organic fractions. Soils containing polyaromatic hydrocarbon (PAH) compounds were excavated, treated effectively, and reused at the site as backfill. For the approximately 47,000 tons of soil processed, remediation costs were 82 dollars per ton. Site-specific factors affecting project costs included the volume of soil treated, soil type and condition, inclement weather, and market conditions. Soils were treated to below state-approved performance criterion, and remediation of the site was completed just 18 months after the project began. 1 fig., 2 tabs.

  17. Reference Guide to Non-combustion Technologies for Remediation of Persistent Organic Pollutants in Soil, Second Edition - 2010

    Science.gov (United States)

    This report is the second edition of the U.S. Environmental Protection Agency's (US EPA's) 2005 report and provides a high level summary of information on the applicability of existing and emerging noncombustion technologies for the remediation of...

  18. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  19. The proceduralisation of data protection remedies under EU data protection law : Towards a more effective and data subject-oriented remedial system?

    NARCIS (Netherlands)

    Galetta, Antonella; de Hert, Paul

    2015-01-01

    The proceduralisation of data protection remedies under EU data protection law: towards a more effective and data subject-oriented remedial system?
The right to remedy breaches of data protection is laid down in both Directive 95/46/EC (Art. 22) and the Council of Europe Data Protection Convention n

  20. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.R. [Reclamation Technology, Inc., Athens, GA (United States); Dudka, S.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States); Johnson, D.O. [Argonne National Lab., IL (United States)

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  1. High quality coal extraction and environmental remediation of fine coal refuse ponds using advanced cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Mohanty, M.K.; Patwardhan, A. [Department of Mining Engineering, Southern Illinois University-Carbondale, Carbondale, Illinois (United States)

    1998-07-01

    A vast number of coal refuse ponds represent a significant economical resource base that are also considered to be environmentally harmful. Significant amounts of cleanable fine coal generally exist in the refuse ponds due to the inability of conventional technologies to effectively separate the fine coal from the associated gangue particles. In addition, acid generation, generally a result of pyrite oxidation, has potential to adversely affect the surrounding environment. An integrated processing strategy of simultaneously recovering high quality coal and pyrite-rich products from the treatment of a coal refuse pond slurry has been successfully evaluated using an advanced physical cleaning circuit. A clean coal product having ash and pyritic sulfur contents of 10.1% and 0.41% was recovered with a mass yield of nearly 49%. In addition, a pyrite-rich product containing nearly 83% of the coal pyrite particles present in the refuse pond material was generated for neutralization purposes for the environmental remediation of the slurry pond. 4 refs.

  2. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  3. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

  4. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation

    Directory of Open Access Journals (Sweden)

    Julia E. Vidonish

    2016-12-01

    Full Text Available Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

  5. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  6. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  7. Groundwater remediation and the cost effectiveness of phytoremediation.

    Science.gov (United States)

    Compernolle, T; Van Passel, S; Weyens, N; Vangronsveld, J; Lebbe, L; Thewys, T

    2012-10-01

    In 1999, phytoremediation was applied at the site of a Belgian car factory to contain two BTEX plumes. This case study evaluates the cost effectiveness of phytoremediation compared to other remediation options, applying a tailored approach for economic evaluation. Generally, when phytoremediation is addressed as being cost effective, the cost effectiveness is only determined on an average basis. This study however, demonstrates that an incremental analysis may provide a more nuanced conclusion. When the cost effectiveness is calculated on an average basis, in this particular case, the no containment strategy (natural attenuation) has the lowest cost per unit mass removed and hence, should be preferred. However, when the cost effectiveness is determined incrementally, no containment should only be preferred if the value of removing an extra gram of contaminant mass is lower than 320 euros. Otherwise, a permeable reactive barrier should be adopted. A similar analysis is provided for the effect determined on the basis of remediation time. Phytoremediation is preferred compared to 'no containment' if reaching the objective one year earlier is worth 7 000 euros.

  8. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  9. Design requirements for ERD and ISCO: How close and how fast to achieve an effective remediation?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Lemming, Gitte; Manoli, Gabriele

    2011-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. Full scale Enhanced Reductive Dechlorination (ERD) and In-Situ Chemical Oxidation (ISCO) are promising remediation technologies for such sites, but the delivery of reactants is challeng...

  10. Key To Effective English Remedial Education: Intimation Derived From Multiple Regression

    Science.gov (United States)

    Zhang, Rong; Ishino, Fukuya

    2009-05-01

    With the rapid decrease in younger population, Japanese universities/colleges have to face the challenging task of how to reach the annual quota for incoming students. The admission criteria are debased and students with a broad variety of scholastic abilities are being accepted by higher education institutions. Freshmen's deterioration in academic performances is said to be the most crucial factor hindering the implementation of effective curriculum education. Many universities/colleges have to establish remedial education programs to deal with this problem arising from the limited room for student selection. This paper reports an English remedial education program carried out in Nishinippon Institute of Technology, Japan, examining the validities of its course setting, optimizing the prediction models for students' post-course score changes. The analysis is focused on those determinants proved to be responsible for the improvement of students' English proficiencies, verifying the argument that more effective English remedial education can be realized by conducting appropriate instructions and teaching methodology in courses at different levels.

  11. Sustainability policy and effects on practices in the remediation field

    Science.gov (United States)

    Hou, D.; Al-Tabbaa, A.

    2012-12-01

    Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economy. However, historical industrial operations have caused a huge stockpile of contaminated land that is only slowly being remediated. After several decades of clean-up efforts, there are still an estimated 294,000 contaminated sites in the US and over 300,000 hectares of potentially contaminated land in the UK. It is imperative to develop technical solutions as well as socioeconomic and political instruments to achieve sustainable restoration of contaminated land. The inclusion of sustainability in decision making provides an opportunity to integrate a wide range of considerations: risk control, brownfield regeneration, carbon footprint, water footprint, renewable energy, etc. This study explores the behavior patterns and driving forces behind sustainable practices in remediation, aiming at advancing our understanding of the fundamental relationships among changing natural and manipulated geological environments, sustainability, and technology choices. A large-scale survey is being conducted in the US and UK to study behaviour and decision making issues from a stakeholder perspective. Historically stakeholder theories have been extensively applied to study organization management issues in the academia. This study intends to apply stakeholder theories to engineering practice and sustainability science studies. Pilot test results found that sustainability considerations are widely adopted and in a wide variety of ways. Site owners and regulators are found to be most influential in the decision making process. There is no lack of incentives to adopt sustainability practices, but various factors, such as lack of resources and cost considerations, are still considered impeding factors. At the time of the 2012 AGU meeting, further results from the survey will be available.

  12. Remediation and its effect represented on long term monitoring data at a chlorinated ethenes contaminated site, Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Lee, Seung Hyun; Lee, Kang-Kun

    2016-04-01

    A research for the contamination of chlorinated ethenes such as trichloroethylene (TCE) at an industrial complex, Wonju, Korea, was carried out based on 17 rounds of groundwater quality data collection from 2009 to 2015. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones to groundwater discharge area like a stream. The remediation efficiency according to the remedial actions was evaluated by tracing a time-series of plume evaluation and temporal mass discharge at three transects (Source, Transect-1, Transect-2) which was assigned along the groundwater flow path. Also, based on long term monitoring data, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The results of temporal and spatial monitoring before remedial actions showed that a TCE plume originating from main and local source zones continues to be discharged to a stream. However, from the end of intensive remedial actions from 2012 to 2013, the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly. Especially, during the intensive remediation period, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Estimated initial dissolved concentration and residual mass of TCE in the initial stage of disposal decreased rapidly after an intensive remedial action in 2013 and it is expected to be continuously decreased from the end of remedial actions to 2020. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remedial actions at chlorinated ethenes contaminated site. Acknowledgements This project is supported by the Korea Ministry of Environment under "The GAIA

  13. The influence of house characteristics on the effectiveness of radon remedial measures

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S.P.; Miles, J.C.H. [National Radiological Protection Board, Chilton (United Kingdom); Scivyer, C.R. [Building Research Establishment, Garston (United Kingdom)

    1998-10-01

    The effectiveness of remedial measures in houses with high radon levels has been tested in 943 houses in the UK. Radon levels were measured for 3 mo before and after remediation, and the results were corrected for typical seasonal variations. Householders completed questionnaires about house characteristics and remedial measures. The results were analyzed to determine the influence of house characteristics on the effectiveness of different remedial measures. Significant differences in effectiveness were found, in particular depending on the age of the house and whether the measures were installed by a major contractor, a local builder, or the householder.

  14. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  15. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    Science.gov (United States)

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  16. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  17. Assessing the Life Cycle Impact of Four Groundwater Remediation Technologies: P&T, EIB, PRB, and ISM

    Science.gov (United States)

    Hou, D.; Al-Tabbaa, A.

    2012-12-01

    As sustainable remediation draws attention from both industry and academia, there is growing interest in evaluating the environmental sustainability of various environmental remediation technologies. This study aims at assessing four groundwater remediation technologies from a life cycle impact perspective: pump and treat (P&T), enhanced in-situ bioremediation (EIB), permeable reactive barrier (PRB), and in-situ soil mixing (ISM). The technologies were compared under a variety of scenarios, with site location, plume dimension, hydrology, and chemistry and geochemistry parameters changing in a wide range. This life cycle assessment (LCA) has chosen chlorinated ethylene as the study subject because chlorinated solvents are the most prevalent organic contaminants in soil and groundwater. The USEPA TRACI method was used in the life cycle impact assessment (LCIA). A multi-criteria decision analysis (MCDA) score is used to rank the four remediation technologies. The assessment results indicated that P&T tended to have the highest life cycle impact under most scenarios. The other three technologies can all be the most desired technology (with lowest life cycle impact), under different distributional, hydrogeological, and chemical conditions: PRB was the most desired when treatment zone was long, hydraulic gradient or hydraulic conductivity was low, or contaminants degraded fast in the reactive media; ISM became the most desirable when hydraulic gradient or hydraulic conductivity was very high; and EIB was most desirable under most other conditions.

  18. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    Science.gov (United States)

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology?

    Science.gov (United States)

    Rylott, Elizabeth L; Johnston, Emily J; Bruce, Neil C

    2015-11-01

    It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The effect of Soil Temperature on Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Kristensen, Iben Vernegren

    1999-01-01

    The electrodialytic remediation of copper, zinc and lead contaminated kaolin was studied at three different temperatures (0-39 degrees centrigrate). It is shown that an increase in temperature increases the rate of remediation for all three metals. Copper and zinc shows similar rate constants...

  1. Sequential Remediation Processes for Effective Removal of Oil from Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Deepika Dave

    2011-01-01

    Full Text Available Problem statement: Over 2.2 billions of oil and oil products are transported every year and often these activities can result in air, water and soil contamination. Expousure to petroleum products can cause health problems to humn and animals and affect marine animals and wildlife habitats. Approach: The objective of this study was to develop a technology for the remediation of soil contaminated with petroleum hydrocarbons. The remediation method included three processes: (a an effective soil washing process for the removal of the hydrocarbons from the contaminated soil, (b an efficient water decontamination process using peat moss as an oil absorbent and (c an effective bioremediation process for converting the oil in peat moss into carbon dioxide and water. Results: The results showed that water is an effective solvent for the removal of oil from contaminated soil. It has also been determined that peat moss is an effective absorbent and could be used to remove oil from the contaminated water. Peat can absorb 12.6 times its weight liquid (water/oil. The bioremediation process was effective in degrading the oil into harmless carbon dioxide and water products. About 77.65% of the THC was removed within 60 days of bioremediation. The hemophilic microbial population in the compost quickly acclimatized to the hydrocarbon as was evident from the immediate rise in the reactor temperature. The C: N ratio decreased from 30:1-12:1 indicating the degradation of organic C in the petroleum hydrocarbons and the peat. Urea was a very effective source of nitrogen in initiating and maintaining intense microbial respiration activity. Conclusion: A sequential processes for the remediation of oil contaminated soil was developed. These included soil washing, absorption of oil from water using peat and bioremediation of contaminated peat. A degradation model was developed and used to calculate the time required for a complete degradation. The model indicated that a

  2. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  3. The option to abandon : Stimulating innovative, groundwater remediation technologies characterized by technologies and uncertainty

    NARCIS (Netherlands)

    Compernolle, T.; van Passel, S.; Huisman, K.J.M.; Kort, P.M.

    2014-01-01

    Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon.

  4. A Simple and Effective Remedial Learning System with a Fuzzy Expert System

    Science.gov (United States)

    Lin, C.-C.; Guo, K.-H.; Lin, Y.-C.

    2016-01-01

    This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate…

  5. A Simple and Effective Remedial Learning System with a Fuzzy Expert System

    Science.gov (United States)

    Lin, C.-C.; Guo, K.-H.; Lin, Y.-C.

    2016-01-01

    This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate…

  6. The Effects of Remedial Mathematics on the Learning of Economics: Evidence from a Natural Experiment

    Science.gov (United States)

    Lagerlof, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students and unavailable for the others, controlling for background…

  7. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    Science.gov (United States)

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum; Ashraf, Muhammad; Ahmad, Muhammad Sajid Aqeel

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods

  8. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology

    Science.gov (United States)

    Mendez, Monica O.; Maier, Raina M.

    2008-01-01

    Objective Unreclaimed mine tailings sites are a worldwide problem, with thousands of unvegetated, exposed tailings piles presenting a source of contamination for nearby communities. Tailings disposal sites in arid and semiarid environments are especially subject to eolian dispersion and water erosion. Phytostabilization, the use of plants for in situ stabilization of tailings and metal contaminants, is a feasible alternative to costly remediation practices. In this review we emphasize considerations for phytostabilization of mine tailings in arid and semiarid environments, as well as issues impeding its long-term success. Data sources We reviewed literature addressing mine closures and revegetation of mine tailings, along with publications evaluating plant ecology, microbial ecology, and soil properties of mine tailings. Data extraction Data were extracted from peer-reviewed articles and books identified in Web of Science and Agricola databases, and publications available through the U.S. Department of Agriculture, U.S. Environmental Protection Agency, and the United Nations Environment Programme. Data synthesis Harsh climatic conditions in arid and semiarid environments along with the innate properties of mine tailings require specific considerations. Plants suitable for phytostabilization must be native, be drought-, salt-, and metal-tolerant, and should limit shoot metal accumulation. Factors for evaluating metal accumulation and toxicity issues are presented. Also reviewed are aspects of implementing phytostabilization, including plant growth stage, amendments, irrigation, and evaluation. Conclusions Phytostabilization of mine tailings is a promising remedial technology but requires further research to identify factors affecting its long-term success by expanding knowledge of suitable plant species and mine tailings chemistry in ongoing field trials. PMID:18335091

  9. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  10. Effects of New Technologies.

    Science.gov (United States)

    Social and Labour Bulletin, 1980

    1980-01-01

    Transnational implications of technological change and innovation in telecommunications are discussed, including impact on jobs and industrial relations, computer security, access to information, and effects of technological innovation on international economic systems. (SK)

  11. Review of Remediation Technologies for Oil -Contaminated Soil and Effect of Different Soil Amendments on Bioremediation Efficacy%石油污染土壤的原位生物修复技术和多种土壤改良剂应用研究

    Institute of Scientific and Technical Information of China (English)

    尚俊腾; 王志

    2016-01-01

    土壤中的石油污染是一类严重的环境危害.针对石油污染的土壤修复技术有物理法、化学法和生物法.其中原位生物修复法由于简易性和生态可持续等优点成为了具有前景的一个发展方向.土壤改良剂的选取和添加是原位生物修复法中重要的一个部分,对生物修复的改进起到了至关重要的作用.土壤改良剂的种类有无机改良剂、有机改良剂和吸附性改良剂.以N、P、K为主的无机改良剂主要为生物生长提供营养元素;有机改良剂则可提高石油污染物流动性,提供生物碳源;吸附改良剂则通过吸附污染物,减少毒性,提供生物生长依附.通过对不同种类改良剂的分析和讨论,可为生物修复发展提供进一步的理论基础.%Oil pollution incurred during transporting and refining is a big environmental concern, because the heavy hydrocar-bons in oil can cause serious damage to soil and the species residing in soil .The remediation technologies targeting oil-polluted sites are generally categorized into three types-physical, chemical and biological remediation methods .Among them, bioremedi-ation is considered a promising technology by academia and industry due to its cost-effective and eco-friendly features.Soil a-mendments, such as inorganic fertilizers, organic amendments and adsorbents, play a vital role in bioremediation process.The appropriate selection of soil amendments and the addition ratio can improve removal efficiency and accelerate treatment processes . This paper reviews all the soil amendments and their effect on bioremediation process, hoping to provide some expertise for further development of bioremediation technology.

  12. Use of risk assessment to evaluate effects and plan remediation of abandoned mines

    Science.gov (United States)

    Boyle, T.P.

    2000-01-01

    A framework of risk assessment is elaborated for the evaluation of the effects of abandoned mines and mills. Steps in this process include environmental description, identification and characterization of sources, assessment of exposure, assessment of effects, risk characterization, and risk management of remediation. The development and use of ecological end-points for remediation is discussed in terms of the chemical constituents, toxicity tests and the biological community.

  13. Innovative and Cost Effective Remediation of Orbital Debris

    Science.gov (United States)

    2014-04-25

    remediation market and the potential in 10 year. The collision of a U.S. Iridium spacecraft with a Russian spacecraft in 2009 at 800 km altitude has...international opposition to a system that could be used to “ attack ” foreign operational spacecraft. Analysis shows that StreamSat would not have the

  14. Innovative uses of LIDAR technology to assist in the remediation of former coal mine sites

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, G. [Conestoga-Rovers and Associates, Sydney, NS (Canada)

    2010-07-01

    In this study, LIDAR data were used to construct precise topographic digital elevation maps (DEMs) in order to identify potential sites for mine water discharges from the Sydney coalfield in Nova Scotia (NS). LIDAR technology was used to assist in remediation activities at the site by producing location and elevation data to define the surface of the earth and the heights of above-ground features. An analysis of the LIDAR DEMs showed subsidence features that were not observed using traditional aerial photography methods. Features included areas of subsidence over shallow mine workings, depressions over former shafts, and evidence of bootleg mines near seam outcrops. The study showed that preferential subsidence creates topographic differences that can be detected using DEMs. Mine pillars can be detected over mines at depths of more than 25 meters. The DEMs also detected former mine shafts by identifying slight ground depressions formed over back-filled shafts. The DEMs were also able to detect bootleg pits as shallow as 0.5 meters. The pits can provide areas for the migration of acid mine water. 3 refs., 5 figs.

  15. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides.

    Science.gov (United States)

    Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Silva, Maria Cristina; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil

    2016-01-01

    The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.

  16. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  17. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  18. Green PCB Remediation from Sediment Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPRSS technology is an in situ remediation technique for PCB-contaminated sediments. The technique provides an effective and safe method for sediment cleanup...

  19. Assessment of Corrosion Characteristics and Development of Remedial Technologies in Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S. (and others)

    2007-04-15

    In general, materials having superior resistance to corrosion are used for main components and structures in nuclear power plants (NPPs) to improve their safety. During long-term operations in the high temperature and pressure environment, however, localized-corrosion related degradations occur frequently in those materials, leading to unexpected shutdown of the plants. The unexpected shutdowns may lower the operating efficiency of the power generation and expand the repair period, which results in a huge economical loss. Moreover, since the damages may cause a leakage of the primary coolant that brings about a contamination by radioactive substances, the corrosion related degradations of structural materials have become a menace to the safety of NPPs. The steam generator tubes forming a boundary between the primary and secondary sides of NPPs are one of the main components that are most damaged by corrosion. Therefore, it is strongly required to verify the degradation mechanisms of Alloy 182 and Alloy 600 materials used in the steam generator tubes and primary systems, to establish remedial techniques for the degradations, to manage the damages, and to develop techniques for the extension of the plant's life. In this study, (1) the assessment techniques of corrosion damages were improved and the database of the obtained results were established. (2) The basic technologies of the management of corrosion damages were developed for the practical use. (3) The fundamental technologies for inhibition and repair of corrosion damages were also developed. The results of this project are applicable to the assessment, failure analysis and life estimation of the materials against corrosion damages. The assessment data obtained in this work are available for the technical references of the corrosion failures of components in NPPs during operation. Furthermore, it is applicable to establish materials design requirements, to establish the optimum operation condition and to

  20. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse.

    Science.gov (United States)

    den Besten, Pieter J; van den Brink, Paul J

    2005-07-01

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a new silty sediment top layer was formed exhibiting a lower toxicity in five sediment/sediment pore water bioassays. Compared to the unremediated sites, lower metal and PAH concentrations were found at the remediated sites, but in one location at the same time elevated HCH, PCB and HCB levels were recorded. One year after the remediation, the differences became smaller, although effects-based classification showed that the remediated site showed a higher quality up to the last year. In both remediated sites a rapid recolonization of nematodes, oligochaetes and chironomids was observed, while the recolonization by bivalves was slower. A few years after the remediation the differences decrease.

  1. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  2. Melissa officinalis L. extract – an effective remedy

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    population. For all these reasons, lemon balm is a natural herbal and effective remedy to heal disease units. Although lemon balm has traditionally been used due to its effects on nervous system, it might be suitable for widespread application in modern medicine giving the chance to exploit the natural potentials of herbs.

  3. A systematic review of the effectiveness of remediation interventions to improve NCLEX-RN pass rates.

    Science.gov (United States)

    Pennington, Tracy D; Spurlock, Darrell

    2010-09-01

    First-time NCLEX-RN pass rates are important measures of educational quality in prelicensure nursing education programs. Licensure pass rate problems has been the subject of countless nursing education articles and studies over the past several decades. To improve NCLEX-RN pass rates, remediation is often prescribed for students who have academic performance deficits. This article presents a systematic review of studies on remediation interventions and their effects on NCLEX-RN pass rates. Most studies of remediation and its effects on licensure pass rates are descriptive program evaluation reports. The overall quality of studies included in this review is uneven but generally low. Nursing education researchers should focus on conducting higher quality intervention studies in which the fidelity of remediation interventions can be examined. Viewing licensure pass rates from a process improvement perspective and accounting for pass rate variations could also change the nature of scholarship on this topic.

  4. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  5. Detrimental effects of tiny silt particles on large hydro power stations and some remedies

    Directory of Open Access Journals (Sweden)

    P.N. Darde

    2016-09-01

    Remedial measures have been taken like replacing the metallurgy of stainless steel for runner, guide vanes by 13 Cr Ni4 and hydro siphoning from the reservoir to maintain the generation. A series of other experiments were also tried on these projects by using modern technology. Some of them are successful to some extent.

  6. Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model

    Science.gov (United States)

    Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond

    2013-01-01

    With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…

  7. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    Science.gov (United States)

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  8. 土壤汞污染及其修复技术%Soil Mercury Pollution and Its Remediation Technology

    Institute of Scientific and Technical Information of China (English)

    何姗姗; 李薇; 卢晗

    2016-01-01

    The main factors that caused the increase of the concentration of mercury in soil and the main factors affected the migration of mercury in soil were summarized. The main remediation technology and its application in controlling soil mercury pollution were reviewed. Focus on soil washing technology, stabilization/solidification technology, thermal treatment technology and bioremediation technology. The improvement measures of soil mercury remediation technology should be further studied. Promote the method of local conditions. Different treatments for different soils.%总结了导致土壤中汞浓度增加的来源,以及影响土壤中汞迁移的主要因素,这些因素对评价和优化修复技术是至关重要的。回顾了主要修复技术及其在控制土壤汞污染方面的应用。重点关注土壤淋洗技术,稳定化/固化技术,热处理技术和生物修复技术。应进一步对土壤汞修复技术的改进措施进行研究,提倡因地制宜的修复方法。

  9. Electrodialytic Remediation of Pb Contaminated Soil - Effects of Soil Properties and Pb Distribution

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Jensen, Pernille Erland

    1999-01-01

    The aim of this work was to investigate the effects of soil properties and Pb distribution on the electrodialytic remediation of Pb contaminated soil. Two naturally Pb contaminated soils were compared with respect to total Pb content, Pb distribution, pH, carbonate content, clay content and organic...... matter, and an electrodialytic remediation experiment was made on each soil.It was concluded that soil pH was the most important factor limiting the mobilisation of Pb. In one of the remediation experiments it was possible to mobilise and reduce the amount of Pb significantly, whereas in the other only...... a small amount of the initial Pb was mobilised at similar experimental conditions. A high buffering capacity of one of the soils, which was partly due to a high carbonate content, led to a bad remediation result....

  10. Effects of different remediation treatments on crude oil contaminated saline soil.

    Science.gov (United States)

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage.

  11. Advances in Groundwater Remediation: Achieving Effective In Situ Delivery of Chemical Oxidants and Amendments

    DEFF Research Database (Denmark)

    Siegrist, Robert L.; Crimi, Michelle; Broholm, Mette Martina

    2012-01-01

    Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. In situ chemical oxidation (ISCO) has emerged as one of several viable methods for remediation of organically contamina...... delivery of treatment fl uids, with an emphasis on chemical oxidants and amendments, which can help achieve cleanup goals and protect groundwater and associated drinking water resources.......Contamination of soil and groundwater by organic chemicals represents a major environmental problem in urban areas throughout the United States and other industrialized nations. In situ chemical oxidation (ISCO) has emerged as one of several viable methods for remediation of organically...... ) delivered into the subsurface using injection wells, probes, or other techniques. A continuing challenge for ISCO, as well as other in situ remediation technologies, is how to achieve in situ delivery and obtain simultaneous contact between treatment fl uids, such as oxidants and amendments, and the target...

  12. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  13. Re-examining repeated testing and teacher effects in a remedial mathematics course.

    Science.gov (United States)

    Martinez, J G; Martinez, N C

    1992-11-01

    This study examined the impact of repeated testing and teachers' effects on student achievement in a remedial mathematics course. A 2 x 2 completely randomised factorial design was used, with final examination performance the dependent variable and testing attempts and the teacher factor the independent variables. The study found no main effects for teacher but a main effect for testing attempts and a teacher-factor/testing-attempt interaction. Post hoc findings qualified a direct interpretation of the main effect. The implications for further research and application are discussed, giving special attention to teacher effects, the needs of remedial mathematics instruction, and the claims of mastery-learning pedagogies.

  14. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  15. Laboratory {open_quotes}proof of principle{close_quotes} investigation for the acoustically enhanced remediation technology

    Energy Technology Data Exchange (ETDEWEB)

    Iovenitti, J.L.; Spencer, J.W. Jr.; Hill, D.G. [Weiss Associates, Emergyville, CA (United States)] [and others

    1995-10-01

    Weiss Associates is conducting a three phase program investigating the systematics of using acoustic excitation fields (AEFs) to enhance the in-situ remediation of contaminated soil and ground water under both saturated and unsaturated conditions: Phase I - Laboratory Scale Parametric Investigation; Phase II - Technology Scaling Study; and Phase III - Large Scale Field Tests. Phase I, the subject of this paper, consisted primarily of a laboratory proof of principle investigation. The field deployment and engineering viability of acoustically enhanced remediation (AER) technology was also examined. Phase II is a technology scaling study addressing the scale up between laboratory size samples on the order of inches, and the data required for field scale testing, on the order of hundreds of feet. Phase III will consist of field scale testing at an non-industrialized, non-contaminated site and at a contaminated site to validate the technology. Summarized herein are the results of the Phase I {open_quotes}proof-of-principle{close_quotes} investigation, and recommendations for Phase H. A general overview of AER technology along with the plan for the Phase I investigation was presented.

  16. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    Science.gov (United States)

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  17. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  18. The Effect of Flow on Pollution and Remediation in Groundwater

    Institute of Scientific and Technical Information of China (English)

    Moiwo J. Paul

    2003-01-01

    Flow, solute transport and pollution remediation through attenuation in unconsolidated porous media were investigated in this study. The variables used in the investigation include soil texture, porosity, topography and hydraulic conductivity. The study revealed that hydraulic conductivity is highly dependent on soil texture, porosity and topography.Hydraulic conductivity was noted to have a controlling influence on groundwater flow and residence time, and the degree of natural attenuation in hydrogeologic systems. Contaminant transport simulated with the MODFLOW Model revealed dominance of advective transport of contaminants in unconsolidated porous media. However, attenuation through sorption (linear isotherm equilibrium controlled) and reaction (first-order irreversible decay) also retarded contaminant plume migration. Thus natural attenuation was found to be highly feasible in clay formations due to low hydraulic conductivity and long groundwater residence times. Though natural attenuation processes including dispersion, diffusion, dilution, mixing, volatilization and biodegradation were not investigated for in this paper, it is shown to be a sound remediation technique of contaminated ground water due to its capacity to destroy or transform contaminants or at least retard their flow.

  19. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  20. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  1. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation.

    Science.gov (United States)

    Ge, Jin; Ye, Yin-Dong; Yao, Hong-Bin; Zhu, Xi; Wang, Xu; Wu, Liang; Wang, Jin-Long; Ding, Hang; Yong, Ni; He, Ling-Hui; Yu, Shu-Hong

    2014-04-01

    Recently, porous hydrophobic/oleophilic materials (PHOMs) have been shown to be the most promising candidates for cleaning up oil spills; however, due to their limited absorption capacity, a large quantity of PHOMs would be consumed in oil spill remediation, causing serious economic problems. In addition, the complicated and time-consuming process of oil recovery from these sorbents is also an obstacle to their practical application. To solve the above problems, we apply external pumping on PHOMs to realize the continuous collection of oil spills in situ from the water surface with high speed and efficiency. Based on this novel design, oil/water separation and oil collection can be simultaneously achieved in the remediation of oil spills, and the oil sorption capacity is no longer limited to the volume and weight of the sorption material. This novel external pumping technique may bring PHOMs a step closer to practical application in oil spill remediation.

  2. Column Experiments of Smouldering Combustion as a Remediation Technology for NAPL Source Zones

    Science.gov (United States)

    Pironi, P.; Switzer, C.; Rein, G.; Torero, J. L.; Gerhard, J. I.

    2008-12-01

    Smouldering combustion is an innovative approach that has significant potential for the remediation of industrial sites contaminated by non-aqueous phase liquids (NAPLs). Many common liquid contaminants, including coal tar, solvents, oils and petrochemicals are combustible and release significant amounts of heat when burned. Smouldering combustion is the flameless burning of a condensed fuel that derives heat from surface oxidation reactions. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating that NAPLs embedded in a porous medium may be effectively destroyed via smouldering. Based upon that work, it was hypothesized that the process can be self- sustaining, such that, a short duration energy input (i.e., ignition) at a single location is sufficient to generate a reaction that propagates itself through the NAPL source zone until the NAPL is eliminated, provided that enough air is injected into the soil. In this work, this hypothesis is proven via column experiments at the intermediate bench scale (~ 30 cm) utilizing coal tar-contaminated quartz sands. Over 30 such experiments examine the sensitivity of NAPL smouldering to a series of fluid-media system variables and engineering control parameters, including contaminant type, NAPL saturation, water saturation, porous media type and air injection rate. Diagnostic techniques employed to characterize the results include temperature mapping, off-gas analysis (via FTIR), heat front mapping via digital imaging, and pre- and post-treatment soil analysis. The derived relationships between the manipulated system variables and experimental results are providing understanding of the mechanisms controlling the ignition and propagation of liquid smouldering. Such insight is necessary for the ongoing design of both ex situ and in situ pilot applications.

