WorldWideScience

Sample records for remedial planning performance

  1. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  2. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  3. 40 CFR 85.1803 - Remedial Plan.

    Science.gov (United States)

    2010-07-01

    ... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... the total parts requirement of each person who is to perform the repair under the remedial plan to be...: (i) The recall campaign number; and (ii) A code designating the campaign facility at which the repair...

  4. Remediation plans in family medicine residency

    Science.gov (United States)

    Audétat, Marie-Claude; Voirol, Christian; Béland, Normand; Fernandez, Nicolas; Sanche, Gilbert

    2015-01-01

    Abstract Objective To assess use of the remediation instrument that has been implemented in training sites at the University of Montreal in Quebec to support faculty in diagnosing and remediating resident academic difficulties, to examine whether and how this particular remediation instrument improves the remediation process, and to determine its effects on the residents’ subsequent rotation assessments. Design A multimethods approach in which data were collected from different sources: remediation plans developed by faculty, program statistics for the corresponding academic years, and students’ academic records and rotation assessment results. Setting Family medicine residency program at the University of Montreal. Participants Family medicine residents in academic difficulty. Main outcome measures Assessment of the content, process, and quality of remediation plans, and students’ academic and rotation assessment results (successful, below expectations, or failure) both before and after the remediation period. Results The framework that was developed for assessing remediation plans was used to analyze 23 plans produced by 10 teaching sites for 21 residents. All plans documented cognitive problems and implemented numerous remediation measures. Although only 48% of the plans were of good quality, implementation of a remediation plan was positively associated with the resident’s success in rotations following the remediation period. Conclusion The use of remediation plans is well embedded in training sites at the University of Montreal. The residents’ difficulties were mainly cognitive in nature, but this generally related to deficits in clinical reasoning rather than knowledge gaps. The reflection and analysis required to produce a remediation plan helps to correct many academic difficulties and normalize the academic career of most residents in difficulty. Further effort is still needed to improve the quality of plans and to support teachers.

  5. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  6. Developing a disposal and remediation plan

    International Nuclear Information System (INIS)

    Messier, T.S.

    1999-01-01

    The environmental release of wastes generated by the upstream oil and gas industry in Alberta can result in polluted soil and groundwater at several facilities across the province. Responsibility for decommissioning upstream oil and gas facilities falls under the jurisdiction of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP). This paper outlines a protocol that can serve as a framework for the development of a plan to dispose of oilfield waste and to remediate related contaminated soils. The components involved in developing a disposal and remediation plan for oilfield wastes are: (1) identifying the potential source of pollution and oilfield waste generation, (2) characterizing oilfield wastes, (3) determining the nature and extent of soil and groundwater pollution, (4) preparing a remedial action plan, (5) assessing the viability of various remediation options, and (6) preparing health and safety plan. 12 refs., 2 tabs., 2 figs

  7. Strategic planning for remediation projects

    International Nuclear Information System (INIS)

    Tapp, J.W.

    1995-01-01

    Remediation projects may range from a single leaking storage tank to an entire plant complex or producing oil and gas field. Strategic planning comes into play when the contamination of soil and groundwater is extensive. If adjacent landowners have been impacted or the community at large is concerned about the quality of drinking water, then strategic planning is even more important. (1) To manage highly complex interrelated issues--for example, the efforts expended on community relations can alter public opinion, which can impact regulatory agency decisions that affect cleanup standards, which can...and so on. (2) To ensure that all potential liabilities are managed--for example, preparation for the defense of future lawsuits is essential during site investigation and remediation. (3) To communicate with senior management--when the remediation team provides a strategic plan that includes both technical and business issues, senior management has the opportunity to become more involved and make sound policy decisions. The following discusses the elements of a strategic plan, who should participate in it, and the issues that should be considered

  8. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  9. ICDF Complex Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  10. Remedial action planning for Trench 1

    International Nuclear Information System (INIS)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.; Castaneda, N.

    1998-01-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site

  11. Environmental restoration and remediation technical data management plan

    International Nuclear Information System (INIS)

    Key, K.T.; Fox, R.D.

    1994-02-01

    The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit

  12. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  13. Geotechnical engineering considerations in the NRC's review of uranium mill tailings remedial action plans

    International Nuclear Information System (INIS)

    Gillen, D.M.

    1985-01-01

    To reduce potential health hazards associated with inactive uranium mill tailings sites, the Department of Energy (DOE) is presently investigating and implementing remedial actions at 24 sites in the Uranium Mill Tailings Remedial Action Program (UMTRAP). All remedial actions must be selected and performed with the concurrence of the Nuclear Regulatory Commission (NRC). This paper provides a discussion of geotechnical engineering considerations during the NRC's preconcurrence review of proposed remedial action plans. In order for the NRC staff to perform an adequate geotechnical engineering review, DOE documents must contain a presentation of the properties and stability of all in-situ and engineered soil and rock which may affect the ability of the remedial action plans to meet EPA standards for long-term stability and control. Site investigations, laboratory testing, and remedial action designs must be adequate in scope and technique to provide sufficient data for the NRC staff to independently evaluate static and dynamic stability, settlement, radon attenuation through the soil cover, durability of rock for erosion protection, and other geotechnical engineering factors

  14. Performance expectation plan

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.E.

    1998-09-04

    This document outlines the significant accomplishments of fiscal year 1998 for the Tank Waste Remediation System (TWRS) Project Hanford Management Contract (PHMC) team. Opportunities for improvement to better meet some performance expectations have been identified. The PHMC has performed at an excellent level in administration of leadership, planning, and technical direction. The contractor has met and made notable improvement of attaining customer satisfaction in mission execution. This document includes the team`s recommendation that the PHMC TWRS Performance Expectation Plan evaluation rating for fiscal year 1998 be an Excellent.

  15. Field Investigation Plan for 1301-N and 1325-N Facilities Sampling to Support Remedial Design

    International Nuclear Information System (INIS)

    Weiss, S. G.

    1998-01-01

    This field investigation plan (FIP) provides for the sampling and analysis activities supporting the remedial design planning for the planned removal action for the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), which are treatment, storage,and disposal (TSD) units (cribs/trenches). The planned removal action involves excavation, transportation, and disposal of contaminated material at the Environmental Restoration Disposal Facility (ERDF).An engineering study (BHI 1997) was performed to develop and evaluate various options that are predominantly influenced by the volume of high- and low-activity contaminated soil requiring removal. The study recommended that additional sampling be performed to supplement historical data for use in the remedial design

  16. Environmental Restoration Remedial Actions Program Field Office Work Plan

    International Nuclear Information System (INIS)

    1989-02-01

    The Environmental Restoration Remedial Actions (ERRA) Program was established by DP to comply with regulations for characterization and cleanup of inactive waste sites. The program specifically includes inactive site identification and characterization, technology development and demonstration, remedial design and cleanup action, and postclosure activities of inactive radioactive, chemically hazardous, and mixed waste sites. It does not include facility decontamination and decommissioning activities; these are included in a parallel program, Environmental Restoration Decontamination and Decommissioning (ERD and D), also managed by DP. The ERRA program was formally established in fiscal year (FY) 1988 at the Hanford Site to characterize and remediate inactive waste sites at Hanford. The objectives, planned implementation activities, and management planning for the ERRA Program are contained in several planning documents. These documents include planning for the national program and for the Hanford Program. This summary describes the major documents and the role and purpose of this Field Office Work Plan (FOWP) within the overall hierarchy of planning documents. 4 refs., 7 figs., 8 tabs

  17. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  18. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  19. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  20. K basins interim remedial action health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  1. Mitigation action plan for 300-FF-1 remedial action

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1996-10-01

    A record of decision was issued (dated July 1996), for remediation of waste sites in the 300-FF-1 Operable Unit in the 300 Area of the Hanford Site. The selected remedies for the 300-FF-1 and 300-FF-5 waste sites include selective excavation and disposal of contaminated soil and debris from the process waste units, excavation and removal of the 618-4 Burial Ground, and institutional controls for groundwater. This mitigation action plan explains how cultural resources will be managed and how revegetation for these remedial activities will be planned

  2. Remedial action and waste disposal project: 100-B/C remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-06-01

    The Readiness Evaluation Plan presents the methodology used to assess the readiness of the 100-B/C Remedial Action Project. The 100 Areas Remedial Action Project will remediate the 100 Areas liquid waste site identified in the Interim Action Record of Decision for the 100- BC-1, 100-DR-1, and 100-HR-1 Operable Units. These sites are located in the 100 Area of the Hanford Site in Richland, Washington

  3. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  4. Tank waste remediation system risk management plan

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  5. Integrated approach to planning the remediation of sites undergoing decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Responding to the needs of Member States, the IAEA has launched an environmental remediation guidance initiative dealing with the issues of radioactive contamination world wide. Its aim is to collate and disseminate information concerning the key issues affecting environmental remediation of contaminated sites. This IAEA initiative includes the development of documents that report on remediation technologies available, best practices, and information and guidance concerning (a) Strategy development for environmental remediation; (b) Characterization and remediation of contaminated sites and contaminated groundwater; (c) Management of waste and residues from mining and milling of uranium and thorium; (d) Decommissioning of buildings; (e) A database for contaminated sites. The subject of this present report concerns the integration of decommissioning and remediation activities at sites undergoing decommissioning and this fits within the first category of guidance documentation (strategy development). This document addresses key strategic planning issues. It is intended to provide practical advice and complement other reports that focus on decommissioning and remediation at nuclear facilities. The document is designed to encourage site remediation activities that take advantage of synergies with decommissioning in order to reduce the duplication of effort by various parties and minimize adverse impacts on human health, the environment, and costs through the transfer of experience and knowledge. To achieve this objective, the document is designed to help Member States gain perspective by summarizing available information about synergies between decommissioning and remediation, strategic planning and project management and planning tools and techniques to support decision making and remediation. Case studies are also presented as to give concrete examples of the theoretical elements elaborated in the documents. This publication investigates the potential synergies

  6. Tank waste remediation system configuration management implementation plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program

  7. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  8. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  9. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites

  10. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  11. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  12. Environmental Control Plan for the 300-FF-1 Operable Unit Remedial Action

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2000-01-01

    This environmental control plan is for the 300-FF-1 Operable Unit Remedial Action Project. The purpose of this plan is to identify environmental requirements for the 300-FF-1 operable unit Remedial Action/Waste Disposal Project

  13. Remedial design work plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Remedial Design Work Plan (RDWP) for the Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee, has been prepared. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative, as stated in the Record of Decision (ROD) was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Thereafter, a public hearing was held to review the proposed plan. Comments were incorporated. The revised selected remedy, per the ROD is to excavate and dispose of floodplain soils contaminated above the remediation goal of 400 parts per million mercury. The approved ROD with this goal will be the basis for remedial design (RD). The RD work plan (RDWP) is composed of six chapters. An introductory chapter describes the purpose and scope of the RDWP, the selected remedy as identified by the ROD; the roles and responsibilities of the RD team members, and the site background information, including site history, contaminants of concern, and site characteristics. Chapter 2 contains the design objectives, RD approach, regulatory considerations during RD, and the design criteria with assumptions. Chapter 3 presents the RD planning process to prepare this RDWP, as well as secondary RD support plans. Chapter 4 describes the scope of the RD activities in more detail and identifies what will be included in the design package. Chapter 5 presents the schedule for performance of the RD activities, identifying key RD milestones. Specific documents used in the preparation of this document are referenced in Chapter 6

  14. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-11-14

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  15. Use of geostatistics for remediation planning to transcend urban political boundaries

    International Nuclear Information System (INIS)

    Milillo, Tammy M.; Sinha, Gaurav; Gardella, Joseph A.

    2012-01-01

    Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial–residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. - Highlights: ► Point samples and property boundaries do not appropriately determine the extent of soil contamination. ► Kriging and co-kriging provide best concentration estimates for mapping soil contamination and refining clean-up sites. ► Maps provide a visual representation of geostatistical results to communities to aid in geostatistical decision making. ► Incorporating community input into the assessment of neighborhoods is good public policy practice. - Using geostatistical interpolation and mapping results to involve the affected community can substantially improve remediation planning and promote its long-term effectiveness.

  16. Savannah River Site plan for performing maintenance in Federal Facility Agreement areas (O and M Plan)

    International Nuclear Information System (INIS)

    Morris, D.R.

    1996-01-01

    The Savannah River Site was placed on the National Priority List (NPL) in December 1989 and became subject to comprehensive remediation in accordance with CERCLA. The FFA, effective August 16, 1993, establishes the requirements for Site investigation and remediation of releases and potential releases of hazardous substances, and interim status corrective action for releases of hazardous wastes or hazardous constituents. It was determined that further direction was needed for the Operating Departments regarding operation and maintenance activities within those areas listed in the FFA. The Plan for Performing Maintenance (O and M Plan) provides this additional direction. Section 4.0 addresses the operation and maintenance activities necessary for continued operation of the facilities in areas identified as RCRA/CERCLA Units or Site Evaluation Areas. Certain types of the O and M activity could be construed as a remedial or removal action. The intent of this Plan is to provide direction for conducting operation and maintenance activities that are not intended to be remedial or removal actions. The Plan identifies the locations of the units and areas, defines intrusive O and M activities, classifies the intrusive activity as either minor or major, and identifies the requirements, approvals, and documentation necessary to perform the activity in a manner that is protective of human health and the environment; and minimizes any potential impact to any future removal and remedial actions

  17. 40 CFR 92.705 - Remedial plan.

    Science.gov (United States)

    2010-07-01

    ... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... adequate supply of parts will be available to initiate the repair campaign, the percentage of the total... intact. (3) The label shall contain: (i) The recall campaign number; and (ii) A code designating the...

  18. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    International Nuclear Information System (INIS)

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE's preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public's role in helping DOE and the EPA to make the final decision on a remedy

  19. Addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation

    International Nuclear Information System (INIS)

    1994-03-01

    This document is an addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation (DOE 1993). The Department of Energy--Oak Ridge Operations (DOE-ORO) is proposing this addendum to the US Envianmental Protection Agency, Region IV (EPA-IV), and the Tennessee Department of Environment and Conservation (TDEC) as a reduced sampling program on the Clinch River arm of Watts Bar Reservoir and on Poplar Creek. DOE-ORO is proposing to maximize the use of existing data and minimize the collection of new data for water, sediment, and biota during Phase 2 of the Clinch River Remedial Investigation. The existing data along with the additional data collected in Phase 2 would be used to perform a baseline risk assessment and make remedial decisions. DOE-ORO considers that the existing data, the additional data collected in Phase 2, and on-site remedial investigation data would be sufficient to understand the nature and extent of the contamination problem in the Clinch River, perform a baseline risk assessment,and make remedial decisions. This addendum is organized in three sections. The first section provides background information and describes a rationale for modifying the Phase 2 Sampling and Analysis Plan. Section 2 presents a summary of the existing data for the Clinch River arm of Watts Bar Reservoir and an evaluation of the sufficiency of this data for a baseline human health and ecological risk assessment. Section 3 describes the revised Phase 2 Sampling and Analysis Plan for surface water, sediment, and biota in the Clinch River OU and in the Poplar Creek OU

  20. Tank waste remediation system programmatic risk management plan

    International Nuclear Information System (INIS)

    Seaver, D.A.

    1995-01-01

    This risk management plan defines the approach to be taken to managing risks in the Tank Waste Remediation System (TWRS) program. It defines the actions to be taken at the overall program level, and the risk management requirements for lower-level projects and other activities. The primary focus of this plan is on ''programmatic'' risks, i.e., risks with respect to the cost, schedule, and technical performance of the program. The plan defines an approach providing managers with the flexibility to manage risks according to their specific needs, yet creates. The consistency needed for effectiveness across the program. The basic risk management approach uses a risk management list for the program, each project, and additional lower-level activities. The risk management list will be regularly reviewed and updated by appropriate level of management. Each list defines key risks, their likelihood and consequences, risk management actions to be taken, responsible individuals, and other management information

  1. Work Plan for the Feasibility Study for Remedial Action at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, C.; Haffenden, R.; Goyette, M.; Martino, L.; Patton, T.; Yuen, C.

    1995-05-01

    The purpose of the feasibility study is to gather sufficient information to develop and evaluate alternative remedial actions to address contamination at J-Field in compliance with the NCP, CERCLA, and SARA. This FS Work Plan summarizes existing environmental data for each AOC and outlines the tasks to be performed to evaluate and select remedial technologies. The tasks to be performed will include (1) developing remedial action objectives and identifying response actions to meet these objectives; (2) identifying and screening remedial action technologies on the basis of effectiveness, implementability, and cost; (3) assembling technologies into comprehensive alternatives for J-Field; (4) evaluating, in detail, each alternative against the nine EPA evaluation criteria and comparing the alternatives to identify their respective strengths and weaknesses; and (5) selecting the preferred alternative for each operable unit.