  3. The Effect of Pet Remedy on the Behaviour of the Domestic Dog (Canis familiaris

    Directory of Open Access Journals (Sweden)

    Sienna Taylor

    2016-10-01

    Full Text Available Stress-affected behaviour in companion animals can have an adverse effect on animal health and welfare and their relationships with humans. This stress can be addressed using chemical treatments, often in conjunction with behavioural therapies. Here, we investigated the efficacy of one commercial pharmacological intervention, Pet Remedy, advertised as a natural stress relief product for mammals. We aimed to see whether the product lowered stress-affected behaviour in dogs placed in a non-familiar environment. Behavioural responses of 28 dogs were video recorded using a double-blind, placebo-controlled, and counterbalanced repeated measures design. Dogs were exposed to both a placebo and Pet Remedy plug-in diffuser for 30 min with an intervening period of approximately 7 days between conditions. Multivariate regression analysis identified no significant differences in behaviour in either the Pet Remedy or placebo condition. In conclusion, in the current study, Pet Remedy did not reduce behavioural indicators indicative of a stress response. To determine the effects of Pet Remedy, future research using a larger sample size and controlling for breed would be beneficial.

  4. 污染土壤修复技术的探讨%An analysis of Several Remediation Technologies of the Contaminated soils

    Institute of Scientific and Technical Information of China (English)

    金一凡; 周连杰; 杰克; 叶旭明

    2012-01-01

    污染土壤修复技术目前广泛应用的是生物、换土、固化及淋洗修复技术等,对前3种修复技术在处理污染土壤的效果和过程上进行分析和对比,其结果表明都存在着优缺点.通过对污染土壤淋洗技术的定义及分类的了解和与前3种修复技术的比较,并在此基础上产生了移动式异位淋洗修复技术介绍了它的工艺流程及各机械装置的作用,通过对照原有的污染土壤淋洗修复技术,其表明移动式异位淋洗修复技术具有可移动性、修复效率高等特点,具有很大的工程应用价值.%Most commonly used remediation technologies for soil contamination include bioremediation technology,soil replacement remediation technology and solidification technology at present. Through analysis and comparison, the disadvantages of these three remediation technologies were listed. The drip washing technology of contaminated soil was defined and classified. On this basis, a mobile drip washing remediation technology for contaminated soils was developed. The function of each mechanical device in drip washing technological process was introduced. By comparing the original drip washing remediation technology of contaminated soils, a conclusion was drawed that mobile drip washing remediation technology of contaminated soils has mobility and high efficiency characteristics and has a great application value.

  5. Features and Remediation technologies of Pollution in Lead - Zinc Mining Areas of China%我国铅锌矿污染特点及修复技术

    Institute of Scientific and Technical Information of China (English)

    梁桂莲; 钱建平; 张力

    2011-01-01

    我国铅锌矿污染的一般特点是:多元素复合污染;污染元素赋存形式复杂;常叠加化学药剂的污染;重金属污染具有隐蔽性、累积性及不可逆性;部分矿山伴生放射性污染等。针对铅锌矿区的不同污染特点,目前常用的污染修复方法有:电动修复法、合磷物质修复法和植物修复法等。电动修复法适宜于低渗透性污染土壤的修复,具有修复时间短、修复彻底、不会引入环境有害物质等优点。含磷物质是一种廉价有效的重金属污染土壤修复剂,可针对土壤重金属污染的实际状况施以不同类型的含磷化合物以降低有效态重金属的含量。超富集植物修复则具有操作技术简单、成本低%The pollution of the lead- zinc mining areas in China is characterized by combined multi - element pollution, complex existing forms of contaminating elements, generally combined with the chemical agents pollution, the concealment, accumulation and irreversibility of heavy metal pollution, accompanying radioactive contamination in some mines, and so on. The com- mon methods of pollution remediation include electrokinetic re mediation; contaminated soil remediation using phosphorus - containing substances and phytoremediation in lead - zinc miningareas. Electrokinetic remediation is suitable for low permeability polluted soil, and has many advantages such as short repairing time, complete effect, without introduction of harmful substances into the environment. Phosphorus - containing substances are cheap and effective agent for the remediation of heavy metal - contaminated soil. Different types of phosphorus compounds can be reduced the content of available heavy metals in soil according to contaminated situation. The remediation of heavy metal - contaminated soil by hyper accumulator plants, is a promising technology, which has the advantages of simple,low cost, less environmental disturbance and being suitable

  6. Role of natural attenuation, phytoremediation and hybrid technologies in the remediation of a refinery soil with old/recent petroleum hydrocarbons contamination.

    Science.gov (United States)

    Couto, Maria Nazaré P F S; Pinto, Dorabela; Basto, M Clara P; Vasconcelos, Teresa S D

    2012-09-01

    Within a search for a biological remediation technology to remove petroleum hydrocarbons (PHC) from a contaminated soil from a refinery, the potential of monitored natural attenuation (MNA) was compared with the use of transplants of Cortaderia selloana both in the absence and in the presence of soil amendments. After 31 months of experiments, MNA was effective in removing most of the recent PHC contamination (50% of the initial total contamination) at 5-20 cm depth. The presence of weathered contamination explains the existence of an established community of PHC degraders, as can be inferred by the most probable number technique. C. selloana, in its turn, showed capacity to mobilize the most recalcitrant fraction of PHC to its roots, nevertheless masking its remediation capacity. The use of a hybrid technology (C. selloana together with treatments with a surfactant and a bioaugmentation product) improved the removal of PHC at 15-20 cm depth, the presence of C. selloana facilitating the migration of additives into the deeper layers of soil, which can be considered a secondary but positive role of the plant. In the surface soil layer, which was exposed to both microorganisms and the atmosphere, a further 20% of weathered PHC contamination disappeared (70% total removal) as a result of photo- and chemical degradation. Periodic revolving of the soil, like tillage, to expose all the contaminated soil to the atmosphere will therefore be a reliable option for reducing the contamination of the refinery soil if conditions (space and equipment) permit this operation.

  7. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production

    OpenAIRE

    Witters, N.; Mendelsohn, R; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J.

    2012-01-01

    Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural s...

  8. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    Directory of Open Access Journals (Sweden)

    Danielle Camenzuli

    2013-12-01

    Full Text Available Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frameworks to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar environments, namely permeable reactive barriers (PRB, chemical fixation, bioremediation, phytoremediation, electrokinetic separation, land capping, and pump and treat systems. The technologies reviewed are discussed in terms of their advantages, limitations and overall potential for the management of metal-contaminated sites in Antarctica and the Arctic. This review demonstrates that several of the reviewed technologies show potential for on-site or in situ usage in Antarctica and the Arctic. Of the reviewed technologies, chemical fixation and PRB are particularly promising technologies for metal-contaminated sites in polar environments. However, further research and relevant field trials are required before these technologies can be considered proven techniques.

  9. Improving Risk Governance of Emerging Technologies through Public Engagement: The Neglected Case of Nano-Remediation?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Wickson, Fern; Andersen, Henning Boje

    2012-01-01

    assessment. This paper therefore carries out a literature review to capture and analyse how governance strategies have focused on public engagement for NT and how such engagement relates to processes of risk analysis. To further investigate these issues, we focus on a specific NT application as a case study......: the use of nanoparticles for environmental remediation (nano-remediation). Through our review and analysis we find that the main approaches to incorporating public engagement into governance strategies have been the generation of a better understanding of public perceptions of NT and the setting......While public engagement is internationally considered to be crucial for successful governance of nanotechnologies (NT), it has not necessarily been clear what the relationship is (or should be) between these engagement efforts and the more traditional governance practice of scientific risk...

  10. Rat models of acute inflammation: a randomized controlled study on the effects of homeopathic remedies

    Directory of Open Access Journals (Sweden)

    Menniti-Ippolito Francesca

    2007-01-01

    Full Text Available Abstract Background One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties. The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema, using two treatment administration routes (sub-plantar injection and oral administration. Methods In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement procedure. In a second phase, some of the remedies (in the same and in different dilutions were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170–180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30, saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. Results In the first phase

  11. Effect of Sludge Amendment on Remediation of Metal Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2012-11-01

    Full Text Available Column-leaching and pilot-scale experiments were conducted to evaluate the use of biosolids (sewage sludges to control the mobilization of metals from contaminated soils with smelting slags. The pilot-scale experiments using amended soils showed that Cu, Pb and Sb were retained, decreasing their concentrations from 250 mg/L, 80 mg/L and 6 mg/L, respectively in the leachates of contaminated soils, to <20 mg/L, 40 mg/L and 4 mg/L, respectively, in the amended material. Hydrogeochemical modeling of the leachates using Minteq revealed that the degree of complexation of Cu rose 56.3% and 57.6% in leachates of amended soils. Moreover, Cu may be immobilized by biosolids, possibly via adsorption by oxyhydroxides of Fe or sorption by organic matter. The partial retention of Pb coincides with the possible precipitation of chloropyromorphite, which is the most stable mineral phase in the pH-Eh conditions of the leachates from the amended material. The retention of Sb may be associated with the precipitation of Sb2O3, which is the most stable mineral phase in the experimental conditions. The organic amendments used in this study increased some metal and metalloid concentrations in the leachates (Fe, Mn, Ni, As and Se, which suggests that the organic amendments could be used with caution to remediate metal contaminated areas.

  12. Remediation Technologies for Environmental Projects in the United States Military: Part 1

    Science.gov (United States)

    1997-09-01

    remediation method is appropriate for sites contaminated with dense non-aqueous phase liquids ( DNAPLs ), metals, or semi-volatile organic compounds. If the... Mercury (mm Hg). Bioventing Fuel, BTEX, or THC hydrocarbon contamination (i.e.. non-halogenated hydrocarbon) in the vadose zone; - Soil gas...thorougly fractured bedrock. Capping DNAPL . sesnivolatile, or metal/inorganic contamination in the vadose zone; - Area of capping contamination less than 24

  13. Oil Spill Remediation Using Magnetic Particles: An Experiment in Environmental Technology

    Science.gov (United States)

    Orbell, John D.; Godhino, Leroy; Bigger, Stephen W.; Nguyen, Thi Man; Ngeh, Lawrence N.

    1997-12-01

    A simple experiment is described in which the potential of commercially available steel pellets coated with polyethylene (PE) or poly(vinylchloride) (PVC) to remediate an oil spill is demonstrated. Polymer-coated particles are weighed, immersed in oil, magnetically harvested and the remaining oil is weighed in order to enable students to quantitatively investigate the adsorption process. The possibility of recycling the beads and reclaiming the oil is also demonstrated.

  14. The Effect of Multimodal Remedial Techniques on the Spelling Ability of Learning Disabled Children

    Science.gov (United States)

    Narang, Susheela; Gupta, Raj K.

    2014-01-01

    The purpose of the study was to examine the effectiveness of three remedial techniques to improve the spelling ability of students with learning disability. The three techniques, namely, TAK/v, visual orthographic method and listen, speak, read and write (LSRW) method were administered to three experimental groups, each having 13 students with…

  15. Building Conceptual Understanding in a Remedial College Mathematics Classroom: A Study of Effectiveness

    Science.gov (United States)

    Bachman, Rachel Marie

    2013-01-01

    This study investigated the effectiveness of two remedial mathematics courses that aimed to (a) present topics conceptually, (b) construct adequate schemata, and (c) introduce students to the culture of mathematics. The topics covered during the two courses were word problems, equivalence, variables and expressions, equations and inequalities, and…

  16. The Effect of Computer-Assisted Teaching on Remedying Misconceptions: The Case of the Subject "Probability"

    Science.gov (United States)

    Gurbuz, Ramazan; Birgin, Osman

    2012-01-01

    The aim of this study is to determine the effects of computer-assisted teaching (CAT) on remedying misconceptions students often have regarding some probability concepts in mathematics. Toward this aim, computer-assisted teaching materials were developed and used in the process of teaching. Within the true-experimental research method, a pre- and…

  17. Building Conceptual Understanding in a Remedial College Mathematics Classroom: A Study of Effectiveness

    Science.gov (United States)

    Bachman, Rachel Marie

    2013-01-01

    This study investigated the effectiveness of two remedial mathematics courses that aimed to (a) present topics conceptually, (b) construct adequate schemata, and (c) introduce students to the culture of mathematics. The topics covered during the two courses were word problems, equivalence, variables and expressions, equations and inequalities, and…

  18. Quantification of the effect of spatially varying environmental contaminants into a cost model for soil remediation

    NARCIS (Netherlands)

    Broos, J.M.; Aarts, L.; Tooren, C.F.; Stein, A.

    1999-01-01

    In this study we investigated the effects of spatial variability of soil contaminants on cost calculations for soil remediation. Most cost models only provide a single figure, whereas spatial variability is one of the sources to contribute to the uncertainty. A cost model is applied to a study site

  19. Dnapl Site Remediation: Status and Research Needs (Invited)

    Science.gov (United States)

    Stroo, H. F.; Kueper, B. H.

    2013-12-01

    Remediation of sites impacted by dense, non-aqueous phase liquids (DNAPLs) such as chlorinated solvents remains technically challenging despite significant advances over the past 30 years. Contaminants are difficult to locate in the subsurface, and it is difficult to deliver remedial agents to the contamination effectively. If lower permeability media are present, these can act as diffusive sinks for aqueous and sorbed phase constituents, further complicating characterization and cleanup. DNAPL source zones are particularly difficult to remediate, and even after treatment these sources can persist for many decades, if not centuries, and it is difficult to transition sites to a passive management strategy. A recent expert panel on source zone remediation identified three overriding objectives for future remediation - to be more surgical, more sustainable, and more certain. Surgical remediation refers to precise delineation of contaminants and hydrogeology, with more targeted remediation efforts. Sustainable remediation refers to the growing need to consider all environmental impacts when developing remediation strategies, including energy use, greenhouse gas emissions, lifecycle impacts, and the increasing demand for clean water. Although considerable uncertainty is inherent in subsurface remediation, there is potential to reduce this uncertainty through improved monitoring and modeling. Specific characterization and remediation needs will be summarized separately. Improved technologies for source characterization are critical because inadequate characterization is common given the costs and limitations of current techniques. As a result, the performance of field-scale remediation technologies is frequently disappointing. Specific research needs to improve source zone characterization include: (i) better delineation and mass estimation, (ii) source zone architecture characterization methods, and (iii) increased resolution and fine-scale mapping of geologic

  20. 溢油污染发生后的物理和化学修复技术%The Physical and Chemical Remediation Technology after the Oil Spill

    Institute of Scientific and Technical Information of China (English)

    宋生奎; 李钦华; 徐新; 曹泽煜; 王杰辉

    2014-01-01

    目前溢油污染已经严重影响到人类的健康和生存质量,威胁到人类的可持续发展。溢油污染事件发生后,应当组织专业人员对泄漏油品采取有效控制、可靠回收,并采用适宜的物理和化学环境修复技术应急处理溢油污染,对于控制污染面积、保证溢油环境污染修复效果具有重要的意义。%Nowadays, the oil spill pollution seriously affected the human health and quality of life , threatening the human sustainable development.After the oil spill pollution incident occurs , the professional staff should be organized to take effective control of leak oil and make reliable recovery and also use the proper physical and chemical environmental remediation technology for emergency treatment of oil spill pollution , which would be of great importance for controlling pollution area and ensuring the effect of oil spill pollution remediation.

  1. The Remediation Technology and Remediation Practice of Heavy Metals-Contaminated Soil%重金属污染土壤修复技术及其修复实践

    Institute of Scientific and Technical Information of China (English)

    黄益宗; 郝晓伟; 雷鸣; 铁柏清

    2013-01-01

    近年来我国重金属污染事件频发,严重影响广大群众的身体健康,土壤重金属污染与防治成为人们关注的环境问题之一.作者结合多年的工作经验,综述了近年来国内外有关重金属污染土壤修复技术的研究进展,包括物理/化学修复技术、生物修复技术和农业生态修复技术等,对每种技术的基本修复原理、技术特点和应用范围进行了讨论.同时,对国内外典型的重金属污染土壤修复工程实践进行了介绍,以期为重金属污染土壤的修复提供借鉴和参考.%In recent years heavy metal pollution incidents happened frequently in our country, and they had serious impact on human health. How to control heavy metals-contaminated soil becomes one of the noted environmental problems. The present paper aims to provide a critical review on the remediation technology of soils contaminated by heavy metals, including physical / chemical remediation, bioremediation and agricultural ecological restoration technologies, and each kind of technology's remedial principle, technical characteristics and application range are discussed. At the same time, the domestic and foreign typical remediation practices of heavy metals-contaminated soil are introduced, in order to provide the reference for the remediation of heavy metals-contaminated soil in China.

  2. Biological Remediation of Soil: An Overview of Global Market and Available Technologies

    Science.gov (United States)

    Singh, Ajay; Kuhad, Ramesh C.; Ward, Owen P.

    Due to a wide range of industrial and agricultural activities, a high number of chemical contaminants is released into the environment, causing a significant concern regarding potential toxicity, carcinogenicity, and potential for bioaccumulation in living systems of various chemicals in soil. Although microbial activity in soil accounts for most of the degradation of organic contaminants, chemical and physical mechanisms can also provide significant transformation pathways for these compounds. The specific remediation processes that have been applied to clean up contaminated sites include natural attenuation, landfarming, biopiling or composting, contained slurry bioreactor, bioventing, soil vapor extraction, thermal desorption, incineration, soil washing and land filling (USEPA 2004).

  3. Effectiveness of the Remedial Courses on Improving EFL/ESL Students' Performance at University Level in the Arab World

    Science.gov (United States)

    Al Othman, Fadel H. M.; Shuqair, Khaled M.

    2013-01-01

    Many hypotheses have been passed by professors in the language teaching profession concerning the effects of remedial courses in enhancing the skills of students in the English language. Most people share the sentiment that remedial courses are quests in vain when it gets to improving the skills of students learning English as a first or second…

  4. Reaction Paper on Remediation in the Community College Mathematics Curriculum.

    Science.gov (United States)

    Robinson, Shawn

    Remedial mathematics has taken several forms over the years--across the nation, within departments, and among mathematics instructors. There is a growing debate over the effectiveness of remedial courses in relationship to eventual student matriculation, which increases institution funding. The use of technology, real-life problems and projects,…

  5. Effectiveness and sustainability of remedial actions for land restoration in Abeokuta urban communities, Ogun State, Nigeria

    Science.gov (United States)

    Lawal-Adebowale, Okanlade

    2016-04-01

    Land as a major collective human property faces a great deal of threats and eventual degradation from both natural and human causal factors across the globe. But for the central role of land in human's sustenance and quality living, man cannot afford to lose its natural asset and as such takes mitigating or remedial actions to save and restore his land for sustainable use. In view of this, the study assessed the causal factors of land degradation in urban areas of Abeokuta and effectiveness and sustainability of the taken remedial actions to stem the tide of land degradation in the study area. The selected communities were purposively selected based on the observed prevalence of degraded lands in the areas. A qualitative research approach which encompasses observational techniques - participant/field observation, interactive discussion and photographic capturing, was used for collection of data on land degradation in the study area. A combination of phenomenological, inductive thematic analysis and conversation/discourse analysis was employed for data analysis. The results showed land gradients/slopes, rainfall, run-offs/erosion, land-entrenched foot impacts, sand scraping/mining, poor/absence of drainage system and land covers as causal factors of land degradation in the study area. The employed remedial actions for restoration of degraded land included filling of drenches with sand bags, wood logs, bricks and stones, and sand filling. The study though observed that filling of drenches caused by erosion with rubles/stones and construction of drainage were effective remedial actions, good drainage system was presumed to be the most appropriate and sustainable remedial action for land restoration in the study area.

  6. EPA-developed, patented technologies related to water monitoring and remediation that are available for licensing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be...

  7. Technology for site remediation: availability, needs and opportunities for R and D at SCK/CEN

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G.

    1996-09-18

    Considerable experience has been gained over the past years in the use of control and treatment technologies, applied to contaminated sites and environments. Although available technologies are adequate in many cases, it is recognized that many technologies are too costly or inadequate to address the multitude of contaminant problems. This insight has led national and international organizations as well as private organizations and universities to sponsor environment technology programmes to address technology needs. The United States Department of Energy for example has initiated an aggressive environmental technology development programme and the Commission of the European Union is sponsoring environmental technology development. An overview is given of innovative and emerging technologies that may become important. Opportunities for SCK/CEN in research, development, and demonstration programmes are outlined.

  8. Effect of Humic Acid on Migration, Distribution and Remediation of Dense Non-aqueous Phase Liquids: A laboratory investigation

    Science.gov (United States)

    Cheng, Z.; Wu, J.; Xu, H.; Gao, Y.

    2014-12-01

    Over the last decades, dense non-aqueous phase liquids (DNAPLs) contamination in the subsurface increases with the rapid development of oil industry and becomes the focus of many studies. The migration, distribution and remediation efficiency of DNAPLs in the subsurface environment are greatly affected by the solution chemistry besides the physical heterogeneities of aquifers. Humic acid (HA), which is ubiquitous in natural environments, is a surface active substance exhibiting solubility enhancement behavior for hydrophobic organic compounds such as DNAPLs. Here we reported a laboratory investigation to study the effects of HA on the infiltration, immobilization and subsequent recovery of DNAPL in porous media. Tetrachloroethylene (PCE) was selected as the representative DNAPL in this study. Two-dimensional (2-D) sandbox experiments were conducted to investigate the effects of different HA concentrations on the transport, distribution of PCE and the remediation of PCE using surfactant (Tween 80) flushing in a saturated porous media system. The surfactant flushing of PCE was performed after the PCE transport and distribution had reached equilibrium. A light transmission visualization method with charge-coupled device (CCD) camera was adopted to visualize PCE distribution and quantify its saturation. In addition, the experiments were also designed to gather data for the validation of multiphase flow models. Effluent samples were collected to determine dissolved PCE concentrations. PCE solubilization and PCE-water interfacial tension were experimentally determined in aqueous solutions of varying HA concentrations. The experimental results showed that the presence of HA can have a dramatic impact on PCE flow and entrapment, and significantly improved the recovery of PCE during surfactant enhanced aquifer remediation (SEAR). The findings are of use for better understanding of the migration and entrapment of DNAPLs and developing of SEAR technology.

  9. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. BIOREGIS software platform based on GIS technology to support in-situ remediation of petroleum contaminated sites. Case study: razvad - dambovita county, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Anicai, Ovidiu [Institute for Computers - ITC SA, Bucharest (Romania); Anicai, Liana [PSV COMPANY SA, Direction of Research, Bucharest (Romania)

    2011-12-15

    With a need for the management of petroleum contaminated sites on Romanian territory, an experimental software platform involving ESRI-ArcGIS technologies (BIOREGIS) is presented in this study. The BIOREGIS platform is aimed to: (i) Build the structure of relational, standardized databases to store spatial and textual characteristic information on polluted sites for further risk analysis and planning of remediation actions, (ii) improve the pollution risk assessment methodology for Romanian petroleum contaminated sites and its informatics implementation, and (iii) develop and operate the software platform for pollution risk based management involving GIS/remote sensing technologies and remediation activities. The operation of BIOREGIS has been tested for a pilot contaminated area situated at Razvad - Dambovita County, which has been subjected to in situ remediation procedures involving both bioremediation and electrokinetic processes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections.

  12. Team Collectivist Culture: A Remedy for Creating Team Effectiveness

    Science.gov (United States)

    McAtavey, Jean; Nikolovska, Irena

    2010-01-01

    This article provides a review of literature on collective orientation and effective teams by theoretically elucidating the relationship between these two constructs. The relationship between these two constructs is found by identifying the elements that go into creating an effective team, which are also found in a collectivist orientation. As…

  13. Experimental investigation of enhanced remediation of contaminated soil using ultrasound effect

    Directory of Open Access Journals (Sweden)

    Adegbola Adeyinka

    2014-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In the development of an effective ground remediation method, there has been significant research focusing on the technique of enhancing soil-flushing method The soil flushing method enhanced by ultrasonic waves is a new technique that is potentially an effective method for in situ remediation of the ground contaminated by NAPL hydrocarbons. The research work investigated the effectiveness of sonication in the soil flushing method for a range of conditions involving treatment time, hydraulic gradient and the discharge velocity. The experimental investigation of the study was conducted using the inbuilt ultrasonic generator (NEE 555 timer stable multi-vibrator and soil flushing apparatus to remove the contaminant from the soils. The test result indicated that the rate of the contaminant extraction increased considerably with increasing sonication time up to 120seconds with 34% contaminant removed without sonication and 64.05% contaminant removed with sonication and started decreasing at the level where cavitation occurred. Increasing the sonication time also increase the contaminant removal up to the level where cavitation occurs. The effectiveness of sonication decreases with hydraulic gradient but eventually becomes constant under higher flow rates and also is highly related with the discharge velocity. Results obtained showed that sonication can enhance pollutant removal. Keywords: Soil-Flushing Method, NAPL Hydrocarbons, Sonication, Soil Remediation, Cavitation.

  14. Effects of soil organic matter and ageing on remediation of diesel-contaminated soil.

    Science.gov (United States)

    Liu, Pao-Wen Grace; Wang, Sih-Yu; Huang, Shen-Gzhi; Wang, Ming-Zhi

    2012-12-01

    Bioremediation of diesel-contaminated soil was investigated for the effects of soil organic matter (SOM) and ageing time in two sets of experiments (Batch I and II, respectively). This study examined degradation efficiency in soil artificially contaminated with diesel oil (maximum total petroleum hydrocarbons (TPH) concentration of 9000 mg/kg soil). Batch I data showed that the values of the first-order degradation rate, k, were relatively high in the low-SOM soil batches. The quantity of SOM negatively correlated with the TPH degradation rates and with the total TPH degradation efficiency (%). Introduction of rhamnolipid to the soil proved to be a useful solution to resolve the problem of the residual TPH in the soil with high SOM. In Batch II, the k values decreased with the length of ageing time: 0.0245, 0.0128 and 0.0090 l/d in samples ST0 (freshly contaminated), ST38 (aged for 38 days) and ST101 (aged for 101 days), respectively. The TPH degradation efficiency (%) also decreased along with the ageing time. The research also applied molecular technology to analyse the bacterial community dynamics during the bioremediation course. Multivariate statistics based on terminal-restriction fragment length data indicated: 1) the soils with different SOM resulted in separate bacterial community structures, 2) ageing time created a variety of bacterial communities, 3) the bacterial community dynamics was associated with the hydrocarbon consumption. The SOM content in soils affected the TPH degradation rate and efficiency and the bacterial community structures. Aged soil is more difficult to remediate than freshly contaminated soil, and the resulting bacterial community was less dynamic and showed a lack of succession.

  15. EU asylum procedures and the right to an effective remedy

    NARCIS (Netherlands)

    Reneman, Anne Marcelle

    2013-01-01

    Adequate and fair asylum procedures are a precondition for the effective exercise of rights granted to asylum applicants, in particular the right not be expelled to a country where they face the risk of being subjected to human rights violations. In 1999 the EU Member States decided to work towards

  16. EU asylum procedures and the right to an effective remedy

    NARCIS (Netherlands)

    Reneman, Anne Marcelle

    2013-01-01

    Adequate and fair asylum procedures are a precondition for the effective exercise of rights granted to asylum applicants, in particular the right not be expelled to a country where they face the risk of being subjected to human rights violations. In 1999 the EU Member States decided to work towards

  17. Effects of permeability heterogeneity on the performance of surfactant-enhanced remediation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S. [Kyonggi Univ., Seoul (Korea, Republic of)

    2010-07-01

    The subsurface contamination by nonaqueous phase liquids (NAPLs) is a complicated process and difficult to treat because these organic contaminants tend to adsorb onto the soil matrix. They have low water solubility and a limited rate of mass transfer for biodegradation. NAPLs may leach from the soil for a longer period of time and may eventually become a long-term continuous contamination source of the soil and groundwater. One method to enhance pump-and-treat aquifer remediation performance involves surfactant-enhanced aquifer remediation (SEAR). Because their success depends on the delivery of injected chemical and water into the subsurface to contact the organic liquids, geologic heterogeneities are likely the main factors which reduce the effectiveness of SEAR processes. This paper presented a study that involved numerical simulations to assess the effect of spatial variability of aquifer permeability on NAPL recovery and injection pressure as well as spatial and temporal distributions of NAPLs during the remediation process. The paper outlined the mathematical backgrounds, numerical model, and results and discussion. It was concluded the effectiveness of SEAR is sensitive to injection time due to dispersion of surfactant slug with the presence of a higher degree of heterogeneity. 6 refs., 3 figs.

  18. Conjunctive effect of CMC-zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

    Science.gov (United States)

    Madhavi, Vemula; Prasad, Tollamadugu Naga Venkata Krishna Vara; Reddy, Balam Ravindra; Reddy, Ambavaram Vijay Bhaskar; Gajulapalle, Madhavi

    2014-04-01

    Chromium is an important industrial metal used in various products and processes but at the same time causing lethal environmental hazards. Remediation of Cr-contaminated soils poses both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. Zero-valent iron particles at nanoscale are proposed to be one of the important reductants of Cr(VI), transforming the same into nontoxic Cr(III). In the present investigation, soils contaminated with Cr(VI) are allowed to react with the various loadings of zero-valent iron nanoparticles (Fe0) for a reaction period of 24 h. Fe0 nanoparticles were synthesized by the reduction of ferrous sulfate in the presence of sodium borohydride and stabilized with carboxy methyl cellulose and were characterized by scanning electron microscopy, energy dispersion spectroscopy, X-ray diffraction, UV-vis spectrophotometer, Fourier transform-infra red spectrophotometer, Raman spectroscopy, dynamic light scattering technique and zeta potential. Further, this work demonstrates the potential utilization of farm yard manure (FYM) and Fe0 nanoparticles in combination and individually for the effective remediation of Cr(VI)-contaminated soils. An increase in the reduction of Cr(VI) from 60 to 80 % was recorded with the increase in the loading of Fe0 nanoparticles from 0.1 to 0.3 mg/100 g individually and in combination with FYM ranging from 50 to 100 mg/100 g soil.

  19. Advances in environmental remediation technologies for trichloroethylene pollution%三氯乙烯环境污染修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    钱翌; 岳飞飞; 褚衍洋

    2012-01-01

    三氯乙烯(TCE)是一种挥发性的有机溶剂,具有较强的环境毒性,对人体有很大危害,被列为"优先控制化合物"及"疑似致癌物质".近年来,许多研究者采用各类技术对TCE的降解进行了系统研究,并取得一定成效,为TCE环境污染的修复提供了多种方法.本文综述了物理修复、化学修复、植物修复及微生物修复等TCE原位修复方法的原理、效能、优缺点及各方法的影响因素,并展望了今后TCE修复技术的发展趋势.%Trichloroethylene(TCE) is a volatile organic solvent with strong environmental toxicity.Identified to be seriously harmful to human bodies,it has been classified as "priority-controlled compounds" and "suspected carcinogens".Recently,various technologies for TCE degradation have been systematically studied,with successful outcomes.They provide a variety of methods for environmental remediation for TCE pollutions.This paper reviews the mechanism,performance,and Pro/Con of several in situ remediation technologies,listed as physical remediation,chemical remediation,phytoremediation,and microbial remediation.An outlook on developing trend of TCE remediation technologies is also proposed.

  20. Model outputs for each hotspot site to identify the likely environmental, economic and social effects of proposed remediation strategies

    DEFF Research Database (Denmark)

    Fleskens, Luuk; Irvine, Brian; Kirkby, Mike

    2012-01-01

    Portuguese sites) a fire severity index under current conditions and under different technologies. The DESMICE model is informed by WB3 WOCAT database records, economic WB4 experimental results, additionally requested data on spatial variability of costs and benefits, and secondary data. It applies spatially......This report presents the PESERA-DESMICE model results for the study sites where it has been applied. Modelling has been the key strategy adopted in the DESIRE project to scale up results from the field to the regional level. The PESERA model, extended with several process descriptions to account...... for a variety of degradation types and to enable taking into account the effects of land degradation remediation options, has been calibrated to local study site conditions with local input data and verification results from WB4 trials and secondary sources. It is used to model erosion, biomass, and (for...