  2. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    International Nuclear Information System (INIS)

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  3. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  4. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Science.gov (United States)

    2010-07-01

    ... nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL... Regulations § 85.1802 Notice to manufacturer of nonconformity; submission of Remedial Plan. (a) A manufacturer... category of vehicles or engines encompassed by the determination of nonconformity, will give the factual...

  5. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  6. Remedial action work plan for the Colonie site. Revision 1

    International Nuclear Information System (INIS)

    1985-08-01

    The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab

  7. Remedial Action Plan for Expanded Bioventing System Facility 6454

    National Research Council Canada - National Science Library

    1996-01-01

    This draft remedial action plan (RAP) presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils at Site 6454 at Vandenberg Air Force Base (AFB), California...

  8. Proposed plan for interim remedial measures at the 100-KR-1 Operable Unit. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites that include contaminated soils and structures at the 100-KR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this Operable Unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that pose potential threats to human health and the environment. This proposed plan is being issued by the US Environmental Protection Agency (EPA), the lead regulatory agency; the Washington State Department of Ecology (Ecology), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. The EPA, Ecology, and the DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Law.'' This proposed plan is intended to be a fact sheet for public review which briefly describes the remedial alternatives analyzed, identifies a preferred alternative, and summarizes the information relied upon to recommend the preferred alternative

  9. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 4 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy's (DOE) is preparing this ''Hanford Site Comprehensive Land Use Plan'' (Comprehensive Plan), Appendix M to address future land uses for the Hanford Site. The DOE has integrated this land-use planning initiative with the development of the HRA-EIS to facilitate and expedite land-use and remediation decision making, reduce time and cost of remediation, and optimize the usefulness of the planning process. The HRA-EIS is being developed to evaluate the potential environmental impacts associated with remediation, create a remedial baseline for the Environmental Restoration Program, and provide a framework for future uses at the Hanford Site. This Comprehensive Plan identifies current assets and resources related to land-use planning, and provides the analysis and recommendations for future land sues and accompanying restrictions at the Hanford Site over a 50-year period. This Comprehensive Plan relies on the analysis of environmental impacts in the HRA-EIS. The National Environmental Policy Act of 1969 (NEPA) Record of Decision (ROD) issued for the HRA-EIS will be the decision process for finalization and adoption of this Comprehensive Plan. The HRA-EIS and this Comprehensive Plan will provide a basis for remediation decisions to be identified and contained in site- and area-specific Comprehensive Environmental Response, Compensation and Liability Act of 1980 ROD

  10. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training

  11. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  12. Risk communication and trust in decision-maker action: a case study of the Giant Mine Remediation Plan

    Directory of Open Access Journals (Sweden)

    Cynthia G. Jardine

    2013-08-01

    Full Text Available Background. The development and implementation of a remediation plan for the residual arsenic trioxide stored at the former Giant Mine site in the Canadian Northwest Territories has raised important issues related to trust. Social and individual trust of those responsible for making decisions on risks is critically important in community judgements on risk and the acceptability of risk management decisions. Trust is known to be affected by value similarity and confidence in past performance, which serve as interacting sources of cooperation in acting toward a common goal. Objective. To explore the elements of trust associated with the development and implementation of the Giant Mine Remediation Plan. Design. Semi-structured interviews were conducted with eight purposively selected key informants representing both various interested and affected parties and the two government proponents. Results. Five primary issues related to trust were identified by the participants: (1 a historical legacy of mistrust between the community (particularly Aboriginal peoples and government; (2 barriers to building trust with the federal government; (3 limited community input and control over the decision-making process; (4 the conflicted and confounded role of the government agencies being both proponent and regulator, and the resulting need for independent oversight; and (5 distrust of the government to commit to the perpetual care required for the remediation option selected. Conclusions. The dual-mode model of trust and confidence was shown to be a useful framework for understanding the pivotal role of trust in the development of the Giant Mine Remediation Plan. Failure to recognize issues of trust based on value dissimilarity and lack of confidence based on past performance have resulted in a lack of cooperation characterized by delayed remediation and a prolonged and expensive consultation process. Government recognition of the importance of trust to these

  13. Remediation planning and risk assessment support through data fusion technology

    International Nuclear Information System (INIS)

    1996-01-01

    Coleman Research's Data Fusion Modeling (DFM) services gives one the ability to use large geophysical and hydrological data sets, which include direct and indirect measurements, to obtain a unified mathematical model of the geology and hydrology at one's site. Coleman Research (CRC) has adapted highly stable and efficient statistical inversion techniques, developed over the past 20 years, to provide a 3D site model with quantified uncertainty based on state-of-the-art modeling codes. This site model supports risk assessment and remediation planning with enhanced numerical accuracy for tradeoff studies of alternate remediation strategies. Further, DFM supports real time model updates during remediation and site investigation

  14. 40 CFR 92.704 - Notice to manufacturer or remanufacturer of nonconformity; submission of remedial plan.

    Science.gov (United States)

    2010-07-01

    ... remanufacturer of nonconformity; submission of remedial plan. 92.704 Section 92.704 Protection of Environment... nonconformity; submission of remedial plan. (a) The manufacturer or remanufacturer will be notified whenever the... category of locomotives or locomotive engines encompassed by the determination of nonconformity, will give...

  15. Cost and performance of innovative remediation technologies

    International Nuclear Information System (INIS)

    Cummings, J.B.; Kingscott, J.W.; Fiedler, L.D.

    1995-01-01

    The selection and use of more cost-effective remedies requires better access to data on the performance and cost of technologies used in the field. To make data more widely available, the US Environmental Protection Agency is working jointly with member agencies of the Federal Remediation Technologies Round table to publish case studies of full-scale remediation and demonstration projects. EPA, DoD, and DOE have published case studies of cleanup projects primarily consisting of bioremediation, soil vapor extraction, and thermal desorption. Within the limits of this initial data set, the paper evaluates technology performance and cost. In the analysis of cost factors, the paper shows the use of a standardized Work Breakdown Structure (WBS). Use of the WBS will be important in future reporting of completed projects to facilitate cost comparison. The paper notes the limits to normalization and thus cross-site comparison which can be achieved using the WBS. The paper identifies conclusions from initial efforts to compile cost and performance data, highlights the importance of such efforts to the overall remediation effort, and discusses future cost and performance documentation efforts

  16. Protocol for VOC-Arid ID remediation performance characterization

    International Nuclear Information System (INIS)

    Tegner, B.J.; Hassig, N.L.; Last, G.V.

    1994-09-01

    The Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID) is a technology development program sponsored by the US Department of Energy's Office of Technology Development that is targeted to acquire, develop, demonstrate, and deploy new technologies for the remediation of VOC contaminants in the soils and groundwaters of arid DOE sites. Technologies cannot be adequately evaluated unless sufficient site characterization and technology performance data have been collection and analyzed. The responsibility for identifying these data needs has been placed largely on the Principal Investigators (PIs) developing the remediation technology, who usually are not experts in site characterization or in identification of appropriate sampling, analysis, and monitoring techniques to support the field testing. This document provides a protocol for planning the collection of data before, during, and after a test of a new technology. This generic protocol provides the PIs and project managers with a set of steps to follow. The protocol is based on a data collection planning process called the Data Quality Objectives (DQO) process, which was originally developed by the US Environmental Protection Agency and has been expanded by DOE to support site cleanup decisions. The DQO process focuses on the quality and quantity of data required to make decision. Stakeholders to the decisions must negotiate such key inputs to the process as the decision rules that will be used and the acceptable probabilities of making decision errors

  17. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  18. Putting ecology in environmental remediation: The strategic planning process

    International Nuclear Information System (INIS)

    Kapustka, L.A.; Williams, B.A.

    1991-01-01

    Traditional ecological studies have been conducted on many sites impacted by hazardous wastes. Yet in many cases, the information obtained has had limited value in the selection of remediation options. This paper discusses the importance of developing an ecological risk-based strategic plan to fulfill the scientific and social needs demanded in the remediation and restoration of hazardous waste sites. Ecological issues need to be considered seriously at the earliest phases of the scoping process. The decisions regarding selection of assessment endpoints and data quality objectives must be incorporated from the start to insure that cost-efficient and useful measurements are used. It is too late to develop effective ecological studies after the engineering decisions have been made. Strategic planning that integrates ecological concerns will minimize the frustration and the cost associated with clean up of hazardous waste sites and maximize the likelihood of successful site restoration

  19. Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

  20. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  1. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    Pentecost, E.D.; Vinikour, W.S.

    1993-08-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods

  2. DOE responses to Ecology review comments for ''Sampling and analysis plans for the 100-D Ponds voluntary remediation project''

    International Nuclear Information System (INIS)

    1996-01-01

    The Sampling and Analysis Plan describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds at the Hanford Reservation. This report contains responses by the US Department of Energy to Ecology review for ''Sampling and Analysis Plan for the 100-D Ponds Voluntary Remediation Project.''

  3. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  4. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  5. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  6. Remedial investigation/feasibility study work plan for the 300-FF-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1990-03-01

    Over 1,400 waste facilities have been identified on the Hanford Site. Most of the waste facilities are located within geographic areas on the Hanford Site that are referred to as the 100, 200, 300, 400, and 1100 areas. The purpose of this work plan is to document the project scoping process and to outline all remedial investigation/feasibility study (RI/FS) activities, to determine the nature and extent of the threat presented by releases of hazardous substances from the operable unit, and to evaluate proposed remedies for such releases. The goal of the 300-FF-1 remedial investigation (RI) is to provide sufficient information needed to conduct the feasibility study (FS), by determining the nature and extent of the threat to public health and the environment posed by releases of hazardous substances from 300-FF-1, and the performance of specific remedial technologies. 62 refs., 28 figs., 48 tabs

  7. Remedial Investigation Work Plan for J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Haffenden, R.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The purpose of an RI/FS is to characterize the nature and extent of the risks posed by contaminants present at a site and to develop and evaluate options for remedial actions. The overall objective of the RI is to provide a comprehensive evaluation of site conditions, types and quantities of contaminants present, release mechanisms and migration pathways, target populations, and risks to human health and the environment. The information developed during the RI provides the basis for the design and implementation of remedial actions during the FS. The purpose of this RI Work Plan is to define the tasks that will direct the remedial investigation of the J-Field site at APG.

  8. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites at the 100-HR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this operable unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that historically received radioactive liquid waste discharges that pose a potential threat to human health and the environment. This proposed plan is being issued by the Washington State Department of Ecology (Ecology), the lead regulatory agency; the US Environmental Protection Agency (EPA), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. Ecology, EPA, and DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Program.'' The proposed plan is intended to be a fact sheet for public review that (1) briefly describes the remedial alternatives analyzed; (2) proposes a preferred alternative; (3) summarizes the information relied upon to recommend the preferred alternative; and (4) provides a basis for an interim action record of decision (ROD). The preferred alternative presented in this proposed plan is removal, treatment (as appropriate), and disposal of contaminated soil and associated structures. Treatment will be conducted if there is cost benefit

  9. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Reimbursement of costs incurred in accordance with a plan... Procedures § 765.30 Reimbursement of costs incurred in accordance with a plan for subsequent remedial action. (a) This section establishes procedures governing reimbursements of costs of remedial action incurred...

  10. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues and tank shell. This strategy is discussed in detail in this report

  11. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    International Nuclear Information System (INIS)

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document

  12. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  13. 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program

    International Nuclear Information System (INIS)

    Knepp, A. J.

    1999-01-01

    The 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program (Implementation Plan) addresses approximately 700 soil waste sites (and associated structures such as pipelines) resulting from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs,burial grounds) in the 200 Areas and assigned to the Environmental Restoration Program. The Implementation Plan outlines the framework for implementing assessment activities in the 200 Areas to ensure consistency in documentation, level of characterization, and decision making. The Implementation Plan also consolidates background information and other typical work plan materials, to serve as a single referenceable source for this type of information

  14. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium- 99 T c -Nitrate multi-contaminant IRM plume identified beneath U Plant

  15. Master plan for remediation of the Sillamaee tailings pond and technical design project

    International Nuclear Information System (INIS)

    Kaasik, T.

    2000-01-01

    Remediation of the Sillamaee radioactive tailings pond is a priority in the Estonian National Environmental Plan. The Sillamaee plant has processed metal ores by hydrometallurgical methods since 1946. Processing continued until 1990, but in the 1970s, production of rare earths and rare metals was introduced and continues today at a smaller scale. The tailings pond contains residues from these operations. The environmental problems associated with the tailings pond are the stability of the dam and the release of contaminants. In order to deal with these two issues effectively, a master plan was drawn up. The master plan covers the period from 1997 to 2008 and was compiled with the cooperation of the Silmet Group and the Sillamaee International Expert Reference Group (SIERG). The master plan sets up a systematic approach for the overall tailings pond remediation, including drying its interior, reshaping and covering the surface, minimizing water flow through the tailings, and ensuring long-term dam stability

  16. Tank waste remediation system nuclear criticality safety inspection and assessment plan

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''

  17. Remediation of the low-level radioactive waste tailing pond at Kowary, Poland

    International Nuclear Information System (INIS)

    Goerner, R.; Hartsch, J.; Koszela, J.; Krzyskow, A.; Machniewicz, B.; Sennewald, R.; Sowa, J.

    2002-03-01

    The last remaining uranium mining tailing pond in Poland, situated at Kowary, was the subject of the Kowary Tailing Pond Remediation Programme financed by Polish public bodies (70%) and by the European Commission (30%) within the framework of its programme of co-operation on radioactive waste issues with candidate countries. The EC-part of the project comprised investigations of the site, project management duties and large-scale civil works following the initial remediation planning performed by the Wroclaw University of Technology (WUT) in 1998-2000. The EC-part was contracted to G.E.O.S. Freiberg Ingenieurgesellschaft mbH following an Open Call for Tender launched by the European Commission in 1999. The following general tasks were performed in close co-operation with WUT, with the construction works subcontracted to local companies, as proposed in the Terms of Reference (TOR) of the EC-part: review of General Remediation Plan (GRP), technical design of the pond cover, construction work: internal drainage system, pond cover and site reclamation. From the information in the TOR, the following aims of remediation were defined: minimise the detrimental impact of the tailing pond on the environment, provide long-term stability of the slopes surrounding the pond, ensure the remediated site is in harmony with the surrounding natural scenery. Based on the experience gathered in similar projects, which had been running under PHARE-MCE or which belonged to the WISMUT-remediation programme in Germany, cost efficient remediation solutions were designed in close co-operation with all involved parties. They were delineated in the detailed planning documents approved in the overall remediation programme managed by WUT. The planned remediation works were prepared and performed successfully according to Polish law and in agreement with the competent local authorities. The aims of remediation were met. However, some additional tasks have been recommended in zones adjacent to the

  18. Challenges in developing a remediation plan, procurement plan and long term monitoring program for the former port radium uranium mine that meets the needs of the community of Deline - 59333

    International Nuclear Information System (INIS)

    Ward, Julie

    2012-01-01

    Document available in abstract form only. Full text of publication follows: After a five year political process to investigate historic and present day concerns about the former Port Radium Uranium Mine, the site has being remediated to present day standards. Prior to remediation Indian and Northern Affairs Canada (INAC) worked with Deline First Nations to develop a Remediation Plan that was suitable to the known environmental conditions and identified risks on site. Prior to remediation INAC obtained a land use permit and Waste Nuclear Substance License for the work that was carried out and for future storage of radioactive wastes. After the remediation plan was complete a procurement plan was developed for the work which followed Federal contracting polices, met the intent of the Sahtu Dene and Metis Comprehensive Land Claim Agreement and abided by INAC's commitment under the Canada Deline Uranium Table to maximize local participation and subcontracting opportunities. Lastly, INAC worked with Deline to develop a monitoring plan in hopes to begin to restore their confidence in their environment while monitoring engineered remedial structures and residual risks on site. (author)

  19. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    International Nuclear Information System (INIS)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z.F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-01

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, 'Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,' submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to (1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, (2) study the sediment air permeability influence on injection pressure, (3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, (4) test amendment distance (and mass) delivery by foam from the injection point, (5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and (6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  20. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  1. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. These tanks are defined as Category D tanks because they are existing tank systems without secondary containment that are removed from service. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues (i.e., contents after tank has been emptied) and tank shell. This strategy is discussed in detail in this report

  2. Standard review plan for the review of environmental restoration remedial action quality assurance program plans

    International Nuclear Information System (INIS)

    1991-09-01

    This plan establishes both the scope of the review and the acceptance criteria to be utilized for the review of Quality Assurance Program Plans (QAPPs) developed in accordance with the requirements of DOE/RL-90-28. DOE/RL-90-28, the Environmental Restoration Remedial Action Quality Assurance Requirements Document (QARD) defines all quality assurance (QA) requirements governing activities that affect the quality of the Environmental Restoration Remedial Action (ERRA) program at the Hanford Site. These requirements are defined in three parts, Part 1 of Quality Management and Administration tasks, Part 2 for Environmental Data Operations, and Part 3 of the Design and Construction of items, systems, and facilities. The purpose of this document is to identify the scope of the review by the DOE Field Office, Richland staff, and establish the acceptance criteria (Parts 1, 2, and 3) that the DOE Field Office, Richland staff will utilize to evaluate the participant QAPPs. Use of the standard review plan will (1) help ensure that participant QAPPs contain the information required by DOE/RL-90-28, (2) aid program participant and DOE Field Office, Richland staff is ensuring that the information describing the participant's QAPP is complete, (3) help persons regarding DOE/RL- 90-28 to locate information, and (4) contribute to decreasing the time needed for the review process. In addition, the Standard Review Plan (SRP) ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate compliance of participant quality programs against DOE/RL-90-28

  3. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    International Nuclear Information System (INIS)

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado

  4. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  5. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    International Nuclear Information System (INIS)

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado

  6. Integrated planning and spatial evaluation of megasite remediation and reuse options

    Science.gov (United States)

    Schädler, Sebastian; Morio, Maximilian; Bartke, Stephan; Finkel, Michael

    2012-01-01

    Redevelopment of large contaminated brownfields (megasites) is often hampered by a lack of communication and harmonization among diverse stakeholders with potentially conflicting interests. Decision support is required to provide integrative yet transparent evaluation of often complex spatial information to stakeholders with different areas of expertise. It is considered crucial for successful redevelopment to identify a shared vision of how the respective contaminated site could be remediated and redeveloped. We describe a framework of assessment methods and models that analyzes and visualizes site- and land use-specific spatial information at the screening level, with the aim to support the derivation of recommendable land use layouts and to initiate further and more detailed planning. The framework integrates a GIS-based identification of areas to be remediated, an estimation of associated clean-up costs, a spatially explicit market value appraisal, and an assessment of the planned future land use's contribution to sustainable urban and regional development. Case study results show that derived options are potentially favorable in both a sustainability and an economic sense and that iterative re-planning is facilitated by the evaluation and visualization of economic, ecological and socio-economic aspects. The framework supports an efficient early judgment about whether and how abandoned land may be assigned a sustainable and marketable land use.

  7. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-07-01

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases

  8. Remediation plan for contaminated areas by naturally occurring radioactivity materials in Syrian petroleum company oil fields

    International Nuclear Information System (INIS)

    Shwekani, R.; Al-Masri, M.S.; Awad, I.

    2005-08-01

    The present report contains a detailed plan for remediation of areas contaminated with naturally occurring radioactive materials in the Syrian petroleum company oil fields. This plan includes a description of the contaminated areas and the procedures that will be followed before and during the execution of the project in addition to the final radiation surveys according to the Syrian regulations. In addition, responsibilities of the main personnel who will carry out the work have been defined and the future monitoring program of the remediated areas was determined. (author)

  9. Remediation plan for contaminated areas by naturally occurring radioactivity materials in Syrian Petroleum Company oil fields

    International Nuclear Information System (INIS)

    Shweikani, R.; Al-Masri, M. S.; Awad, I.

    2006-01-01

    The present report contains a detailed plan for remediation of areas contaminated with naturally occurring radioactive materials in the syrian Petroleum Company Oil fields. This plan includes a description of the contaminated areas and the procedures that will be followed before and during the execution of the project in addition to the final radiation surveys according to the Syrian regulations. In addition, responsibilities of the main personnel who will carry out the work have been defined and the future monitoring program of the remediated areas was determined. (author)

  10. Data Base Management Plan for the remedial investigation of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    The remedial investigation (RI) for Waste Area Grouping (WAG) 5 will involve gathering, verifying, analyzing, reporting, and archiving numerous types of field and analytical data. Field investigations will produce data documenting surficial and geophysical surveys, geologic and hydrogeologic logs, aquifer tests, water level measurements, geophysical logs, and stream and seepage flow measurements. Laboratory analyses will be performed on soil, surface water, groundwater, and sediment samples collected during field investigations. All data resulting from these activities will be contained in the Bechtel RI/feasibility study (FS) project data base and will be managed in accordance with the RI/FS Data Base Management Plan and this WAG-specific plan. This Data Base Management Plan describes the gathering, verifying, analyzing, reporting, and archiving of data generated during Bechtel's remedial investigation of Waste Area Grouping 5. This investigation will produce data documenting surficial surveys, geophysical surveys, geologic and hydrologic logs, aquifer tests, water level measurements, geophysical logs, and stream and seep flow measurements. Also, laboratory analyses will be performed on soil, surface water, groundwater, and sediment samples. The 1500 series of Bechtel project procedures, ''Data Base Management,'' and the project Data Base Management Plan will be used to ensure that data are handled properly

  11. Remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 groundwater operable units' interim action

    International Nuclear Information System (INIS)

    1996-09-01

    This document is a combination remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 Operable Units (located on the Hanford Site in Richland, Washington) interim action. The interim actions described in this document represent the first of an ongoing program to address groundwater contamination in each operable unit. This document describes the design basis, provides a description of the interim action, and identifies how they will meet the requirements set forth in the interim action Record of Decision

  12. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    International Nuclear Information System (INIS)

    Matthews, M.L.; Nagel, J.

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho

  14. Remedial training for the radiology resident: a template for optimization of the learning plan.

    Science.gov (United States)

    Mar, Colin; Chang, Silvia; Forster, Bruce

    2015-02-01

    All radiology residency programs should strive for the early identification of individuals in need of remedial training and have an approach ready to address this situation. This article provides a template for a step-by-step approach which is team based. It includes definition of the learning or performance issues, creation of suitable learning objectives and learning plan, facilitation of feedback and assessment, and definition of outcomes. Using such a template will assist the resident in returning to the path toward a safe and competent radiologist. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Overview criteria for the environmental, safety and health evaluation of remedial action project planning

    International Nuclear Information System (INIS)

    Stenner, R.D.; Denham, D.H.

    1984-10-01

    Overview criteria (i.e., subject areas requiring review) for evaluating remedial action project plans with respect to environmental, safety and health issues were developed as part of a Department of Energy, Office of Operational Safety, technical support project. Nineteen elements were identified as criteria that should be addressed during the planning process of a remedial action (decontamination and decommissioning) project. The scope was interpreted broadly enough to include such environmental, safety and health issues as public image, legal obligation and quality assurance, as well as more obvious concerns such as those involving the direct protection of public and worker health. The nineteen elements are discussed along with suggested ways to use a data management software system to organize and report results

  16. Time to Loosen the Apron Strings: Cohort-based Evaluation of a Learner-driven Remediation Model at One Medical School.

    Science.gov (United States)

    Bierer, S Beth; Dannefer, Elaine F; Tetzlaff, John E

    2015-09-01

    Remediation in the era of competency-based assessment demands a model that empowers students to improve performance. To examine a remediation model where students, rather than faculty, develop remedial plans to improve performance. Private medical school, 177 medical students. A promotion committee uses student-generated portfolios and faculty referrals to identify struggling students, and has them develop formal remediation plans with personal reflections, improvement strategies, and performance evidence. Students submit reports to document progress until formally released from remediation by the promotion committee. Participants included 177 students from six classes (2009-2014). Twenty-six were placed in remediation, with more referrals occurring during Years 1 or 2 (n = 20, 76 %). Unprofessional behavior represented the most common reason for referral in Years 3-5. Remedial students did not differ from classmates (n = 151) on baseline characteristics (Age, Gender, US citizenship, MCAT) or willingness to recommend their medical school to future students (p < 0.05). Two remedial students did not graduate and three did not pass USLME licensure exams on first attempt. Most remedial students (92 %) generated appropriate plans to address performance deficits. Students can successfully design remedial interventions. This learner-driven remediation model promotes greater autonomy and reinforces self-regulated learning.

  17. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  18. Proposed plan for remedial action at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    1992-11-01

    This proposed plan addresses the management of contaminated material at the chemical plant area of the Weldon Spring site and nearby properties in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry, both of which are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced at the chemical plant in the 1940s, and uranium and thorium materials were processed in the 1950s and 1960s. Various liquid, sludge, and solid wastes were disposed of at the Chemical plant area and in the quarry during that time. The Weldon Spring site is listed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The proposed plan is organized as follows: Chapter 2 presents the history and setting of the Weldon Spring site and briefly describes the contaminated material at the chemical plant area. Chapter 3 defines the scope of the remedial action and its role in the Weldon Spring Site Remedial Action Project. Chapter 4 summarizes the risks associated with possible exposures to site contaminants in the absence of remedial action and identifies proposed cleanup levels for soil. Chapter 5 briefly describes the final alternatives considered for the remedial action. Chapter 6 summarizes the evaluation of final alternatives for managing the contaminated material, identifies the currently preferred alternative, and discusses a possible contingency remedy to provide treatment flexibility. Chapter 7 presents the community's role in this action. Chapter 8 is a list of the references cited in this proposed plan

  19. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  1. Remedial design and remedial action guidance for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-10-01

    The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ''Data Gaps in Remedial Design'' (Appendix C)

  2. Project licensing plan for UMTRA [Uranium Mill Tailings Remedial Action] sites

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process (''Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs

  3. Performance Improvement in 503A Compounding Pharmacies: A PLAN FOR ASSESSMENT, IMPLEMENTATION, AND SUSTAINED SUCCESS.

    Science.gov (United States)

    Pritchett, Jon; Mixon, William; O'Connell, Kevin

    2016-01-01

    Performance improvement is the continual effort to objectively assess current performance and then restructure the practices that support it to more closely achieve desired performance. A plan for performance improvement, unlike other approaches to correcting problems in job fulfillment, is a systematic method used to first find the root causes of areas of concern and then apply corrections to remedy those deficits. Implementing a performance improvement plan that can be easily adapted to ensure compliance with evolving and increasingly complex state and federal regulations is crucial to a successful compounding practice. In this article, we discuss the need for performance improvement in 503A compounding pharmacies, list the steps necessary to develop such a plan, and present three case reports of performance improvement plans in differing compounding settings.

  4. Interim remedial action work plan for the cesium plots at Waste Area Grouping 13 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    This remedial action work plan (RAWP) is issued under the Federal Facility Agreement to provide a basic approach for implementing the interim remedial action (IRA) described in Interim Record of Decision for the Oak Ridge National Laboratory Waste Area Grouping 13 Cesium Plots, Oak Ridge, Tennessee. This RAWP summarizes the interim record of decision (IROD) requirements and establishes the strategy for the implementation of the field activities. As documented in the IROD document, the primary goal of this action is to reduce the risk to human health and the environment resulting from current elevated levels of gamma radiation on the site and at areas accessible to the public adjacent to the site. The major steps of this IRA are to: Excavate cesium-contaminated soil; place the excavated soils in containers and transport to Waste Area Grouping (WAG) 6; and backfill excavated plots with clean fill materials. The actual remedial action will be performed by Department of Energy prime contractor, MK-Ferguson of Oak Ridge Company. Remediation of the cesium plots will require approximately 60 days to complete. During this time, all activities will be performed according to this RAWP and the applicable specifications, plans, and procedures referred to in this document. The IRA on WAG 13 will prevent a known source of cesium-contaminated soil from producing elevated levels of gamma radiation in areas accessible to the public, eliminate sources of contamination to the environment, and reduce the risks associated with surveillance and maintenance of the WAG 13 site

  5. 200-UP-1 groundwater remedial design/remedial action work plan. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This 200-UP-1 remedial design report presents the objective and rationale developed for the design and implementation of the selected interim remedial measure for the 200-UP-1 Operable Unit, located in the 200 West Area of the Hanford Site

  6. Interim remedial measures proposed plan for the 200-ZP-1 Operable Unit, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Parker, D.L.

    1993-12-01

    The purpose of this interim remedial measures (IRM) proposed plan is to present and solicit public comments on the IRM planned for the 200-ZP-1 Operable Unit at the Hanford Site in Washington state. The 200-ZP-1 is one of two operable units that envelop the groundwater beneath the 200 West Area of the Hanford Site

  7. Adaptive remediation using portable treatment units

    International Nuclear Information System (INIS)

    Bahowick, S.; Folsom, E.; Pico, T.

    1996-01-01

    Lawrence Livermore National Laboratory (LLNL) is using adaptive remediation to optimize their environmental restoration strategy. Adaptive remediation uses hydrostratigraphic analysis to gain a better understanding of the subsurface characteristics, hydraulic tests to optimize contaminant transport models, and Portable Treatment Units (PTUs) as an alternative to fixed facilities. Hydrostratigraphic analysis is an optimization tool that improves the ability to identify and target contaminant migration pathways, identify the relationship between plumes and source areas, and better define hydraulic capture areas. Hydraulic tests, performed with PTUs, provide valuable data about subsurface characteristics. As clean up progresses, PTUs can be moved to the appropriate extraction wells to optimize contaminant mass removal. PTUs can also be placed to support innovative treatment technologies such as steam injection and microbial filters. Construction of PTUs will reduce by one-half the capital costs of building the rest of the fixed treatment system planned in the Record of Decision. Regulatory agencies are receptive to the use of the PTUs because the same treatment technology is being used and the PTUs will be able to clean up the plume cheaper and faster. Using adaptive remediation, LLNL is more effectively implementing remediation plans, improving cleanup time, and reducing project costs

  8. The Rush to Remediate: Long Term Performance Favors Passive Systems at SRS

    International Nuclear Information System (INIS)

    Hoffman, D.; Cauthen, K.; Beul, R. R.

    2003-01-01

    The purpose of this paper is to describe the long-term performance of groundwater remediation systems at SRS and compare active versus passive systems. The presentation will focus on the limited effectiveness of active pump and treat systems and share the experience with more passive and natural systems such as soil vapor extraction, barometric pumping, bioremediation, and phytoremediation. Three remediation projects are presented. In each case the waste source is capped with clay or synthetic barriers; however, extensive groundwater contamination remains. The first project features the cleanup of the largest plume in the United States. The second project entails solvent and vinyl chloride remediation of groundwater beneath a hazardous waste landfill. The third project discusses tritium containment from a 160-acre radioactive waste disposal area. Special emphasis is placed on performance data from alternate technology cleanup. The goals are to share remediation data, successes and lessons learned, while making a case for passive systems use in groundwater remediation

  9. Tank waste remediation system multi-year work plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging open-quotes out sourcingclose quotes of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders

  10. Tank waste remediation system multi-year work plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  12. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophonoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  13. ReSCA: decision support tool for remediation planning after the Chernobyl accident.

    Science.gov (United States)

    Ulanovsky, A; Jacob, P; Fesenko, S; Bogdevitch, I; Kashparov, V; Sanzharova, N

    2011-03-01

    Radioactive contamination of the environment following the Chernobyl accident still provide a substantial impact on the population of affected territories in Belarus, Russia, and Ukraine. Reduction of population exposure can be achieved by performing remediation activities in these areas. Resulting from the IAEA Technical Co-operation Projects with these countries, the program ReSCA (Remediation Strategies after the Chernobyl Accident) has been developed to provide assistance to decision makers and to facilitate a selection of an optimized remediation strategy in rural settlements. The paper provides in-depth description of the program, its algorithm, and structure. © Springer-Verlag 2010

  14. Remedial Action Plan for Expanded Bioventing System Buildings 2034/2035, Fairchild Air Force Base, Washington

    National Research Council Canada - National Science Library

    1996-01-01

    This remedial action plan (RAP) presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils in the vicinity of Buildings 2034 and 2035 at Fairchild Air Force Base (AFB), Washington...

  15. Investigation of Remedial Education Course Scores as a Predictor of Introduction-Level Course Performances

    Science.gov (United States)

    Ulmer, Ward; Means, Darris R.; Cawthon, Tony W.; Kristensen, Sheryl A.

    2016-01-01

    This study explores whether performance in remedial English and remedial math is a predictor of success in a college-level introduction English or college-level math class; and whether demographic variables increase the likelihood of remedial English and remedial math as a predictor of success in a college-level introduction English or…

  16. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    International Nuclear Information System (INIS)

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references

  17. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  18. Learning to improve path planning performance

    International Nuclear Information System (INIS)

    Chen, Pang C.