  1. Assessment of the effectiveness of onsite exsitu remediation by enhanced natural attenuation in the Niger Delta region, Nigeria.

    Science.gov (United States)

    Okparanma, Reuben N; Azuazu, Ikeabiama; Ayotamuno, Josiah M

    2017-09-09

    This study was conducted to quantify and rank the effectiveness of onsite exsitu remediation by enhanced natural attenuation using soil quality index. The investigation was conducted at three oil spill sites in the Niger Delta (5.317°N, 6.467°E), Nigeria with a predominance of Oxisols. Baseline assessment and a two-step post-remediation monitoring of the sites were conducted. Target contaminants including total petroleum hydrocarbon (TPH) and BTEX (benzene, toluene, ethylbenzene, and xylene) were analyzed by gas chromatography-mass spectrometry. Results of the baseline assessment showed that TPH concentrations across the study sites averaged between 5113 and 7640 mg/kg at 0- to 1-m depth, which was higher than the local regulatory value of 5000 mg/kg. The soil quality index across the sites ranged between 68 and 45, suggesting medium to high potential ecological health risks with medium to high priority for remediation. BTEX concentrations followed a similar trend. However, after remediation TPH degraded rapidly initially and then slowly but asymptotically during the post-remediation monitoring period. Then, soil quality index across the study sites ranged between 100 and 58, indicating very low to medium potential ecological health risks. This demonstrates the effectiveness of onsite exsitu remediation by enhanced natural attenuation as a remediation strategy for petroleum-contaminated soils, which holds great promise for the Niger Delta province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. IN SITU AND EX SITU BIODEGRADATION TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SITES [ENGINEERING ISSUE)

    Science.gov (United States)

    Bioremediation is a grouping of technologies that use microbiota (typically, heterotrophic bacteria and fungi) to degrade or transform hazardous contaminants to materials such as carbon dioxide, water, inorganic salts, microbial biomass, and other byproducts that may be less haza...

  3. INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V.; Richardson, John Grant

    2000-03-01

    A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.

  4. Groundwater Contamination: DOD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites

    Science.gov (United States)

    2005-06-01

    DNAPL dense nonaqueous phase liquids DOD Department of Defense EPA Environmental Protection Agency ESTCP Environmental Security Technology Certification...copper, lead, mercury , selenium, silver, and zinc. eIncludes, but is not limited to, oxygen-bearing chemicals that can be added to fuel to bring...technology is applicable to both dense and light nonaqueous phase liquids ( DNAPL and LNAPL).3 Benefits of enhanced recovery approaches include the

  5. Dispersion modeling to compare alternative technologies for odor remediation at swine facilities.

    Science.gov (United States)

    Schiffman, Susan S; Graham, Brevick G; Williams, C Mike

    2008-09-01

    The effectiveness of 18 alternative technologies for reducing odor dispersion at and beyond the boundary of swine facilities was assessed in conjunction with an initiative sponsored through agreements between the Attorney General of North Carolina and Smithfield Foods, Premium Standard Farms, and Frontline Farmers. The trajectory and spatial distribution of odor emitted at each facility were modeled at 200 and 400 m downwind from each site under two meteorological conditions (daytime and nighttime) using a Eulerian-Lagrangian model. To predict the dispersion of odor downwind, the geographical area containing the odorant sources at each facility was partitioned into 10-m2 grids on the basis of satellite photographs and architectural drawings. Relative odorant concentrations were assigned to each grid point on the basis of intensity measurements made by the trained odor panel at each facility using a 9-point rating scale. The results of the modeling indicated that odor did not extend significantly beyond 400 m downwind of any of the test sites during the daytime when the layer of air above the earth's surface is usually turbulent. However, modeling indicated that odor from all full-scale farms extended beyond 400 m onto neighboring property in the evenings when deep surface cooling through long-wave radiation to space produces a stable (nocturnal) boundary layer. The results also indicated that swine housing, independent of waste management type, plays a significant role in odor downwind, as do odor sources of moderate to moderately high intensity that emanate from a large surface area such as a lagoon. Human odor assessments were utilized for modeling rather than instrument measurements of volatile organic compounds (VOCs), hydrogen sulfide, ammonia, or particulates less than 10 microm in diameter (PM10) because these physical measurements obtained simultaneously with human panel ratings were not found to accurately predict human odor intensity in the field.

  6. Remediation Technology of Contaminated Areas with Organochlorines: A Preliminary Evaluation Seeking Potential Applications on the Site of Street Capua, Santo André - SP

    Directory of Open Access Journals (Sweden)

    Mauro Silva Ruiz

    2012-12-01

    Full Text Available This paper is aimed to analyze the use of remediation technologies for areas contaminated with organochlorine based on a literature review and discussions with specialists. The remediation technologies analyzed were bioremediation, phytoremediation, nanotechnology, chemical oxidation, and thermal desorption. The purpose is to identify and compare “key problems” for each of these technologies envisaging the use of one or more of these them f or the remediation of the Capua Street site in Santo André, SP. Four databases were used in the preliminary literature review: Scopus, SciELO, Web of Science, and Science Direct. A survey questionnaire was designed to gather information on publications of scientific papers and patents, specific uses of these technologies by companies, and cases of application. Since the quality of the data and information obtained from this questionnaire application was not satisfactory, a new research approach for complementing them was undertaken. For this purpose, the Web of Science was selected as the most adequate data basis to carry out this second survey. However, it was realized that even for this database - that is reference for evaluating academic institutions, researchers and maturity of technologies – bias coming from the original data source can affect the survey results. Moreover, as the number of keywords used in the research consisted of generic terms for each technology, it can also be assumed that if some authors have used very specific terms, a small amount of work published by them would possibly have been misrepresented in the final result.

  7. 客土改良技术及其在砷污染土壤修复中的应用展望%Application and outlook of alien earth soil-improving technology in arsenic-contaminated soil remediation

    Institute of Scientific and Technical Information of China (English)

    侯李云; 曾希柏; 张杨珠

    2015-01-01

    砷是一种毒性很强且对人体健康威胁很大的金属元素,土壤砷污染与修复长期以来受到各国政府和科学家的广泛关注。客土改良技术是污染土壤修复中较常用和有效的方法之一,近年来逐渐受到关注。本文在简述土壤中砷来源及其危害的基础上,重点对近年来该技术在土壤改良及污染土壤修复中的应用进行了系统整理,并以此为基础,比较了砷污染土壤的物理、化学及生物修复的效果。结合我国部分地区耕地砷污染较严重的现状,认为客土改良技术见效快、改良较彻底、且具有较高的实用性。同时,论文还对客土技术在砷污染土壤修复中的研究重点及应用前景等进行了展望。%Arsenic is a metalloid element with severe toxicity that poses a huge threat to human health. Arsenic-contaminated soils and the remediation of these soils have drawn widespread concerns from governments and the scientific community. There has been a growing interest in alien earth soil-improving technology in recent years, evident in the more frequent use of this technology in the remediation of contaminated soils that has so far proven to be one of the most effective methods. Based on the sources and toxicity of arsenic soils, a systematic review was conducted on the application of alien earth soil-improving technology in remediating arsenic- contaminated soils. The effectiveness of the physical, chemical and biological remediation techniques in arsenic-contaminated soils was also compared. In terms of serious arsenic pollution in some cultivated lands in China, alien earth soil-improving technology was noted to be an effective and practical method of restoration of contaminated soils. Based on this finding, further in-depth researches on the application and outlook of alien earth soil-improving technology in remediating arsenic-contaminated soils were proposed.

  8. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

  9. Reactant Carrier Microfoam Technology for In-Situ Remediation of Radionuclide and Metallic Contaminants in Deep Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Zhong, Lirong; Jansik, Danielle P.; Foote, Martin; Hart, Andrea T.; Wellman, Dawn M.

    2010-07-01

    The U.S. Department of Energy (DOE) is currently developing advanced remedial technologies for addressing metal and radionuclide (Cr, Tc, and U) contamination in deep vadose zone environments. One of the transformational technology alternatives being considered by the DOE Office of Environmental Management, is the use of Reactant Carrier Microfoams (RCM) as a minimally invasive method for delivery and emplacement of reagents for in-situ immobilization of contaminants. Penetration of low permeability zones deep within the subsurface for Enhance Oil Recovery (EOR) has been well-established. Use of surfactant foams have also been explored for mobilizing DNAPL from sediments. So far, the concept of using RCM for immobilizing labile metal and long-lived radionuclide contaminants in the deep vadose zone has not been explored. We, at the Pacific Northwest National Laboratory (PNNL), conducted studies to develop stable foams as a means to deliver reductive and/or precipitating reactants to the deep subsurface. To test the feasibility of this approach, we developed a preliminary foam formulation consisting of a mixture of an anionic and a nonionic surfactant with a reactant consisting of a 9:1 blend of tripoly- and orthophosphate. The MSE Technology Applications, Inc (MSE) in collaboration with PNNL, conducted a scale-up test to evaluate the efficacy of this reactant carrier foam for in-situ immobilization of U containing sediment zones in a heterogenous sediment matrix. The data indicated that successful immobilization of U contamination is feasible using specifically tailored reactant carrier foam injection technology. Studies are continuing for developing more robust optimized RCM for highly mobile contaminants such as Cr (VI), Tc (VII) in the deep vadose zone.

  10. Assessing the Effectiveness of Land farming in the Remediation of Hydrocarbon Polluted Soils in the Niger Delta, Nigeria

    Directory of Open Access Journals (Sweden)

    Mmom Prince Chinedu

    2010-10-01

    Full Text Available Hydrocarbons pollution of soils has constituted environmental issues over the years. The biggest concern associated w ith hydrocarbon pollution in the environment is the risk to farmlands, fisheries and potable water supplies contamination. Several remediation techniques exist (Bioremediation and Non-bioremediation, which aim at reducing the hydrocarbon content of the polluted soil and water with their varying degrees of success. Thus land farming, one of the bioremediation remediation techniques is view ed as a more viable remediation options for hydrocarbon polluted soils. The study therefore was instituted to assess the effectiveness of land farming (Enhanced Natural Attenuation in the remediation of hydrocarbon polluted sites in the Niger Delta. Soil samples from ten (10 sites polluted and remediated sites in the Niger Delta; that is five (5 samples each from the swampy and well drained sites and subjected to Laboratory analysis. The results were further analysed using both descriptive and inferential statistical tools of percentages, regression analysis and student t-test. The results of the soil analysis show 14.54 to 82.24% and 16.01 to 50.54% reductions in the TPH and PAH concentrations after land farming respectively. This shows high level of efficacy in the use of the Land farming as remediation technique. However, the efficacy varied between the swampy and well drained soils; reductions in the hydrocarbon levels of the soils in the water-logged or swamp areas were lower and slower than that of the well drained soils. This shows that the soil microbes were able to degrade the hydrocarbons faster in the well-drained soil probably because of the favourable soil conditions like pH, moisture, and nutrient. To ameliorate this problem, more effective way of bio-remediation for swamp area should be pursued like phyto-remediation; this is the use of higher plants to enhance the remediation of soils contaminated with recalcitrant organic

  11. Phase I Field Test Results of an Innovative DNAPL Remediation Technology: The Hydrophobic Lance

    Energy Technology Data Exchange (ETDEWEB)

    Tuck, D.M.

    1999-01-28

    An innovative technology for recovery of pure phase DNAPL was deployed in the subsurface near the M-Area Settling Basin, continuing the support of the A/M Area Ground Water Corrective Action Program (per Part B requirements). This technology, the Hydrophobic Lance, operates by placing a neutral/hydrophobic surface (Teflon) in contact with the DNAPL. This changes the in situ conditions experienced by the DNAPL, allowing it to selectively drain into a sump from which it can be pumped. Collection of even small amounts of DNAPL can save years of pump-and-treat operation because of the generally low solubility of DNAPL components.

  12. The remedial year in the general surgery board certification process: how effective is it?

    Science.gov (United States)

    Rehm, Christina G; Rowland, Pamela A

    2005-01-01

    The American Board of Surgery (ABS) intends to assure high standards for knowledge and experience in every graduate from an approved general surgery program. They have gone to great lengths to devise an optimal remediation process for every candidate failing to reach these standards. But what is the effectiveness of the remediation process? ABS data outlined the history and development of the remediation process up to its current form. A core component of this process is a specifically structured additional year of training at selected institutions. Ten institutions, which were classified as outstanding by the ABS, received a standardized confidential questionnaire to collect data that included the institution's impetus to administer a remedial year (RY), organization of their RY, specific emphasis points, role of advisors, funding, and choice of RY candidates. Each institution was asked to mail a letter to their RY graduates, asking for their participation in a follow-up study aimed at characterizing the failing candidate. ABS data have been available since 1980. Pass rates for the qualifying written examination (QE) improved steadily from about 63% in 1985 to 78% in 2003. Pass rates for the certifying oral examination (CE) have been consistently around 75% since 1985 with improvement to just above 80% within the last 4 years. In 1995, a new ABS policy was announced requiring an additional year of structured training with specific elements. For the QE, the general pool pass rates continued their steady improvement. Although the results for RY candidates did reveal a 20% improved pass rate, they were still 30 percentage points lower when compared with the general pass rates. No improvement was noted in the CE results. In 2003, ABS enacted the latest policy change, which consists of an alternative pathway for QE. The initial experience for 2003 is disappointing. Less than 10 candidates have taken advantage of this alternative, and pass rates have not improved. The

  13. Applying effective instructional strategies for teaching dyslexic students in a remedial college algebra course.

    Science.gov (United States)

    Kitz, W R; Nash, R T

    1995-01-01

    For many secondary and postsecondary students with dyslexia, passing required algebra courses presents a formidable challenge. Although dyslexic students do have specific and sometimes severe learning deficits that can affect their chances of success in algebra, they can succeed if given appropriate and effective instruction that meets their special and individual needs. This article briefly describes the application of effective instructional practices to the teaching of remedial algebra that have been used with dyslexic students in the University of Wisconsin Oshkosh Project Success program.

  14. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  15. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  16. Mining the waste: prospecting valuable residues optimising processes with modern technology sustainably remediating legacy sites

    OpenAIRE

    Lemière, Bruno

    2012-01-01

    International audience; Prospecting valuable residuesAbandoned waste from closed mines or past operations may contain profitably recoverable commodities:-when the market price of the commodity increased significantly since mine closure,-when processing technology improved significantly since mine closure,-when another commodity present in the ore was not recovered and thus sent to waste, because it was not of commercial value at the time. This is especially relevant for some high-tech element...

  17. Smart technologies for detecting animal welfare status and delivering health remedies for rangeland systems.

    Science.gov (United States)

    Rutter, S M

    2014-04-01

    Although the emerging field of precision livestock farming (PLF) is predominantly associated with intensive animal production, there is increasing interest in applying smart technologies in extensive rangeland systems. Precision livestock farming technologies bring the possibility of closely monitoring the behaviour, liveweight and other parameters of individual animals in free-ranging systems. 'Virtual fencing', ideally based on positive reinforcement, i.e. rewarding animals for moving in a specified direction, has the potential to gently guide foraging livestock towards areas of vegetation identified by remote sensing. As well as reducing hunger, this could be integrated with weather forecasting to help ensure that animals are automatically directed to areas with appropriate shelter when adverse weather is forecast. The system could also direct animals towards handling facilities when required, reducing the fear and distress associated with being mustered. The integration of the various data collected by such a 'virtual shepherd' system should be able to rapidly detect disease and injury, and sick animals could then be automatically shepherded to an enclosure for treatment. In general, rangeland livestock already have the freedom to express normal behaviour, but PLF technologies could facilitate this. By bringing levels of monitoring and control normally associated with intensive production to rangeland systems, PLF has the potential, with appropriate adoption, to enhance the capacity of rangeland livestock production systems to meet key areas of welfare concern highlighted by the Five Freedoms.

  18. Technology Survey to Support Revision to the Remedial Investigation/Feasibility Study Work Plan for the 200­-SW­-2 Operable Unit at the U.S. Department of Energy’s Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nimmons, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-09-01

    A survey of technologies was conducted to provide information for a Data Quality Objectives process being conducted to support revision of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit. The technology survey considered remediation and characterization technologies. This effort was conducted to address, in part, comments on the previous version of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit as documented in 200­SW­1 and 200­SW­2 Collaborative Workshops-Agreement, Completion Matrix, and Supporting Documentation. By providing a thorough survey of remediation and characterization options, this report is intended to enable the subsequent data quality objectives and work plan revision processes to consider the full range of potential alternatives for planning of the Remedial Investigation/Feasibility Study activities.

  19. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    Science.gov (United States)

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology.

  20. Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    ZENG Guangming; ZHONG Hua; HUANG Guohe; FU Haiyan

    2005-01-01

    Remediation of soil contaminated by hydrophobic organic compounds using biosurfactants as additives involves interactions between soil matrix, hydrophobic organic compound contaminants, biosurfactants and microorganisms. In this paper, the mechanism for biosurfactants to enhance the contaminant degradation is basically revealed. Biosurfactants can enhance solubilization of the contaminants in the soil matrix, change their mass transfer properties into the aqueous phase, as well as affect their sorption properties. Furthermore, biosurfactants can act on microorganisms and change their surface properties, accordingly cause new growth and uptake behavior of the bacteria in the soil matrix. Both the physicochemical and the microbiological effects can basically increase the bioavailability of the contaminants and enhance their degradation.

  1. Field analytical support during Superfund site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, W.L.; Catherman, D.R. [Environmental Resources Management, Inc., Exton, PA (United States)

    1995-12-31

    ERM-FAST{reg_sign} Services has provided cost-effective and critical field analytical support for a wide variety of investigatory and remedial projects over the past four years. Two recent projects involving soils remediation at Superfund sites exemplify the power of real time field analytical support in reducing time and expense during a project`s remedial phase. ERM-FAST on-site analytical facilities were able to meet, in a real time scenario, all data quality objectives (DQOs), all regulatory agency requirements, and satisfied the client`s needs. ERM-FAST made this possible through the development of unique analytical strategies, the proper selection of analytical technologies, and by streamlining the analytical methodologies. Both of these remedial efforts offer illustrations of the effectiveness of field analysis for vastly differing site contaminants. This case study focuses on the use of portable Gas Chromatography (GC) instrumentation as a tool for providing analytical support during a CERCLA site remediation program. The project discussed provides an example of how low cost portable analytical instrumentation can be utilized in a field setting to meet analytical DQOs consistent with CERCLA compliance and to meet the requirements for remedial activity cost control. Substantial savings were realized both by reducing total project analytical cost, and by efficient and effective process and schedule management.

  2. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review.

    Science.gov (United States)

    Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan

    2017-08-01

    Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2010-09-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2010 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  4. Biological remediation of petroleum hydrocarbons from a refinery's soil : comparison of different technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nazare Couto, M.; Vasconcelos, T.S.D. [CIMAR/CIIMAR, Porto (Portugal)

    2007-07-01

    This presentation discussed bioremediation methods used at a refinery in Portugal with a high distillation capacity. The aim of the project was to develop a method for restoring contaminated sites using rhizoremediation and bio-augmentation. Hydrocarbon molecules were tightly sorbed to the soil particles at the refinery. Plants used in the bioremediation project included Scirpus maritimus and Juncus maritimus, as well as Cortoaderia selloana taken from an estuary near the refinery. Tests were conducted both with, and without the use of microorganisms. Commercial bio-augmentation products were used. Plant growth was evaluated for a period of 64 days. It was concluded that the technology is cheaper than many traditional methods of treating hydrocarbon-contaminated soils. tabs., figs.

  5. Combined Effects of Biochar and Fertilizer on Cadmium Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    WANG Qi-kai

    2015-12-01

    Full Text Available The field experiment was employed to study on the combined effects of biochar and chicken manure and N, P and K compound chemical fertilizer on cadmium contaminated soil remediation, and the immobilization mechanism was elucidated through fractionation of cadmium in the tested soil. Results showed that the addition of these ammendments could significantly reduce the edible Cd accumulation in Lactuca sativa L., decreased from 32.6% to 54.8% compared with the control. The application of these additives could also significantly decrease extractable Cd concentration by 7.04%~21.85%. Biochar could significantly improve soil pH value, promote the inactivation of Cd contaminated soil, while the application of chicken manure significantly decreased soil pH value, which showed the effect of activating Cd in soil. Soil pH value had significant positive correlation with root Cd concentration of tested cultivars, but did not reach the significant effect level with the shoot Cd concentration. The research can provide a theoretical basis for the application of biochar combined with chicken manure and N, P and K compound chemical fertilizer on remediation of sewage irrigated Cd contaminated soil.

  6. [Effects of strong reductive approach on remediation of degraded facility vegetable soil].

    Science.gov (United States)

    Zhu, Tong-Bin; Meng, Tian-Zhu; Zhang, Jin-Bo; Cai, Zu-Cong

    2013-09-01

    High application rate of chemical fertilizers and unreasonable rotation in facility vegetable cultivation can easily induce the occurrence of soil acidification, salinization, and serious soil-borne diseases, while to quickly and effectively remediate the degraded facility vegetable soil can considerably increase vegetable yield and farmers' income. In this paper, a degraded facility vegetable soil was amended with 0, 3.75, 7.50, and 11.3 t C x hm(-2) of air-dried alfalfa and flooded for 31 days to establish a strong reductive environment, with the variations of soil physical and chemical properties and the cucumber yield studied. Under the reductive condition, soil Eh dropped quickly below 0 mV, accumulated soil NO3(-) was effectively eliminated, soil pH was significantly raised, and soil EC was lowered, being more evident in higher alfalfa input treatments. After treated with the strong reductive approach, the cucumber yield in the facility vegetable field reached 53.3-57.9 t x hm(-2), being significantly higher than that in un-treated facility vegetable field in last growth season (10.8 t x hm(-2)). It was suggested that strong reductive approach could effectively remediate the degraded facility vegetable soil in a short term.

  7. GREEN AND SUSTAINABLE REMEDIATION BEST MANAGEMENT PRACTICES

    Science.gov (United States)

    2016-09-07

    Transition to monitored natural attenuation (MNA) as soon as conditions are favorable to effectively remediate residual contaminants.  Use of...considered to decrease energy consumption and criteria air pollution .  Use adjacent soil for backfill/ soil cover material at a landfill to...adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive dechlorination (ERD), in situ

  8. Blind Inlet as a Possible Technology for the Remediation of Phosphorus from Surface Runoff

    Science.gov (United States)

    Sturmlechner, M.; Wu, X.; Livingston, S.; Klik, A.; Huang, C. H.

    2015-12-01

    Phosphorus (P) is an essential element for plant life, but too much P in runoff water can cause eutrophication and harmful algal blooms. Hence, mitigation of agricultural P losses into the water cycle is a very important issue. In-stream P treatment is difficult to implement because the large amount of storm runoff needs to be treated in short durations. In this research, we evaluated the potential to use blind inlet as an in-field P treatment technology. A box system was built to simulate hydrological and chemical processes occurring in a blind inlet. Current blind inlets, which are already installed in the field, use a bed of limestone with a sand/pea gravel layer on the top. In this study, steel slags has been tested, which has a very high P sorption potential, as the filter media through a series of adsorption and desorption experiments. The P mass balance results are compared with the limestone material used in current blind inlet construction. The total mass of P which was absorbed by the limestone was 14 % of the P input into the system whereas 26 % P was absorbed by the steel slags. Therefore the steel slags show potential to sequester dissolved P. Additional research is on-going to come up with a design criteria for field implementation.

  9. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2010-04-01

    There is an urgent need to control nutrient release fluxes from organically-enriched sediments into overlying waters to alleviate the effects of eutrophication. This study aims to characterize blast furnace slag (BFS) and evaluate its remediation performance on organically-enriched sediments in terms of suppressing nutrient fluxes and reducing acid volatile sulfide. BFS was mainly composed of inorganic substances such as CaO, SiO(2), Al(2)O(3) and MgO in amorphous crystal phase. Container experiments showed that the phosphate concentration in the overlying water, its releasing flux from sediment and AVS of the sediment decreased by 17-23%, 39% and 16% compared to the control without BFS, respectively. The loss on ignition was significantly decreased by 3.6-11% compared to the control. Thus, the application of BFS to organically-enriched sediment has a suppressive role on organic matter, AVS concentration and phosphate releasing flux from sediments and therefore, is a good candidate as an effective environmental remediation agent.

  10. Tank waste remediation system operational scenario

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  11. Efficient Class-Wide Remediation: Using Technology to Identify Idiosyncratic Math Facts for Additional Automaticity Drills

    Science.gov (United States)

    Parkhurst, John; Skinner, Christopher H.; Yaw, Jared; Poncy, Brian; Adcock, Westley; Luna, Elisa

    2010-01-01

    A multiple baseline design was used to evaluate the effects of a modified Detect, Practice, and Repair (DPR) procedure on multiplication-fact fluency with 10 low-achieving 5th-grade students. Experimenters modified the DPR procedure using Microsoft[C] PowerPoint[C] slide shows to conduct the assessments and allow for more rapid self-evaluation in…

  12. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  13. Effects of cognitive remediation therapy versus other interventions on cognitive functioning in schizophrenia inpatients.

    Science.gov (United States)

    Linke, Magdalena; Jankowski, Konrad S; Wichniak, Adam; Jarema, Marek; Wykes, Til

    2017-05-01

    Computerised cognitive remediation therapy (CCRT) has been shown to improve cognitive function in individuals with schizophrenia beyond effects of other forms of therapy. However, results vary between studies, and most are aimed at individuals who are living in the community. Very few studies have investigated its efficacy in psychiatric wards in order to assess whether or not this is a suitable site to start the therapy. This study evaluated CCRT efficacy among schizophrenia inpatients who received a broad range of therapeutic interventions in a psychiatric ward. A randomised controlled trial of CCRT versus an active control in 66 young inpatients with a diagnosis of schizophrenia was conducted. The intervention lasted for 6 weeks and its efficacy was assessed with the composite score of the MATRICS Consensus Cognitive Battery. Both groups improved similarly in cognitive function and psychopathological symptoms. However, the CCRT group improved more than the controls in negative symptoms. This result shows that providing a drill and practice cognitive remediation to inpatients does not produce benefits for cognitive functioning substantially greater than other forms of therapy provided in a ward, but it is more efficient in reduction of negative symptoms. Our results suggest that CRT might be considered as a promising intervention for reducing negative symptoms in schizophrenia individuals.

  14. Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S. [General Electric Research and Development, Schenectady, NY (United States)

    1997-04-01

    Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna{trademark} process.

  15. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    Science.gov (United States)

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).

  16. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  17. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    Science.gov (United States)

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  18. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  19. International experience in tailings pond remediation

    Energy Technology Data Exchange (ETDEWEB)

    MacG. Robertson, A. [Robertson GeoConsultants Ltd., Vancouver (Canada)

    2001-07-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  20. Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran

    Contamination of soils and groundwater keep attracting attention of worldwide. The contaminants of concern include a wide range of toxic pollutants such as heavy metals, radionuclides, and organic compounds. The environment and humans are exposed to these pollutants through different exposure...... pathways to unacceptable dosages, leading to intolerable adverse effects on both public health and the environment. In the last decades, soil and water remediation have gained growing awareness, as the necessity becomes clearer for development of such techniques for elimination of the negative impact from...... compartments. Therefore no current is wasted for carrying ions from one electrode compartment to the other. The EDR technique has been tested for decontamination of a variety of different heavy metal polluted particulate materials: mine tailings, soil, different types of fly ashes, sewage sludge, freshwater...

  1. Investigating the effectiveness of economically sustainable carrier material complexes for marine oil remediation.

    Science.gov (United States)

    Simons, Keryn L; Ansar, Alfiya; Kadali, Krishna; Bueti, Angelo; Adetutu, Eric M; Ball, Andrew S

    2012-12-01

    The application of bioremediation to marine oil spills is limited due to dilution of either nutrients or hydrocarbonoclastic organisms. This study investigated the effectiveness of three unique natural carrier materials (mussel shells, coir peat and mussel shell/agar complex) which allowed nutrients, hydrocarbonoclastic organisms and oil to be in contact, facilitating remediation. TPH analysis after 30 d showed that mussel shells exhibited the greatest capacity to degrade oil with a 55% reduction (123.3 mg l(-1) from 276 mg l(-1)) followed by mussel shell/agar complex (49%) and coir peat (36%). Both the mussel shells and mussel shell/agar complex carriers were significantly different to the control (P=0.008 and P=0.002, respectively). DGGE based cluster analysis of the seawater microbial community showed groupings based on time rather than carriers. This study demonstrated that inexpensive, accessible waste materials used as carriers of hydrocarbonoclastic bacteria led to significant degradation of hydrocarbon contaminants in seawater.

  2. Summary of the NATO/CCMS Conference The Demonstration of Remedial Action Technologies for Contaminated Land and GroundWater

    Science.gov (United States)

    The problem of contamination to land and groundwa- ter from improper handling of hazardous materials/ waste is faced by all countries. Also, the need for reliable, cost-effective technologies to address this problem at contaminated sites exists throughout the world. Many countrie...

  3. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  4. The effect of soil type on the electrodialytic remediation of lead-contaminated soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Harmon, Thomas C.

    2007-01-01

    experiments with ten representative industrially Pb-contaminated surface soils. Results indicate that Pb-speciation is of primary importance. Specifically, organic matter and stable compounds like PbCrO4 can impede and possibly even preclude soil remediation. In soils rich in carbonate, where the acidic front......This work investigates the influence of soil type on electrodialytic remediation (EDR) of lead (Pb). It is well-known in electrokinetic soil remediation that pH is a key factor, and carbonate influences remediation efficiency negatively. This work provides results from laboratory scale EDR...... is impeded, part of the Pb can be transferred from the soil to the anolyte as negatively charged complexes during the EDR process. The dominant complex is in this case likely to be Pb(CO3)22-. Efficient remediation is however not obtained until all carbonate has dissolved and Pb2+ is transported...

  5. The effectiveness of electro-remediation of aged, metal-contaminated sediment in relation to sequential extraction of metals

    NARCIS (Netherlands)

    Merkx, O.K.; Loch, J.P.G.; Lima, A.T.; Dijk, J.A.; Kreuk, J.F. de; Kleingeld, P.J.

    2013-01-01

    Soil pollution is a universal environmental issue, and the clean-up of contaminated soils can be costly and time consuming. Traditional methods often do not provide an effective solution when it comes to fine-grained and highly impermeable soils and/or immobile contaminants. Electro-remediation, how

  6. The effectiveness of electro-remediation of aged, metal-contaminated sediment in relation to sequential extraction of metals

    NARCIS (Netherlands)

    Merkx, O.K.; Loch, J.P.G.; Lima, A.T.; Dijk, J.A.; Kreuk, J.F. de; Kleingeld, P.J.