    1995-04-01

    In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful

  19. Engineering evaluation/conceptual plan for the 200-UP-1 groundwater operable unit interim remedial measure

    International Nuclear Information System (INIS)

    Myers, D.A.; Swanson, L.C.; Weeks, R.S.; Giacinto, J.; Gustafson, F.W.; Ford, B.H.; Wittreich, C.; Parnell, S.; Green, J.

    1995-04-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (ERM) to address a uranium and technetium-99 groundwater plume and an associated nitrate contamination plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need and potentially achievable objectives and goals for an IRM and evaluates alternatives to contain elevated concentrations of uranium, technetium-99, nitrate, and carbon tetrachloride and to obtain information necessary to develop final remedial actions for the operable unit

  20. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 2 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This appendix discusses the scope of actions addressed in the Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. To address the purpose and need for agency action identified in Chapter 2.0 of the HRA-EIS, the scope includes an evaluation of the potential environmental impacts associated with the remedial actions to be conducted by the US Department of Energy (DOE) under the provisions of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1989). These remedial actions would bring the Hanford Site into compliance with the applicable requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Resource Conservation and Recovery Act of 1976 (RCRA). The DOE program responsible for conducting remedial actions at the Hanford Site is referred to as the Richland Environmental Restoration (ER) Project. The Richland ER Project encompasses the following projects: radiation area remedial actions and underground storage tanks (UST); RCRA closures; single-shell tank (SST) closures; past-practice waste site operable unit (source and groundwater) remedial actions; surplus facility decommissioning; and waste storage and disposal facilities

  1. Tank 241-SY-101 surface level rise remediation test and evaluation plan for transfer system

    International Nuclear Information System (INIS)

    BAUER, R.E.

    1999-01-01

    The purpose of this testing and evaluation plan (TEP) is to provide the high level guidance on testing requirements for ensuring that the equipment and systems to be implemented for remediation of the SY-101 waste level rise USQ are effective

  2. Initial Remedial Action Plan for Expanded Bioventing System BX Service Station, Patrick Air Force Base, Florida

    National Research Council Canada - National Science Library

    1995-01-01

    This initial remedial action plan presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils at the BX Service Station at Patrick Air Force Base (AFB), Florida...

  3. Subsurface Interim Measures/Interim Remedial Action Plan and Decision Document for the 903 Pad, Mound, and East Trenches Areas (Operable Unit No. 2)

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy (DOE) is pursuing an Interim Measure/Interim Remedial Action (IM/IRA) at the 903 Pad, Mound, and East Trenches Areas (Operable Unit No. 2) at the Rocky Flats Plant (RFP). This MIRA is to be conducted to provide information that will aid in the selection and design of final remedial actions at OU2 that will address removal of suspected free-phase volatile organic compound (VOC) contamination. The Plan involves investigating the removal of residual free-phase VOCs by in situ vacuum-enhanced vapor extraction technology at 3 suspected VOC source areas within OU2. VOC-contaminated vapors extracted from the subsurface would be treated by granular activated carbon (GAC) adsorption and discharged. The Plan also includes water table depression, when applicable at the test sites, to investigate the performance of vapor extraction technology in the saturated zone. The Plan provides for treatment of any contaminated ground water recovered during the IM/IRA at existing RFP treatment facilities. The proposed MVIRA Plan is presented in the document entitled ''Proposed Subsurface Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document, 903 Pad, Mound, and East Trenches Areas, Operable Unit No. 2, '' dated 20 March 1992. Information concerning the proposed Subsurface IM/IRA was presented during a DOE Quarterly Review meeting held on 07 April 1992 and a public meeting held on 07 May 1992, at the Marriott Hotel in Golden, Colorado. The Responsiveness Summary presents DOE's response to all comments received at the public meeting, as well as those mailed to date to DOE during the public comment period

  4. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  5. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  6. Remediation of the Maxey Flats Site

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets

  7. Field Sampling Plan for the Operable Units 6-05 and 10-04 Remedial Action, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    R. Wells

    2006-11-14

    This Field Sampling Plan outlines the collection and analysis of samples in support of Phase IV of the Waste Area Group 10, Operable Units 6-05 and 10-04 remedial action. Phase IV addresses the remedial actions to areas with the potential for unexploded ordnance at the Idaho National Laboratory Site. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. The remedial action consists of removal and disposal of ordnance by high-order detonation, followed by sampling to determine the extent, if any, of soil that might have been contaminated by the detonation activities associated with the disposal of ordnance during the Phase IV activities and explosives during the Phase II activities.

  8. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC)

  9. Test plan guidance for transuranic-contaminated arid landfill remedial technology development

    International Nuclear Information System (INIS)

    Evans, J.; Shaw, P.

    1995-05-01

    This document provides guidance for preparing plans to test or demonstrate buried waste assessment or remediation technologies supported by the U.S. Department of Energy's Landfill Stabilization Focus Area, Transuranic-Contaminated Arid Landfill Product Line. This document also provides guidance for development of data quality objectives, along with the necessary data to meet the project objectives. The purpose is to ensure that useful data of known quality are collected to support conclusions associated with the designated demonstration or test. A properly prepared test plan will integrate specific and appropriate objectives with needed measurements to ensure data will reflect the Department of Energy Office of Technology Development's mission, be consistent with Landfill Stabilization Focus Area test goals, and be useful for the Department of Energy Environmental Restoration and Waste Management programs and other potential partners (e.g., commercial concerns). The test plan becomes the planning and working document for the demonstration or test to be conducted ensuring procedures are followed that will allow data of sufficient quality to be collected for comparison and evaluation

  10. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    International Nuclear Information System (INIS)

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies

  11. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  12. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado

    International Nuclear Information System (INIS)

    1990-02-01

    This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents

  13. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  14. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    International Nuclear Information System (INIS)

    Teets, D.B.; Guest, P.R.; Blicker, B.R.

    1996-01-01

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  15. Process Control Plan for Tank 241-SY-101 Surface Level Rise Remediation

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    1999-01-01

    The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within the last year or so, the waste in this tank has exhibited unexpected behavior (Rassat et al. 1999) in the form of rapidly increasing crust growth. This growth has been brought about by a rapidly increasing rate of gas entrapment within the crust. It has been conceived that the lack of crust agitation beginning upon the advent of mixer pump operations may have set-up a more consolidated, gas impermeable barrier when compared to a crust regularly broken up by the prior buoyant displacement events within the tank. As a result, a series of level-growth remediation activities have been developed for tank 241-SY-101. The initial activities are also known as near-term crust mitigation. The first activity of near-term mitigation is to perform the small transfer of convective waste from tank 241-SY-101 into tank 241-SY-102. A 100 kgal transfer represents about a 10% volume reduction allowing a 10% water in-tank dilution. Current thinking holds that this should be enough to dissolve nitrite solids in the crust and perhaps largely eliminate gas retention problem in the crust (Raymond 1999). Additional mitigation activities are also planned on less constrained schedules. The net affect of the small transfer and follow-on mitigation activities for tank 241-SY-101 is strongly believed to be the remediation of tank 241-SY-101 as a flammable gas safety concern. The process for remediating the tank will require two or more transfer/dilution cycles. In-tank dilution will begin shortly after the initial transfer and the total dilution required to reach the final state is estimated to be between 250 to 400K gallons. The final state of the waste will not require any active measures to safely store the waste and operation of the mixer pump will no longer be necessary. The remediation activities are centered on a purpose

  16. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site

  17. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104. Revision 1

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophenoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  18. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  19. Data base management plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-11-01

    This Data Base Management (DBM) Plan has been prepared for use by Bechtel National, Inc. (Bechtel) and its subcontractors in the performance of the Oak Ridge National Laboratory (ORNL) Remedial Investigation/Feasibility Study (RI/FS) program activities. The RI/FS program is being performed under subcontract to Martin Marietta Energy Systems, Inc. (Energy Systems), the contractor operating ORNL for the Department of Energy. This DBM Plan defines the procedures and protocol to be followed in developing and maintaining the data base used by Bechtel and its subcontractors for RI/FS activities at ORNL; describes the management controls, policies, and guidelines to be followed; and identifies responsible positions and their Energy Systems functions. The Bechtel RI/FS data base will be compatible with the Oak Ridge Environmental Information System and will include data obtained from field measurements and laboratory and engineering analyses. Personnel health and safety information, document control, and project management data will also be maintained as part of the data base. The computerized data management system is being used to organize the data according to application and is capable of treating data from any given site as a variable entity. The procedures required to implement the DBM Plan are cross-referenced to specific sections of the plan

  20. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  1. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan)

  2. Engineering evaluation/conceptual plan for the 200-UP-1 Groundwater Operable Unit interim remedial measure. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (IRM) to address a uranium and technetium-99 groundwater plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need for an IRM and its potentially achievable objectives and goals. The report also evaluates alternatives to contain elevated concentrations of uranium and technetium-99 and to obtain information necessary to develop final remedial actions for the operable unit

  3. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  4. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    International Nuclear Information System (INIS)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  5. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    International Nuclear Information System (INIS)

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy

  6. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  7. A qualitative study of medical educators' perspectives on remediation: Adopting a holistic approach to struggling residents.

    Science.gov (United States)

    Krzyzaniak, Sara M; Wolf, Stephen J; Byyny, Richard; Barker, Lisa; Kaplan, Bonnie; Wall, Stephen; Guerrasio, Jeannette

    2017-09-01

    During residency, some trainees require the identification and remediation of deficiencies to achieve the knowledge, skills and attitudes necessary for independent practice. Given the limited published frameworks for remediation, we characterize remediation from the perspective of educators and propose a holistic framework to guide the approach to remediation. We conducted semistructured focus groups to: explore methods for identifying struggling residents; categorize common domains of struggle; describe personal factors that contribute to difficulties; define remediation interventions and understand what constitutes successful completion. Data were analyzed through conventional content analysis. Nineteen physicians across multiple specialties and institutions participated in seven focus groups. Thirteen categories emerged around remediation. Some themes addressed practical components of remediation, while others reflected barriers to the process and the impact of remediation on the resident and program. The themes were used to inform development of a novel holistic framework for remediation. The approach to remediation requires comprehensive identification of individual factors impacting performance. The intervention should not only include a tailored learning plan but also address confounders that impact likelihood of remediation success. Our holistic framework intends to guide educators creating remediation plans to ensure all domains are addressed.

  8. Remediation of problematic residents--A national survey.

    Science.gov (United States)

    Bhatti, Nasir I; Ahmed, Aadil; Stewart, Michael G; Miller, Robert H; Choi, Sukgi S

    2016-04-01

    Despite careful selection processes, residency programs face the challenge of training residents who fall below minimal performance standards. Poor performance of a resident can endanger both patient safety and the reputation of the residency program. It is important, therefore, for a program to identify such residents and implement strategies for their successful remediation. The purpose of our study was to gather information on evaluation and remediation strategies employed by different otolaryngology programs. Cross-sectional survey. We conducted a national survey, sending a questionnaire to the program directors of 106 otolaryngology residency programs. We collected information on demographics of the program, identification of problematic residents, and remediation strategies. The response rate was 74.5%, with a 2% cumulative incidence of problematic residents in otolaryngology programs during the past 10 years. The most frequently reported deficiencies of problematic residents were unprofessional behavior with colleagues/staff (38%), insufficient medical knowledge (37%), and poor clinical judgment (34%). Personal or professional stress was the most frequently identified underlying problem (70.5%). Remediation efforts included general counseling (78%), frequent feedback sessions (73%), assignment of a mentor (58%), and extra didactics (47%). These remediation efforts failed to produce improvement in 23% of the identified residents, ultimately leading to their dismissal. The apparent deficiencies, underlying causes, and remediation strategies vary among otolaryngology residency programs. Based on the results of this survey, we offer recommendations for the early identification of problematic residents and a standardized remediation plan. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Documenting cost and performance for environmental remediation projects: Department of Energy Office of Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-08

    The purpose of this DOE guide is to facilitate the use of consistent procedures to document cost and performance information for projects involving the remediation of media contaminated with hazardous and radioactive wastes. It provides remedial action project managers with a standardized set of data to document completed remediation projects. Standardized reporting of data will broaden the utility of the information, increase confidence in the effectiveness of future remedial technologies, and enhance the organization, storage and retrieval of relevant information for future cleanup projects. The foundation for this guide was laid down by the Federal Remediation Technologies Roundtable (FRTR) in their publication, Guide to Documenting Cost and Performance for Remediation Projects, EPA-542-B- 95-002. Member agencies of the FRTR include the US EPA, the US DOD, the US DOE, and the US DOI. All the member agencies are involved in site remediation projects and anticipate following the guidance provided in the above reference. Therefore, there is much to be gained for DOE to be consistent with the other member agencies as it will be easier to compare projects across different agencies and also to learn from the experiences of a wider spectrum of prior completed projects.

  10. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-07-01

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  11. PLAN-TA9-2443(U), Rev. B Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    This document identifies scope and some general procedural steps for performing Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing. This Test Plan describes the requirements, responsibilities, and process for preparing and testing a range of chemical surrogates intended to mimic the energetic response of waste created during processing of legacy nitrate salts. The surrogates developed are expected to bound1 the thermal and mechanical sensitivity of such waste, allowing for the development of process parameters required to minimize the risk to worker and public when processing this waste. Such parameters will be based on the worst-case kinetic parameters as derived from APTAC measurements as well as the development of controls to mitigate sensitivities that may exist due to friction, impact, and spark. This Test Plan will define the scope and technical approach for activities that implement Quality Assurance requirements relevant to formulation and testing.

  12. Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-10-01

    This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14 ampersand Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2's role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2's role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ''integrator WAG,'' and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ''source WAGS'' at ORNL

  13. Data Base Management Plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    This Data Base Management Plan describes the gathering, verifying, analyzing, reporting, and archiving of data generated during the remedial investigation of Waste Area Grouping 10, Operable Unit 3. This investigation will produce data documenting wellhead surveys, well headspace gas pressure measurements, geophysical surveys, water level measurements, and borehole geophysical logs. Close Support Laboratory analyses will be performed on well headspace gas and well water samples

  14. DEVELOPMENT AND TESTING OF GEO-PROCESSING MODELS FOR THE AUTOMATIC GENERATION OF REMEDIATION PLAN AND NAVIGATION DATA TO USE IN INDUSTRIAL DISASTER REMEDIATION

    Directory of Open Access Journals (Sweden)

    G. Lucas

    2015-08-01

    Full Text Available This paper introduces research done on the automatic preparation of remediation plans and navigation data for the precise guidance of heavy machinery in clean-up work after an industrial disaster. The input test data consists of a pollution extent shapefile derived from the processing of hyperspectral aerial survey data from the Kolontár red mud disaster. Three algorithms were developed and the respective scripts were written in Python. The first model aims at drawing a parcel clean-up plan. The model tests four different parcel orientations (0, 90, 45 and 135 degree and keeps the plan where clean-up parcels are less numerous considering it is an optimal spatial configuration. The second model drifts the clean-up parcel of a work plan both vertically and horizontally following a grid pattern with sampling distance of a fifth of a parcel width and keep the most optimal drifted version; here also with the belief to reduce the final number of parcel features. The last model aims at drawing a navigation line in the middle of each clean-up parcel. The models work efficiently and achieve automatic optimized plan generation (parcels and navigation lines. Applying the first model we demonstrated that depending on the size and geometry of the features of the contaminated area layer, the number of clean-up parcels generated by the model varies in a range of 4% to 38% from plan to plan. Such a significant variation with the resulting feature numbers shows that the optimal orientation identification can result in saving work, time and money in remediation. The various tests demonstrated that the model gains efficiency when 1/ the individual features of contaminated area present a significant orientation with their geometry (features are long, 2/ the size of pollution extent features becomes closer to the size of the parcels (scale effect. The second model shows only 1% difference with the variation of feature number; so this last is less interesting for

  15. Project Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the ''Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs

  16. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado

  17. FY 1995 remedial investigation work plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Herbes, S.E.

    1994-09-01

    Field activities to support the remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) include characterization of the nature and extent of contamination in WAG 2, specifically to support risk-based remediation decisions. WAG 2 is the major drainage system downgradient of other WAGs containing significant sources of contamination at ORNL. The RI of WAG 2 is developed in three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upgradient WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate reevaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Specifically, Phase 2 activities are required to track key areas to determine if changes have occurred in WAG 2 that would require (1) interim remedial action to protect human health and the environment or (2) changes in remedial action plans and schedules for WAG2 because of changing contaminant release patterns in upslope WAGs or because of the effects of interim remedial or removal actions in other WAGs. This report defines activities to be conducted in FY 1995 for completion of the Phase 1 RI and initiation of limited Phase 2 field work

  18. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    This Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES ampersand H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES ampersand H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements

  19. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations

    Science.gov (United States)

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Dolislager, Fredrick; Love, Adam H.; Hanna, M. Leslie

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination. PMID:21390292

  20. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations.

    Science.gov (United States)

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D; Dolislager, Fredrick; Love, Adam H; Hanna, M Leslie

    2011-02-13

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

  1. The problem resident behavior guide: strategies for remediation.

    Science.gov (United States)

    Williamson, Kelly; Quattromani, Erin; Aldeen, Amer

    2016-04-01

    In 2012, the ACGME supplemented the core competencies with outcomes-based milestones for resident performance within the six competency domains. These milestones address the knowledge, skills, abilities, attitudes, and experiences that a resident is expected to progress through during the course of training. Even prior to the initiation of the milestones, there was a paucity of EM literature addressing the remediation of problem resident behaviors and there remain few readily accessible tools to aid in the implementation of a remediation plan. The goal of the "Problem Resident Behavior Guide" is to provide specific strategies for resident remediation based on deficiencies identified within the framework of the EM milestones. The "Problem Resident Behavior Guide" is a written instructional manual that provides concrete examples of remediation strategies to address specific milestone deficiencies. The more than 200 strategies stem from the experiences of the authors who have professional experience at three different academic hospitals and emergency medicine residency programs, supplemented by recommendations from educational leaders as well as utilization of valuable education adjuncts, such as focused simulation exercises, lecture preparation, and themed ED shifts. Most recommendations require active participation by the resident with guidance by faculty to achieve the remediation expectations. The ACGME outcomes-based milestones aid in the identification of deficiencies with regards to resident performance without providing recommendations on remediation. The Problem Resident Behavior Guide can therefore have a significant impact by filling in this gap.

  2. Specific performance as a primary remedy in the South African law of contract

    Directory of Open Access Journals (Sweden)

    Jean Chrysostome Kanamugire

    2015-07-01

    Full Text Available Specific performance is a primary remedy for breach of contract available for the aggrieved party. This order emphasises the performance of contractual obligations. Although the plaintiff can elect to claim specific performance from the defendant, the court has a discretion to grant or decline the order of specific performance. The discretion must be exercised judicially and does not confine on rigid rules. Courts decide each case according to its own facts and circumstances. Plaintiff has a right of election whether to claim specific performance from the defendant or damages for breach of contract. The defendant does not enjoy any choice in this matter. As a general rule, specific performance is not often awarded in the contract of services. However, recent developments have demonstrated that specific performance will usually be granted in employment contracts if there is equality of bargaining power among contracting parties and such order will not produce undue hardship to the defaulting party. Public policy generally favours the utmost freedom of contract and requires that parties should respect or honour their contractual obligations in commercial transactions. Public policy is rooted in the constitution and can sparingly be used to strike down contracts. Specific performance should not continue to be a primary remedy for breach of contract. Contracting parties should be allowed to resile from the contract and use damages as a remedy for breach of contract

  3. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    Fournier, Vincent

    2016-01-01

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter

  4. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  5. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  6. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    Directory of Open Access Journals (Sweden)

    Tammy M. Milillo

    2017-03-01

    Full Text Available The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision making framework that relies on maps generated from indicator kriging (IK and indicator co-kriging (ICK of samples from the contaminated site itself is shown to be a viable alternative to the traditional method of choosing a reference site for remediation planning. GIS based IK and ICK, and map based analysis are performed on lead and arsenic surface and subsurface datasets to determine site-specific background concentration levels were determined to be 50 μg/g for lead and 10 μg/g for arsenic. With these results, a remediation plan was proposed which identified regions of interest and maps were created to effectively communicate the results to the environmental agencies, residents and other interested parties.

  7. FY 1995 Remedial Investigation Work Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Herbes, S.E.

    1994-12-01

    The purpose of this project is to provide key information needed by decision makers to expedite the process of environmental restoration and to provide the data base required by the Remedial Investigation/Feasibility Study (RI/FS) for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). WAG 2 is the major drainage system downgradient of other WAGs that contain significant sources of contamination at ORNL. Field activities to support the remedial investigation for the RI portion include characterization of the nature and extent of contamination in WAG 2 [consisting of White Oak Creek (WOC) and associated tributaries and floodplain, White Oak Lake (WOL), and White Oak Creek Embayment (WOCE)], specifically to support risk-based remediation decisions. The project consists of three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upslope WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate revaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Overall RI objectives, consistent with ORNL Environmental Restoration (ER) Program strategic objectives to reduce risks and comply with environmental regulations, are discussed in the WAG 2 Remedial Investigation Plan

  8. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas

    International Nuclear Information System (INIS)

    Chernoff, A.R.; Lacker, D.K.

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  9. Uranium Mill Tailings Remedial Action Program. Annual status report

    International Nuclear Information System (INIS)

    1983-12-01

    The FY 1983 project accomplishments are: completed the Remedial Action Plan and Phase I engineering design for the Canonsburg processing site; completed remedial action on an additional 52 vicinity properties and the inclusion of an additional 303 properties in the Uranium Mill Tailings Remedial Action Project; executed cooperative agreements with four states and the Navajo Nation; published the draft environmental impact statement for Salt Lake City site; and issued the approved Project Plan

  10. Large-scale commercial applications of the in situ vitrification remediation technology

    International Nuclear Information System (INIS)

    Campbell, B.E.; Hansen, J.E.; McElroy, J.L.; Thompson, L.E.; Timmerman, C.L.

    1994-01-01

    The first large-scale commercial application of the innovative In Situ Vitrification (ISV) remediation technology was completed at the Parsons Chemical/ETM Enterprises Superfund site in Michigan State midyear 1994. This project involved treating 4,800 tons of pesticide and mercury-contaminated soil. The project also involved performance of the USEPA SITE Program demonstration test for the ISV technology. The Parsons project involved consolidation and staging of contaminated soil from widespread locations on and nearby the site. This paper presents a brief description of the ISV technology along with case-study type information on these two sites and the performance of the ISV technology on them. The paper also reviews other remediation projects where ISV has been identified as the/a preferred remedy, and where ISV is currently planned for use. These sites include soils contaminated with pesticides, dioxin, PCP, paint wastes, and a variety of heavy metals. This review of additional sites also includes a description of a planned radioactive mixed waste remediation project in Australia that contains large amounts of plutonium, uranium, lead, beryllium, and metallic and other debris buried in limestone and dolomitic soil burial pits. Initial test work has been completed on this application, and preparations are now underway for pilot testing in Australia. This project will demonstrate the applicability of the ISV technology to the challenging application of buried mixed wastes

  11. Oak Ridge National Laboratory remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    Glenn, R.D.; Hoffman, J.M.; Hyde, L.D.

    1988-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Investigation/ Feasibility Study (RI/FS) began in June 1987 to evaluate 13 contaminated waste area groupings (WAGs) to determine the feasibility and benefits of potential remedial action. The RI/FS and any future remedial action at ORNL will be of national significance and will likely lead to developments that will become models for environmental investigations and cleanups. Bechtel National, Inc. and a team of subcontractors will be working with Martin Marietta Energy systems to conduct intensive field investigations to obtain data required to evaluate the WAGs. The RI/F project continued in FY 1988 with project planning and preparation for field activities. Remedial Investigation (RI) Plans were prepared for 10 of the 13 WAGs. These plans were developed with sufficient information to ensure compliance with regulatory requirements, with intensive attention given to environmental, safety, and health protection; waste management; data management; and quality assurance. This paper reports on the progress made during FY 1988 and discusses activities planned for FY 1989

  12. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task

    International Nuclear Information System (INIS)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI ampersand SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI ampersand SI field task must include (1) the general health and safety program plan for all WAG 2 RI ampersand SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169

  13. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    International Nuclear Information System (INIS)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions

  14. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  15. Communication activities during remediation project of Zavratec

    International Nuclear Information System (INIS)

    Kukovica, T.; Mele, I.

    1996-01-01

    The remediation project of temporary storage of radioactive waste near village Zavratec is under way. The Agency for Radwaste Management was assigned to perform this project by the Slovenian government. Radioactive waste was stored on site of Zavratec in 1961. That year an accident has occurred at Oncological institute in Ljubljana in which several rooms and some equipment have been contaminated by the content of radium applicator. Radioactive waste from decontamination was transported and stored in an old Italian military barrack near village Zavratec. The storage became known to public in eighties by the TV report. Since that time it is frequently the subject of public polemics and discussions. This year the first part of remediation project, i.e. the activity measurements and sorting of radioactive waste is taking place. It is planned to conclude the project next year. For successful realization of the project the PR activities, specially the communication with the local community, are of great importance. Special plan of these activities has been prepared by the Agency for Radwaste Management in early stage of the project. Initial activities have already been successfully realized. In this paper the communication plan is presented and most important elements of this plan are briefly described. (author)

  16. Subsurface Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document, Operable Unit No. 2

    International Nuclear Information System (INIS)

    1992-01-01

    The subject Interim Measures/Interim Remedial Action plan/Environmental Assessment (IM/IRAP/EA) addresses residual free-phase volatile organic compound (VOC) contamination suspected in the subsurface within an area identified as Operable Unit No. 2 (OU2). This IM/IRAP/EA also addresses radionuclide contamination beneath the 903 Pad at OU2. Although subsurface VOC and radionuclide contamination on represent a source of OU2 ground-water contamination, they pose no immediate threat to public health or the environment. This IM/IRAP/EA identifies and evaluates interim remedial actions for removal of residual free-phase VOC contamination from three different subsurface environments at OU2. The term ''residual'' refers to the non-aqueous phase contamination remaining in the soil matrix (by capillary force) subsequent to the passage of non-aqueous or free-phase liquid through the subsurface. In addition to the proposed actions, this IM/IRAP/EA presents an assessment of the No Action Alternative. This document also considers an interim remedial action for the removal of radionuclides from beneath the 903 Pad

  17. Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant.

  18. Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant

  19. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  20. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  1. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.

  2. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    2015-01-01

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  3. March 2016 Memo: Planning for Removal and Remedial Activities at Hardrock Mining and Mineral Processing Sites with Fluid Hazards

    Science.gov (United States)

    Memo from EPA Assistant Administrator Mathy Stanislaus, regarding planning for removal and remedial activities at hardrock mining and mineral processing sites with fluid hazards, and to share the Agency’s expectations for the work that is done at these sit

  4. Selection of monitoring times to assess remediation performance

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, B.H.; Mundle, K. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering, Geoengineering Centre

    2007-07-01

    Several factors determine the time needed for a plume to respond to non-aqueous phase liquid (NAPL) source zone remediation. Most spills of NAPLs (fuels, chlorinated solvents, PCB oils, creosote and coal tar) require mass removal in order to implement remediation technologies such as chemical oxidation, thermal treatments, alcohol flushing, surfactant flushing and hydraulic displacement. While much attention has been given to the development of these remediation technologies, little attention has been given to the response of the plume downstream of the treatment zone and selection of an appropriate monitoring time scale to adequately evaluate the impacts of remediation. For that reason, this study focused on the prevalence of diffusive sinks, the mobility of the contaminant and the hydraulic conductivity of subsurface materials. Typically, plumes in subsurface environments dominated by diffusive sinks or low permeability materials need long periods of time to detach after source removal. This paper presented generic plume response model simulations that illustrated concentration rebound following the use of in-situ chemical oxidation in fractured clay containing trichloroethylene. It was determined that approximately 2 years are needed to reach peak rebound concentration after cessation remedial action. It was concluded that downgradient monitoring well concentrations may be greatly reduced during remedial action due to the fact that oxidant occupies the fracture and because oxidant diffuses into the clay matrix, creating a short period of contaminant reduction in the area of flowing groundwater. 9 refs., 2 tabs., 7 figs.

  5. Selection of monitoring times to assess remediation performance

    International Nuclear Information System (INIS)

    Kueper, B.H.; Mundle, K.

    2007-01-01

    Several factors determine the time needed for a plume to respond to non-aqueous phase liquid (NAPL) source zone remediation. Most spills of NAPLs (fuels, chlorinated solvents, PCB oils, creosote and coal tar) require mass removal in order to implement remediation technologies such as chemical oxidation, thermal treatments, alcohol flushing, surfactant flushing and hydraulic displacement. While much attention has been given to the development of these remediation technologies, little attention has been given to the response of the plume downstream of the treatment zone and selection of an appropriate monitoring time scale to adequately evaluate the impacts of remediation. For that reason, this study focused on the prevalence of diffusive sinks, the mobility of the contaminant and the hydraulic conductivity of subsurface materials. Typically, plumes in subsurface environments dominated by diffusive sinks or low permeability materials need long periods of time to detach after source removal. This paper presented generic plume response model simulations that illustrated concentration rebound following the use of in-situ chemical oxidation in fractured clay containing trichloroethylene. It was determined that approximately 2 years are needed to reach peak rebound concentration after cessation remedial action. It was concluded that downgradient monitoring well concentrations may be greatly reduced during remedial action due to the fact that oxidant occupies the fracture and because oxidant diffuses into the clay matrix, creating a short period of contaminant reduction in the area of flowing groundwater. 9 refs., 2 tabs., 7 figs

  6. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah

    International Nuclear Information System (INIS)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement

  7. Remediation of the closed-down uranium mine in Sweden

    International Nuclear Information System (INIS)

    Linder, P.; Sundblad, B.

    1993-01-01

    During the 1960s uranium was extracted from alum shale deposits at Ranstad in the south of Sweden. This mine was part of the development of a Swedish nuclear power program based on the heavy-water/natural uranium concept. In this report the history of Swedish uranium production is briefly presented as well as the reason for the closing-down of the mine at Ranstad. In 1985 the planning of the restoration of the area started. The aim of the remediation work was to find a permanent solution that excluded the need for any maintenance in the future. The procedures and techniques for remedial action are described for the open pit mine and the mill tailing deposits. As the leachate from the mill tailings was collected and purified, there was no urgent need for action. Investigations could be made to find an effective way for reducing the weathering of the pyrite in the tailings and the authorities concerned could accept the remediation plan after a detailed review. The main part of the plan has now been implemented and many experiences from the performance technique and the significant quality assurance program have been obtained. The old open pit mine has already been transformed into a lake and the mill tailings are covered by a leaktight barrier and a protective layer. The natural environment in the whole area has been reestablished

  8. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following a Chemical Terrorist Attack: Decision Criteria for Multipathway Exposure Routes

    Science.gov (United States)

    Watson, Annetta; Dolislager, Fredrick; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Love, Adam H.

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and decision criteria to facilitate post-attack and post-decontamination consequence management activities. Decision criteria analysis presented here provides first-time, open-literature documentation of multi-pathway, health-based remediation exposure guidelines for selected toxic industrial compounds, chemical warfare agents, and agent degradation products for pre-planning application in anticipation of a chemical terrorist attack. Guideline values are provided for inhalation and direct ocular vapor exposure routes as well as percutaneous vapor, surface contact, and ingestion. Target populations include various employees as well as transit passengers. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination. PMID:21399674

  9. Systematic Approach to Remediation in Basic Science Knowledge for Preclinical Students: A case study

    Science.gov (United States)

    Amara, Francis

    Remediation of pre-clerkship students for deficits in basic science knowledge should help them overcome their learning deficiencies prior to clerkship. However, very little is known about remediation in basic science knowledge during pre-clerkship. This study utilized the program theory framework to collect and organize mixed methods data of the remediation plan for pre-clerkship students who failed their basic science cognitive examinations in a Canadian medical school. This plan was analyzed using a logic model narrative approach and compared to literature on the learning theories. The analysis showed a remediation plan that was strong on governance and verification of scores, but lacked: clarity and transparency of communication, qualified remedial tutors, individualized diagnosis of learner's deficits, and student centered learning. Participants admitted uncertainty about the efficacy of the remediation process. A remediation framework is proposed that includes student-centered participation, individualized learning plan and activities, deliberate practice, feedback, reflection, and rigorous reassessment.

  10. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  11. Sectored Clean-up Work Plan for Housekeeping Category Waste Sites

    International Nuclear Information System (INIS)

    Nacht, S. J.