    2013-01-01

    Soil pollution is a universal environmental issue, and the clean-up of contaminated soils can be costly and time consuming. Traditional methods often do not provide an effective solution when it comes to fine-grained and highly impermeable soils and/or immobile contaminants. Electro-remediation, how

  7. Planting woody crops on dredged contaminated sediment provides both positive and negative effects in terms of remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@salford.ac.uk [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom); Riby, Philip [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [Department of Ecology, Lincoln University, Lincoln 7647, Canterbury (New Zealand); Shutes, Brian [Urban Pollution Research Centre, Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT (United Kingdom); Sparke, Shaun [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Scholz, Miklas [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom)

    2011-12-15

    There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water ({approx}14 mg l{sup -1}). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment. - Highlights: > Trees provide positive and negative effects for remediation of dredged sediment. > Biological conditions had improved and natural processes enhance soil quality. > Zinc was the dominant trace metal in foliage and sediment pore waters. > Metal contaminants remain a problem in relation to their wider environmental fate. > A sustainable environment appears to be forming as a result of natural attenuation. - Soil biological quality improves in a woody crop stand eight years after a phytoremediation trial.

  8. Bioaugmentation for Groundwater Remediation

    Science.gov (United States)

    2010-02-01

    emulsified vegetable oil EX extraction well FRTR Federal Remediation Technologies Roundtable gpm gallon per minute GSA General Services Administration...logic controller PRB permeable reactive barrier PVC polyvinyl chloride ACRONYMS AND ABBREVIATIONS (continued) viii qPCR quantitative...situ growth of DHC and degradation of target contaminants. A slow-release carbon source, such as emulsified vegetable oil (EVO) is often utilized with

  9. Effects of remediation on the bacterial community of an acid mine drainage impacted stream.

    Science.gov (United States)

    Ghosh, Suchismita; Moitra, Moumita; Woolverton, Christopher J; Leff, Laura G

    2012-11-01

    Acid mine drainage (AMD) represents a global threat to water resources, and as such, remediation of AMD-impacted streams is a common practice. During this study, we examined bacterial community structure and environmental conditions in a low-order AMD-impacted stream before, during, and after remediation. Bacterial community structure was examined via polymerase chain reaction amplification of 16S rRNA genes followed by denaturing gradient gel electrophoresis. Also, bacterial abundance and physicochemical data (including metal concentrations) were collected and relationships to bacterial community structure were determined using BIO-ENV analysis. Remediation of the study stream altered environmental conditions, including pH and concentrations of some metals, and consequently, the bacterial community changed. However, remediation did not necessarily restore the stream to conditions found in the unimpacted reference stream; for example, bacterial abundances and concentrations of some elements, such as sulfur, magnesium, and manganese, were different in the remediated stream than in the reference stream. BIO-ENV analysis revealed that changes in pH and iron concentration, associated with remediation, primarily explained temporal alterations in bacterial community structure. Although the sites sampled in the remediated stream were in relatively close proximity to each other, spatial variation in community composition suggests that differences in local environmental conditions may have large impacts on the microbial assemblage.

  10. Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

  11. The CAMU Rule: A tool for implementing a protective, cost-effective remedy at the Fernald Environmental Management Project

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis-Nouille, E.M. [Fernald Environmental Management Project, Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Group of Ohio, Inc., Cincinnati, OH (United States)

    1995-10-01

    The Fernald Environmental Management Project (FEMP) is a former uranium processing facility currently under remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act as amended (CERCLA). Contamination at the FEMP consists of low-level radioactivity, hazardous substances, hazardous wastes and/or mixed wastes. Regulations promulgated under the Resource Conservation and Recovery Act as amended (RCRA) are evaluated as applicable or relevant and appropriate requirements (ARARs) for remediation of the FEMP. Historically, joint CERCLA-RCRA guidance dictated that hazardous waste could not be treated, or moved out of the designated area of contiguous contamination (AOC), without triggering land disposal restrictions (LDRs) or minimum technology requirements (MTRs). To avoid invoking these stringent requirements, in situ capping was chosen as the lower cost remedy at many sites, although on-site disposal and/or treatment of hazardous wastes would have been more protective. The Corrective Action Management Units (CAMUs) and Temporary Units (TUs) Final Rule [58 FR 8658, Vol. 58, No. 29, hereinafter the {open_quotes}CAMU Rule{close_quotes}], promulgated on February 16, 1993, provides facilities regulated under RCRA corrective action authority with greater flexibility to move, treat, and dispose of wastes on site without triggering LDRs or MTRs, thereby encouraging application of innovative technologies and more protective remedies. The waste acceptance criteria for the on-site disposal facility is based on site-specific considerations including the mobility of the contaminants through the underlying site geology and the protectiveness of the engineered liners. Application of the {open_quotes}CAMU Rule{close_quotes} allows for disposition in the on-site facility based on these technical considerations rather than on regulatory classifications.

  12. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Modeling the effects and uncertainties of contaminated sediment remediation scenarios in a Norwegian fjord by Markov chain Monte Carlo simulation.

    Science.gov (United States)

    Saloranta, Tuomo M; Armitage, James M; Haario, Heikki; Naes, Kristoffer; Cousins, Ian T; Barton, David N

    2008-01-01

    Multimedia environmental fate models are useful tools to investigate the long-term impacts of remediation measures designed to alleviate potential ecological and human health concerns in contaminated areas. Estimating and communicating the uncertainties associated with the model simulations is a critical task for demonstrating the transparency and reliability of the results. The Extended Fourier Amplitude Sensitivity Test(Extended FAST) method for sensitivity analysis and Bayesian Markov chain Monte Carlo (MCMC) method for uncertainty analysis and model calibration have several advantages over methods typically applied for multimedia environmental fate models. Most importantly, the simulation results and their uncertainties can be anchored to the available observations and their uncertainties. We apply these techniques for simulating the historical fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Grenland fjords, Norway, and for predicting the effects of different contaminated sediment remediation (capping) scenarios on the future levels of PCDD/Fs in cod and crab therein. The remediation scenario simulations show that a significant remediation effect can first be seen when significant portions of the contaminated sediment areas are cleaned up, and that increase in capping area leads to both earlier achievement of good fjord status and narrower uncertainty in the predicted timing for this.

  14. Evidence of poor adherence to secondary prevention after acute coronary syndromes: possible remedies through the application of new technologies.

    Science.gov (United States)

    Cheng, Kevin; Ingram, Nicola; Keenan, Jan; Choudhury, Robin P

    2015-01-01

    Adherence to secondary prevention medications following acute coronary syndrome (ACS) is disappointingly low, standing around 40-75% by various estimates. This is an inefficient use of the resources devoted to their development and implementation, and also puts patients at higher risk of poor outcomes post-ACS. Numerous factors contribute to low adherence including poor motivation, forgetfulness, lack of education about medications, complicated polypharmacy of ACS regimens, (fear of) adverse side effects and limited practical support. Using technology to improve adherence in ACS is an emerging strategy and has the potential to address many of the above factors-computer-based education and mobile phone reminders are among the interventions trialled and appear to improve adherence in patients with ACS. As we move into an increasingly technological future, there is potential to use devices such as smartphones and tablets to encourage patient responsibility for medications. These handheld technologies have great scope for allowing patients to view online medical records, education modules and reminder systems, and although research specific to ACS is limited, they have shown initial promise in terms of uptake and improved adherence among similar patient populations. Given the overwhelming enthusiasm for handheld technologies, it would seem timely to further investigate their role in improving ACS medication adherence.

  15. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  16. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil.

    Science.gov (United States)

    Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian

    2014-08-01

    The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field.

  17. Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil.

    Science.gov (United States)

    Sabir, Muhammad; Ali, Amanat; Zia-Ur-rehman, Muhammad; Hakeem, Khalid Rehman

    2015-01-01

    We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg(-1)) and roots (80.92 mg kg(-1)), respectively while compost-2 caused maximum Ni (14.08 mg kg(-1)) and (163.87 mg kg(-1)) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg(-1)) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg(-1)) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM.

  18. [Research on the effect and technique of remediation for multi-metal contaminated tailing soils].

    Science.gov (United States)

    Zhu, Guang-xu; Guo, Qing-jun; Yang, Jun-xing; Zhang, Han-zhi; Wei, Rong-fei; Wang, Chun-yu; Marc, Peters

    2013-09-01

    Soil samples were collected from compound polluted tailings to analyze the contents of total heavy metals and their speciation in the soil. Laboratory batch tests were conducted to examine the effects of distilled water and different concentrations of oxalic acid, citric acid, acetic acid, HNO3 and EDTA on the removal of heavy metals from the polluted soils. The suitable eluent and its optimal conditions including liquid to soil ratio, reaction time and washing number were also optimized, and the total toxicity reduction index was proposed to evaluate the effect of the eluent on the remediation of polluted soil. The results showed that Cd and Pb were the most abundant heavy metals in the soil, reaching 52.2 mg x kg(-1) and 4836.5 m x kg(-1), respectively. There was significant difference in the removal efficiency for different heavy metals. Cr had a maximum removal efficiency of 2.7%, while the maximum Cd and Pb removal efficiency was both about 60%. Distilled water had little removal efficiency for heavy metals, with less than 0.1% removal rate; the heavy metal removal efficiency of oxalic acid and acetic acid was also quite low; EDTA in 0.1 mol x L(-1) was selected as the suitable eluent for the polluted soil. Evaluation of the total toxicity reduction index and the cost suggested that EDTA should be used with a liquid to soil ratio of 6:1, a reaction time of 3 h and 2 washings.

  19. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    exchange membrane was the major contributor of energy consumption, and the pulse current could decrease the voltage drop of this part effectively. The overall removal of heavy metals in soil 1 (6–54%) was much higher than soil 2 (1–17%) due to the different acidification process and chemical speciation......The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different...... industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0...

  20. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  1. Effect of the porous structure of polymer foams on the remediation of oil spills

    Science.gov (United States)

    Pinto, Javier; Athanassiou, Athanassia; Fragouli, Despina

    2016-04-01

    Current approaches for the remediation of oil spills propose the utilization of functionalized polymeric foams as efficient oil absorbents. However, for the majority of the materials employed, the studies are focused on sophisticated surface treatments while the significant role of the morphological parameters of the porous structure of the pristine foams remains unexplored. Herein, we prove that the structural parameters of the pores of the polymeric foams play a fundamental role for the efficient removal of oil from water. The presented experimental and theoretical study shows that pristine polyurethane foams with highly interconnected open porous structures, and pore sizes below 500 μm are able to reach oil absorption capacities as high as 30 gr of oil per gr of polyurethane. Chemical functionalization of the porous structure does not increase further the oil absorption efficiency but it significantly contributes to the increase of the selectivity of the process. The current findings demonstrate the importance of the right choice of the pristine foams for the fabrication of cost-effective absorbents with high water-oil separation performance.

  2. Remediation Effects on N170 and P300 in Children with Developmental Dyslexia

    Directory of Open Access Journals (Sweden)

    Mélanie Jucla

    2010-01-01

    Full Text Available This study aimed at investigating the ERP correlates (N170 and P300 components of a multimodal training program focused in dyslexia. ERPs were obtained from 32 electrodes in 24 French children with developmental dyslexia (mean age 10 years 7 months during a visual lexical decision task. All the children received two intensive two-month evidence-based training programs: one based on phonemic awareness and the other on visual and orthographic processing in a cross-over design. Ten control children matched on chronological age were also tested. We showed dissociation between N170, P300 and behavioral improvement. In the dyslexic group, P300 amplitude decreased for non-words and words as the latter yielded performance improvement. In the control group, the same effect was observed for pseudo-words. At the same time, the opposite pattern occurred for the N170 latency, which was shortened for pseudo-words and pseudo-homophones in the dyslexic group and for words in the typically achieving children. We argue that training might modulate cortical activity in dyslexic children in a visual word recognition task. Considering the well-known implication of P300 in attentional processes, our results reflect the strong link between reading skill improvement after remediation and visual attentional process maturation.

  3. Survival and growth of Alfalfa (Medicago sativa l.) inoculated with an am fungus (Glomus intraradices) in contaminated soils treated with two different remediation technologies (bio-pile and thermal desorption)

    Energy Technology Data Exchange (ETDEWEB)

    Norini, M.P.; Beguiristain, Th.; Leyval, C. [LIMOS UMR 7137 CNRS-UHP Nancy - Faculty of Sciences, 54 - Vandoeuvre-les-Nancy (France)

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of persistent and toxic soil pollutants that are of major public concern due to their mutagenic and carcinogenic property. Phyto-remediation is the use of plants and their associated microorganisms for remediation of polluted soils. Phyto-remediation could be used in conjunction with other remediation technologies to reduce the contamination to safe levels and maintain or restore soil physico-chemical and biological properties. Most plant species form mycorrhizas with symbiotic fungi. It was shown that AM fungi enhance survival and plant growth in PAH contaminated soils. Mycorrhizal fungi also enhance the biotransformation or biodegradation of PAH, although the effect differed between soils. A rhizosphere and myco-rhizosphere gradient of PAH concentrations was observed, with decreased PAH concentration with decreased distance to roots. Different microbial communities were found in the rhizosphere of AM and non-mycorrhizal plants in comparison to bulk soil, suggesting that AM could affect PAH degradation by changing microbial communities. We investigated the effect of mycorrhizal fungi and nutrients on the ability of alfalfa to grow on soil contaminated with PAHs before and after two remediation treatments. We used soil from an industrial site (Homecourt, North East part of France) highly contaminated with PAH (2000 mg kg{sup -1}), which has been partially treated by two different remediation technologies (bio-pile and thermal desorption). The bio-pile treatment consisted of piling the contaminated soil with stimulation of aerobic microbial activity by aeration and addition of nutrient solution, and reduced PAH concentration to around 300 mg kg-1. With the thermal desorption treatment the soil was heated to around 500 deg. C so that PAH vaporized and were separated from the soil. The residual PAH concentration in soil was 40 mg kg{sup -1}. Treated and non-treated contaminated soil was planted with alfalfa

  4. Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.

    2008-07-29

    Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a

  5. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  6. 2011 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-03-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2011 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  7. Sublethal effects in caged rainbow trout during remedial activities in Lake Jaernsjoen

    Energy Technology Data Exchange (ETDEWEB)

    Blom, S.; Foerlin, L. [Goeteborg Univ. (Sweden). Dept. of Zoophysiology; Norrgren, L. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Faculty of Veterinary Medicine, Dept. of Pathology

    1998-08-01

    Caging juvenile rainbow trout in the PCB polluted Lake Jaernsjoen in 1991 prior to remediation resulted in induction of liver ethoxyresorufin-O-deethylase (EROD) activity, liver lesions, skin lesions and fin erosions, all of which can be caused by subchronic exposure to PCB. During the remediation in 1993 and 1994, pronounced induction of the liver EROD, bile-duct proliferation and a relatively high incidence of necrotic hepatocytes were seen in the rainbow trout caged in Lake Jaernsjoen. The histopathological damage noted in the liver was reflected in changes in plasma ASAT activities. In 1996, two years after the remedial activities, the EROD activity was still slightly induced in caged rainbow trout in Jaernsjoen, but the fish showed no sign of histopathological changes. In addition, the liver EROD activity was induced in some sites downstream of Jaernsjoen. These results indicate a downstream transport of contaminants following the remedial action Special issue. The Jaernsjoen project, Sweden. Remediation of PCB-contaminated sediments. 50 refs, 4 figs, 6 tabs

  8. Comparative Analysis of Soluble Phosphate Amendments for the Remediation of Heavy Metal Contaminants: Effect on Sediment Hydraulic Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Icenhower, Jonathan P.; Owen, Antionette T.

    2006-07-10

    A series of conventional, saturated column experiments were conducted to evaluate the effect of utilizing in situ phosphate amendments, for subsurface, metal remediation, on sediment hydraulic conductivity. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at sites across the arid western United States, which have been used in weapons and fuel production and display significant subsurface contamination. Results indicate the displacement of a single pore volume of either sodium monophosphate or phytic acid amendments causes approximately a 30% decrease in the hydraulic conductivity of the sediment. Long-chain polyphosphate amendments afford no measurable reduction in hydraulic conductivity. These results demonstrate (1) the utility of long-chain polyphosphate amendments for subsurface metal sequestration and (2) the necessity of conducting column experiments to completely evaluate the effects of subsurface remediation.

  9. STUDY ON BIODEGRADATION TECHNOLOGY APPLICATION IN BULK IN THE REMEDIATION OF SOILS CONTAMINATED WITH POLYCYCLIC AROMATIC HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2015-05-01

    Full Text Available Biodecontaminare methods are based on biodegradation in the subsurface presence of microorganisms capable of degrading most of carbonaceous organic pollutants and much of inorganic pollutants. Biodegradation in bulk meet that principle biological decontamination several ways. These methods are intended solely for solids, and is often used for on-site remediation of soils contaminated with organic products. Station bioremediation ensure reducing the harmfulness of residues from oil exploitation activities considered hazardous, using a bioremediation process. Bioremediation process will lead to reduction of oil content and thus reducing the hazard of waste.

  10. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Bell Iris R

    2012-10-01

    Full Text Available Abstract Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b act by modulating biological function of the allostatic stress response network (c evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS, a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting

  11. Effects from different types of construction refuse in the soil on electrodialytic remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Eriksson, Thomas; Hansen, Henrik K.

    2002-01-01

    of different sorts of construction refuse on electrodialytic soil remediation was investigated in laboratory cells. An insulator, a stone, resulted in an uneven Cu removal in the close vicinity of the stone itself. An electric conductive screw disturbed the Cu removal due to the redox reactions occurring...... at the surface of the screw causing pH changes in the soil. Two types of refuse with ionic conducting properties were placed within the test cell, a piece of brick and concrete. The brick did not influence the Cu removal from the soil to a high extent, but it was seen that during the remediation the Cu...... poor. It is very important to be aware of the presence of construction refuse at such sites when planning an electrochemical remediation action. All the refuse types investigated here influenced the Cu removal negatively compared to the reference experiment. $CPY 2002 Elsevier Science B.V. All rights...

  12. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    Science.gov (United States)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  13. Virgin Coconut Oil: Remedial Effects on Renal Dysfunction in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    A. M. Akinnuga

    2014-01-01

    Full Text Available Renal dysfunction is now a prevalent complication of diabetes mellitus. Therefore, this study was carried out to evaluate the remedial effects of virgin coconut oil (VCO on renal dysfunction in diabetic rats. Fifteen albino Wistar rats were divided into 3 groups that comprise normal control group (Group I and diabetic control group (Group II fed with normal rat chows and a diabetic test group (Group III fed with 10% VCO diet. Group II and Group III were made diabetic by single intraperitoneal injection of 150 mg/kg of freshly prepared alloxan monohydrate. After 72 hours of alloxan injection, fasting blood glucose was tested to confirm diabetes mellitus. After 3 weeks, the animals were anaesthetized and sacrificed to collect blood samples for renal function analysis. The creatinine, urea, and blood urea nitrogen values of Group II were significantly different from those of Group I and Group III at P<0.001. Also, there was significant difference (P<0.05 in total protein value between Group II (4.42  ±  0.47 mg/dL and Group I (5.78  ±  0.12 mg/dL as well as Group III (5.86  ±  0.19 mg/dL, but there was no significant difference between that of Group I and Group III (5.78  ±  0.12 mg/dL and 5.86  ±  0.19 mg/dL, resp.. Thus, VCO is effective in preventing renal damage in diabetic patients.

  14. Water as a Reagent for Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  15. 铅污染土壤修复工艺技术研究%Process of lead-contaminated soil remediation technology

    Institute of Scientific and Technical Information of China (English)

    刘舒

    2013-01-01

    In recent years, with the acceleration of the process of urban development , pollution, corporate legacy of contaminated sites attracted more and more attention , business-contaminated soils have a great adverse environmental problems .Since the soil began to be concerned about heavy metal pollution prevention , soil contamination is very difficult to repair , pollutant treatment cost is very expensive , requires fast and efficient technique to accelerate the repair of contaminated land .In this article, select a typical lead-contaminated soil as research, discusses lead-acid batteries contaminated land restoration technology , the value of contaminated sites by soil characteristics and environmental risk assessment to determine the feasibility of restoration and repair , by cleaning soil remediation technologies , to optimize the basic parameters of soil remediation , soil remediation test analysis derived optimal technology .%近年来,随着城市建设进程的加快,污染企业遗留下来的污染场地引起越来越多的关注,企业对土壤的污染产生很大不良的环境问题。自土壤重金属污染防治被关注开始,土壤污染的修复是很困难的,污染物处理费用非常昂贵,需要快速而有效的技术来加速修复土地的污染区。在本文中,选取一个典型铅污染土壤为研究方向,论述铅蓄电池中铅酸污染地块的修复工艺技术,对受污染场地土壤特性和环境风险进行评估,确定修复的可行性和修复的价值,通过土壤修复清洗技术,优化土壤修复基本参数,测试分析得出土壤修复最优工艺技术。

  16. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    Science.gov (United States)

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts.

  17. Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  18. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident.

    Science.gov (United States)

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Yamashiki, Y; Scott, T B

    2016-01-01

    On the 12th of March 2011, The Great Tōhoku Earthquake occurred 70 km off the eastern coast of Japan, generating a large 14 m high tsunami. The ensuing catalogue of events over the succeeding 12 d resulted in the release of considerable quantities of radioactive material into the environment. Important to the large-scale remediation of the affected areas is the accurate and high spatial resolution characterisation of contamination, including the verification of decontaminated areas. To enable this, a low altitude unmanned aerial vehicle equipped with a lightweight gamma-spectrometer and height normalisation system was used to produce sub-meter resolution maps of contamination. This system provided a valuable method to examine both contaminated and remediated areas rapidly, whilst greatly reducing the dose received by the operator, typically in localities formerly inaccessible to ground-based survey methods. The characterisation of three sites within Fukushima Prefecture is presented; one remediated (and a site of much previous attention), one un-remediated and a third having been subjected to an alternative method to reduce emitted radiation dose.

  19. Testing the Nanoparticle-Allostatic Cross Adaptation-Sensitization Model for Homeopathic Remedy Effects

    OpenAIRE

    Bell, Iris R.; Koithan, Mary; Brooks, Audrey J.

    2013-01-01

    Key concepts of the Nanoparticle-Allostatic Cross-Adaptation-Sensitization (NPCAS) Model for the action of homeopathic remedies in living systems include source nanoparticles as low level environmental stressors, heterotypic hormesis, cross-adaptation, allostasis (stress response network), time-dependent sensitization with endogenous amplification and bidirectional change, and self-organizing complex adaptive systems.

  20. Effects of cognitive remediation on cognitive dysfunction in partially or fully remitted patients with bipolar disorder

    DEFF Research Database (Denmark)

    Demant, Kirsa M; Almer, Glennie Marie; Vinberg, Maj

    2013-01-01

    A large proportion of patients with bipolar disorder experience persistent cognitive dysfunction, such as memory, attention and planning difficulties, even during periods of full remission. The aim of this trial is to investigate whether cognitive remediation, a new psychological treatment......, improves cognitive function and, in turn, psychosocial function in patients with bipolar disorder in partial or full remission....

  1. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2017-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies and pr...

  2. Monitoring effects of remediation on natural sediment recovery in Sydney Harbour, Nova Scotia.

    Science.gov (United States)

    Walker, Tony R; Macaskill, Devin; Rushton, Theresa; Thalheimer, Andrew; Weaver, Peter

    2013-10-01

    Chemical contaminants were assessed in Sydney Harbour, Nova Scotia during pre-remediation (baseline) and 3 years of remediation of a former coking and steel facility after nearly a century of operation and historical pollution into the Sydney Tar Ponds (STP). Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, metals, and inorganic parameters measured in sediments and total suspended solids in seawater indicate that the overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported due to natural sediment recovery, despite remediation activities. Measured sediment deposition rates in bottom-moored traps during baseline were low (0.4-0.8 cm year(-1)), but during dredging operations required for construction of new port facilities in the inner Sydney Harbour, sedimentation rates were equivalent to 26-128 cm year(-1). Measurements of sediment chemical contaminants confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, or in some cases, lower than originally predicted despite remediation activities at the STP site. Overall, most measured contaminants in sediments showed little temporal variability (4 years), except for the detection of significant increases in total PAH concentrations during the onset of remediation monitoring compared to baseline. This slight increase represents only a short-term interruption in the overall natural recovery of sediments in Sydney Harbour, which were enhanced due to the positive impacts of large-scale dredging of less contaminated outer harbor sediments which were discharged into a confined disposal area located in the inner harbor.

  3. 精密修复工艺在喜河水电站的应用%Application of Precise Remedy Technology in Xihe Hydropower Plant

    Institute of Scientific and Technical Information of China (English)

    李新

    2015-01-01

    针对喜河水电站机组接力器在运行过程中出现的损坏漏油现象,客观地分析了活塞杆损坏的原因,提出了运用精密修复工艺现场修复的方法,提高了工作效率,降低了成本。%Concerning oil leakage of servomotor during operation in Xihe Hydropower Plant, causes for the rod damage are analyzed objective-ly.The precise remedy technology is proposed for repair at site.This improves work efficiency and reduces cost.

  4. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    Science.gov (United States)

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils.

  5. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    eliminating the source of pollution, but also on blocking the pathways from contaminants to receptors or reducing the exposure to contaminants,. Future challenge integration of sustainability into remediation decision-making. Soil is not a waste! There is a growing interest in the clean up approaches that maintain soil quality after remediation treatments. This issue is of great importance in the U.S.A. where the EPA from 2009 is promoting innovative clean-up strategies (Green Remediation). Green remediation is defined as the practice of considering all environmental effects of remedy and incorporating options to maximize environmental benefit of cleanup actions . These remediation strategies restore contaminated sites to productive use with a great attention to the global environmental quality, including the preservation of soil functionality according to the following principles: use minimally invasive technologies; use passive energy technologies such as bioremediation and phytoremediation as primary remedies or finishing steps where possible and effective; minimize soil and habitat disturbance; minimize bioavailability of contaminants trough adequate contaminant source and plume control If we move from the current definition of remedial targets based on total concentrations, technologies with low impact on the environment can be utilized reducing the wrong choice to disposal soil in landfill destroying quickly a not renewable essential resource.

  6. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-08-01

    research stage, the IS2 is similar in 12 price to other practices and can be expected to improve in cost-effectiveness if brought to market . 13 1.0...M., & Puls, R. W. (1993). Passive sampling of groundwater monitoring wells without purging: multilevel well chemistry and tracer disappearance...sgrp/GWRep10/start.htm. USEPA. (2004). Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends. Washington, DC. Verreydt, G., Bronders

  7. Electric Catalysis Degradation Effect of Microbial Fuel Cell in Marine Sediment:a Novel Green Technology of Ecosystem in-Situ Remediation for Oil Pollutant on Ocean Floor%海泥细菌电池电催化降解效应--一种海底石油污染生态原位修复绿色新技术

    Institute of Scientific and Technical Information of China (English)

    付哲平

    2016-01-01

    海底石油污染可导致长期的生态灾难。一般海洋石油污染防治技术无法用于海底环境。文章描述了一种绿色的海底石油污染生态原位修复新技术,利用沉积层生物燃料电池电催化加速降解效应,即利用海底沉积层(海泥)中的多种细菌以石油污染物为营养物,代谢产生的电子被电池正极和负载消耗掉,反过来促进细菌加速降解污染物。该技术既可在海底加速石油污染物降解速率,又可原位产生电能驱动监测仪器工作,还可用于原位监测生态修复进展,故具有重要的应用前景。%Oil pollutant in marine sediment can cause long-term severe ecological disaster and the nowadays common treatment technologies can’t be suitable to ocean floor environment.A novel green ecological recovery technology on ocean floor was described in the paper by utilizing an elec-tric catalysis degradation effect of microbial fuel cell in marine sediment.Its principle is that vari-ous bacteria in sea mud take advantage of oil pollutant as nutrients and metabolize to produce a large amount of electrons and these electrons are exhausted by applied monitor and positive pole in its cell circuit.The novel technology will have important and versatile prospects for its higher degradation rate,higher power output for electric equipment to work for a long time and in situ monitoring of ecosystem recovery.

  8. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  9. In search of effective remediation for students with developmental dyslexia – a review of contemporary English literature

    Directory of Open Access Journals (Sweden)

    Bogdanowicz Katarzyna M.

    2016-09-01

    Full Text Available Although developmental dyslexia is frequently diagnosed in Poland, little knowledge of effective treatment for this disorder is available in Polish society. Remedial teachers for many years have applied traditional methods aimed at correction and compensation for affected cognitive functions and academic skills. Otherwise, although western therapies are regularly advertised in the media, their effectiveness has rarely been subject to scientific investigation. Since the assumptions underlying some approaches are not consistent with current understanding of cognitive function, they may attract negative expert appraisal.

  10. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    OpenAIRE

    Bell Iris R; Koithan Mary

    2012-01-01

    Abstract Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The ...

  11. Remediation of problem-solving skills in schizophrenia: evidence of a persistent effect.

    Science.gov (United States)

    Medalia, Alice; Revheim, Nadine; Casey, Matthew

    2002-10-01

    Neuropsychological deficits in problem solving are commonly found in patients with schizophrenia. We have previously presented the results of a study examining the feasibility of utilizing problem-solving teaching techniques developed within educational psychology, for remediating the problem-solving deficits of inpatients with schizophrenia spectrum disorders. These techniques emphasize the importance of intrinsic motivation on therapeutic outcome and promote this through contextualization, personalization and control of learning activities. We present here the results of the follow-up assessment, which found that the gains made by the problem-solving group persisted for 4 weeks after cessation of problem-solving remediation ended. These results provide more evidence of the therapeutic benefit of problem-solving training techniques that promote intrinsic motivation and generic problem-solving strategies.

  12. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    Science.gov (United States)

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  13. Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2016-01-01

    Multivariate methodology was employed for finding optimum remediation conditions for electrodialytic remediation of harbour sediment from an Arctic location in Norway. The parts of the experimental domain in which both sediment- and technology-specific remediation objectives were met were...

  14. SF Box--a tool for evaluating the effects on soil functions in remediation projects.

    Science.gov (United States)

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Norberg, Tommy

    2014-10-01

    Although remediation is usually aimed at reducing the risks posed by contaminants to human health and the environment, it is also desirable that the remediated soil within future green spaces is capable of providing relevant ecological functions, e.g., basis for primary production. Yet while addressing a contamination problem by reducing contaminant concentration and/or amounts in the soil, the remedial action itself can lead to soil structure disturbances, decline in organic matter and nutrient deficiencies, and in turn affect a soil's capacity to carry out its ecological soil functions. This article presents the Soil Function Box (SF Box) tool that is aimed to facilitate integration of information from suggested soil quality indicators (SQIs) into a management process in remediation using a scoring method. The scored SQIs are integrated into a soil quality index corresponding to 1 of 5 classes. SF Box is applied to 2 cases from Sweden (Kvillebäcken and Hexion), explicitly taking into consideration uncertainties in the results by means of Monte Carlo simulations. At both sites the generated soil quality indices corresponded to a medium soil performance (soil class 3) with a high certainty. The main soil constraints at both Kvillebäcken and Hexion were associated with biological activity in the soil, as soil organisms were unable to supply plant-available N. At the Kvillebäcken site the top layer had a content of coarse fragment (ø > 2 mm) higher than 35%, indicating plant rooting limitations. At the Hexion site, the soil had limited amount of organic matter, thus poor aggregate stability and nutrient cycling potential. In contrast, the soil at Kvillebäcken was rich in organic matter. The soils at both sites were capable of storing a sufficient amount of water for soil organisms between precipitation events.

  15. The Effect of Cognitive Remediation Therapy on Social Skills in Institutionalized Elderly Patients with Schizophrenia.