    2000-01-01

    The Sectored Clean-up Work Plan (SCWP) replaces the Housekeeping Category Corrective Action Unit Work Plan and provides a strategy to be used for conducting housekeeping activities using a sectored clean-up approach. This work plan provides a process by which one or more existing housekeeping category Corrective Action Sites (CASS) from the Federal Facility Agreement and Consent Order and/or non-FFACO designated waste site(s) are grouped into a sector for simultaneous remediation and cleanup. This increases effectiveness and efficiencies in labor, materials, equipment, cost, and time. This plan is an effort by the U.S. Department of Energy to expedite work in a more organized and efficient approach. The objectives of this plan are to: Group housekeeping FFACO CASS and non-FFACO housekeeping sites into sectors and remediate during the same field visit; Provide consistent documentation on FFACO CAS and non-FFACO clean-up activities; Perform similar activities under one approved document; Remediate areas inside the Deactivation and Decommissioning facilities and compounds in a campaign-style remediation; and Increase efficiencies and cost-effectiveness, accelerate cleanups, reduce mobilization, demobilization, and remediation costs

  12. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987))

  13. Hydrocarbon impacts and remedial action at an active service station

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.A. [Keystone Environmental, Burnaby, BC (Canada); Linke, J. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2006-07-01

    This presentation discussed a project that examined the hydrocarbon impacts and remedial action at an active service station. The presentation identified the project partners, discussed the background on the project and project goals. Chevron Canada was the site involved in the study and Keystone Environmental was responsible for testing soil samples, developing the detailed conceptual site model, and for conducting indoor air quality monitoring. The presentation also provided illustrations of the site layout, investigated areas, and soil and groundwater plume. The evaluation and selection of remedial options were also discussed as well as other project planning activities such as assembling the project team, obtaining agreement with stakeholders, and coordinating with the municipality, utility companies, residents, and neighbours. Remediation efforts that were described and illustrated in the presentation included: underpinning and shoring; excavation; and, barrier wall installation. Last, post remediation activities were identified including the installation of post remediation confirmatory wells; reinstating structures; reinstating rear yards, fences, and garages; reconnecting utilities; performance monitoring of barrier wall; and, preparing closure reports for certificates of compliance on off-site properties. 6 figs.

  14. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    International Nuclear Information System (INIS)

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado

  15. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  16. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington. Draft A

    International Nuclear Information System (INIS)

    1994-09-01

    This proposed plan introduces the interim remedial measures for addressing contaminated soil at the 100-HR-1 Operable Unit, located at the Hanford Site. In addition, this plan includes a summary of other alternatives analyzed and considered for the 100-HR-1 Operable Unit. The EPA, DOE, and Washington State Dept. of Ecology believe that a combination of removal, treatment, and disposal technologies, where appropriate, would significantly reduce the potential threats to human health and the environment at the 100-HR-1 Operable Unit high-priority waste sites. The remedial actions described in this proposed plan are designed to minimize human health and ecological risks and ensure that additional contaminants originating from these waste sites are not transported to the groundwater. The 100-HR-1 Operable Unit contains the retention basin for the H reactor cooling system, process effluent trenches, the Pluto crib which received an estimated 260 gallons of radioactive liquid waste, process effluent pipelines, and solid waste sites used for the burial of decontaminated and decommissioned equipment from other facilities. Potential health threats would be from the isotopes of cesium, cobalt, europium, plutonium, and strontium, and from chromium, arsenic, lead, and chysene

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  18. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  19. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  20. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  1. Remedial Action Plan for stabilization of the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    1990-12-01

    This remedial action plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uraniferous lignite processing sites at Belfield and near Bowman (at the former Griffin town site), North Dakota. It provides a characterization of the present conditions of the sites. It also serves to document the concurrence of the state of North Dakota and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of North Dakota and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement

  2. The association of students requiring remediation in the internal medicine clerkship with poor performance during internship.

    Science.gov (United States)

    Hemann, Brian A; Durning, Steven J; Kelly, William F; Dong, Ting; Pangaro, Louis N; Hemmer, Paul A

    2015-04-01

    To determine whether the Uniformed Services University (USU) system of workplace performance assessment for students in the internal medicine clerkship at the USU continues to be a sensitive predictor of subsequent poor performance during internship, when compared with assessments in other USU third year clerkships. Utilizing Program Director survey results from 2007 through 2011 and U.S. Medical Licensing Examination (USMLE) Step 3 examination results as the outcomes of interest, we compared performance during internship for students who had less than passing performance in the internal medicine clerkship and required remediation, against students whose performance in the internal medicine clerkship was successful. We further analyzed internship ratings for students who received less than passing grades during the same time period on other third year clerkships such as general surgery, pediatrics, obstetrics and gynecology, family medicine, and psychiatry to evaluate whether poor performance on other individual clerkships were associated with future poor performance at the internship level. Results for this recent cohort of graduates were compared with previously published findings. The overall survey response rate for this 5 year cohort was 81% (689/853). Students who received a less than passing grade in the internal medicine clerkship and required further remediation were 4.5 times more likely to be given poor ratings in the domain of medical expertise and 18.7 times more likely to demonstrate poor professionalism during internship. Further, students requiring internal medicine remediation were 8.5 times more likely to fail USMLE Step 3. No other individual clerkship showed any statistically significant associations with performance at the intern level. On the other hand, 40% of students who successfully remediated and did graduate were not identified during internship as having poor performance. Unsuccessful clinical performance which requires remediation in

  3. Experimental logistics plan in support of Extensive Separations for Hanford tank waste remediation systems

    International Nuclear Information System (INIS)

    Enderlin, W.I.; Swanson, J.L.; Carlson, C.D.; Hirschi, E.J.

    1993-12-01

    All proposed methods for remediating the radioactive and chemical waste stored in single- and double-shell tanks (SSTs and DSTs) at the Hanford Site require the separation of the waste mixtures in the tank into high-level and low-level fractions, the safe transport of this separated waste to appropriate immobilization facilities, and the long-term disposal of the immobilized waste forms. Extensive experimentation, especially in waste separations, will be required to develop the technologies and to produce the data that support the most effective and safe cleanup processes. As part of this effort, Pacific Northwest Laboratory (PNL) is developing this detailed experimental logistics plan to determine the logistical/resource requirements, and ultimately the critical paths, necessary to effectively and safely conduct the multitude of experiments within the Extensive Separations Development Program, which addresses the experimental needs of a concept that provides a high degree of separation for the high-level and low-level waste fractions. The logistics issues developed for this program are expected to be similar to those for other programs aimed at remediating and disposing of the wastes

  4. Summary of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation and testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."

  5. 32 CFR 516.64 - Comprehensive remedies plan.

    Science.gov (United States)

    2010-07-01

    ... AND PUBLIC RELATIONS LITIGATION Remedies in Procurement Fraud and Corruption § 516.64 Comprehensive... investigation involving fraud or corruption that relates to Army procurement activities. When possible, these... participation of the appropriate criminal investigators and other relevant personnel such as the contracting...

  6. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1993-02-01

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan

  7. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    International Nuclear Information System (INIS)

    1993-07-01

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan

  8. UMTRA [Uranium Mill Tailings Remedial Action] Project site management manual

    International Nuclear Information System (INIS)

    1990-10-01

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the ''Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  10. Lessons Learned from Environmental Remediation Programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  11. Lessons Learned from Environmental Remediation Programmes

    International Nuclear Information System (INIS)

    2014-01-01

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  12. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that is affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  13. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that i s affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  14. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  15. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  16. Environmental Remediation Data Management Tools

    International Nuclear Information System (INIS)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-01-01

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning planning of any scale and for recording

  17. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  18. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Revision 1, Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C. M.; El-Messidi, O. E.; Cowser, D. K.; Kannard, J. R.; Carvin, R. T.; Will, III, A. S.; Clark, Jr., C.; Garland, S. B.

    1993-05-01

    This Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES&H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES&H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements.

  19. Development of a waste minimization plan for a Department of Energy remedial action program: Ideas for minimizing waste in remediation scenarios

    International Nuclear Information System (INIS)

    Hubbard, Linda M.; Galen, Glen R.

    1992-01-01

    Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)

  20. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M L [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M [Wyoming State Government, Cheyenne, WY (United States)

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

  1. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming

    International Nuclear Information System (INIS)

    Matthews, M.L.

    1990-04-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement

  2. Hydrogeologic analysis of remedial alternatives for the solar ponds plume, RFETS

    International Nuclear Information System (INIS)

    McLane, C.F. III; Whidden, J.A.; Hopkins, J.K.

    1998-01-01

    The focus of this paper is to develop a conceptual model and a hydrogeologic analysis plan for remedial alternatives being considered for the remediation of a ground water contaminant plume consisting of chiefly nitrate and uranium. The initial step in this process was to determine the adequacy of the existing data from the vast database of site information. Upon concluding that the existing database was sufficient to allow for the development of a conceptual model and then constructing the conceptual model, a hydrogeologic analysis plan was developed to evaluate several alternatives for plume remediation. The plan will be implemented using a combination of analytical and simple numerical ground water flow and contaminant transport models. This allows each portion of the study to be addressed using the appropriate tool, without having to develop a large three-dimensional numerical ground water flow and transport model, thereby reducing project costs. The analysis plan will consist of a preliminary phase of screening analyses for each of the remedial alternative scenarios, and a second phase of more comprehensive and in-depth analyses on a selected subset of remedial alternative scenarios. One of the alternatives which will be analyzed is phytoremediation (remediation of soil and ground water via uptake of chemicals by plants) because of the potential for relatively low capital and operation and maintenance costs, passive nature, and potential to provide long-term protection of the surface water. The results of these hydrogeological analyses will be factored into the selection of the preferred remedial alternative, or combination of alternatives, for the contaminant plume

  3. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level

  4. Documenting clinical performance problems among medical students: feedback for learner remediation and curriculum enhancement

    Directory of Open Access Journals (Sweden)

    Brian E. Mavis

    2013-07-01

    Full Text Available Introduction: We operationalized the taxonomy developed by Hauer and colleagues describing common clinical performance problems. Faculty raters pilot tested the resulting worksheet by observing recordings of problematic simulated clinical encounters involving third-year medical students. This approach provided a framework for structured feedback to guide learner improvement and curricular enhancement. Methods: Eighty-two problematic clinical encounters from M3 students who failed their clinical competency examination were independently rated by paired clinical faculty members to identify common problems related to the medical interview, physical examination, and professionalism. Results: Eleven out of 26 target performance problems were present in 25% or more encounters. Overall, 37% had unsatisfactory medical interviews, with ‘inadequate history to rule out other diagnoses’ most prevalent (60%. Seventy percent failed because of physical examination deficiencies, with missing elements (69% and inadequate data gathering (69% most common. One-third of the students did not introduce themselves to their patients. Among students failing based on standardized patient (SP ratings, 93% also failed to demonstrate competency based on the faculty ratings. Conclusions: Our review form allowed clinical faculty to validate pass/fail decisions based on standardized patient ratings. Detailed information about performance problems contributes to learner feedback and curricular enhancement to guide remediation planning and faculty development.

  5. Remediating the South Alligator Valley uranium mining legacy

    International Nuclear Information System (INIS)

    Fawcett, M.; Waggitt, P.

    2010-01-01

    In late 1950s and early 1960s 13 uranium mines operated in the South Alligator Valley of Australia's Northern Territory. Once sales contracts had been filled the mines were abandoned and no remediation took place. In the 1980s the valley was designated as part of Stage 3 of the adjacent World Heritage-listed, Kakadu National Park. Proposals for remediation were only seriously put forward when the land was returned to the traditional Aboriginal owners, the Gunlom Land Trust, in 1996. Although they leased the land back so it would remain a part of Kakadu National Park the traditional Aboriginal owners required remediation to be complete by 2015. This paper tells the story of the development and implementation of the remediation process from the start of planning in 1998 to completion in 2009; and finally it describes the development of stakeholder relationships and the initial plans for long term stewardship. (author)

  6. Proposed plan for remedial action at the quarry residuals operable unit of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1998-03-01

    This proposed plan addresses the management of contamination present in various components of the quarry residuals operable unit (QROU) of the Weldon Spring site, which is located in St. Charles County, Missouri. The QROU consists of (1) residual waste at the quarry proper; (2) the Femme Osage Slough, Little Femme Osage Creek, and Femme Osage Creek; and (3) quarry groundwater located primarily north of the slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of the evaluations for this operable unit. Remedial activities for the QROU will be conducted by the US Department of Energy (DOE) in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of the remedial investigation/feasibility study (RI/FS) process required for the QROU under CERCLA, three major evaluation documents have been prepared to support cleanup decisions for this operable unit. decisions for this operable unit

  7. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    Matthews, M.L.; Mitzelfelt, R.

    1991-11-01

    This Remedial Action Plan (RAP) has been developed to serve a dual purpose. It presents the series of activities that is proposed by the US Department of Energy (DOE) to stabilize and control radioactive materials at the inactive Phillips/United Nuclear uranium processing site designated as the Ambrosia Lake site in McKinley County, New Mexico. It also serves to document the concurrence of both State of New Mexico and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state and concurrence by NRC, becomes Appendix B of the Cooperative Agreement

  8. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  9. When salespeople develop negative headquarters stereotypes: performance effects and managerial remedies

    OpenAIRE

    Homburg, Christian; Wieseke, Jan; Lukas, Bryan A.; Mikolon, Sven

    2011-01-01

    This study examines the performance implications that organizations may suffer when their salespeople develop negative stereotypes of their corporate headquarters. How such stereotypes can be remedied through managerial action is also examined. The study draws on matched data from four different sources: sales managers, salespeople, customers, and company reports. Findings indicate that negative headquarters stereotypes among salespeople are associated with poor marketing-related ...

  10. The role of performance assessment in the evaluation of remedial action alternatives for the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rood, A.S.; Case, M.J.

    1988-01-01

    The Idaho National Engineering Laboratory (INEL) is operated by the Department of Energy (DOE) and is involved in nuclear research and development. The Radioactive Waste Management Complex (RWMC) at the INEL serves as a disposal facility for low level radioactive wastes generated onsite. Transuranic (TRU) wastes received from other DOE sites are currently stored at the RWMC, but were buried at the facility from 1952 until 1970. Recent findings of the Subsurface Investigations Program have determined that migration of TRU nuclides and hazardous materials from the RWMC has occurred. The primary source of organics in the buried TRU waste was generated by the Rocky Flats Plant. The INEL has proposed an aggressive four-year action plan for buried TRU waste. As a part of this plan, a task has been identified to evaluate existing remedial technologies for preventing further contaminant migration or removing the source of TRU radionuclides and nonradioactive hazardous material from the RWMC. A systems approach is being applied to evaluate, compare and recommend technologies or combinations of technologies. One criterion used in the evaluation is the net risk reduction afforded by each proposed remedial action. The method used to develop the criterion relies on models to assess the potential pathways and scenarios for the migration of radioactive and nonradioactive materials and the subsequent exposure of individuals to those materials. This paper describes the approach used to assess the performance of various remedial actions and the results obtained to date

  11. Results from Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Laboratory; Leonard, Philip [Los Alamos National Laboratory; Hartline, Ernest Leon [Los Alamos National Laboratory; Tian, Hongzhao [Los Alamos National Laboratory

    2016-04-04

    High Explosives and Technology (M-7) completed the second round of formulation and testing of Remediated Nitrate Salt (RNS) surrogates on March 17, 2016. This report summarizes the results of the work and also includes additional documentation required under test plan PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. Results from the first round of formulation and testing were documented in memorandum M7-16-6042, "Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing."

  12. Uranium Mill Tailings Remedial Action Program. Annual status report

    International Nuclear Information System (INIS)

    1982-12-01

    Progress made during FY 1982, present status, and plans for FY 1983 are described for the following programs: radiological surveys and inclusion of vicinity properties; establishment of cooperative agreements; promulgation of standards for remedial action; acquisition of lands and materials; reprocessing of residual radioactive materials; National Environmental Policy Act (NEPA) documentation; program planning; technology development; remedial action; public participation; other federal agency activities; state and Indian tribe activities; and status of designated sites. Program funding is given

  13. Subsurface Interim Measures/Interim Remedial Action Plan/ Environmental Assessment and Decision Document, Operable Unit No. 2

    International Nuclear Information System (INIS)

    1992-01-01

    The subject Interim Measures/Interim Remedial Action plan/Environmental Assessment (IM/IRAP/EA) addresses residual free-phase volatile organic compound (VOC) contamination suspected in the subsurface within an area identified as Operable Unit No. 2 (OU2). This IM/IRAP/EA also addresses radionuclide contamination beneath the 903 Pad at OU2. Although subsurface VOC and radionuclide contamination on represent a source of OU2 ground-water contamination, they pose no immediate threat to public health or the environment. This volume contains five appendices

  14. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  15. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  16. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  17. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    International Nuclear Information System (INIS)

    1991-05-01

    This document, ES/ER-6 ampersand D2, is a companion document to ORNL/RAP/Sub-87/99053/4 ampersand R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs

  18. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  19. Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3

    International Nuclear Information System (INIS)

    1994-06-01

    This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data

  20. Final Work Plan for a Remedial Action Plan in Support of the Risk-Based Approach to Remediation at KC-135 Crash Site

    National Research Council Canada - National Science Library

    1994-01-01

    ... receptor exposure to fuel-hydrocarbon- contaminated environmental media at the KC-135 Crash Site. The second goal is to implement any necessary and appropriate remedial technologies at the KC-135 Crash Site...