    Science.gov (United States)

    Mohammadi, Fatemeh; Abolfathi Momtaz, Yadollah; Ameneh Motallebi, Seyedeh; Boosepasi, Shahnaz

    2017-05-22

    There is limited scientific investigations on cognitive remediation in elderly patients with schizophrenia. The present study was aimed to examine the efficacy of cognitive remediation therapy on social skills in institutionalized elderly patients with schizophrenia. The study employed a randomized clinical trial. A total of 60 institutionalized elderly patients with schizophrenia from Razi Psychiatric Hospital, Tehran were selected and randomly allocated into two equal groups (control and intervention). The intervention group attended to cognitive remediation therapy for 8 weeks. The Evaluation of Living Skills Scale for psychiatric patients was used for data collection. The Chi Square, independent and paired t-tests using SPSS, version 22, were employed to analyze the data. The mean age of 60 elderly patients participated in the study was 65.25 ± 4.19 years. No significant differences were found between two groups at baseline. However, independents t-tests showed significant differences between the intervention and the control group in social skills after implementation of intervention. Additionally, the results of paired t-tests revealed significant improvements in intervention group on communication skills (t=5.50, p<0.001), behavioral problems with others (t=5.44, p<0.001), and self-care (t=4.70, p<0.001). No significant differences were observed from pretest to post test in control group. The results of the present study may support the efficacy of cognitive remediation therapy on social skills of elderly patients with schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Civil Rights for Trafficked Persons: Recommendations for a More Effective Federal Civil Remedy

    OpenAIRE

    Shannon Lack

    2008-01-01

    In response to increasing public awareness of human trafficking in the United States, the Victims of Trafficking and Violence Protection Act (TVPA) was signed into law by President Bill Clinton in October of 2000. The TVPA consolidated existing legislation to create a comprehensive civil remedy; this ensures that trafficking victims are no longer forced to seek redress under multiple criminal and civil statutes that target only components of the human trafficking offense. However, despite its...

  17. Waste minimization in the remediation of contaminated sites: using the oil belt skimmer technology for the removal of heavy hydrocarbons from groundwater.

    Science.gov (United States)

    De Gisi, Sabino; Notarnicola, Michele

    2016-12-01

    Modern society increasingly requires achieving the goal of remediation and at the same time minimizing the waste to be disposed. Although the pump and treat is a consolidated technology option for the decontamination of groundwater polluted by heavy hydrocarbons, it generates an excessive amount of waste (typically, dangerous). With the intent of reducing such waste, our study is concerned with the verification of the oil belt skimmer technology for the decontamination of a heavy hydrocarbon-polluted groundwater. For this purpose, several tests at laboratory scale and full-scale experimentations with duration greater than 1 year were carried out. The obtained results showed the feasibility of the investigated technology for groundwater decontamination in the cases where the water mobility (of the aquifer) was low and in the presence of oil thicknesses greater than 2 cm. The heavy hydrocarbon recovery capacities were in the range of 33.3-85.5 l/h with the best performances in the cases of supernatant thickness ≥2 cm and pumping of the water table in such a way that the oil acquires a higher mobility in the aquifer. Moreover, the recovery capacity was found to be dependent on the rainfall pattern as well as on the groundwater fluctuation. Compared to the pump-and-treat system, the investigated technology allowed reducing by 98.7 % the amount of waste to be disposed suggesting the use in presence of high thickness of the oils. Finally, in a view of system optimization, treatment trains based on the combination of the oil belt skimmer technology and the pump-and-treat system should be carefully assessed.

  18. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    Science.gov (United States)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  19. Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost

    Directory of Open Access Journals (Sweden)

    A. Galdames

    2017-06-01

    Full Text Available This study aimed to develop new techniques for the remediation of contaminated soils based on the application of zero-valent iron nanoparticles (nZVI and bioremediation with compost from organic wastes and a mixed technique of both. An assessment of the effectiveness of remediation in two soils contaminated with hydrocarbons and heavy metals was carried out, with the aim of looking for positive synergies by combining the two techniques, and demonstrating their viability on an industrial scale. The application of nZVI for in situ immobilization of As and Cr in two different soils (Soil I from a contaminated industrial site and Soil II, contaminated artificially showed a decrease in the concentration of As in Soil I and Soil II, as well as a decrease in Cr concentration for Soil I and Soil II in the leachate of both soils. The addition of compost and nanoparticles under uncontrolled environmental conditions in biopiles was able to produce a decrease in the concentration of aliphatic hydrocarbons of up to 60% in the two soils. Especially, degradation and transformation of longer chains occurred. A significant reduction of ecotoxicity was observed throughout the process in the biopile of soil II, not reaching the LC50 even with 100% of the sample after the treatment, in both earthworm and seeds growth tests.

  20. IDENTIFICATION OF EFFECTIVE DILUTIONS OF DENTAL HERBAL REMEDY WITH ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Shulga L.I.

    2015-05-01

    Full Text Available Introduction. There are different ways to solve the problem of resistance of microorganisms. One of them includes an increase of the drug dose, thereby arising adverse reaction, and the other includes a development of the new antimicrobial agents, where no less focus is given to drugs on basis of medicinal plant raw materials owning to the antimicrobial activity confirmed by scientific researches. Herbal remedies are included into treatment codes against infectious and inflammatory dental diseases, however while there is a persistent growth of mouth inflammatory diseases we have signals for expediency of new ones to be produced. Our prior studies deal with developing the tincture conventionally called Casdent, substantiation of using such three types of pharmacopeia medicinal plant raw materials as: licorice roots, sedge cane rootstocks, burnet rootstocks with its roots. The previously determined antimicrobial and antifungal activity of Casdent tincture is insufficient for recommending the use thereof in the therapeutic dentistry, as the external use provides for an additional dilution thereof with saliva, crevicular fluids, exudates. The aim is to identify the most efficient dilutions of Casdent tincture to substantiate its reasonable application in dentistry. Materials and methods. Target of examination is Casdent tincture as developed by employees of the Department of General Pharmacy and Drug Safety of the Institute of Pharmacy Professionals Qualification Improvement of the National University of Pharmacy. Control is the herb preparation: Stomatophyt («Phytopharm Klenka S.A.», Poland. The work is performed at the State Establishment «Mechnikov Institute of Microbiology and Immunology of the National Academy of Medical Sciences of Ukraine» through use of museum and clinical strains of microorganisms, which daily cultures have been grown on the respective digest media according to the requirements of the State Pharmacopoeia of Ukraine. The

  1. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg-1 glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg-1·d-1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  2. A Research Agenda on Assessing and Remediating Home Dampness and Mold to Reduce Dampness-Related Health Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Cosmology Center

    2015-05-28

    This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.

  3. A Research Agenda on Assessing and Remediating Home Dampness and Mold to Reduce Dampness-Related Health Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.

  4. Effects of Short-Term Cognitive Remediation on Cognitive Dysfunction in Partially or Fully Remitted Individuals with Bipolar Disorder

    DEFF Research Database (Denmark)

    Demant, Kirsa M; Vinberg, Maj; Kessing, Lars V

    2015-01-01

    INTRODUCTION: Cognitive dysfunction is common in bipolar disorder (BD) but is not sufficiently addressed by current treatments. Cognitive remediation (CR) may improve cognitive function in schizophrenia but no randomised controlled trial has investigated this intervention in BD. The present study...... aimed to investigate the effects of CR on persistent cognitive dysfunction in BD. METHOD: Patients with BD in partial remission with cognitive complaints were randomised to 12 weeks group-based CR (n=23) or standard treatment (ST) (n=23). Outcomes were improved verbal memory (primary), sustained...

  5. 多氯联苯污染土壤修复技术研究进展%Remediation Technologies of PCBs-Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    彭伟; 谯华; 方振东; 郝全龙; 张楷; 余海波

    2014-01-01

    多氯联苯是环境中广泛存在的一种持久性有机化合物,具有三致作用。多氯联苯具有疏水性和亲脂性,土壤是其在环境中的最终归宿,因此,多氯联苯污染土壤的修复越来越受到重视。简介了多氯联苯的基本性质、土壤环境中多氯联苯的污染现状,综述了国内外多氯联苯污染土壤修复技术的研究进展,并对其发展前景进行了展望。%Polychlorinated biphenyls (PCBs)are ubiquitous and persistent organic pollutants in environ-ment,which are toxic,carcinogenic and mutagenic.For PCBs are hydrophobic and lipophilic,soil is its final des-tination in environment.Hence,PCBs-contaminated soil is increasingly attaining more and more attention.In this paper,basic properties of PCBs and the situation of PCBs-contaminated soil were described.Remediation technologies of PCBs-contaminated soil were reviewed both at home and abroad.The prospect of technology de-velopment was also presented.

  6. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil.

    Science.gov (United States)

    Barba, Silvia; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2017-06-01

    This work studies the feasibility of the periodic polarity reversal strategy (PRS) in a combined electrokinetic-biological process for the remediation of clayey soil polluted with a herbicide. Five two-weeks duration electrobioremediation batch experiments were performed in a bench scale set-up using spiked clay soil polluted with oxyfluorfen (20 mg kg(-1)) under potentiostatic conditions applying an electric field between the electrodes of 1.0 V cm(-1) (20.0 V) and using PRS with five frequencies (f) ranging from 0 to 6 d(-1). Additionally, two complementary reference tests were done: single bioremediation and single electrokinetic. The microbial consortium used was obtained from an oil refinery wastewater treatment plant and acclimated to oxyfluorfen degradation. Main soil conditions (temperature, pH, moisture and conductivity) were correctly controlled using PRS. On the contrary, the electroosmotic flow clearly decreased as f increased. The uniform soil microbial distribution at the end of the experiments indicated that the microbial activity remained in every parts of the soil after two weeks when applying PRS. Despite the adapted microbial culture was capable of degrade 100% of oxyfluorfen in water, the remediation efficiency in soil in a reference test, without the application of electric current, was negligible. However, under the low voltage gradients and polarity reversal, removal efficiencies between 5% and 15% were obtained, and it suggested that oxyfluorfen had difficulties to interact with the microbial culture or nutrients and that PRS promoted transport of species, which caused a positive influence on remediation. An optimal f value was observed between 2 and 3 d(-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  8. Briefing paper -- Remedial Action Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Buelt, J.L.

    1990-04-01

    Congress has mandated a more comprehensive management of hazardous wastes with the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund'') and the Superfund Amendment and Reauthorization Act (SARA). This mandate includes restoration of disposal sites contaminated through past disposal practices. This mandate applies to facilities operated for and by the Department of Energy (DOE), just as it does to industrial and other institutions. To help implement the CERCLA/SARA remedial investigation and feasibility study (RI/FS) process in a consistent, timely, and cost-effective manner, a methodology needs to be developed that will allow definition, sorting, and screening of remediation technologies for each operable unit (waste site). This need is stated specifically in Section 2.2.2.1 of the October 1989 Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT E) Plan of the DOE. This Briefing Paper is prepared to respond to this need. 1 fig.

  9. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Liu, Weitao; Liang, Xuefeng; Wang, Lin

    2016-01-15

    A pot trial was conducted to assess the effectiveness of sepiolite, bentonite, and phosphate on the immobilization remediation of cadmium (Cd)-contaminated soils using a set of variables, namely, physiological traits, sequential extraction procedure, plant growth and Cd concentration, and soil enzymatic activities and microbial population. Results showed that superoxide dismutase and peroxidase activities in the leaves of Oryza sativa L. and catalase activities in soils were stimulated after applying the amendments. However, soluble protein contents in leaves and urease and invertase activities in soils were reduced from 7.1% to 31.7%, 1.0%-23.3%, and 21.1%-62.5%, respectively, compared with the control. Results of the sequence extraction procedures revealed that the exchangeable fraction of Cd in soils was mostly converted into carbonated-associated forms. The water soluble plus exchangeable fraction (SE) of Cd in soil decreased when treated with single and compound materials of sepiolite, bentonite and phosphate, which resulted in 13.2%-69.2% reduction compared with that of CK (control test). The amendments led to decreased Cd concentrations in roots, stems, leaves, brown rice, and rice hull by 16.2%-54.5%, 16.6%-42.8%, 19.6%-59.6%, 5.0%-68.2%, and 6.2%-20.4%, respectively. Higher bacterial and actinomycete amount indicated that remediation measures improved soil environmental quality. Composite amendments could be more efficiently used for the stabilization remediation of Cd contaminated soils with low Cd uptake and translocation in the plants and available contents of Cd in soil.

  10. Effects from different types of construction refuse in the soil on electrodialytic remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Eriksson, Thomas; Hansen, Henrik K.

    2002-01-01

    at the surface of the screw causing pH changes in the soil. Two types of refuse with ionic conducting properties were placed within the test cell, a piece of brick and concrete. The brick did not influence the Cu removal from the soil to a high extent, but it was seen that during the remediation the Cu...... of different sorts of construction refuse on electrodialytic soil remediation was investigated in laboratory cells. An insulator, a stone, resulted in an uneven Cu removal in the close vicinity of the stone itself. An electric conductive screw disturbed the Cu removal due to the redox reactions occurring...... concentration in the brick itself increased. In the case of concrete the Cu mobilized from the soil was simply found to adsorb very strongly to the concrete and thus the Cu could not be removed from the soil and the concrete as a whole. Furthermore, the removal of Cu in the soil next to the concrete was quite...

  11. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  12. Development of an integrated in-situ remediation technology. Topical report for task No. 7 entitled: Development of degradation processes, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Brackin, M.J.; Heitkamp, M.A.; Ho, Sa V. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into {open_quotes}treatment zones{close_quotes} where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology.

  13. The effects of crude oil and remediation burning on three clones of smooth cordgrass (Spartina alterniflora Loisel.)

    Science.gov (United States)

    Smith, D.L.; Proffitt, C.E.

    1999-01-01

    Burning has been employed as an oil spill remediation technique in coastal marshes, even though the combined and interactive effects of soil and burning on vegetation are poorly understood. Variation among clones of perennial marsh grasses in response to these perturbations is not known. We performed a greenhouse experiment designed to assess the effects of Venezuelan crude oil alone and of oil followed by burning on three clonal genets of Spartina alterniflora. The fully-crossed 6-mo experiment involved five dosages of oil (0 l m-2, 4 l m-2, 8 l m-2, 16 l m-2, and 24 l m-2) and two burn treatments (burned or unburned) applied to ramets from three clones. All oil-only dosages reduced survival, but burning after oiling (oil + burn treatments) increased survival relative to oil-only groups in all except the highest two oil dosages. Higher oil-only treatments also reduced ramet densities and inhibited density increases over 6 mo. Burning after treatment with the 16 l m-2 oil concentration allowed increased production of new ramets, but burning exacerbated the negative impacts on ramet density at the oil concentration of 24 l m-2. At some intermediate oil dosages, burning remediated the negative effects of oil on aboveground biomass production and growth in height. There was a significant effect of oil-only treatments on numbers of flowering ramets produced, in which two clones responded with decreased flower production and one exhibited increased flowering. There was no main effect of oil + burn on flowering. There were significant among-clones differences in all response variables to one or both treatments. Our experiment demonstrates that burning of oiled S. alterniflora marshes may have little measurable effect at low levels of Venezuelan crude oil, can remediate the effects of oil at intermediate oil concentrations, but can increase the negative impacts at high concentrations of oil. These results indicate that oil spills have the potential to adversely affect

  14. Overview of innovative remediation of emerging contaminants

    Science.gov (United States)

    Keller, A. A.; Adeleye, A. S.; Huang, Y.; Garner, K.

    2015-12-01

    The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of reviews exist for these nanotechnology-based applications; but to better illustrate its importance and guide its development, a direct comparison between traditional treatment technologies and emerging approaches using nanotechnology is needed. In this review, the performances of traditional technologies and nanotechnology for water treatment and environmental remediation were compared with the goal of providing an up-to-date reference on the state of treatment techniques for researchers, industry, and policy makers. Pollutants were categorized into broad classes, and the most cost-effective techniques (traditional and nanotechnology-based) in each category reported in the literature were compared. Where information was available, cost and environmental implications of both technologies were also compared. Traditional treatment technologies were found to currently offer the most cost-effective choices for removal of several common pollutants from drinking water and polluted sites. Nano-based techniques may however become important in complicated remediation conditions and meeting increasingly stringent water quality standards, especially in removal of emerging pollutants and low levels of contaminants. We also discuss challenges facing environmental application of nanotechnology were also discussed and potential solutions.

  15. [Advance in enzymological remediation of polluted soils].

    Science.gov (United States)

    Zhang, Lili; Chen, Lijun; Liu, Guifen; Wu, Zhijie

    2003-12-01

    Soils enzymes play an important role in the remediation of polluted soils. The enzymological remediation of polluted soils has the characteristics of high specialization, wide applicability, and little sensitivity to the ambient factors. This paper reviewed the advantages of enzymological remediation of polluted soils, the methods and technologies of enzyme immobilization, and the removal mechanisms of pollutants by oxidoreductases. The sources and characteristics of the enzymes used to remediation were also introduced, and some suggestions about the research in the future were put forward.

  16. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  17. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing

    2017-01-01

    Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs.

  18. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    Science.gov (United States)

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  19. Development of an integrated, in-situ remediation technology: Task 1 -- Evaluation of treatment zone formation options. Topical report, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, S.H.; Landis, R.C.; Griffith, R.J.; Schultz, D.S. [Monsanto Co., St. Louis, MO (United States); Quinton, G.E. [E.I. duPont de Nemours and Co., Inc., Wilmington, DE (United States)

    1997-05-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report presents the results of evaluations by E.I. duPont de Nemours and Co., Inc. of treatment zone and electrode emplacement alternatives for use in the integrated treatment process. Specifically, the scope of this study was limited to vertical configuration emplacements. Several promising alternatives were identified ranging from approaches involving standard excavation techniques to relatively specialized geotechnical construction methods which could be modified for the treatment zone emplacement purpose. Information developed in this report is designed to help the user select the most promising emplacement method(s) for a given site on the basis of (1) depth of emplacement, and (2) restrictions on handling excavated soils. Advantages, disadvantages, and estimated costs are identified for each alternative, and possible bases for improvement and cost reduction through further development are described.

  20. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    Science.gov (United States)

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  1. Research Progress of Biomass Remediation Technology for Oil-contaminated Soil%生物质修复石油污染土壤的研究进展

    Institute of Scientific and Technical Information of China (English)

    史作然; 单广波; 闫松; 刘宇

    2016-01-01

    As the problem of soil contaminated by crude oil becomes increasingly prominent, the research on remediation of petroleum contaminated soil is also more and more. In this paper, the effect of the biomass, such as poultry excrement, garden waste and wheat straw, on the remediation of petroleum contaminated soil was summarized. The use of biomass mainly includes three types: direct addition to the soil, bio compost with oil-contaminated soil and use of biochar obtained by high temperature pyrolysis of biomass. These methods can improve and repair the oil contaminated soil in a certain degree. However, these methods are only limited to laboratory research, and further research is needed to be used in practice.%随着石油污染土壤问题的日益突出,对石油污染土壤修复的研究也越来越多。主要综述了畜禽粪便、园林废弃物、小麦秸秆等生物质在修复石油污染土壤方面的作用。对生物质的利用主要包括三种:直接施加到土壤上、和被石油污染的土壤进行生物堆肥以及经高温裂解得到生物炭来修复石油污染土壤。这几种方法都能够在一定程度上对石油污染土壤进行改善和修复。不过,这些方法都还只局限于实验室研究,还需要进一步研究将其应用于实际中。

  2. Effects of initial solute distribution on contaminant availability, desorption modeling, and subsurface remediation.

    Science.gov (United States)

    Haws, Nathan W; Ball, William P; Bouwer, Edward J

    2007-01-01

    Low permeability regions in which solute movement is governed by diffusion reduce the availability of pollutants for remediation and can function as long-term sources of groundwater contamination. The inherent difficulty in understanding mass transfer from these regions of sequestered contamination is further complicated by unknown solute distributions within the low-permeability regions (sequestering regions). When models are calibrated to reproduce temporal histories of solute release from a sequestering region (desorption), the fitted parameter values are used to infer the physical or chemical characteristics of the media; however, the calibrated parameters also reflect the case-specific initial conditions (i.e., the solute distribution within the sequestering region domain at the onset of desorption). This phenomenon is demonstrated using model simulations of solute diffusion from hypothetical solids with characteristics similar to those of the well studied Borden, Ontario aquifer system. Solute release from the solids is simulated using a batch diffusion model under different initial solute distributions within the solids. The results of these model simulations are used to calibrate parameters of a multiple first-order rate desorption model (MRM) to illustrate how the fitted MRM parameters increase or decrease depending on the initial "aging" of the solids. Further numerical simulations are conducted for a one-dimensional flow system under steady-state and variable-rate hydraulic flushing. These simulations show that although aging reduces desorptive mass flux during early stages of flushing, aged sites have greater desorptive mass flux (greater solute availability) than "freshly" contaminated media during the later stages of remediation. Overall, the results demonstrate why the physicochemical meaning of observed desorption rates cannot be accurately deduced without first understanding the initial solute distribution within the media.

  3. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...

  4. The Impact of Traditional Septic Tank Soakaway Systems and the Effects of Remediation on Water Quality in Ireland

    Science.gov (United States)

    Kilroy, Kate; Keggan, Mary; Barrett, Maria; Dubber, Donata; Gill, Laurence W.; O'Flaherty, Vincent

    2014-05-01

    In Ireland the domestic wastewater of over 1/3 of the population is treated by on-site systems. These systems are based on a traditional design for disposal of domestic wastewater and rely on the surrounding subsoil for further treatment. Inefficient treatment is often associated with these systems and can cause pollution of local aquifers and waterways. The effluent nutrient load can contribute to eutrophication, depletion of dissolved oxygen and excessive algae growth in surface water bodies. Human enteric pathogens associated with faecal pollution of water sources may promote the outbreak of disease through contamination of drinking water supplies. The subsoil attenuation plays an important role in the protection of groundwater from effluent pollution. Therefore, as over 25% of the countries domestic water supplies are provided by groundwater, the protection of groundwater resources is crucial. This project involves both the assessment of traditional septic tank soakaway systems and the effects of remediation in low permeability subsoil settings on water quality in Ireland. The study aims to confirm by microbial source tracking (MST), the source (human and/or animal) of faecal microorganisms detected in groundwater, surface water and effluent samples, and to monitor the transport of pathogens specific to on-site wastewater outflows. In combination with MST, the evaluation of nitrification and denitrification in surrounding soil and effluent samples aims to assess nitrogen removal at specific intervals; pre-remediation and post-remediation. Two experimental sites have been routinely sampled for effluent, soil and groundwater samples as well as soil moisture samples using suction lysimeters located at various depths. A robust and reproducible DNA extraction method was developed, applicable to both sites. MST markers based on host-specific Bacteriodales bacteria for universal, human and cow-derived faecal matter are being employed to determine quantitative target

  5. Documenting cost and performance for environmental remediation projects: Department of Energy Office of Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-08

    The purpose of this DOE guide is to facilitate the use of consistent procedures to document cost and performance information for projects involving the remediation of media contaminated with hazardous and radioactive wastes. It provides remedial action project managers with a standardized set of data to document completed remediation projects. Standardized reporting of data will broaden the utility of the information, increase confidence in the effectiveness of future remedial technologies, and enhance the organization, storage and retrieval of relevant information for future cleanup projects. The foundation for this guide was laid down by the Federal Remediation Technologies Roundtable (FRTR) in their publication, Guide to Documenting Cost and Performance for Remediation Projects, EPA-542-B- 95-002. Member agencies of the FRTR include the US EPA, the US DOD, the US DOE, and the US DOI. All the member agencies are involved in site remediation projects and anticipate following the guidance provided in the above reference. Therefore, there is much to be gained for DOE to be consistent with the other member agencies as it will be easier to compare projects across different agencies and also to learn from the experiences of a wider spectrum of prior completed projects.

  6. Engineering Applications of Microbial Remediation Technology in Organic Contaminated Sites%微生物技术修复有机污染场地的工程化应用

    Institute of Scientific and Technical Information of China (English)

    李朝廷; 李建洲; 雷继雨

    2012-01-01

    综述了国内外微生物技术在有机污染场地修复中的应用,对几种有机污染场地修复技术进行了重点介绍,包括生物通风法、地下水曝气法、生物堆法、生物反应器法以及土壤耕作法的工程化应用,并对微生物修复技术今后的发展方向进行了展望.%The latest microbial remediation technology of organic contaminated site is reviewed. Several kinds of engineering applications are discussed in detail,which mainly included bioventing,air sparging,biopile,bioreactor and land farming. As well,the review discusses the future development of microbial site remediation technology.

  7. Critical review of decision support tools for sustainability assessment of site remediation options.

    Science.gov (United States)

    Huysegoms, Lies; Cappuyns, Valérie

    2017-07-01

    In Europe alone, there are more than 2,5 million potentially contaminated sites of which 14% are expected to require remediation. Contaminated soil and groundwater can cause damage to human health as well as to valuable ecosystems. Globally more attention has been paid to this problem of soil contamination in the past decades. For example, more than 58 000 sites have been remediated in Europe between 2006 and 2011. Together with this increase in remediation projects there has been a surge in the development of new remediation technologies and decision support tools to be able to match every site and its specific characteristics to the best possible remediation alternative. In the past years the development of decision support tools (DST) has evolved in a more sustainable direction. Several DSTs added the claim not only to denote effective or technologically and economically feasible remediation alternatives but also to point out the more or most sustainable remediation alternatives. These trends in the evaluation of site remediation options left users with a confusing clew of possibly applicable tools to assist them in decision making for contaminated site remediation. This review provides a structured overview on the extent decision support tools for contaminated site remediation, that claim to assist in choosing the most sustainable remediation alternative, actually include the different elements of sustainability proposed in our assessment framework. The review contains an in-depth analysis of thirteen tools specifically developed to assess the sustainability of site remediation alternatives. This analysis is based on six criteria derived from the definition of sustainable development of the Brundtland report. The six criteria were concretized by using the three pillars of sustainability, applied to site remediation according to the SuRF-UK framework, two criteria derived from Life Cycle Assessment and Cost-Benefit Analysis, and an 'User friendly' criterion

  8. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  9. System/Design Trade Study Report for the Navigation of the Airborne, Ground Vehicular and Man-Portable Platforms in Support of the Buried Ordnance Detection, Identification, and Remediation Technology.

    Science.gov (United States)

    1995-03-01

    AND ADDRESS(ES) Naval Explosive Ordnance Disposal Technology Division Project Manager: Gerard Snyder 301/743-6855 2008 Stump Neck Road Indian Head ...NUMBER 10. SPONSORING / MONITORING AGENCY REPORT NUMBER SFIM-AEC-ET-CR-95043 Supporting Contractor: PRC, Inc. 801 North Strauss Avenue Indian Head ...available on the market today for detection, mapping and remediation of hazardous materials have not been developed to the level that could be

  10. Evaluation of the effectiveness of different methods for the remediation of contaminated groundwater by determining the petroleum hydrocarbon content

    Energy Technology Data Exchange (ETDEWEB)

    Voyevoda, Maryna; Geyer, Wolfgang; Mothes, Sibylle [Department of Analytical Chemistry, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Mosig, Peter [Centre for Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Seeger, Eva M. [Department of Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany)

    2012-08-15

    The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A-C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert-butyl ether, on the other, was investigated. The study was carried out by using a modified GC-FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 {+-} 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time-consuming determination of the BTEX content was no longer necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Nanotechnology for Site Remediation: Fact Sheet

    Science.gov (United States)

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  12. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-10-01

    In the UK, approximately 3600 householders are believed to have taken action to reduce high radon concentrations in their homes. In 1993 a number of those householders who had taken successful remedial actions were invited to participate in a study of durability of radon remedial actions. This involved the radon concentration being remeasured annually. Results for 26 such homes where a complete set of data are available and a further 32 with incomplete data are discussed here. All remedial actions were shown to remain durable during a period of 5 years. The largest variation in effectiveness was found in houses with natural ventilation of the underfloor void. The failure rate for all remedial measures was found to be 4.0% per annum, but in most cases the problems were noticed by the householder and corrected. The frequency of failures which were not noticed until a remeasurement was carried out was 0.4% per annum. (Author).

  13. Durability of radon remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. [National Radiological Protection Board, Chilton (United Kingdom)

    1997-07-01

    It is estimated that at least 3600 householders in the UK have taken remedial action to reduce radon concentrations found to be above the government Action Level. A study has been carried out on the durability of these remedial actions. It involved annual reassessment of the radon levels in a number of homes. The results for 26 of these homes where data over five years are available show that in general the remedial actions remained effective. The remedy with the largest variation in efficacy was natural ventilation of the underfloor void. The failure rate was found to be 4.0% per annum for all measures, but in the majority of cases the failure was discovered by the householder and rectified. The rate of failures not noticed by the householders was 0.4% per annum. (UK).

  14. Prioritizing Information Technology Investments: Assessing the Correlations among Technological Readiness, Information Technology Flexibility, and Information Technology Effectiveness

    Science.gov (United States)

    Walter, John T.

    2010-01-01

    Management's dilemma, when allocating financial resources towards the improvement of technological readiness and IT flexibility within their organizations, is to control financial risk and maximize IT effectiveness. Technological readiness is people's propensity to embrace and use technology. Its drivers are optimism, innovativeness, discomfort,…

  15. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  16. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    OpenAIRE

    Yuechun Zhao; Xiaoyun Yi

    2010-01-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between ...

  17. Work Plan for the Feasibility Study for Remedial Action at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, C.; Haffenden, R.; Goyette, M.; Martino, L.; Patton, T.; Yuen, C.

    1995-05-01

    The purpose of the feasibility study is to gather sufficient information to develop and evaluate alternative remedial actions to address contamination at J-Field in compliance with the NCP, CERCLA, and SARA. This FS Work Plan summarizes existing environmental data for each AOC and outlines the tasks to be performed to evaluate and select remedial technologies. The tasks to be performed will include (1) developing remedial action objectives and identifying response actions to meet these objectives; (2) identifying and screening remedial action technologies on the basis of effectiveness, implementability, and cost; (3) assembling technologies into comprehensive alternatives for J-Field; (4) evaluating, in detail, each alternative against the nine EPA evaluation criteria and comparing the alternatives to identify their respective strengths and weaknesses; and (5) selecting the preferred alternative for each operable unit.

  18. Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Conclusion: Comparison of the BV, SVE and AIBV technologies indicated that all of those technologies are efficient for remediation of unsaturated zone, but after specific remediation time frames, only AIBV able to support guide line values and protect ground waters.

  19. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  20. Remedies for a high incidence of broken eggs in furnished cages: effectiveness of increasing nest attractiveness and lowering perch height.

    Science.gov (United States)

    Tuyttens, F A M; Struelens, E; Ampe, B

    2013-01-01

    Two remedial treatments to reduce the high incidence of broken eggs in the furnished cages of our experimental layer farm were investigated: lining the nest floor with artificial turf (to increase nest acceptance) and lowering perch height (to reduce the chance of egg breakage of outside-nest eggs). A 2 × 2 factorial design was used with low (7 cm) or high (24 cm) perches, and with nest floors lined with artificial turf or plastic mesh. Eight cages, each housing 8 hens initially (aged 40 to 56 wk), were used per treatment. Egg location and percentage of broken eggs were recorded. Hen position (cage floor, nest, or perch) was recorded by direct scan-sampling observations. In addition, 8 cages (4 high + 4 low) each containing 8 hens (aged 54 to 56 wk) were videorecorded to determine perch use and behavior during the light period. Data were mainly analyzed using logistic regression and mixed models with cage as the experimental unit. Nest floor material did not influence the percentage of eggs broken or laid outside the nest. The proportion of outside-nest eggs (2.6 vs. 10.6%, P = 0.004), and consequently also of total eggs (2 vs. 4.6%, P = 0.016) broken, was lower for low than high cages. Perch use increased during the observation period, more so for the high cages during the light period and the low cages during the dark period. Perch bout duration (P cages. In this study, replacing plastic mesh nest floor lining with artificial turf was not an effective remedy for the already-high rate of broken eggs, but the prevalence of broken outside-nest eggs was lower in cages with low versus high perches. However, perching behavior during the light period was more disturbed in cages with low perches.