  1. 100 Area soil washing treatability test plan

    International Nuclear Information System (INIS)

    1993-03-01

    This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study

  2. Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado

  3. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S ampersand A) plan has been developed as part of the Department of Energy's (DOE's) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S ampersand A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S ampersand A plan; the scope and implementation of the first 2 years of effort of the S ampersand A plan and includes recent information about contaminants of concern, organization of S ampersand A activities, interactions with other programs, and quality assurance specific to the S ampersand A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan

  4. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  5. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  6. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels.

  7. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    International Nuclear Information System (INIS)

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels

  8. CENTRAL PLATEAU REMEDIATION

    International Nuclear Information System (INIS)

    ROMINE, L.D.

    2006-01-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress

  9. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  10. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    International Nuclear Information System (INIS)

    Lewis, BE

    2003-01-01

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and ∼420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed ∼5.5 years ahead of schedule and ∼$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    International Nuclear Information System (INIS)

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project

  12. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI ampersand SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI ampersand SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI ampersand SI. Together, the general HASP for the WAG 2 RI ampersand SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI ampersand SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations

  13. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  14. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    International Nuclear Information System (INIS)

    1995-08-01

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE's Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories

  15. Uranium Mill Tailings Remedial Action Project: technical approach document

    International Nuclear Information System (INIS)

    1986-05-01

    The Uranium Mill Tailings Radiation Control Act of 1978, PL95-604, grants the Secretary of Energy authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards from inactive uranium mill sites. These cleanup actions are to be performed in compliance with the EPA standards (40 CFR Part 192) which became final on March 7, 1983. This document describes the general technical approaches and design criteria that are adopted by the US Department of Energy (DOE) in order to implement Remedial Action Plans (RAPs) and final designs that comply with EPA standards

  16. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  17. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  18. TWRS Systems Engineering Working Plan

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations

  19. Remediation of uranium impacted sediments in a watercourse

    Energy Technology Data Exchange (ETDEWEB)

    Shephard, Eugene; Walter, Nelson; Downey, Heath [AMEC, Inc., Portland, Maine (United States); Collopy, Peter [AMEC, Inc., San Diego, California (United States); Conant, John [ABB, Inc., Windsor, Connecticut (United States)

    2013-07-01

    In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work located in Windsor, Connecticut, USA. Radiological contaminants consisted primarily of high enriched uranium (HEU). Other radionuclides encountered in relatively minor amounts in certain areas of the clean-up included Co-60, Cs- 137, Ra-226, Th-232 and low enriched uranium (LEU).Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. (authors)

  20. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations

    OpenAIRE

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Dolislager, Fredrick; Love, Adam H.; Hanna, M. Leslie

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critica...

  1. Adaptive management: a paradigm for remediation of public facilities

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area

  2. Adaptive Management: A Paradigm for Remediation of Public Facilities

    International Nuclear Information System (INIS)

    Janecky, D.R.; Whicker, J.J.; Doerr, T.B.

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simultaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a

  3. Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program's inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II)

  4. Performance-Based Contingency Management in Cognitive Remediation Training: A Pilot Study.

    Science.gov (United States)

    Kiluk, Brian D; Buck, Matthew B; Devore, Kathleen A; Babuscio, Theresa A; Nich, Charla; Carroll, Kathleen M

    2017-01-01

    Impairments in attention, working memory, and executive function are common among substance users and may adversely affect SUD treatment outcomes. The ability of cognitive remediation (CR) interventions to improve these deficits is hindered in part because levels of engagement in CR training may be inadequate to achieve benefit. This pilot study aimed to increase CR engagement and improve outcome by implementing contingency management (CM) procedures that reinforce performance improvements on CR tasks. Participants were forty individuals (50% male; 65% African American) in an outpatient substance use treatment facility with mild cognitive impairment who had ≥30-days of abstinence from alcohol and drugs. They were randomized to standard (CR-S; n=21) or CM-enhanced (CR-CM; n=19) cognitive remediation training. CR consisted of 1-hour sessions, three times per week for four weeks (12 sessions). A neuropsychological assessment battery was administered prior to and after the four-week intervention. Both groups had high rates of CR session attendance (mean CR-S=11.7, CR-CM=10.9 sessions). Performance on 8 of the 9 CR tasks significantly improved over time for both conditions, with the CR-CM condition demonstrating greater improvement on a CR Sequenced Recall task [F(1,37)=5.81, ptraining and suggest the potential value of more research in this area. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cognitive Remediation in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Joana Vieira

    2014-06-01

    Full Text Available Several reviews of the literature support the idea that cognitive deficits observed in a large percentage of patients with schizophrenia are responsible for the cognitive performance deficit and functional disability associated with the disease. The grow- ing importance of neurocognition in Psychiatry, especially with regard to planning strategies and rehabilitative therapies to improve the prognosis of patients contrib- utes to the interest of achieving this literature review on cognitive rehabilitation in schizophrenia. In this work, drawn from research in the areas of schizophrenia, cog- nition, cognitive rehabilitation and cognitive remediation (2000-2012 through PubMed and The Cochrane Collaboration, it is intended, to describe the types of psychological and behavioral therapies recommended in the treatment of cognitive disabilities in patients diagnosed with schizophrenia. This review will also highlight the clinical and scientific evidence of each of these therapies, as their effect on cognitive performance, symptoms and functionality in patients with schizophrenia.

  6. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    Science.gov (United States)

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  7. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  8. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    Science.gov (United States)

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-12-15

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  10. Performance-Based Acquisition: A tool to reduce costs and improve performance at US Army environmental remediation sites

    International Nuclear Information System (INIS)

    Kosko, Nancy; Gilman, Janet; White, Debbie

    2007-01-01

    The US Army, like most US federal and state environmental organizations, is faced with limited resources to conduct environmental work, an increasing workload, and challenges in achieving closeout of its environmental cleanup programs. In 2001, in an effort to incorporate proven private sector tools into federal cleanup programs, the Department of Defense (DoD) Business Initiative Council (BIC), initiated the use of Performance-Based Acquisition (PBA) for environmental cleanup. Since fiscal year 2000, the US Army Environmental Command (USAEC) has successfully awarded more than 55 performance-based contracts for environmental remediation. These contracts range in size from $500,000 to $52.4 million, and include closing properties (Base Realignment and Closure (BRAC)) and some of the US Army's most complex active installations. The contracts address a range of activities including investigation through monitoring and site completion, as well as various technical challenges including dense non-aqueous phase liquids (DNAPL) in ground water, karst systems, munitions and explosives of concern, and biological agents. The contracts are most often firm-fixed price, and 50 percent of the contracts required contractors to purchase environmental insurance in the form of remediation stop loss insurance (also known as cleanup cost cap insurance). The USAEC has conducted continuous process improvement since inception of the initiative. This paper presents results of two studies that were conducted in 2005-2006 to determine what lessons learned can be applied to future activities and to measure performance of contractors currently executing work under the performance based contracts. (authors)

  11. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  14. Quality assurance program plan for the radiological survey activities program: Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-08-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  15. Quality assurance program plan for the Radiological Survey Activities Program - Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  16. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    International Nuclear Information System (INIS)

    Laney, T.

    1994-01-01

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ''Guide for Operational Configuration Management Program.'' The DOE Standard defines the configuration management program by the five basic program elements of ''program management,'' ''design requirements,'' ''document control,'' ''change control,'' and ''assessments,'' and the two adjunct recovery programs of ''design reconstitution,'' and ''material condition and aging management.'' The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System

  17. Sampling and analysis plan for Wayne Interim Storage Site (WISS), Wayne, New Jersey

    International Nuclear Information System (INIS)

    Brown, K.S.; Murray, M.E.; Rodriguez, R.E.

    1998-10-01

    This field sampling plan describes the methodology to perform an independent radiological verification survey and chemical characterization of a remediated area of the subpile at the Wayne Interim Storage Site, Wayne, New Jersey.Data obtained from collection and analysis of systematic and biased soil samples will be used to assess the status of remediation at the site and verify the final radiological status. The objective of this plan is to describe the methods for obtaining sufficient and valid measurements and analytical data to supplement and verify a radiological profile already established by the Project Remediation Management Contractor (PMC). The plan describes the procedure for obtaining sufficient and valid analytical data on soil samples following remediation of the first layer of the subpile. Samples will be taken from an area of the subpile measuring approximately 30 m by 80 m from which soil has been excavated to a depth of approximately 20 feet to confirm that the soil beneath the excavated area does not exceed radiological guidelines established for the site or chemical regulatory limits for inorganic metals. After the WISS has been fully remediated, the Department of Energy will release it for industrial/commercial land use in accordance with the Record of Decision. This plan provides supplemental instructions to guidelines and procedures established for sampling and analysis activities. Procedures will be referenced throughout this plan as applicable, and are available for review if necessary

  18. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 1 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Appendix B to Attachment 3, lithologic logs

    International Nuclear Information System (INIS)

    1994-03-01

    This appendix contains the lithologic logs and monitor well construction information for the remedial action plan for uranium mill tailings sites at Slick Rock, CO. Data from each borehole is presented graphically and a stratigraphic description is given

  20. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed a preliminary assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site the Fukushima Dai-ichi Nuclear Power Plant reported to have elevated levels of radiation. The IAEA dispatched the mission to Japan on 7 October following a request from the country's Government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several Ministries and institutions. ''The meetings held and visits made by the team over the last eight days gave us a first-hand appreciation of the extraordinary efforts and dedication on the part of Japanese people in their effort to remediate the areas affected by elevated levels of radiation in the Fukushima Prefecture,'' says Mr. Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. ''As Japan continues its current remediation efforts, it is our belief that this work will bring relief to the populations who are affected by the consequences of the nuclear accident at the Fukushima Dai-ichi nuclear power plant.'' In a Preliminary Summary Report delivered to Japanese authorities today, the team prepared a set of conclusions including, though not limited to, the following: - Japan developed an efficient program for remediation - allocating the necessary legal, financial and technological resources to bring relief to the people affected by the accident, with priority being given to children. The Team was impressed with the strong commitment to the remediation effort from all institutions and parties involved, including the public; - Japan has also taken practical measures to inform the public and involve residents and local institutions in the process of defining its remediation strategy; - Japan is advised to avoid

  1. Feasibility and Performance of Full-Scale In-situ Remediation of TCE by ERD in Clay Tills

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE-contamin......The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE......-contaminated clay till. An integrated investigative approach consisting of water and clay core sample analysis, including stable isotopes and specific degraders, as well as analysis for chlorinated solvents, degradation products, donor fermentation products and redox-sensitive parameters combined with modelling has...

  2. Performance-based planning and programming guidebook.

    Science.gov (United States)

    2013-09-01

    "Performance-based planning and programming (PBPP) refers to the application of performance management principles within the planning and programming processes of transportation agencies to achieve desired performance outcomes for the multimodal tran...

  3. Department of Energy hazardous waste remedial actions program: Quality assurance program

    International Nuclear Information System (INIS)

    Horne, T.E.

    1988-01-01

    This paper describes the Quality Assurance Program developed for the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAP SCO). Key topics discussed include an overview of the HAZWRAP SCO mission and organization, the basic quality assurance program requirements and the requirements for the control of quality for the Department of Energy and Work for Others hazardous waste management programs, and the role of ensuring quality through the project team concept for the management of remedial response actions. The paper focuses on planning for quality assurance for this remedial waste management process from preliminary assessments of remedial sites to feasibility studies. Some observations concerning the control of quality during the implementation of remedial actions are presented. (2 refs.)

  4. Environmental remediation activities at the Ningyo-toge Uranium Mine, Japan

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Taki, Tomohiro

    2011-01-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river, and therefore, for the environmental remediation, the highest priority has been put to it among many facilities in the Mine. So far, basic concept has been examined and planning has been carried out for the remediation. Also, a great number of data has been acquired, and using the data, some remediation activities have already begun, including designing for the upstream part of the Mill Tailings Pond. According to the current plan, the Mill Tailings Pond will be covered by capping following dewatering and compressing of mill tailings. The capping is composed of 'radon barrier' for lowering radon-gas dissipation and dose rate, and its protection layer. Natural materials are planned to be used for the capping to alleviate the future maintenance. After capping, data will be accumulated to verify the effectiveness of the capping, and if proved effective, it will be utilized for the capping of the downstream part. (author)

  5. ORNL Remedial Action Program strategy (FY 1987-FY 1992)

    International Nuclear Information System (INIS)

    Trabalka, J.R.; Myrick, T.E.

    1987-12-01

    Over 40 years of Oak Ridge National Laboratory (ORNL) operations have produced a diverse legacy of contaminated inactive facilities, research areas, and waste disposal areas that are potential candidates for remedial action. The ORNL Remedial Action Program (RAP) represents a comprehensive effort to meet new regulatory requirements and ensure adequate protection of on-site workers, the public, and the environment by providing appropriate corrective measures at over 130 sites contaminated historically with radioactive, hazardous chemical, or mixed wastes. A structured path of program planning, site characterization, alternatives assessment, technology development, engineering design, continued site maintenance and surveillance, interim corrective action, and eventual site closure or decommissioning is required to meet these objectives. This report documents the development of the Remedial Action Program, through its preliminary characterization, regulatory interface, and strategy development activities. It provides recommendations for a comprehensive, long-term strategy consistent with existing technical, institutional, and regulatory information, along with a six-year plan for achieving its initial objectives. 53 refs., 8 figs., 12 tabs

  6. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    dimensions including radiological, economic, social and environmental aspects. The system of criteria used for evaluating management options, including effectiveness and technical feasibility economic cost, waste generation, social and ethical issues, side effects and factors constraining application are discussed. Rather than a comprehensive analysis of remedial options, the new document gives selected information, describe key issues that are relevant to their implementation based on practical experience, and provide some guidance of their usefulness as part of a remediation strategy. Basic mechanisms behind the effectiveness of most of management options are also described. The document provides recommendations on remediation planning, optimising remediation strategies and available tools for decision making on remediation of different environments. The document specifically collates, and summarises, recent activities relevant to remediation conducted under the auspices of the IAEA, but also refers to relevant studies conducted elsewhere. The text thus capitalises on the knowledge and expertise gained by the many experts involved. In common with previous IAEA documents on remediation, much of the document is relevant for many other situations which may need to be remediated. (authors)

  7. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.

    2012-01-01

    A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...

  8. Completion of the South Alligator Valley remediation, Northern Territory, Australia - -16198

    International Nuclear Information System (INIS)

    Waggitt, Peter; Fawcett, Mike

    2009-01-01

    13 uranium mines operated in the South Alligator Valley of Australia's Northern Territory between 1953 and 1963. At the end of operations the mines, and associated infrastructure, were simply abandoned. As this activity preceded environmental legislation by about 15 years there was neither any obligation, nor attempt, at remediation. In the 1980's it was decided that the whole area should become an extension of the adjacent World Heritage, Kakadu National Park. As a result the Commonwealth Government made an inventory of the abandoned mines and associated facilities in 1986. This established the size and scope of the liability and formed the framework for a possible future remediation project. The initial program for the reduction of physical and radiological hazards at each of the identified sites was formulated in 1989 and the works took place from 1990 to 1992. But even at this time, as throughout much of the valley's history, little attention was being paid to the long term aspirations of traditional land owners. The traditional Aboriginal owners, the Gunlom Land Trust, were granted freehold Native Title to the area in 1996. They immediately leased the land back to the Commonwealth Government so it would remain a part of Kakadu National Park, but under joint management. One condition of the lease required that all evidence of former mining activity be remediated by 2015. The consultation, and subsequent planning processes, for a final remediation program began in 1997. A plan was agreed in 2003 and, after funding was granted in 2005, works implementation commenced in 2007. An earlier paper described the planning and consultation stages, experience involving the cleaning up of remnant uranium mill tailings and other mining residues; and the successful implementation of the initial remediation works. This paper deals with the final planning and design processes to complete the remediation programme, which is due to occur in 2009. The issues of final containment

  9. Remediation of former uranium mining and milling facilities in Germany - the WISMUT experience

    International Nuclear Information System (INIS)

    Gatzweiler, R.