  1. Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, B.M.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky.

  2. Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness

    Science.gov (United States)

    Plezbert, Julie A.; Burke, Jeanmarie R.

    2005-01-01

    Abstract Objective To evaluate the clinical efficacy of Arnica at a high potency (200c), on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Methods Twenty subjects completed a maximal eccentric exercise protocol with the non-dominate elbow flexors to induce delayed onset muscle soreness. Either Arnica or placebo tablets were administered in a random, double- blinded fashion immediately after exercise and at 24 hours and 72 hours after exercise. Before exercise, immediately post-exercise, and at 24, 48, 72, and 96 hours post-exercise, assessments of delayed onset muscle soreness and muscle function included: 1) muscle soreness and functional impairment; 2) maximum voluntary contraction torque; 3) muscle swelling; and 4) range of motion tests to document spontaneous muscle shortening and muscle shortening ability. Blood samples drawn before exercise and at 24, 48, and 96 hours after exercise were used to measure muscle enzymes as indirect indices of muscle damage. Results Regardless of the intervention, the extent of delayed onset muscle soreness and elevations in muscle enzymes were similar on the days following the eccentric exercise protocol. The post-exercise time profiles of decreases in maximum voluntary contraction torque and muscle shortening ability and increases in muscle swelling and spontaneous muscle shortening were similar for each treatment intervention. Conclusions The results of this study did not substantiate the clinical efficacy of Arnica at a high potency on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Despite the findings of this study, future investigations on the clinical efficacy of homeopathic interventions should consider incorporating research strategies that emphasize differential therapeutics for each patient rather than treating a specific disease or symptom complex, such as DOMS, with a single homeopathic remedy. PMID:19674657

  3. Inhibitory effect of herbal remedy PERVIVO and anti-inflammatory drug sulindac on L-1 sarcoma tumor growth and tumor angiogenesis in Balb/c mice.

    Science.gov (United States)

    Skopiński, P; Bałan, B J; Kocik, J; Zdanowski, R; Lewicki, S; Niemcewicz, M; Gawrychowski, K; Skopińska-Różewska, E; Stankiewicz, W

    2013-01-01

    Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.

  4. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    Science.gov (United States)

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  5. CHARACTERIZATION OF PLUTONIUM CONTAMINATED SOILS FROM THE NEVADA TEST SITE IN SUPPORT OF EVALUATION OF REMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Torrao, Guilhermina; Carlino, Robert; Hoeffner, Steve L.; Navratil, James D.

    2003-02-27

    The removal of plutonium from Nevada Test Site (NTS) area soils has previously been attempted using various combinations of attrition scrubbing, size classification, gravity based separation, flotation, air flotation, segmented gate, bioremediation, magnetic separation and vitrification. Results were less than encouraging, but the processes were not fully optimized. To support additional vendor treatability studies soil from the Clean Slate II site (located on the Tonopah Test Range, north of the NTS) were characterized and tested. These particular soils from the NTS are contaminated primarily with plutonium-239/240 and Am-241. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu- 239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. The results indicate that about a 40% volume reduction of contaminated soil should be achievable by removing the >300 um size fraction of the soil. Attrition scrubbing does not effect particle size distribution, but does result in a slight shift of plutonium distribution to the fines. As such, attrition scrubbing may be able to slightly increase the ability to separate plutonium-contaminated particles from clean soil. This could add another 5-10% to the mass of the clean soil, bringing the total clean soil to 45-50%. Additional testing would be needed to determine the value of using attrition scrubbing as well as screening the soil through a sieve size slightly smaller than 300 um. Since only attrition scrubbing and wet sieving would be needed to attain this, it would be good to conduct this

  6. Advances and Prospects in Remediation Technology and Large-scale Applications for Petroleum Contaminated Soil%石油污染场地土壤修复技术及工程化应用

    Institute of Scientific and Technical Information of China (English)

    刘五星; 骆永明; 王殿玺

    2011-01-01

    在分析当前我国土壤受石油污染的状况基础上,介绍目前修复石油污染场地土壤的技术,包括物理修复、化学修复和生物修复等.并对各种技术的修复原理、研究进展、优缺点及其发展趋势进行了综述,结合我国的研究现状与工作基础对该领域今后的研究方向与重点进行了展望.%On the analysis of current Chinese situation of petroleum-contaminated soil, some methods for remediation technologies of the contaminated field were presented such as physical, chemical remediation and bioremediation, etc. The research direction and key research work were prospected according to technical principles of the methods, advantages and disadvantages of each remediation technology, developing trend and research work in the field of China.

  7. Photovoltaic power for remote site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Torr, S.; Jensen, E.; Dingman, C.; Brewster, M.L. [Komex International Ltd., Calgary, AB (Canada)

    2003-07-01

    This paper described how photovoltaic solar power and remediation technologies can be integrated to remediate salt and hydrocarbon contaminated soils at remote sites. The integrated method can be applied in a variety of situations, such as groundwater extraction, reverse osmosis treatment, soil vapour extraction, and a solar mobile power station. The simplicity of the designs, the maximization of system efficiency, and minimization of operation and maintenance requirements ensure the success of the systems. The remedial goals combined with the applied technology, help in determining whether the photovoltaic powered systems should operate on an intermittent or continual basis. Higher system outputs are normally obtained with continual operation, but they also yield increased design complexity and inefficiencies. The authors stated that as the technology of photovoltaic power evolves, efficiencies and costs will improve, thereby increasing its progressive use as a renewable energy source for remote sites remediation. 2 refs., 1 tab.

  8. Side-Effects of Non-Steroidal Anti-Inflammatory Drugs on the Liver in Dogs and Hepatoprotective Effect of Plant Remedies

    Directory of Open Access Journals (Sweden)

    Szweda Magdalena

    2014-10-01

    Full Text Available Hepatoprotective effect of plant drugs against hepatic tissue injury induced by non-steroidal anti-inflammatory drugs (NSAIDs was assessed on Beagle dogs. The adverse effects of carprofen and robenacoxib on the hepatic tissue were evaluated on the basis of histopathological examination of liver sections. It was demonstrated that the use of NSAIDs with liquorice and composed plant remedy Pectosol¯ caused a reduction of hepatic adverse effects induced by the administration of NSAIDs. This fact indicates a hepatoprotective effect of the tested plant remedies during the treatment with NSAIDs. However, the results require further studies on a larger group of animals. Liquorice and Pectosol¯ reduce the hepatic side effects, which develop after the treatment with carprofen and, to a lesser extent, robenacoxib in young Beagles. Such studies allow to investigate the negative and positive effects of using robenacoxib and carprofen in dogs and, therefore, help to limit the NSAID-induced side effects on the liver in these animals.

  9. Petroleum Hydrocarbon Pollution of Mangrove Swamps: The Promises of Remediation by Enhanced Natural Attenuation

    Directory of Open Access Journals (Sweden)

    F. A. Orji

    2012-01-01

    Full Text Available Problem statement: The Remediation by Enhanced Natural Attenuation (RENA is currently being used as a cleanup technology in polluted environments in the Niger Delta and other parts of the globe. The effectiveness of RENA as a remediation technology in the most recent time has been challenged by few authorities. The deleterious effects of pollutants on the environment have led to increased awareness and vigilance against contamination of the Niger Delta environment. Bio remediation which has been defined as biological response to environmental abuse has continued to receive research attentions across the globe. This study addresses issues against the RENA and recommended ways forward. Approach: The review paper studied published articles and Oil companies routine practices of managing petroleum hydrocarbon polluted Environments including mangrove swamps from 1970 till date. The Remediation by Enhanced Natural Attenuation (RENA is currently being used as a cleanup technology in polluted environments in the Niger Delta including mangrove ecosystems. Results: The study made inputs on the controversial issues around RENA technology and recommended certain ways forward. This revision also reported the ways of managing the concerns raised against RENA. Conclusion/Recommendations: Oil firms, remediation contractors and consultants using this RENA approach should employ strict monitoring during the process and also adhere strictly to standard practices and the mitigation measures for all the cases against RENA as documented in this review study. This is to ensure the achievement of Sustainable Development.

  10. Effect of Information Communications Technology on Cataloguing ...

    African Journals Online (AJOL)

    Effect of Information Communications Technology on Cataloguing and ... Data was collected through the use of questionnaire designed for the study. ... at anytime and from any terminal and expect the computer to react and reply immediately.

  11. Effect of Information Communication Technology Facilities on ...

    African Journals Online (AJOL)

    Effect of Information Communication Technology Facilities on Students' Performance: ... Results indicated a significant difference in performance in both tests between ... ICT facilities in all secondary schools to enhance teaching and learning.

  12. Activated Orange Meso-Carp Carbon (AOMC; An Acceptable Remediation Techniques for Crude Oil Pollution Effect

    Directory of Open Access Journals (Sweden)

    Atulegwu Patrick Uzoije

    2012-01-01

    Full Text Available Orange mesocarp with its potentials application to remove spilled crude oil was used to prepare an activated adsorbent. Therefore, adsorption of crude oil onto the activated orange meso-carp (AOMC was investigated. Batch experiment was adopted for the equilibrium studies and the studies were conducted for various operational parameters such as varying crude oil concentration and temperature values. The crude oil samples of A, B, C, D and E, with concentrations 6045, 4393, 8508, 11583, and 5220, respectively and temperature values varied between 10-50ºC were used for the experiment. The adsorption equilibrium was established at 40 min of adsorption time. Partition coefficients, kd (L/kg for various samples reacted inversely with temperature and were in the ranges of 0.37-0.69, 0.65-1.11, 1.28-2.04, 1.17-1.39 and 1.23-4.53 for samples A, B, C, D and E, respectively. percentage of crude oil samples on the AOMC decreased with low crude oil hydrocarbons and the trend was shown as follows D>C >A>E>B. Percentage ranges for samples A, B, C,D and E were given to be 86.8-88%, 60.5-72.4, 52.5-55.2, 47.9-55.4 and 45.3-49.2%, respectively. Sorption of the crude oil samples to AOMC was found to be spontaneous, exothermic, and physio-sorption controlled with G values being in the ranges of -71.49 to -21.29, -18.25 to -5.43, -30.24 to -21.11, -28.55 to -11.33 and -50.74 to -50.12 KJ/mol for samples A ,B , C , D and E, respectively. Enthalpy(H and Entropy changes(S were also found to be -10.28, -12.24, -8.92, -6.9, -50.28 J/mol/K and -2.92, -0.32, -0.50, -0.44, -0.01 for samples A, B, C, D and E, respectively. Activated orange meso-carp provides a veritable environmentally remediation technique for crude oil spillage.

  13. TECHNOLOGY INTEGRATION EFFECTS ON TEACHERS’ ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Naji SALEH

    2015-04-01

    Full Text Available This article investigates the effects of technology integration on teachers’ achievement. The previous literature in this regard was reviewed and a sample of teachers was chosen from 7-9 grade teachers. The sample consisted of 50 teachers males and females with different years of experience and different number of training courses. The questionnaire included paragraphs about the effect of technology integration on their achievement in school and in teaching. The results showed a great effect of technology integration on teachers’ achievement. The results also showed no differences attributed to teacher’s gender and that there were differences attributed to teacher’s years of experience and number of training courses. The article shows the aspects in which the achievement of teachers was influenced by technology integration.

  14. [Natural remedies during pregnancy and lactation].

    Science.gov (United States)

    Gut, E; Melzer, J; von Mandach, U; Saller, R

    2004-10-01

    Up to date there is a lack of systematically gathered data on the use of natural remedies (phytotherapeutic, homeopathic, anthroposophic, spagyric, Bach and Schussler remedies) during pregnancy and lactation. The aim of this non-representative pilot study on 139 women, who came for delivery to three institutions between mid-1997 and the beginning of 1998, was to receive data about how often and within which spectrum natural remedies are used during pregnancy and lactation. During pregnancy 96% and within the lactation period 84% of the women consumed at least 1 natural remedy. Phytotherapeutic drugs were used most frequently. In contrast to the widespread use of natural remedies by pregnant women and nursing mothers in this study, little information on the effectiveness and possible risks is available. Therefore it seems necessary to examine and evaluate natural remedies used during pregnancy and lactation.

  15. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H. [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  16. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  17. In Situ Remediation Integrated Program: FY 1994 program summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  18. Remediation of time-delay effects in tokamak axisymmetric control loops by optimal tuning and robust predictor augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Sondak, D.; Arastoo, R. [Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Schuster, E., E-mail: schuster@lehigh.edu [Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Walker, M.L. [General Atomics, San Diego, CA 92121 (United States)

    2011-10-15

    It is sometimes incorrectly assumed that, because superconducting tokamaks already have significant intrinsic or imposed sources of control delay, introducing extra delays/lags into the axisymmetric control loops will have negligible detrimental impact on the plasma control. This study exposes and quantifies the detrimental effects imposed by time delays/lags in the control loop in superconducting tokamaks, using as an example the plasma current control and radial position control in a vertically stable circular plasma in the KSTAR tokamak. Delays and lags in the power supplies, data acquisition, and vessel structure are taken into account. Optimal tuning of PID controllers in combination with an ohmic-flux control strategy is proposed as a possible method for remediating the negative effects of time delays/lags. In addition, an augmentation of the control loop by the introduction of a robust predictor has been proposed to improve the performance of the time-delayed closed-loop system when the amount of delay/lag in the loop is unknown. The Nyquist dual locus technique based on the Argument Principle in complex theory is employed to assess stability of the optimally tuned closed-loop system in the presence of time delays.

  19. Radio Frequency Heating for Soil Remediation.

    Science.gov (United States)

    Price, Stephen L; Kasevich, Raymond S; Johnson, Mark A; Wiberg, Dan; Marley, Michael C

    1999-02-01

    Radio frequency heating (RFH) is a technology that increases the cost-effectiveness of a variety of site remediation technologies by accelerating the rate of contaminant removal. Heating makes the physical, chemical, and biological properties of materials such as contaminants, soil, and groundwater more amenable to remediation. RFH brings controlled heating to the subsurface, enhancing the removal of contaminants by soil vapor extraction (SVE), groundwater aeration (air sparging), bioremediation, and product recovery. The results presented are from a bench-scale study and a field demonstration that both used RFH to enhance the performance of SVE. The bench-scale study performed on PCE-contaminated soil revealed an increase, by a factor of 8, in the removal rate when RFH was used to heat soil to 90 °C. The application of RFH for a three-week period at a former gasoline station near St. Paul, MN, resulted in raising the ambient soil temperature from 8 °C to 100 °C in the immediate vicinity of the RFH applicator and to 40 °C 1.5 m (5 ft) away. Most significantly, the use of an integrated RFH/SVE system achieved an overall 50% reduction in gasoline range organics (GRO) in soil over a two- to three-month period. The discussion includes applications of RFH for enhancing bioremediation and product recovery.

  20. Nephrotoxic effects of aquoeus extract U & Dee Sweet Bitter (a Nigerian herbal remedy) in male albino rats.

    Science.gov (United States)

    Ezejiofor, N A; Maduagwuna, N; Igwebuike, Onyiaorah Victor; Hussaini, D C; Orisakwe, O E

    2008-01-01

    The effect of the extract of U & Dee Sweet Bitter, a Nigerian herbal remedy on the kidney was investigated in matured Wistar albino rats. Twenty male albino rats were allocated into four dose groups of five rats each, namely 0.00, 539, 1077, 1616 mg/kg of the herbal product orally for 90 days. Animals had access to deionized water and were fed ad libitum with rat chow for 90 days. The feed and fluid consumption of the animals were measured on daily basis, and the body weight was measured weekly. After 90 days, the animals were anaesthetized with ether, bled, sacrificed, kidney excised, and weighed. The parameters measured included food and fluid intake, body weight, absolute and relative weight of the kidney. A nonsignificant increase (p > .05) in feed and fluid intake occurred in all treated animals and a significant decrease (p Dee Sweet Bitter caused a significant (p Dee Sweet Bitter at all doses caused renal pathologic changes that include tubular necrosis, inflammation of the interstitial and glomerulus, and disorganization of the entire architecture. The results are indicative of nephrotoxicity.

  1. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  2. Neuropsychological and Behavioural Short-Term Effects of Cognitive Remediation Therapy in Adolescent Anorexia Nervosa: A Pilot Study.

    Science.gov (United States)

    van Noort, Betteke Maria; Kraus, Manuela Klara Aurelia; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Kappel, Viola

    2016-01-01

    Cognitive remediation therapy (CRT) aims to strengthen weak cognitive flexibility and central coherence in adult and adolescent anorexia nervosa (AN). Currently, there are no studies in adolescents with AN that control for learning effects because of re-testing while evaluating CRT. Twenty in- and outpatients with AN aged 12 to 18 years received CRT. Assessment took place directly before and after the intervention. Performance was compared to 20 age-, gender-, IQ-, and test-retest interval matched healthy controls, which did not receive CRT. AN patients showed an improvement in flexibility on neuropsychological assessment directly after CRT, whereas HC did not improve over time. Self-report assessment of flexibility, as well as central coherence, did not show significant improvement after CRT. Results suggest that CRT may be beneficial for enhancing flexibility in adolescents with AN. However, randomized controlled studies are essential to determine the actual efficacy of this intervention. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. The effect of different oil spill remediation techniques on petroleum hydrocarbon elimination in Australian bass (Macquaria novemaculeata).

    Science.gov (United States)

    Cohen, A M; Nugegoda, D; Gagnon, M M

    2001-02-01

    Petroleum hydrocarbons were investigated in juvenile Australian bass, Macquaria novemaculeata, following exposure to the water accommodated fraction (WAF) of Bass Strait crude oil, chemically dispersed crude oil, and burnt crude oil. Each treatment was administered for 16 days either through the water column or through the diet (amphipod, Allorchestes compressa). Polycyclic aromatic hydrocarbon (PAH) elimination was determined by measuring biliary benzo(a)pyrene (B(a)P) and naphthalene-type metabolites. Biliary PAH-type metabolite concentrations varied with the type of oil spill remediation technique, route of exposure (food versus water), and exposure concentration. Fish exposed to chemically dispersed crude oil via the water exhibited the highest PAH-type biliary metabolite concentrations, relative to fish exposed to other treatments. In fish exposed via the diet, the highest concentration of both types of biliary metabolites also appeared in the dispersed oil-exposed individuals. The results suggest that chemically dispersing oil may have the greatest effect on bioavailability of hydrocarbons, both through waterborne and food chain exposures.

  4. Evaluation of the effectiveness and salt stress of Pteris vittata in the remediation of arsenic contamination caused by tsunami sediments.

    Science.gov (United States)

    Sugawara, Kazuki; Kobayashi, Akihiro; Endo, Ginro; Hatayama, Masayoshi; Inoue, Chihiro

    2014-01-01

    On March 11, 2011, one of the negative effects of the tsunami phenomenon that devastated the Pacific coast of the Tohoku district in Japan was the deposition of a wide range of arsenic (As) contamination to the soil. To remediate such a huge area of contamination, phytoremediation by Pteris vittata, an As-hyperaccumulator, was considered. To evaluate the efficacy of applying P. vittata to the area, the salt tolerance of P. vittata and the phytoextraction of As from soil samples were investigated. For the salt tolerance test, spore germination was considerably decreased at an NaCl level of more than 100 mM. At 200 mM, the gametophytes exhibited a morphological defect. Furthermore, the growth inhibition of P. vittata was observed with a salinity that corresponded to 66.2 mS/m of electric conductivity (EC) in the soil. A laboratory phytoremediation experiment was conducted using As-contaminated soils for 166 days. P. vittata grew and accumulated As at 264 mg/kg-DW into the shoots. Consequently, the soluble As in the soil was evidently decreased. These results showed that P. vittata was applicable to the phytoremediation of As-contaminated soil with low salinity as with the contamination caused by the 2011 tsunami.

  5. Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Meier, J.R.; Chang, L.W.; Meckes, M.C.; Smith, M.K. [Environmental Protection Agency, Cincinnati, OH (United States); Jacobs, S. [DynCorp, Cincinnati, OH (United States); Torsella, J. [Oak Ridge Inst. of Science and Education, Cincinnati, OH (United States)

    1997-05-01

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below the remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.

  6. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  7. Current state of in situ subsurface remediation by activated carbon-based amendments.

    Science.gov (United States)

    Fan, Dimin; Gilbert, Edward J; Fox, Tom

    2017-02-21

    The last decade has seen a growing interest in applying activated carbon (AC)-based amendments for in situ subsurface remediation of organic contaminants such as chlorinated solvents and petroleum hydrocarbons. This remedial technology has been promoted by several major AC-based product vendors on the market. These products involve impregnation or co-application of chemical or biological additives to facilitate various contaminant degradation processes in conjunction with contaminant adsorption. During field applications, rapid contaminant removal and limited rebound after emplacement have often been reported and considered as two major advantages for this remedial technology. Nevertheless, questions remain to be answered regarding its true effectiveness and longevity given the lack of subsequent field characterizations and evidence of the degradation process, especially biodegradation. Additional uncertainties reside in how subsurface heterogeneity may affect the design, implementation and performance monitoring of this technology. In light of these uncertainties, this review presents an independent analysis that focuses on both the scientific and practical aspects of AC-based remedial technology for in situ subsurface remediation by gathering and synthesizing the scientific knowledge and practical lessons from a broad range of contaminant removal processes involving adsorption and/or degradation. The analysis showed that the scientific soundness of combining adsorption and degradation proposed for all the AC-based products is well supported by the literature on ex situ treatment. However, the in situ effectiveness might be affected by additional factors, such as geological heterogeneity, amendment transport and distribution, and total contaminant mass, which require more thorough and quantitative evaluation. Overall, the technology may provide a viable tool in addressing major remediation challenges encountered in current practice, such as mitigation of back

  8. The Effect of Heating During In Situ Remediation on the Dynamics and Activity of Soil Microorganisms

    Science.gov (United States)

    2000-10-01

    Hence, all these terms do not contribute in the above equation. In essence , the momentum equation was not used for the single-phase calculations. 33...Attiwill. 1994, The ash-bed effect in eucalyptus regnans forest: chemical, physical and microbiological changes in soil after heating or partial...75-86, 1995. Khanna, P.K. and R.J. Raison. Effect of Fire Intensity on Solution Chemistry of Surface Soil Under a Eucalyptus paucijlora Forest

  9. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    OpenAIRE

    Mohammed Hussain Essa; Nuhu Dalhat Mu’azu; Salihu Lukman; Alaadin Bukhari

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant c...

  10. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  11. 环境中六溴环十二烷的修复技术研究进展%Advances in Environmental Remediation Technologies for Hexabromocyclododecane

    Institute of Scientific and Technical Information of China (English)

    钱翌; 朱晓艳

    2014-01-01

    Hexabromocyclododecane (HBCD) is a kind of brominated flame retardants (BRFs), widely used in plastics, foams, fibers, textiles, electronic products, and other organic materials. It can also be used as flame retardant additives in PE, polycarbonate, and unsaturated polyester plastics. This material has abilities of long-term accumulation, migration, and transformation as one of persistent organic pollutants (pops) in the environment, exerting a potential threat to human beings. The recent increasing usage of HBCD even make the situation worse. Technologies of removing HBCD in the environment have drawn much attention around the world. The recent domestic and abroad HBCD removal and degradation techniques, including physical remediation, chemical remediation, and bioremediation, are reviewed in this paper. The principles, applicable conditions, and pros and cons of the three methods are also discussed. Photo-degradation and microbial degradation are described in details. Utilizing light and catalyst in water, photo-degradation has advantages of high efficiency and clean environment, with drawbacks of critical conditions and high costs. Microbial degradation uses certain microorganisms to achieve HBCD degradation, and the degrading efficiency under anaerobic conditions is significantly higher than under aerobic conditions. This method does not produce secondary pollution. However, the development is not mature with few studies. The current HBCD phytoremediation is rarely reported. The usage of phytoremediation on HBCD should be focus of such research efforts in the future. The authors hold that the photo-degradation and microbial degradation shall be the main developing methods. Or the two above methods can be combined to acquire a better result. Microbial metabolism method is a promising technique for future development.%六溴环十二烷(hexabromocyclododecane,HBCD)是一种非芳香的溴代环烷烃,作为阻燃剂被广泛应用于塑料、泡沫、纤

  12. Effective evaluation of green building technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sawers, J. [Reid Crowther and Partners Ltd., Calgary, AB (Canada)

    1998-12-01

    A proposed green building technology evaluation model is described. The model was developed as result of the inability of traditional evaluation techniques such as pay-back period, net present value and life cycle cost, to deal effectively with the intangible benefits of green technologies. Unlike traditional tools which are primarily financial in nature, the proposed model is based on a model developed in the Information Technology (IT) industry. It extends the concept of `benefit` to include a wide range of factors that affect a system`s business value. It also extends the concept of `cost` to include an evaluation of risk. The model considers nine criteria divided into two groups: business criteria and technology criteria. Business criteria encompass economic impact, strategic alignment, competitive advantage, improved management information, competitive risk, and organizational risk. The technological criteria comprise strategic architecture, definition uncertainty, and infrastructure risk. Assignment of weights to each of these criteria is somewhat subjective, but subjectivity can be overcome by the consistent use of good judgment. The green building technologies model draws on both the IT model and the value management concept (i.e. `value to a client within a particular context`). The model provides for the use of a value hierarchy to establish and weigh decision criteria; it expands the definition of project `costs` and `benefits`, and provides a decision matrix and sensitivity analysis. 6 refs., 4 figs.

  13. Managing soil remediation problems.

    Science.gov (United States)

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  14. Efficacy of radon remedial measures

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S. (National Radiological Protection Board, Chilton (United Kingdom))

    1994-04-01

    About 2000 householders in the UK have taken remedial action to reduce high radon levels in their homes. Some 800 of these householders have sought measurements to confirm the effectiveness of the action. Results for 528 such homes are discussed. (author).

  15. Use of toxicity assays for evaluating the effectiveness of groundwater remediation with Fenton’s reagent

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Bennedsen, Lars Rønn; Christophersen, Mette

    treatment with Fenton’s reagent the toxicity had increased and now needed 7100 times dilution to reduce toxicity to the LC10 probably due to mobilization of metals. It is concluded that toxicity assay is a useful tool for evaluating samples from contaminated sites and that toxicity assays and chemical...... for toxicity and contaminant chemistry. Organisms exposed to a mixture will react to all contaminants present and, consequently, the toxic effect will represent a sum effect. In contrast, chemical analyses yield information on individual or possibly groups of contaminants but not necessarily all...... the contaminants. Thus, using a combination of chemical analyses and toxicity assays yields a more robust understanding of the contaminated site and the risk it poses to the environment. Ground water samples were tested via toxicity assay using algae, crustaceans, luminescent bacteria, nitrifying bacteria...

  16. Use of toxicity assays for evaluating the effectiveness of groundwater remediation with Fenton’s reagent

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Bennedsen, Lars; Christophersen, Mette

    2011-01-01

    treatment with Fenton’s reagent the toxicity had increased and now needed 7100 times dilution to reduce toxicity to the LC10 probably due to mobilization of metals. It is concluded that toxicity assay is a useful tool for evaluating samples from contaminated sites and that toxicity assays and chemical...... for toxicity and contaminant chemistry. Organisms exposed to a mixture will react to all contaminants present and, consequently, the toxic effect will represent a sum effect. In contrast, chemical analyses yield information on individual or possibly groups of contaminants but not necessarily all...... the contaminants. Thus, using a combination of chemical analyses and toxicity assays yields a more robust understanding of the contaminated site and the risk it poses to the environment. Ground water samples were tested via toxicity assay using algae, crustaceans, luminescent bacteria, nitrifying bacteria...

  17. Use of toxicity assays for evaluating the effectiveness of groundwater remediation with Fenton’s reagent

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Bennedsen, Lars; Christophersen, Mette;

    2011-01-01

    A chemical dump site adjacent to the Danish North Sea holds a variety of constituents from pharmaceutical production including sulfonamides, barbiturates, aniline, pyridine, phenols, benzene, toluene, chlorinated solvents, lithium, copper, lead, mercury, etc. An on-going pilot scale project...... for toxicity and contaminant chemistry. Organisms exposed to a mixture will react to all contaminants present and, consequently, the toxic effect will represent a sum effect. In contrast, chemical analyses yield information on individual or possibly groups of contaminants but not necessarily all...... the contaminants. Thus, using a combination of chemical analyses and toxicity assays yields a more robust understanding of the contaminated site and the risk it poses to the environment. Ground water samples were tested via toxicity assay using algae, crustaceans, luminescent bacteria, nitrifying bacteria...

  18. Use of toxicity assays for evaluating the effectiveness of groundwater remediation with Fenton’s reagent

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Bennedsen, Lars Rønn; Christophersen, Mette;

    A chemical dump site adjacent to the Danish North Sea holds a variety of constituents from pharmaceutical production including sulfonamides, barbiturates, aniline, pyridine, phenols, benzene, toluene, chlorinated solvents, lithium, copper, lead, mercury, etc. An on-going pilot scale project...... for toxicity and contaminant chemistry. Organisms exposed to a mixture will react to all contaminants present and, consequently, the toxic effect will represent a sum effect. In contrast, chemical analyses yield information on individual or possibly groups of contaminants but not necessarily all...... the contaminants. Thus, using a combination of chemical analyses and toxicity assays yields a more robust understanding of the contaminated site and the risk it poses to the environment. Ground water samples were tested via toxicity assay using algae, crustaceans, luminescent bacteria, nitrifying bacteria...

  19. Monitoring the effectiveness of remediation techniques using sediment toxicity tests with the amphipod Eohaustorius estuarius

    Energy Technology Data Exchange (ETDEWEB)

    Doe, K.G.; Jackman, P.M. [Environment Canada, Moncton, NB (Canada); Lee, K. [Department of Fisheries and Oceans Canada, Dartmouth, NS (Canada)

    2002-07-01

    The results of a controlled oil release experiment of weathered crude oil was presented. The released oil was applied to a tidal saltwater marsh at Conrod's Beach, Nova Scotia, Canada. The study included 3 replicate blocks which included 2 unoiled treatments and 4 oiled treatments for each block. One unoiled site had no treatment, the second unoiled site had nutrient addition to examine the effect of nutrients. The oiled treatments included natural attenuation, nutrient addition, nutrient addition with plants, and nutrient addition with a garden aerator to introduce oxygen. A standard lab procedure was used to analyze the sediments to determine the effectiveness of the technique as well as the toxic effects on the survival of the amphipod Eohaustorius estuarius. Test results indicated that the unoiled sites were non-toxic, with a slight decrease in survival in the treatment with nutrient addition. All the oiled sites were very toxic at first, but toxicity decreased gradually with time. Treatment with nutrient addition with a garden aerator proved to be the most complete and fastest detoxification method. 8 refs., 4 tabs., 2 figs.

  20. Integrating Technology: Effective Tools for Collaboration.

    Science.gov (United States)

    Glandon, Shan

    This book uses planning forms and examples to help media specialists and teachers focus on ways to effectively and purposefully add technology. The 22 collaborations connect with standards-based education in language arts, math, science, and social studies. Ideas for whole-class projects are also included. Each unit example begins with a completed…

  1. Effective implementation of the UNCRPD by Thailand State Party: challenges and potential remedies.

    Science.gov (United States)

    Srisuppaphon, Donruedee; Sriboonroj, Arnon; Riewpaiboon, Wachara; Tangcharoensathien, Viroj

    2017-05-25

    The Thai government ratified the United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) in 2008, and the first progress report by the State Party was issued in 2012. This study assesses and identifies gaps in the Government's implementation of the Convention. Using the Deming Plan-Do-Check-Act Cycle as an analytical framework for continuous quality improvement, we reviewed five documents which are: the 2012 State Party report; the list of issues by the Committee on the Rights of Persons with Disabilities; the 2015 replies to the list of issues by the Thai government; an alternative report produced by Civil Society Organizations (CSOs); and an alternative report produced by the National Human Rights Commission of Thailand. Content analysis is applied to generate the emerging gaps in implementation. Thailand's main advantage is the evolving legal frameworks operating in compliance with the convention, although further amendment is still needed, including effective law enforcement. Conflicting information between the Government's and alternative reports reflects the shortcomings in the information system that intends to support rigorous monitoring and evaluation. Lacking of concrete measures and outcome indicators on certain articles reflects the State Party's limited understanding of the concept of human rights and participatory approaches and insufficient institutional capacities for effective implementation. To rectify these implementation gaps, a few actions are suggested. This includes amending the laws which violate the rights of persons with psychosocial disability; reforming governance where the monitoring bodies are truly independent from implementing agencies; strengthening cross-sectoral actions; and improving information systems which facilitate monitoring and evaluation where Disabled People's Organizations and Civil Society Organizations are recognized as true equal partners. Implementation research can provide evidence for further

  2. Music programs designed to remedy burnout symptoms show significant effects after five weeks.

    Science.gov (United States)

    Brandes, Vera; Terris, Darcey D; Fischer, Claudia; Schuessler, Marc N; Ottowitz, Gernot; Titscher, Georg; Fischer, Joachim E; Thayer, Julian F

    2009-07-01

    Earlier studies have demonstrated that music interventions can lessen symptoms of depression. Depression and burnout are closely related. We hypothesized that specially designed receptive music therapy programs and protocols might reduce the symptoms of burnout. In a four-arm randomized, placebo- and waiting-list-controlled double-blind study, including 150 participants, two specific music programs significantly reduced burnout symptoms after 5 weeks. The effects were maintained over a long time period. This newly developed method of receptive music therapy was also evaluated for the treatment of depression and dysthymia, with significant outcomes.

  3. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

    Science.gov (United States)

    Radulović, Niko S; Zlatković, Dragan B; Ilić-Tomić, Tatjana; Senerović, Lidija; Nikodinovic-Runic, Jasmina

    2014-04-11

    Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this

  4. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.

    Science.gov (United States)

    Sun, Ran; Belcher, Richard W; Liang, Jianqiang; Wang, Li; Thater, Brian; Crowley, David E; Wei, Gehong

    2015-07-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils.

  5. Energy Effectiveness Assessment of Composting Technologies

    OpenAIRE

    Plūme, I.

    2006-01-01

    The incorrect biomass composting improperly results in considerable emission of greenhouse gases, loss of effluent and composting heat into environment. The composting heat and gases utilisation is especially suitable for plant enrichment and heating of greenhouses. The mathematical model is worked out for assessment of energy effectiveness and sustainability of biomass composting process. Coefficient of energy effectiveness for traditional litter manure composting technologies is 0.45 and ca...

  6. 土壤砷污染及其修复技术的研究进展%Advances in the Study of Arsenic-Contaminated Soil and Its Remediation Technology

    Institute of Scientific and Technical Information of China (English)

    李圣发; 王宏镔

    2011-01-01

    Arsenic contamination soils have become a serious issue in relation to environmental and public health,which gained the close attention of the people.This article reviews the status,sources and danger of arsenic contamination soils,and the physical-chemical remediation and bioremediation(especially phytoremediation) technology are also discussed.In addition,the future study on remediation technology for arsenic-contaminated soils was prospected.%土壤砷污染已成为严重的环境和公共健康问题,日益受到人们的密切关注。综述了土壤砷污染的现状、来源及其危害,同时探讨了土壤砷污染的物理化学修复和生物修复(特别是植物修复)技术的研究现状;并对今后砷污染修复研究方向进行了展望。

  7. Agro-ecological Remediation Technologies on Heavy Metal Contamination in Cropland Soils%农田土壤重金属污染的农业生态修复技术

    Institute of Scientific and Technical Information of China (English)

    马铁铮; 马友华; 徐露露; 付欢欢; 聂静茹

    2013-01-01

    This article summarized the common agro-ecological remediation technology of heavy metal contamination in cropland soils, in-cluding the rational application of fertilizer, bio-organic fertilizer use, straw application, adjusting the crop planting structure, screening lowly-enriched heavy metal crop varieties and tolerant varieties, super-deep plow, soil moisture control, lime application and so on. The out-look of the remediation technology of heavy metal contamination in cropland soils was prospected.%总结了常见的农田土壤重金属污染的农业生态修复技术,包括合理施用化肥、施用生物有机肥、秸秆还田、调整作物种植结构、筛选重金属低积累作物品种和耐性作物品种、深耕深翻、控制土壤水分以及施用石灰等修复措施,并对农田土壤重金属污染修复技术的前景进行了展望。

  8. Effect of cigarette smoking on human health and promising remedy by mangroves

    Institute of Scientific and Technical Information of China (English)

    Chinnappan; Ravinder; Singh; Kandasamy; Kathiresan

    2015-01-01

    This article reviews the evils of cigarette smoking and the promise of mangroves to cure them.Chemicals in cigarette smoke are leading cause of death to both smokers and nonsmokers.Plant is the potential source to produce medicine for almost all the diseases.Mangroves are promising as a novel source of anti-cancer drugs in regulating the cancer pathways and stimulating immunity in the body system.Research on medicine from mangroves for the treatment of cancer has not only been shown to have an effect on cancer,but also provided important methods for the study of cancer therapy and mechanism.This report may help to explore the medicinal properties of the mangroves.

  9. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Xiangui Lin; Weiwei Liu; Yiming Wang; Jun Zeng; Hong Chen

    2012-01-01

    The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons(PAHs)may be inhibited by low nutrients and organic carbon.To evaluate the effect of organic wastes on the PAHs removal efficiency of a plant-microbe remediation system,contaminated agricultural soils were amended with different dosages of sewage sludge(SS)and cattle manure(CM)in the presence of alfalfa (Medicago sativa L.)and PAHs-degraders(Bacillus sp.and Flavobacterium sp.).The results indicated that the alfalfa mean biomasses varied from 0.56 to 2.23 g/pot in root dry weight and from 1.80 to 4.88 g/pot in shoot dry weight.Low dose amendments,with rates of SS at 0.1% and CM at 1%,had prominent effects on plant growth and soil PAHs degradation.After 60-day incubation,compared with about 5.6% in the control,25.8% PAHs removal was observed for treatments in the presence of alfalfa and PAHs-degraders;furthermore,when amended with different dosages of SS and CM,the removed PAHs from soils increased by 35.5%-44.9% and 25.5%-42.3%,respectively.In particular,the degradation of high-molecular-weight PAHs was up to 42.4%.Dehydrogenase activities (DH)ranged between 0.41 and 1.83 μg triphenylformazan/(g dry soil.hr)and the numbers of PAHs-degrading microbes(PDM)ranged from 1.14×106 to 16.6× 106 most-probable-number/g dry soil.Further investigation of the underlying microbial mechanism revealed that both DH and PDM were stimulated by the addition of organic wastes and significantly correlated with the removal ratio of PAHs.In conclusion,the effect of organic waste application on soil PAHs removal to a great extent is dependent on the interactional effect of nutrients and dissolved organic matter in organic waste and soil microorganisms.

  10. The Effects of Migration to a Blended Self-Paced Format for a Remedial Pre-College Algebra Mathematics Course

    Science.gov (United States)

    Deshler, Jessica; Fuller, Edgar

    2016-01-01

    Approximately 30% of students entering West Virginia University (WVU) are not ready for college mathematics. The WVU Department of Mathematics has been tasked with remediating these students and has worked over the last decade to find the most efficient way to teach the Pre-College Algebra Workshop; the prerequisite course students must complete…

  11. The Effects of Migration to a Blended Self-Paced Format for a Remedial Pre-College Algebra Mathematics Course

    Science.gov (United States)

    Deshler, Jessica; Fuller, Edgar

    2016-01-01

    Approximately 30% of students entering West Virginia University (WVU) are not ready for college mathematics. The WVU Department of Mathematics has been tasked with remediating these students and has worked over the last decade to find the most efficient way to teach the Pre-College Algebra Workshop; the prerequisite course students must complete…

  12. The Effectiveness of Peer Tutoring in Remedying Misconceptions of Operating System Concepts: A Design-Based Approach

    Science.gov (United States)

    Çakiroglu, Ünal; Öngöz, Sakine

    2017-01-01

    This study attempted to examine students' experiences on collaborative work with peer tutoring in projects. The study also focused impact of peer tutoring on remedying misconceptions. The study was conducted in the context of an operating system course in which 30 pre-service ICT teachers are the participants. Data were gathered from pre-tests,…

  13. Microbial Repopulation Following In Situ STAR Remediation

    Science.gov (United States)

    Gerhard, J.; Overbeeke, G.; Edwards, E.; Lomheim, L.; Grant, G.

    2016-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an emerging remediation technology that employs a self-sustaining smouldering reaction to destroy nonaqueous phase liquids (NAPLs) in the subsurface. The reaction front travels outwards from an ignition well at approximately 0.5 per day and subjects the soil to temperatures of 400°C-1000°C. The objectives of this work were to monitor re-saturation of the soil over time and quantify the microbial repopulation of the treated zone. STAR is currently being applied as a full scale, in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, USA. This study analyzed soil cores taken at regular intervals following STAR treatment, allowing time for groundwater to re-infiltrate and for microbial populations to potentially reestablish. Soil and groundwater were analyzed for total number of microorganisms via quantitative Polymerase Chain Reaction (qPCR), as well as microbial diversity via amplicon sequencing. Results demonstrate that microbes rapidly repopulated over a 2 month period to 106 gene copies/g of soil. However, concentrations in the treated zone did not rise above this concentration over 6 months post-STAR, indicating a low carrying capacity of the treated soil. To examine the system in more detail and consider the effects of bio-stimulation, a bench top column study using site soil and artificial groundwater explored the rate at which STAR-treated soil is repopulated with naturally occurring microorganisms in the presence and absence of lactate and a terminal electron acceptor. Results demonstrated that biostimulation did not increase the carrying capacity of the STAR treated sol, but rather shifted the microbial community to reflect the TEA provided, in this case, promoting sulfate reducers. Overall, the work illustrates that microbial populations in STAR treated soil do recover via groundwater infiltration but robust communities will take time to naturally establish.

  14. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    Science.gov (United States)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  15. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Yuechun Zhao

    2010-04-01

    Full Text Available High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5–4.5.

  16. [Effects of intermittent aeration on nitrogen-removal capability of biological contact oxidation remediation system for micro-polluted source water].

    Science.gov (United States)

    Xu, Jing; Zhu, Liang; Ding, Wei; Feng, Li-juan; Xu, Xiang-yang

    2011-04-01

    Aiming at the carbon source limitation of denitrification in oligotrophic habitat, this paper studied the effects of intermittent aeration on the nitrogen-removal capability of biological contact oxidation remediation system for micro-polluted source water, and approached the feasibility and process mechanism of shortcut nitrification and denitrification in the system. Under the condition of 8 h-16 h anoxic-aerobic phase (I), the remediation system performed stably, and its average removal efficiency of ammonium (NH4+ -N), permanganate index (COD(Mn)), and total nitrogen (TN) was 93.0%, 78.1%, and 19.4%, respectively. Under the condition of 16 h-8 h anoxic-aerobic phase (II), the NH4+ -N and COD(Mn) removal efficiency still maintained at 81.2% and 76.4%, respectively, the accumulation of nitrite (NO2- -N) was significant, and the removal efficiency of TN reached more than 50%. The nitrogen transformation characteristics in the system during a cycle under condition II demonstrated that at the prerequisite of effluent NH4+ -N and DO concentrations reaching the standards, shortening aerobic phase length could maintain the DO concentration at 0. 5 -1.5 mg L(-1) in a long term, inhibit the growth and activity of nitrite-oxidizing bacteria, and thereby, NO2- -N had an obvious accumulation, and the nitrogen removal via shortcut nitrification-denitrification in the biological contact oxidation remediation system for micro-polluted source water was finally achieved.

  17. Cognitive Remediation in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Joana Vieira

    2014-06-01

    Full Text Available Several reviews of the literature support the idea that cognitive deficits observed in a large percentage of patients with schizophrenia are responsible for the cognitive performance deficit and functional disability associated with the disease. The grow- ing importance of neurocognition in Psychiatry, especially with regard to planning strategies and rehabilitative therapies to improve the prognosis of patients contrib- utes to the interest of achieving this literature review on cognitive rehabilitation in schizophrenia. In this work, drawn from research in the areas of schizophrenia, cog- nition, cognitive rehabilitation and cognitive remediation (2000-2012 through PubMed and The Cochrane Collaboration, it is intended, to describe the types of psychological and behavioral therapies recommended in the treatment of cognitive disabilities in patients diagnosed with schizophrenia. This review will also highlight the clinical and scientific evidence of each of these therapies, as their effect on cognitive performance, symptoms and functionality in patients with schizophrenia.

  18. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis.

    Science.gov (United States)

    Zhao, Xia; Chen, Zhonglin; Wang, Xiaochun; Li, Jinchunzi; Shen, Jimin; Xu, Hao

    2015-03-01

    Recently, a new type of organic pollution derived from pharmaceuticals and personal care products (PPCPs) is gradually on the rise. Wastewater treatment to remove PPCPs was investigated using an aerobic granular sludge sequencing bioreactor (GSBR). After optimization of influent organic load, hydraulic shear stress, sludge settling time, etc., aerobic granular sludge was analyzed for its physiological and biochemical characteristics and tested for its efficacy to remove PPCPs wastewater. The granular sludge effectively removed some but not all of the PPCPs tested; removal correlated with the microbial profiles in the granules, as assessed using Solexa sequencing technology. Sequencing revealed the presence of five phylogenetic groups: Proteobacteria, Bacteroidetes, Betaproteobacteria, an unclassified genus, and Zoogloea. The results demonstrated changes in the microbial profiles with time in response to the presence of PPCPs. The effects of PPCPs on microbial communities in granular sludge process are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  20. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  1. Inhibitory Effect of Herbal Remedy PERVIVO and Anti-Inflammatory Drug Sulindac on L-1 Sarcoma Tumor Growth and Tumor Angiogenesis in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    P. Skopiński

    2013-01-01

    Full Text Available Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.

  2. Gallbladder Cleanse: A "Natural" Remedy for Gallstones?

    Science.gov (United States)

    ... Is it an effective way to flush out gallstones? Answers from Michael F. Picco, M.D. A ... an alternative remedy for ridding the body of gallstones. However, no scientific evidence suggests that a gallbladder ...

  3. Mediated Effects of Technology Competencies and Experiences on Relations among Attitudes Towards Technology Use, Technology Ownership, and Self Efficacy about Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Yerdelen-Damar, Sevda; Boz, Yezdan; Aydın-Günbatar, Sevgi

    2017-03-01

    This study examined the relations of preservice science teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences to their self-efficacy beliefs about technological pedagogical content knowledge (TPACK). The present study also investigated interrelations among preservice teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences. The participants of study were 665 elementary preservice science teachers (467 females, 198 males) from 7 colleges in Turkey. The proposed model based on educational technology literature was tested using structural equation modeling. The model testing results revealed that preservice teachers' technology competencies and experiences mediated the relation of technology ownership to their TPACK self efficacy beliefs. The direct relation of their possession of technology to their TPACK self efficacy beliefs was insignificant while the indirect relation through their technology competencies and experiences was significant. The results also indicated there were significant direct effects of preservice teachers' attitudes towards technology use, technology competencies, and experiences on their TPACK self efficacy beliefs.

  4. Mediated Effects of Technology Competencies and Experiences on Relations among Attitudes Towards Technology Use, Technology Ownership, and Self Efficacy about Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Yerdelen-Damar, Sevda; Boz, Yezdan; Aydın-Günbatar, Sevgi

    2017-08-01

    This study examined the relations of preservice science teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences to their self-efficacy beliefs about technological pedagogical content knowledge (TPACK). The present study also investigated interrelations among preservice teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences. The participants of study were 665 elementary preservice science teachers (467 females, 198 males) from 7 colleges in Turkey. The proposed model based on educational technology literature was tested using structural equation modeling. The model testing results revealed that preservice teachers' technology competencies and experiences mediated the relation of technology ownership to their TPACK self efficacy beliefs. The direct relation of their possession of technology to their TPACK self efficacy beliefs was insignificant while the indirect relation through their technology competencies and experiences was significant. The results also indicated there were significant direct effects of preservice teachers' attitudes towards technology use, technology competencies, and experiences on their TPACK self efficacy beliefs.

  5. THE EFFECTS OF INFORMATION TECHNOLOGIES IN MARKETING

    Directory of Open Access Journals (Sweden)

    Yusuf BAYRAKTUTAN

    2008-10-01

    Full Text Available At 1990’s the computers and internet had been used particularly by governments and universities. And this had started deep-rooted changes in the life of humans. This period has been called as the age of information. In this time the basis properties of the life has not been changed but new properties have been added to their ways. Continuously regeneration of information technologies has produced information systems. Information systems are the rule series that decide the data which one will select and how it will process. The development in the information technologies caused big exchanges in the structure of organization and affected all operations of business. Communication, selling and buying, obtaining information, marketing and advertising, management, health, logistics, banking have been getting new formats by information technologies. In this study the effects of IT have been inspected over marketing. IT affected the marketing both Marketing Information Systems that support all marketing operations of business and diversifying the marketing process. We aimed to inspect these two main effects in our study.

  6. DDE remediation and degradation.

    Science.gov (United States)

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    breakdown of DDE by the extracellular lignolytic enzymes produced by white rot fungi. The addition of adjutants such as sodium ion, surfactants, and cellulose increased the rate of DDT aerobic or anaerobic degradation but did little to enhance the rate of DDE disappearance under anaerobic conditions. Only in the past decade has it been demonstrated that DDE can undergo reductive dechlorination under methanogenic and sulfidogenic conditions to form the degradation product DDMU, 1-chloro-2,2'-bis-(4'-chlorophenyl)ethane. The only pure culture reported to degrade DDE under anaerobic conditions was the denitrifier Alcaligens denitrificans. The degradation of DDE by this bacterium was enhanced by glucose, whereas biphenyl fumes had no effect. Abiotic remediation by DDE volatilization was enhanced by flooding and irrigation and deepplowing inhibited the volatilization. The use of zero-valent iron and surfactants in flooded soils enhanced DDT degradation but did not significantly alter the rate of DDE removal. Other catalysts (palladized magnesium, palladium on carbon, and nickel/aluminum alloys) degraded DDT and its metabolites, including DDE. However, these systems are often biphasic or involve explosive gases or both. Safer abiotic alternatives use UV light with titanium oxide or visible light with methylene green to degrade DDT, DDD, and DDE in aqueous or mixed solvent systems. Remediation and degradation of DDE in soil and water by phytoextraction, aerobic and anaerobic microorganisms, or abiotic methods can be accomplished. However, success has been limited, and great care must be taken that the method does not transfer the contaminants to another locale (by volatilization, deep plowing, erosion, or runoff) or to another species (by ingestion of accumulating plants or contaminated water). Although the remediation of DDT-, DDD-, and DDE-contaminated soil and water is beset with myriad problems, there remain many open avenues of research.

  7. Effect of two homeopathic remedies at different degrees of dilutions on the wound closure of 3T3 fibroblasts in in vitro scratch assay

    Directory of Open Access Journals (Sweden)

    Reinhard Saller

    2012-09-01

    Full Text Available Background: Since ancient times, preparations from traditional medicinal plants e.g. Arnica montana, Calendula officinalis or Hypericum perforatum have been used for different wound healing purposes. The aim of this study was to investigate the efficacy of the commercial low dilution homeopathic remedy Similasan® Arnica plus Spray, a preparation of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2 and medium diluted SIM WuS (Petroleum 15x, Arnica montana 15x, Calcium fluoratum 12x, Calendula officinalis 12x, Hepar sulfuris 12x and Mercurius solubilis 15x; 1101-4, on the wound healing in cultured NIH 3T3 fibroblasts. Both remedies were from Similasan AG (Jonen, Switzerland and prepared according the German Homoeopathic Pharmacopoeia (GHP following descriptions 4a for arnica, 3a for marigold and St. John’s wort, 2a for comfrey, 5a for petroleum, and 6 for calcium fluoride, hepar sulfuris and mercurius solubilis. Materials and Methods: Cell proliferation, migration and wound closure promoting effect of the preparations (0712-2, 1101- 4 and their succussed solvents (0712-1, 1101-3 were investigated on mouse NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined wound area. All assays were performed in three independent controlled experiments. In some experiments diluted unsuccussed alcohol (0712-3 was also investigated. Results: Preparations (0712-1, (0712-2, (0712-3, (1101-3 and (1101-4 were investigated at decimal dilution steps from 1x to 4x. Cell viabilty was not affected by any of the substances and (0712-1 and (0712-2 showed no stimulating effect on cell proliferation. Preparation (0712-2 exerted a stimulating effect on fibroblast migration (31.7% vs 15% with succussed solvent (0712-1 at 1

  8. 农业种植园区肥料与农药污染土壤修复技术及示范年度报告%Soil Remediation Technology and Demonstration of Agricultural Lands Polluted by Fertilizer and Pesticide

    Institute of Scientific and Technical Information of China (English)

    吴龙华; 胡鹏杰

    2016-01-01

    Several soil remediation technologies were developed for agricultural lands polluted by the long term application of fertilizer and pesticide. These technologies include:(1) Phytoextraction using hyperaccumulators and high-accumulating rice cultivals combined with microorganism for slightly Cd polluted paddy soils. A remediation technology demonstration base was established in a Cd polluted farmland. Crop rotation techniques with Sedum and high accumulation rice cultivals were established. Cd removal rate from soil reached 21.1% in first season of Sedum. Enhanced microbial remediation technology for hyperaccumulator was conducted. Safety incineration technology and heavy metal recovery technology for Sedum were established. (2) Combined remediation of chemical stabilization and bioremediation for heavy metal comtanminated soils. Chemical and physical stability of Cd polluted soils with nano-chitosan materials were conducted. Soil moisture management technology for rice production safety control in Cd polluted soils was established.(3) chemical stabilization based on biochar and biodegradation with bacterium for heavy metal and organophosphorus pesticides contanminated intensive vegetable lands in suburban areas. An expanding culture medium inoculant technology based on urban kitchen waste was developed.(4) Intensive remediation technology based on plasmid pDOD transfer and herbicide metribuzin degrading bacteria for typical persistence pesticide contaminated soils. A long herbicide metribuzin degrading bacteria ZCT was isolated, and the degradation characteristics of pesticides were studied.(5) Combined remediation of chemical stabilization and bioremediation for acidified orchard soil. Physical improvement of soil acidification and Cu contamination was carried out, and evaporation remediation technologies for soil Cu were studied. A remediation demonstration bases of orchard soil contaminated with Cu was estabilished.%针对我国长期施用肥料与农药导致

  9. Monitoring and remediation of organochlorine residues in water.

    Science.gov (United States)

    Derbalah, Aly; Ismail, Ahmed; Hamza, Amany; Shaheen, Sabry

    2014-07-01

    This study monitored the presence of organochlorines in drinking water in Kafr-El-Sheikh, Ebshan, Elhamoul, Mehalt Aboali, Fowa, Balteem, and Metobess in the Kafr-El-Sheikh Governorate, Egypt, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation) for removing the most frequently detected compound (i.e., lindane) in drinking water. The results showed the presence of several organochlorine residues at all water sampling sites. Lindane was detected with high frequency relative to other detected organochlorines in water. Nano photo-Fenton-like reagent was the most effective treatment for lindane removal in drinking water. Bioremediation of lindane by effective microorganisms removed 100% of the initial concentration of lindane after 23 days of treatment. The study found that there is no remaining toxicity of lindane-contaminated water after remediation on treated rats relative to the control with respect to histopathological changes in the liver and kidneys. Therefore, AOPs, particularly those with nanomaterials and bioremediation, can be regarded as safe and effective remediation technologies for lindane in water.

  10. Natural Remediation at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  11. Development of an integrated in-situ remediation technology. Topical report for Task {number_sign}3.2 entitled, ``Modeling and iron dechlorination studies`` (September 26, 1994--August 31, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.P.; Sivavec, T.M.; Principe, J.M. [General Electric Research and Development, Schenectady, NY (United States)

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is complete. The present Topical Report for Task {number_sign}3.2 summarizes the modeling and dechlorination research conducted by General Electric Research and Development.

  12. Technology catalogue. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  13. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  14. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  15. Electrokinetic Remediation of Petroleum Hydrocarbons Spiked Soils

    OpenAIRE

    , M. Bilgin; , G. Akıncı

    2011-01-01

    In the presented study, remediation studies were conducted to determine the effectiveness of electrokinetic method on the treatment of natural soil contaminated with petroleum hydrocarbons, in laboratory scale reactors. Electokinetic remediation of agricultural soil with an initial TPHs (Total Petroleum Hydrocarbons) concentration of 10000 ppm was investigated under 20 V or 40 V direct current by using NaOH and acetic acid as electrolyte solution, treatment efficiencies were observed accordin...

  16. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  17. 重金属污染场地修复效果评价研究%Effect Evaluation of Remediation of Sites Contaminated by Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    李淑燕; 谢红彬

    2015-01-01

    污染场地土壤修复是一项复杂工程,为检验土壤修复效果,依据《污染场地修复验收技术规范》,对福州XX化工厂进行场地修复效果评价.土壤样品检测结果表明,原来超标的Pb、Hg的含量均明显低于修复目标值,坑底采样的4个样品中,Cd和As的含量也低于修复目标值,场地修复效果显著.但是,侧壁采样的15个样品中,Cd和As的含量仍存在超标现象.采用人体健康.风险评价方法对两种目标污染物进行健康风险评价,结果显示,Cd和As的非致癌风险指数对儿童和成人都大于1,As的致癌风险指数对儿童和成人都大于1×10-6.场地还存在潜在健康风险,在投入使用前需要进行进一步修复.%It is a complex project to remediate the contaminated sites. In order to test soil remediation effect, the article evaluated a chemical factory contaminated by heavy metals in Fuzhou according to the technical specification for the accep⁃tance of contaminated site remediation. Test results of repaired soil samples showed that the site remediation effect is re⁃markable. The concentrations of Pb and Hg were significantly lower than repair target, the concentrations of Cd and As in the four bottom samples were less than repair target, too. However, there is still an ovenproof phenomenon of Cd and As in 15 sidewall samples. The human health risk assessment method was applied to assess the health risks of the two pollutants. The results showed that the carcinogenic risk indexs of both Cd and As are greater than 1 to children and adults, the cancer risk indexs of As for both children and adults are greater than 1x10-6. There are potential health risks. It is needed further restoration before putted into use.

  18. Environmental Remediation Data Management Tools

    Energy Technology Data Exchange (ETDEWEB)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-02-26

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning

  19. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  20. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    Science.gov (United States)

    Gu, Di; Gao, Simeng; Jiang, Tingting; Wang, Baohui

    2017-03-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

  1. The effect of a county's public high school summer remediation program on student gains on end-of-course standard of learning tests in Algebra I, Biology, Chemistry, Geometry and World History and Geography II

    Science.gov (United States)

    Aiken, Brenda L.

    The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for

  2. Radio frequency heating for in-situ remediation of DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Woburn, MA (United States)

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  3. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  4. Characterization and remediation of soils contaminated with uranium.

    Science.gov (United States)

    Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

    2009-04-30

    Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.

  5. Opium the Best Remedy

    Directory of Open Access Journals (Sweden)

    Harold Merskey

    2004-01-01

    Full Text Available Sydenham was the leading English physician of the 17th century and probably to the present time. He was using a well tried remedy. It had been known by then for about 4000 years, frequently mentioned by Hippocrates, and recognized in use in medieval Europe where it probably came through Arabic traders and was well established in use in Paris by the 12th century (2. Professional concerns up to the time of Sydenham were not about addiction. As can be seen from his text, they were about whether the drug was available in adequate preparations, whether there was any difference between opium and other narcotics, particularly comparing the natural juice with "its artificial preparations" (1 (all of which he thought to be about equal in effect, whether it was stimulant or restorative and invigorating, and whether it was being properly used for all the conditions in which it could be helpful. Addiction, dependence and insanity are not mentioned, although the fact that it could occasionally promote excitement ("frenzy" was known.

  6. Projects at the Western Environmental Technology Office. Quarterly technical progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report contains brief outlines of the multiple projects under the responsibility of the Western Environmental Technology Office in Butte Montana. These projects include biomass remediation, remediation of contaminated soils, mine waste technology, and several other types of remediation.

  7. Exploring the Influence of New Technology Planning and Implementation on the Perceptions of New Technology Effectiveness

    Science.gov (United States)

    Bellamy, Al

    2007-01-01

    This study explored influences that perceptions of new technology implementation and planning processes, and dimensions of organizational climate have on perceptions of new technology deployment effectiveness. It also examined the extent to which dimensions of organizational climate moderates the relationships among new technology implementation,…

  8. Technologies for Foreign Language Learning: A Review of Technology Types and Their Effectiveness

    Science.gov (United States)

    Golonka, Ewa M.; Bowles, Anita R.; Frank, Victor M.; Richardson, Dorna L.; Freynik, Suzanne

    2014-01-01

    This review summarizes evidence for the effectiveness of technology use in foreign language (FL) learning and teaching, with a focus on empirical studies that compare the use of newer technologies with more traditional methods or materials. The review of over 350 studies (including classroom-based technologies, individual study tools,…

  9. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Mohammed Hussain Essa

    2013-01-01

    Full Text Available In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD was used for the experimental design and response surface methodology (RSM was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  10. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H2O2) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H2O2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost.

  11. Beneficial Effects of Ethanol Consumption on Insulin Resistance Are Only Applicable to Subjects Without Obesity or Insulin Resistance; Drinking is not Necessarily a Remedy for Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Hirokazu Yokoyama

    2011-07-01

    Full Text Available Although moderate drinking has been shown to lower insulin resistance levels, it is still unclear whether alcoholic beverages could be remedies for insulin resistance. To elucidate this, the correlation between levels of ethanol consumption and insulin resistance were cross-sectionally examined in 371 non-diabetic male Japanese workers. Multiple regression analysis demonstrated that the ethanol consumption level was inversely correlated with the insulin resistance level assessed by homeostatic model assessment (HOMA-IR, p = 0.0014, the serum insulin level (p = 0.0007, and pancreatic β-cell function, also assessed by HOMA (HOMA-β, p = 0.0002, independently from age, body mass index (BMI, and blood pressure, liver function tests, and lipid profiles status, as well as serum adiponectin. The correlations were true in subjects with normal BMIs (up to 25.0 kg/m2, n = 301 or normal HOMA-IR (up to 2.0 µIU·mg/µL·dL n = 337, whereas all of them were non-significant in those with excessive BMIs (n = 70 or in those with HOMA-IR of more than 2.0 (n = 34. Although it is still unclear whether the reductions of these parameters by ethanol consumption are truly due to the improvement of insulin resistance, at least, these effects are not applicable to subjects with obesity and/or insulin resistance. Thus, alcoholic beverages could not be remedies for insulin resistance or metabolic syndrome.

  12. Brain effects of computer-assisted cognitive remediation therapy in anorexia nervosa: A pilot fMRI study.

    Science.gov (United States)

    Brockmeyer, Timo; Walther, Stephan; Ingenerf, Katrin; Wild, Beate; Hartmann, Mechthild; Weisbrod, Matthias; Weber, Marc-André; Eckhardt-Henn, Annegret; Herzog, Wolfgang; Friederich, Hans-Christoph

    2016-03-30

    Poor cognitive-behavioral flexibility is considered a trait marker in anorexia nervosa (AN) that can be improved by cognitive remediation therapy (CRT). The present pilot study aimed at identifying changes in brain function potentially associated with CRT in AN. Data was obtained from a randomized, controlled trial. Twenty-four patients were assessed before and after 30 sessions of either CRT or a non-specific neurocognitive therapy. Voxel-wise analysis of whole brain functional magnetic resonance imaging was applied. Brain activation was measured during response inhibition and task switching. Although results did not reach significance, we found tentative support for CRT-related increases in brain activation in the dorsal putamen during task switching and in the dorsolateral prefrontal, sensorimotor and temporal cortex during response inhibition. These pilot findings provide viable pathways for future research on brain changes underlying CRT in AN.

  13. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  14. Development of an integrated in-situ remediation technology. Topical report for task No. 12 and 13 entitled: Large scale field test of the Lasagna{trademark} process, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Athmer, C.J.; Ho, Sa V.; Hughes, B.M. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone& The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

  15. Remedial design/remedial action strategy report

    Energy Technology Data Exchange (ETDEWEB)

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  16. 金属烤瓷冠修复技术的临床效果观察%Clinical effect observation of metal-ceramic crown remediation technique

    Institute of Scientific and Technical Information of China (English)

    崔秀萍

    2015-01-01

    Objective To explore the clinical effect of metal-ceramic crown remediation technique and sum up the op-timal remediation of varieties of metal-ceramic crown. Methods Clinical data of 120 patients who visited our depart-ment and agreed on metal-ceramic crown remediation technique from July 2012 to June 2013 were retrospectively ana-lyzed and studied.Based on different remediation material,they were divided into observation group and control group,60 cases in each group.In observation group,inner crown in gold alloy was adopted for dental rehabilitation,while in control group,nichrome was chosen.One year after remediation,clinical therapeutic effect,occurrence of complications,advantage and disadvantage of two methods between two groups was analyzed and compared respectively. Results The total clini-cal therapeutic effect in observation group was 96.67%,much higher than that in control group accounting for 81.67%, with statistical difference (P<0.05).In observation group,incidence of complications like gingivitis,swelling and aching of gum,gingival bleeding,gingival discoloration,bad breath,and full crown loose was remarkably lower than that in control group,with statistical difference(P<0.05). Conclusion In the technique of metal-ceramic crown remediation,inner crown in gold alloy and nichrome both obtain satisfying effects,but the effect in the former is better than that in latter.Inner crown in gold alloy,at advantages of small damage to periodontium,few complications such as gingivitis,swelling and aching of gum,gingival bleeding,gingival discoloration,bad breath,and full crown loose and so forth,and high aesthetic perception,is a relatively ideal remediation,which is worthy of adoption and expansion.%目的:探讨金属烤瓷冠修复技术临床效果,总结金属烤瓷冠的最佳修复方法。方法选取2012年7月~2013年6月在本院口腔科就诊并选择金属烤瓷冠修复技术的120例患者的临床资料进行回顾性分析研究,根据

  17. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.

  18. Iron-carbon composites for the remediation of chlorinated hydrocarbons

    Science.gov (United States)

    Sunkara, Bhanu Kiran

    This research is focused on engineering submicron spherical carbon particles as effective carriers/supports for nanoscale zerovalent iron (NZVI) particles to address the in situ remediation of soil and groundwater chlorinated contaminants. Chlorinated hydrocarbons such as trichloroethylene (TCE) and tetrachloroethylene (PCE) form a class of dense non-aqueous phase liquid (DNAPL) toxic contaminants in soil and groundwater. The in situ injection of NZVI particles to reduce DNAPLs is a potentially simple, cost-effective, and environmentally benign technology that has become a preferred method in the remediation of these compounds. However, unsupported NZVI particles exhibit ferromagnetism leading to particle aggregation and loss in mobility through the subsurface. This work demonstrates two approaches to prepare carbon supported NZVI (iron-carbon composites) particles. The objective is to establish these iron-carbon composites as extremely useful materials for the environmental remediation of chlorinated hydrocarbons and suitable materials for the in situ injection technology. This research also demonstrates that it is possible to vary the placement of iron nanoparticles either on the external surface or within the interior of carbon microspheres using a one-step aerosol-based process. The simple process of modifying iron placement has significant potential applications in heterogeneous catalysis as both the iron and carbon are widely used catalysts and catalyst supports. Furthermore, the aerosol-based process is applied to prepare new class of supported catalytic materials such as carbon-supported palladium nanoparticles for ex situ remediation of contaminated water. The iron-carbon composites developed in this research have multiple functionalities (a) they are reactive and function effectively in reductive dehalogenation (b) they are highly adsorptive thereby bringing the chlorinated compound to the proximity of the reactive sites and also serving as adsorption

  19. Educational Technology and Its Effective Use

    Science.gov (United States)

    Puckett, Rhonda

    2013-01-01

    Technology is becoming more and more prevalent in the American classroom. Students are becoming extremely knowledgeable of computer programs, iPads, and their applications are in an increasing manner. The reasoning behind the push for such technology in the classroom is for students to become accomplished twenty-first century learners, college- or…

  20. The Focusing Effect of Technology: Implications for Teacher Education.

    Science.gov (United States)

    Lobato, Joanne; Ellis, Amy Burns

    2002-01-01

    Discusses the focusing effect of technology as a way of systematically accounting for the role of technology when students form ideas that are unexpected and unwanted by teachers and designers of the technology being implemented. Includes examples of university students using graphing calculators and mathematics software and considers implications…

  1. The Relationship Between Technological Development and Environmental Effects

    DEFF Research Database (Denmark)

    Madsen, Henning

    include e.g. when a new technological substitute with less environmental damaging effect can be expected to be available from a technological as well a commercial point of view. The presentatio focuses on how technological forecasting can be applied to evaluate the future performance of a potential...

  2. A Multivariate Analysis of Remediation Efforts with Developmental Students.

    Science.gov (United States)

    Smith, Lois; Smith, Greg

    1988-01-01

    Investigated the effect of two variables on remedial students' performance in freshman composition: attending a remedial grammar course, and receiving tutoring at a skills development center. Found that tutoring had a significant positive impact on students, but that the grammar course had a negative effect. (ARH)

  3. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  4. 40 CFR 300.430 - Remedial investigation/feasibility study and selection of remedy.

    Science.gov (United States)

    2010-07-01

    ... liquids, areas contaminated with high concentrations of toxic compounds, and highly mobile materials. (B... is liquid, highly toxic or highly mobile, will be combined with engineering controls (such as... the selection of remedy. (E) EPA expects to consider using innovative technology when such...

  5. The Remediation of Nosferatu

    DEFF Research Database (Denmark)

    Ghellal, Sabiha; Morrison, Ann; Hassenzahl, Marc

    2014-01-01

    In this paper we present The Remediation of Nosferatu, a location based augmented reality horror adventure. Using the theory of fictional universe elements, we work with diverse material from Nosferatu’s horror genre and vampire themes as a case study. In this interdisciplinary research we...

  6. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...

  7. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  8. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  9. Soil column simulation experiment of remediating soil contaminated by diesel using bioventing technology%生物通风技术修复柴油污染土壤的土柱模拟实验

    Institute of Scientific and Technical Information of China (English)

    杨金凤; 陈鸿汉; 王春艳; 杨正礼

    2012-01-01

    Bioventing is an in situ forced oxidative soil remediation technology which combines soil vapor extraction with biodegradation.It has broad application prospects of soil contamination caused by underground storage tank leakage.In this paper,soil column experiment,which was used to simulate diesel contamination,was conducted.The law of balance distribution of residual TPH at different times and the change of diesel quantity in soil at different depths,together with total diesel quantity of the whole column were analyzed.The results showed that:(1) The profile distribution difference of residual TPH was influenced largerly by the initial loading conditions of soil column.(2) The diesel in soil was removed mainly by volatilization and biological degradation for the column which the balance distribution curves of residual TPH was bimodal.(3) Volatilization was mainly influenced by pore volume number during soil venting and soil moisture content,and gravity was mainly influenced by initial diesel concentration,soil moisture content and the ratio of carbon,nitrogen and phosphate.In addition to venting mode,the other factors affect the biodegradation.(4) For the soil column 8 and 11,which the initial diesel concentration were higher and the soil moisture content were both less,the biodegradation was the most significant and the removal effect of diesel in soil column was the best.The results could provide a theoretical basis for the enhancement of bioventing process.%生物通风技术是将土壤气相抽提和生物降解结合起来的原位强迫氧化降解方法,对于修复因地下储油罐泄漏引起的土壤污染具有广阔的应用前景。通过室内土柱模拟柴油泄漏污染土壤,分析了不同历时残余总石油烃(total pe-troleum hydrocarbon,TPH)的平衡分布规律以及土壤中不同深度柴油量、总柴油量的变化。结果表明:(1)各柱残余TPH剖面分布差异的原因受土柱的初始

  10. Remediation of uranium-contaminated soil using the Segmented Gate System and containerized vat leaching techniques: a cost effectiveness study

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, M.; Booth, S.R.

    1996-09-01

    Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. Until now, volume reduction of radioactively contaminated soil depended upon manual screening and analysis of samples, a costly and impractical approach, particularly with large volumes of heterogeneously contaminated soil. The baseline approach for the remediation of soils containing radioactive waste is excavation, pretreatment, containerization, and disposal at a federally permitted landfill. However, disposal of low-level radioactive waste is expensive and storage capacity is limited. ThermoNuclean`s Segmented Gate System (SGS) removes only the radioactively contaminated soil, in turn greatly reducing the volume of soils that requires disposal. After processing using the SGS, the fraction of contaminated soil is processed using the containerized vat leaching (CVL) system developed at LANL. Uranium is leached out of the soil in solution. The uranium is recovered with an ion exchange resin, leaving only a small volume of liquid low-level waste requiring disposal. The reclaimed soil can be returned to its original location after treatment with CVL.

  11. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil.

    Science.gov (United States)

    Yang, Yang; Zhou, Xihong; Tie, Boqing; Peng, Liang; Li, Hongliang; Wang, Kelin; Zeng, Qingru

    2017-08-29

    Selecting suitable plants tolerant to heavy metals and producing products of economic value may be a key factor in promoting the practical application of phytoremediation polluted soils. The aim of this study is to further understand the utilization and remediation of seriously contaminated agricultural soil. In a one-year field experiment, we grew oilseed rape over the winter and then subsequently sunflowers, peanuts and sesame after the first harvest. This three rotation system produced high yields of dry biomass; the oilseed rape-sunflower, oilseed rape-peanut and oilseed rape-sesame rotation allowed us to extract 458.6, 285.7, and 134.5 g ha(-1) of cadmium, and 1264.7, 1006.1, and 831.1 g ha(-1) of lead from soil, respectively. The oilseed rape-sunflower rotation showed the highest phytoextraction efficiency (1.98%) for cadmium. Lead and cadmium in oils are consistent with standards after extraction with n-hexane. Following successive extractions with potassium tartrate, concentrations of lead and cadmium in oilseed rape and peanut seed meals were lower than levels currently permissible for feeds. Thus, this rotation system could be useful for local farmers as it would enable the generation of income during otherwise sparse phytoremediation periods. Copyright © 2017. Published by Elsevier Ltd.

  12. Remediation of mining areas as an important element of sustainable mining. Know-How and results from Wismuth GmbH; Bergbausanierung als wichtiges Element nachhaltigen Bergbaus. Know how und Ergebnisse der Wismuth GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Stefan [Wismuth GmbH, Chemnitz (Germany). Technisches Ressort

    2012-09-15

    45 years of intensive mining activities altered the landscape severely and impacted the environment at uranium mining sites and processing sites. The Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) transferred this heritage to Wismut GmbH (Chemnitz, Federal Republic of Germany). Wismuth GmbH assumed the responsibility for the remediation / compensation. Environmental and economic effects contributing to the sustainability of remediation can be achieved. The results of 20 years of remediation activities reflect the accumulated experience as well as tremendous expertise.

  13. Effects of Remedies on the Remediation of Typical Pb and Zn-contaminated soil in Huanjiang,Guangxi%改良剂对广西环江强酸铅锌污染土壤的修复作用

    Institute of Scientific and Technical Information of China (English)

    曾炜铨; 宋波; 袁立竹; 黄宇妃; 伏凤艳

    2015-01-01

    Due to the collapse of the Pb/ Zn tailing dam of Huanjiang, Guangxi, the farmland along Huanjiang River are strongly acidic and heavy metal-contaminated, resulting in the loss of agricultural production. To explore some remedies and the migration of heavy metals in heavy metal contaminated-soil of Huanjiang, this study investigated the effects of different types of amendments ( lime, calcium magnesium phosphate, organic fertilizer, polypropylene amide) on tested soils through soil leaching test. The results showed that T1 soil was severely acidified, reducing the pH of the soil layer to clean contact, while T2, T3, T4, T5 could significantly improve the contaminated soil pH, ranging from 2. 7 to 3. 2, 1. 6 to 2. 7 respectively. Compared with T1, in the contaminated soil at 0-20 cm, T2, T3, T4, T5 could effectively activate Pb and immobilize Zn. Compared with T1, in 20-60 cm clean soil, there was no significant differences in the effect of different treatments on DTPA-Pb and DTPA-Zn (P ﹤ 0. 05). Compared with T1, T4 and T5 could provide good growing conditions for plants, which might provide technical support for future measurements such as bioremediation.%广西环江沿岸农田土壤具有强酸、多重金属污染等特点,失去了农业生产能力,为此,本研究试用了土壤淋溶实验探究不同类型改良剂(生石灰、钙镁磷肥、有机肥、聚丙烯酰胺)组合对广西环江沿岸污染土壤的修复效果,土壤重金属迁移规律及对农田适耕性的影响.结果表明,对照组 T1土壤酸化严重,降低清洁接触土壤层 pH 值,而处理方式 T2、 T3、 T4、 T5均能显著提高污染土壤 pH 值(P ﹤0.05),对供试土壤 pH 变化大小分别为2.7~3.2、1.6~2.7,均能达到南方农业生产土壤 pH 值范围.较对照组 T1,在污染土壤0~20 cm 处,处理方式 T2、 T3、 T4、 T5能有效地活化 Pb,钝化 Zn 的作用;在清洁土壤20~60 cm 处,各个处理方式对 DTPA-Pb、 DTPA-Zn 的

  14. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L.; Larche, Michael R.; Denslow, Kayte M.; Glass, Samuel W.

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  15. 22 CFR 146.110 - Remedial and affirmative action and self-evaluation.

    Science.gov (United States)

    2010-04-01

    ... Introduction § 146.110 Remedial and affirmative action and self-evaluation. (a) Remedial action. If the... recipient may take affirmative action consistent with law to overcome the effects of conditions that...

  16. 15 CFR 8a.110 - Remedial and affirmative action and self-evaluation.

    Science.gov (United States)

    2010-01-01

    ... Introduction § 8a.110 Remedial and affirmative action and self-evaluation. (a) Remedial action. If the... recipient may take affirmative action consistent with law to overcome the effects of conditions that...

  17. 40 CFR 5.110 - Remedial and affirmative action and self-evaluation.

    Science.gov (United States)

    2010-07-01

    ... Introduction § 5.110 Remedial and affirmative action and self-evaluation. (a) Remedial action. If the... recipient may take affirmative action consistent with law to overcome the effects of conditions that...

  18. 22 CFR 229.110 - Remedial and affirmative action and self-evaluation.

    Science.gov (United States)

    2010-04-01

    ... Introduction § 229.110 Remedial and affirmative action and self-evaluation. (a) Remedial action. If the... recipient may take affirmative action consistent with law to overcome the effects of conditions that...

  19. EREM 2001 - 3. symposium and status report on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Czurda, C.; Haus, R. (eds.); Hoetzl, H.

    2001-07-01

    Papers have been submitted by authors from around the world, reflecting the worldwide interest in electrokinetic remediation techniques. Therefore the symposium series plays a significant role in the presentation of recent advancements in electrochemical decontamination of polluted sediments on both scientific and technical level. In the field of potential cost-saving, innovative in-situ remediation technologies electrokinetics are already identified throughout the world. The main topics of the symposium are: electrokinetic models, electrokinetic transport processes, technical installation, combination of electroremediation with different remediation methods and the application in various electrokinetic field test demonstrations.

  20. Risks and remedies in e-learning system

    CERN Document Server

    Barik, Nikhilesh

    2012-01-01

    One of the most effective applications of Information and Communication Technology (ICT) is the emergence of E-Learning. Considering the importance and need of E-Learning, recent years have seen a drastic change of learning methodologies in Higher Education. Undoubtedly, the three main entities of E-Learning system can be considered as Student, Teacher & Controlling Authority and there will be different level, but a good E-Learning system needs total integrity among all entities in every level. Apart from integrity enforcement, security enforcement in the whole system is the other crucial way to organize the it. As internet is the backbone of the entire system which is inherently insecure, during transaction of message in E-Learning system, hackers attack by utilising different loopholes of technology. So different security measures are required to be imposed on the system. In this paper, emphasis is given on different risks called e-risks and their remedies called e-remedies to build trust in the minds o...

  1. PRB技术处理垃圾渗滤液污染地下水的应用研究%Study on Application of PRB Technology in Situ Remediation of Groundwater Polluted by Landfill Leachate

    Institute of Scientific and Technical Information of China (English)

    张先斌; 施永生; 张磊

    2011-01-01

    With the continuous development of urbanization,generation of leachate from more and more domestic garbage led to groundwater pollution increasingly significant. Four kinds of permeable reactive barrier (PRB) were designed by using iron powder,modified coal cinder, bentonite, activated carbon,zeolite,quartz sand and their mixtures as reaction medium,for studying the feasibility and the efficiency of PRB technology in remediation of groundwater polluted by landfill leachate. The results indicated that the CODCr removal rate was 85. 7%~91. 9%,which showed that PRB technology was an efficient method for the treatment of groundwater polluted by landfill leachate,and yet was expected to be further explored.%随着城市化的不断发展,生活垃圾渗滤液污染地下水的问题越来越突出,污染地下水的修复研究迫在眉睫.以铁粉、改性煤渣、膨润土、活性炭、沸石、石英砂及其混合物为反应介质,设计了4种地下可渗透反应墙(PRB),对PRB技术处理垃圾渗滤液污染地下水的可行性和有效性进行了实验模拟研究.结果表明:CODCr的去除率为85.7%~91.9%,PRB技术处理垃圾渗滤液污染地下水有一定的可行性,但有待继续深入研究.

  2. Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.; Burns, Carolyn A.; Girvin, Donald C.; Phillips, Jerry L.; Devary, Brooks J.; Fischer, Ashley E.; Li, Shu-Mei W.

    2006-11-13

    This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and at lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.

  3. A state of the art on electrochemical noise technique. Assessment of corrosion characteristics and development of remedial technology in nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Kim, Joung Soo; Kim, Hong Pyo; Lim, Yun Soo; Yi, Yong Sun; Chung, Man Kyo

    2003-02-01

    The studies for the application of electrochemical noise technique were reviewed in terms of principle, analysing method and application examples of this technique. Because 4% of the economic damage of industry is caused by metallic corrosion, it is important to find and protect corrosive materials and location. By corrosion monitoring of industrial facilities such as nuclear power plant using Electrochemical Noise Measurement(ENM), corrosion attack can be detected and furthermore it can be indicated whether the attacked materials is replaced by new one or not. According to development of control and electronic technology, it was easy to apply ENM to the industry and the interest in ENM also increased. As corrosion is produced on a metal under corrosive environment, local anode(oxidation) and cathode(reduction) are formed. Hence, there is potential difference and current flow between the anode and cathode. ENM is monitoring the potential difference and the current flow with time by high impedance load voltmeter and Zero Resistance Ammeter(ZRA), respectively. The potential difference and current flow generated spontaneously without any application of current and potential between electrodes are monitored by electrochemical noise technique, Thereby ENM can be regarded as the most ideal corrosion monitoring method for the industrial facility and nuclear power plant having corrosion damage and difficulty in access of human body. Moreover, it is possible to obtain the spontaneous and reliable results from the metals damaged by ununiform and localized corrosion such as pitting and SCC using ENM while it is difficult to obtain the reliable result using traditional linear polarization and ac-impedance measurement. In many countries, there are extensive works concerned with application of electrochemical noise technique to corrosion monitoring of nuclear power plant and other industrial facilities, whereas there is little work on this field in Korea. Systematic study for

  4. Enhanced electrokinetic remediation of fluorine-contaminated soil by applying an ammonia continuous circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shufa; Zhou, Ming; Zhang, Shuangyan [Henan University of Science and Technology, Luoyang (China)

    2016-02-15

    The objective of this research was to investigate the effects of ammonia continuous circulation enhanced electrokinetic remediation of fluorine contaminated soil and to analyze its influence on soil pH after remediation. An experimental study was carried out in self-made electrokinetic apparatus. The voltage gradient was set at 1.0V/cm and ammonia water with different concentrations was used as electrolyte which circulated in series. Comparative studies were made by using deionized water as electrolyte which circulated separately in one experiment and continuously in another. According to the experiment the continuous circulation of ammonia water increased the current value during the remediation process and maintained current through the soil cell stabler, which not only increased fluorine migration but also reduced energy consumption. Among the given ammonia concentrations (0, 0.01, 0.1 and 0.2mol/L) the removal rate increased with ammonia concentration. 0.2mol/L had the highest current (26.8mA), and the removal rate amounted up to 57.3%. By using ammonia circulation enhanced electrokinetic technology, the difference between pH values of cathode soil and anode soil became smaller. Ammonia continuous circulation enhanced electrokinetics can effectively remediate fluorine contaminated soil and the residual ammonia in the soil can also improve soil fertility.

  5. The Response of Old Technology Incumbents to Technological Competition - Does the Sailing Ship Effect Exist?

    DEFF Research Database (Denmark)

    Howells, John

    This article investigates whether firms react to a radical technological substitution threat by a deliberate acceleration of innovation in their existing technology - the 'sailing ship effect'. It has been argued that the effect is both significant and widespread and warrants a reexamination of o...... assumptions about the working of the competitive process (Rosenberg 1972). Reexamination of two cases thought to be exemplars of the effect shows that it existed in neither. It is argued that if the phenomenon occurs, it is likely to be rare......This article investigates whether firms react to a radical technological substitution threat by a deliberate acceleration of innovation in their existing technology - the 'sailing ship effect'. It has been argued that the effect is both significant and widespread and warrants a reexamination of our...

  6. An Empirical Measure of Computer Security Strength for Vulnerability Remediation

    Science.gov (United States)

    Villegas, Rafael

    2010-01-01

    Remediating all vulnerabilities on computer systems in a timely and cost effective manner is difficult given that the window of time between the announcement of a new vulnerability and an automated attack has decreased. Hence, organizations need to prioritize the vulnerability remediation process on their computer systems. The goal of this…

  7. Health effects of synfuels technology: a review

    Energy Technology Data Exchange (ETDEWEB)

    Sanathanan, L.P.; Reilly, C.A.; Marshall, S.A.; Wilzbach, K.E.

    1981-04-01

    This document contains annotated synopses of available information pertinent to health impacts of synthetic fuel technologies under development, and identifies needs for further information. The report focuses on carcinogenesis, which appears to be a special problem with coal conversion technologies. This review is intended to serve as a reference for the NEPA Affairs Division of DOE in its evaluation of the overall synthetic fuel program and specific projects in the program. Updated versions of this document are expected to be prepared annually or semiannually as new information becomes available.

  8. Environmental effects of information and communications technologies.

    Science.gov (United States)

    Williams, Eric

    2011-11-16

    The digital revolution affects the environment on several levels. Most directly, information and communications technology (ICT) has environmental impacts through the manufacturing, operation and disposal of devices and network equipment, but it also provides ways to mitigate energy use, for example through smart buildings and teleworking. At a broader system level, ICTs influence economic growth and bring about technological and societal change. Managing the direct impacts of ICTs is more complex than just producing efficient devices, owing to the energetically expensive manufacturing process, and the increasing proliferation of devices needs to be taken into account.

  9. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive.

  10. Investigating Modern Communication Technologies: The effect of Internet-based Communication Technologies on the Investigation Process

    Directory of Open Access Journals (Sweden)

    Matthew Phillip Simon

    2011-12-01

    Full Text Available Communication technologies are commonplace in modern society. For many years there were only a handful of communication technologies provided by large companies, namely the Public Switched Telephone Network (PSTN and mobile telephony; these can be referred to as traditional communication technologies. Over the lifetime of traditional communication technologies has been little technological evolution and as such, law enforcement developed sound methods for investigating targets using them. With the advent of communication technologies that use the Internet – Internet-based or contemporary communication technologies – law enforcement are faced with many challenges. This paper discusses these challenges and their potential impact. It first looks at what defines the two technologies then explores the laws and methods used for their investigation. It then looks at the issues of applying the current methodologies to the newer and fundamentally different technology. The paper concludes that law enforcement will be required to update their methods in order to remain effective against the current technology trends.

  11. The Remediation of Nosferatu

    DEFF Research Database (Denmark)

    Ghellal, Sabiha; Morrison, Ann; Hassenzahl, Marc

    2014-01-01

    In this paper we present The Remediation of Nosferatu, a location based augmented reality horror adventure. Using the theory of fictional universe elements, we work with diverse material from Nosferatu’s horror genre and vampire themes as a case study. In this interdisciplinary research we intert...... universe. We believe our approach can be more generally useful for designing future rich, enjoyable and meaningful transmedia experiences....

  12. Ability of salt marsh plants for TBT remediation in sediments.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Silva, Manuela F G M; Machado, Ana; Bordalo, A A; Vasconcelos, M Teresa S D

    2010-07-01

    detected in nonvegetated sediment, whereas MBT was quantified in most samples. This work demonstrated that H. portulacoides has potentiality to be used for enhancing TBT remediation in sediments from salted areas. The results observed in situ for S. maritima or S. fruticosa suggested that these two salt marsh plants also favored TBT remediation. Therefore, the application of halophytes in technologies for TBT remediation in sediments seems to be efficient both in situ and ex situ, cost effective, and nondestructive, despite the fact that they have been rarely used for this purpose so far.

  13. The Effectiveness of Assistive Technologies for Children with Special Needs: A Review of Research-Based Studies

    Science.gov (United States)

    Maor, Dorit; Currie, Jan; Drewry, Rachel

    2011-01-01

    Assistive technologies are often promoted to schools, parents and educators as tools to assist students with special needs by providing a compensatory value, to remediate learning problems and to promote personal independence. These technologies range from simple spellcheckers to more complex speech recognition systems and educational software.…

  14. Technology Rich Biology Labs: Effects of Misconceptions.

    Science.gov (United States)

    Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark

    This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…

  15. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    Science.gov (United States)

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development.

  16. Phyto-remediation of contaminated soils; La phytoremediation des sols contamines

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.L. [Ecole Nationale Superieure Agronomie et des Industries Alimentaires, 54 - Vandoeuvre les Nancy (France)

    2002-09-01

    Plants provide new ways for soil remediation. The activity of living roots (absorption, exudation of organic compounds, action on physical soil properties) contribute to decrease the negative effects of pollutants, as they are stabilised or eliminated (extraction or degradation). In the presence of plants, hydrocarbons, a rather ubiquitous group of soil pollutants, are degraded faster than in bare soil. Hydrocarbon degrading bacteria are stimulated by root exudates, which also create favourable conditions for co-metabolism. Also, the fragmentation of aggregates as well as the release of surfactants increase the exposure of organic pollutants to microorganism degradation. The phyto-remediation technology is efficient to reduce the dissemination of pollutants. On historically contaminated soils, effects are generally discrete within a short period of time and may be more effective in the long run. (author)

  17. CENTRAL PLATEAU REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  18. Effectiveness of Subsidies in Technology Adoption: A Case Study Involving Reverse Osmosis (RO Membrane Technology

    Directory of Open Access Journals (Sweden)

    Nur Laili

    2016-12-01

    Full Text Available Adoption of new technologies is a process that involves technological learning and penetration of new products into the market. Within the process of new technologies adoption, government usually intervened by providing incentives, in order to support the technology adoption to be succeed. This paper examines the effectiveness of incentives for the sustainability of reverse osmosis (RO membrane technology adoption. The study conducted through single case study on SWRO installation in Mandangin Island, East Java, Indonesia. Results of case study indentify the existence of government incentive in the form of direct subsidies to decrease the price of clean water. Although successful in reducing the price of water, but effectiveness of the subsidy on the sustainability of SWRO is still low, which is operates only 30% in a year. Further analysis shows that these subsidies actually be counter-productive to the sustainability of SWRO installation.

  19. Examples from the Greenland-Project - Gentle Remediation Optiones (GROs) on Pb/zn Contaminated Sites

    Science.gov (United States)

    Friesl-Hanl, Wolfgang; Kidd, Petra; Siebielec, Grzegorz

    2017-04-01

    The GREENLAND-project brought together "best practice" examples of several field applied gentle remediation techniques (EUFP7-project "Gentle remediation of trace element-contaminated land - GREENLAND; www.greenland-project.eu) with 17 partners from 11 countries. Gentle remediation options (GRO) comprise environmentally friendly technologies that have little or no negative impact on the soil. The main technologies are • phytoextraction • in situ immobilization and • assisted phytostabilization. Mining and processing activities affecting many sites worldwide negatively. The huge amounts of moved and treated materials have led to considerable flows of wastes and emissions. Alongside the many advantages of processed ores to our society, adverse effects in nature and risks for the environment and human health are observed. Three stages of impact of Pb/Zn-ore-treatment on the environment are discussed here: (1) On sites where the ores are mined impacts are the result of crushing, grinding, concentrating activities, and where additionally parts of the installations remain after abandoning the mine, as well as by the massive amounts of remaining deposits or wastes (mine tailings). (2) On sites where smelting and processing takes place, depending on the process (Welz, Doerschel) different waste materials are deposited. The Welz process waste generally contains less Cd and Pb than the Doerschel process waste which additionally shows higher water- extractable metals. (3) On sites close to the emitting source metal contamination can be found in areas for housing, gardening, and agricultural use. Emissions consist mainly from oxides and sulfides (Zn, Cd), sulfates (Zn, Pb, and Cd), chlorides (Pb) and carbonates (Cd). All these wastes and emissions pose potential risks of dispersion of pollutants into the food chain due to erosion (wind, water), leaching and the transfer into feeding stuff and food crops. In-situ treatments have the potential for improving the situation

  20. [Feasibility of applying ornamental plants in contaminated soil remediation].

    Science.gov (United States)

    Liu, Jia-Nü; Zhou, Qi-Xing; Sun, Ting; Wang, Xiao-Fei

    2007-07-01

    Phytoremediation is one of the effective ways in resolving problems of contaminated soils, but limited hyperaccumulation plant species were reported and documented. This shortage could be offset if remediation plants can be screened out from various ornamental plants. In addition, such doing can beautify the environment while bring some economic effects. Starting from the importance of phytoremediation, this paper generalized the characters and standards of remediation plants. Through describing the resources of ornamental plants and their functions on environmental protection, particularizing their superiorities to other plants, and analyzing their endurance, accumulation traits and