    2000-01-01

    The former German Democratic Republic (East Germany) provided most of the natural uranium for the nuclear programmes of the former Soviet Union. Uranium mining and milling activities caused extensive devastation and resulted in large amounts of waste with serious impacts on the environment and unacceptable risks to human health. Production ceased in 1990-91 in the course of the reunification of Germany. At the same time a very large environmental remediation programme was initiated by the German Federal Government. WISMUT GmbH, the successor company of the former Soviet-German enterprise SDAG WISMUT, was designated to carry out this DM 13 billion programme. The programme is currently in its ninth year and will likely continue up to 2015. The initial assessment of the remediation and the cost estimates were based on closure plans for the mining and milling facilities, an extensive environmental database and basic concepts for site specific remediation in accordance with legal requirements and directives. The decision making process for individual remediation objects is based on risk analyses and the evaluation of remediation options. The methodologies used depend on the size and complexity of the individual object. For simple cases, an environmental assessment study is used. Remediation options for larger and more complex objects such as tailings facilities are evaluated by multi-attribute analysis with emphasis on sensitivity investigations. The general public is not formally involved in the decision making process but is informed on conceptual remediation plans for the individual sites. These plans are regularly updated. For several of the remediated facilities, future use cannot be unrestricted and therefore, some form of institutional control is needed. To date, criteria for close-out have not been clearly defined for all sites. Similarly, criteria concerning transfer of ownership and responsibilities for long term surveillance and maintenance have yet to be

  10. Site remediation: The naked truth

    International Nuclear Information System (INIS)

    Calloway, J.M.

    1991-01-01

    The objective of any company faced with an environmental site remediation project is to perform the cleanup effectively at the lowest possible cost. Today, there are a variety of techniques being applied in the remediation of sites involving soils and sludges. The most popular include: stabilization, incineration, bioremediation and off-site treatment. Dewatering may also play an integral role in a number of these approaches. Selecting the most cost-effective technique for remediation of soils and sludges can be a formidable undertaking, namely because it is often difficult to quantify certain expenses in advance of the project. In addition to providing general cost guidelines for various aspects of soil and sludge remediation, this paper will show how some significant cost factors can be affected by conditions related to specific remediation projects and the cleanup technology being applied

  11. 100 area excavation treatability test plan

    International Nuclear Information System (INIS)

    1993-05-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications

  12. Options Evaluation for Remediation of the Gunnar Site Using a Decision- Tree Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L. [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Hachkowski, Andrea [CH2M Hill Canada Limited, 1305 Kenaston Blvd, Winnipeg, Manitoba, R3P 2P2 (Canada); Klyashtorin, Alexey [Saskatchewan Research Council, 15 Innovation Blvd no.125, Saskatoon, Saskatchewan, S7N 2X8 (Canada)

    2014-07-01

    Current best practice in the nuclear industry involves proactive planning of activities from cradle-to-grave over the entire nuclear life cycle in accordance with national requirements and international guidance. This includes the development of detailed decommissioning plans (DDP) at an early stage to facilitate proactive, responsible decision-making as activities are being planned. It should be noted, however, that the current approach may not be applicable to historic nuclear legacy sites, such as abandoned uranium mines and mills, which had operated in the past under less stringent regulatory regimes. In such cases, records documenting past activities are often not available and monitoring data may not have been collected, thereby limiting knowledge of impacts related to past activities. This can lead to challenges in gaining regulatory and funding approvals related to the remediation of such sites, especially given the costs that can be associated with remediation and the uncertainties in characterizing the existing situation. The Gunnar Site, in northern Saskatchewan, is an example of an abandoned uranium mine/mill site, which was operated between the late 1950's to early 1960's under a different regulatory regime than today. Due to the lack of monitoring data and records for the site, and the corresponding uncertainties, a number of precedent-setting approaches have been developed and applied, as part of the environmental impact assessment (EIA) process. Specifically, unlike traditional environmental assessments for planned and operating facilities, it was not possible to identify a preferred and alternative remedial option. Instead, a step-wise decision-tree approach has been developed to identify all potentially feasible remedial options and to map out key decision points, during the licensing phase of the project (following approval of the environmental assessment), when final remedial options will be selected. The presentation will provide

  13. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  14. Remedial Action Report for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2007-08-15

    This Phase III remedial action report addresses the remediation of lead-contaminated soils found at the Security Training Facility STF-02 Gun Range at the Idaho National Laboratory Site. Phase I, consisting of developing and implementing institutional controls at Operble Unit 10-04 sites and developing and implementing Idaho National Laboratory Site-wide plans for both institutional controls and ecological monitoring, was addressed in a previous report. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase IV will remediate hazards from unexploded ordnance.

  15. Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E.; Yerace, P.J.

    1996-01-01

    Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded

  16. Environmental Measurements Laboratory 2002 Unit Performance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    This EML Unit Performance Plan provides the key goals and performance measures for FY 2002 and continuing to FY 2003. The purpose of the Plan is to inform EML's stakeholders and customers of the Laboratory's products and services, and its accomplishments and future challenges. Also incorporated in the Unit Performance Plan is EML's Communication Plan for FY 2002.

  17. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  18. Remedial investigation/feasibility study work plan for the 100-BC-5 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-07-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The Tri-Party Agreement requires that the cleanup programs at the Hanford Site integrate the requirements of CERCLA, RCRA, and Washington State's dangerous waste (the state's RCRA-equivalent) program. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-BC-5 operable unit. The 100-B/C Area consists of the 100-BC-5 groundwater operable unit and four source operable units. The 100-BC-5 operable unit includes all contamination found in the aquifer soils and water beneath the 100-B/C Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  19. Abstracts of Remediation Case Studies, Volume 9

    Science.gov (United States)

    This report, published by the Federal Remediation Technologies Roundtable (FRTR), is a collection of recently published abstracts summarizing 13 cost and performance case studies on the use of remediation technologies at contaminated sites.

  20. Strategic planning processes and hospital financial performance.

    Science.gov (United States)

    Kaissi, Amer A; Begun, James W

    2008-01-01

    Many common management practices in healthcare organizations, including the practice of strategic planning, have not been subject to widespread assessment through empirical research. If management practice is to be evidence-based, evaluations of such common practices need to be undertaken. The purpose of this research is to provide evidence on the extent of strategic planning practices and the association between hospital strategic planning processes and financial performance. In 2006, we surveyed a sample of 138 chief executive officers (CEOs) of hospitals in the state of Texas about strategic planning in their organizations and collected financial information on the hospitals for 2003. Among the sample hospitals, 87 percent reported having a strategic plan, and most reported that they followed a variety of common practices recommended for strategic planning-having a comprehensive plan, involving physicians, involving the board, and implementing the plan. About one-half of the hospitals assigned responsibility for the plan to the CEO. We tested the association between these planning characteristics in 2006 and two measures of financial performance for 2003. Three dimensions of the strategic planning process--having a strategic plan, assigning the CEO responsibility for the plan, and involving the board--are positively associated with earlier financial performance. Further longitudinal studies are needed to evaluate the cause-and-effect relationship between planning and performance.

  1. Quality Assurance Program Plan for the radiological survey activities program --- Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Knott, R.R.; Little, C.A.

    1991-08-01

    The Pollutant Assessments Group (PAG) at the Grand Junction Office (GJO), Colorado, of Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude these sites from UMTRAP based on whether the on-site residual radioactive material (if any) originated from the former mill sites, and radiation levels on-site are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the Quality Assurance Plan (QAP) for the PAG in conducting all activities related to UMTRAP. All quality assurance provisions given by the DOE, DOE/UMTRA and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the PAG/UMTRA QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups. 11 refs., 6 figs., 3 tabs

  2. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    International Nuclear Information System (INIS)

    Pan, T.

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  3. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  4. UMTRA Project water sampling and analysis plan, Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Surface remedial action was completed at the US Department of Energy (DOE) Canonsburg and Burrell Uranium Mill Tailings Remedial Action (UMTRA) Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. The Burrell disposal site, included in the UMTRA Project as a vicinity property, was remediated in conjunction with the remedial action at Canonsburg. On 27 May 1994, the Nuclear Regulatory Commission (NRC) accepted the DOE final Long-Term Surveillance Plan (LTSP) (DOE, 1993) for Burrell thus establishing the site under the general license in 10 CFR section 40.27 (1994). In accordance with the DOE guidance document for long-term surveillance (DOE, 1995), all NRC/DOE interaction on the Burrell site's long-term care now is conducted with the DOE Grand Junction Projects Office in Grand Junction, Colorado, and is no longer the responsibility of the DOE UMTRA Project Team in Albuquerque, New Mexico. Therefore, the planned sampling activities described in this water sampling and analysis plan (WSAP) are limited to the Canonsburg site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring at the Canonsburg site for calendar years 1995 and 1996. Currently, the analytical data further the site characterization and demonstrate that the disposal cell's initial performance is in accordance with design requirements

  5. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  6. Public affairs plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the Fiscal Year 1995 UMTRA public affairs program and identify specific activities to be conducted during the year. It also describes the roles of various agencies involved in the conduct of the public affairs program and defines the functions of the Technical Assistance Contractor (TAC) Public Affairs Department. It integrates and replaces the Public Participation Plan (DOE/AL/62350-47D) and Public Information Plan (DOE/AL/623590-71). The plan describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in project decision-making processes. The plan applies to the UMTRA Project Office; the DOE Albuquerque Operations Office, Office of Intergovernmental and External Affairs (OIEA); the UMTRA TAC; the UMTRA Remedial Action Contractor (RAC); and other cooperating agencies.

  7. Public affairs plan

    International Nuclear Information System (INIS)

    1994-09-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the Fiscal Year 1995 UMTRA public affairs program and identify specific activities to be conducted during the year. It also describes the roles of various agencies involved in the conduct of the public affairs program and defines the functions of the Technical Assistance Contractor (TAC) Public Affairs Department. It integrates and replaces the Public Participation Plan (DOE/AL/62350-47D) and Public Information Plan (DOE/AL/623590-71). The plan describes the US Department of Energy's (DOE) plans to keep stakeholders and other members of the public informed about project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in project decision-making processes. The plan applies to the UMTRA Project Office; the DOE Albuquerque Operations Office, Office of Intergovernmental and External Affairs (OIEA); the UMTRA TAC; the UMTRA Remedial Action Contractor (RAC); and other cooperating agencies

  8. Remedial measures at the short-term regulated rivers

    International Nuclear Information System (INIS)

    Soimakallio, H.

    1995-01-01

    Building up and producing hydro power causes environmental effects, which are directed at the geomorfology, hydrology, water quality, organisms and landscape of the water system. To reduce and eliminate these various effects there are available an abundance of technical remedial measures, many of which contribute to several effects at the same time. In Finland a lot of remedial measures have been carried out at voluntary or obligatory bases. The information concerning remedial measures implemented in large build-up rivers were collected as a part of the study of the effects of the short-term regulation of hydro power plants. Material for the study was collected via literature, postal inquiry and terrain visits. Measures handled in the study were protection and reinforcement of shores, boating projects, submerged weirs, improvement of water turnover, fishery, clearing of peat rafts and stubs, landscaping, maintaining ice roads and shaping river banks. Nowadays planning and implementation of the remedial measures varies greatly depending on the nature and extent of the project. Large projects, which are more expensive, are naturally planned more carefully and comprehensively than simple routine measures. Also the quality of follow-up of the sites changes and the main portion of the information is received through terrain checks and direct feed-back from the users of the water system. In the future there is a need for model plans of the different routine measures. Also a systemic method to evaluate and compare different actions is needed to help decision making and to solve possible conflicts between different interests. Fishery, which is generally managed well, must in the future utilize better possibilities offered by other measures. According to the study there is no particular need to develop the follow-up systems. However, if the follow-up information is going to be used to develop the measures further, more systematic systems are needed for follow-up. (author)

  9. Assessing sustainable remediation frameworks using sustainability principles.

    Science.gov (United States)

    Ridsdale, D Reanne; Noble, Bram F

    2016-12-15

    The remediation industry has grown exponentially in recent decades. International organizations of practitioners and remediation experts have developed several frameworks for integrating sustainability into remediation projects; however, there has been limited attention to how sustainability is approached and operationalized in sustainable remediation frameworks and practices - or whether sustainability plays any meaningful role at all in sustainable remediation. This paper examines how sustainability is represented in remediation frameworks and the guidance provided for practical application. Seven broad sustainability principles and review criteria are proposed and applied to a sample of six international remediation frameworks. Not all review criteria were equally satisfied and none of the frameworks fully met all criteria; however, the best performing frameworks were those identified as sustainability remediation frameworks. Intra-generational equity was addressed by all frameworks. Integrating social, economic and biophysical components beyond triple-bottom-line indicators was explicitly addressed only by the sustainable remediation frameworks. No frameworks provided principle- or rule-based guidance for dealing with trade-offs in sustainability decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 76 FR 42074 - Consideration of Rulemaking To Address Prompt Remediation of Residual Radioactivity During...

    Science.gov (United States)

    2011-07-18

    ... Address Prompt Remediation of Residual Radioactivity During Operations AGENCY: Nuclear Regulatory... radioactivity during the operational phase of licensed material sites and nuclear reactors. The NRC has not... to the decommissioning planning process by addressing remediation of residual radioactivity during...

  11. Long term performance of different radon remedial methods in Sweden

    CERN Document Server

    Clavensjoe, B

    2002-01-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

  12. Remediation in Canadian medical residency programs: Established and emerging best practices.

    Science.gov (United States)

    Shearer, Cindy; Bosma, Mark; Bergin, Fiona; Sargeant, Joan; Warren, Andrew

    2018-02-23

    Policies to guide remediation in postgraduate medical education exist in all Canadian medical schools. This study examines concordance between these policies and processes, and published "best practices" in remediation. We conducted a literature review to identify best practices in the area of remediation. We then reviewed remediation policies from all 13 English medical schools in Canada other than our own and conducted interviews with key informants from each institution. Each policy and interview transcript pair was then reviewed for evidence of pre-defined "best practices." Team members also noted additional potential policy or process enablers of successful remediation. Most policies and processes aligned with some but not all published best practices. For instance, all participating schools tailored remediation strategies to individual resident needs, and a majority encouraged faculty-student relationships during remediation. Conversely, few required the teaching of goal-setting, strategic planning, self-monitoring, and self-awareness. In addition, we identified avoidance of automatic training extension and the use of an educational review board to support the remediation process as enablers for success. Remediation policies and practices in Canada align well with published best practices in this area. Based on key informant opinions, flexibility to avoid training extension and use of an educational review board may also support optimal remediation outcomes.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report

    International Nuclear Information System (INIS)

    1996-08-01

    This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3

  14. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following a Chemical Terrorist Attack: Decision Criteria for Multipathway Exposure Routes

    OpenAIRE

    Watson, Annetta; Dolislager, Fredrick; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Love, Adam H.

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and de...

  15. Summary of the landfill remediation problems and technology needs of the Oak Ridge Reservation Environmental Restoration Programs

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: brief description of the Oak Ridge Reservation Environmental Restoration Program; descriptions of representative waste burials at each site; ongoing, planned, or potential remediation; known or anticipated remediation problems; potential applications for robotics in the remediation of Oak Ridge Reservation landfills

  16. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    OpenAIRE

    Tammy M. Milillo; Gaurav Sinha; Joseph A. Gardella Jr.

    2017-01-01

    The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision ...

  17. Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP)

  18. Cost and Performance Report: Solar-Powered Remediation and pH Control

    Science.gov (United States)

    2017-04-01

    parallel, with two batteries in each series, providing a 24 V DC power supply. A solar charge controller regulated the charging of the batteries when...ER-201033) Solar -Powered Remediation and pH Control April 2017 This document has been cleared for public release; Distribution Statement A...Technol. 32:1817-1824. CB&I Federal Services. 2017. Final Report. Solar Powered Remediation and pH Control . ESTCP Project ER-201033. April. Cheng, S

  19. Public affairs plan

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the fiscal year (FY) 1996 UMTRA Project public affairs program and to identify specific activities to be conducted during the year. It describes the roles of various agencies involved in the public affairs program and defines the functions of the UMTRA Project Technical Assistance Contractor (TAC) Public Affairs Department. It replaces the FY 1995 Public Affairs Plan (DOE/AL/62350-154). The plan also describes the US Department of Energy's (DOE) plans to keep stakeholders and other members of the public informed about UMTRA Project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in UMTRA Project decision-making processes. The plan applies to the UMTRA Project Team; the DOE Grand Junction Projects Office (GJPO); the DOE Albuquerque Operations Office, Office of Public Affairs (OPA); the TAC; the UMTRA Project Remedial Action Contractor (RAC); and other cooperating agencies

  20. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  1. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  2. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste

  3. Uranium Mill Tailings Remedial Action Program. Annual status report

    International Nuclear Information System (INIS)

    1984-12-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project FY 1984 major accomplishments are summarized. Twenty-five percent of the processing site remedial actions at Canonsburg, PA, were completed. Remedial action on 118 vicinity properties at four designated locations were initiated and survey and inclusion activities on a total of 420 vicinity properties were completed. The Environmental Impact Statement (EIS) for Salt Lake City, UT, and the Environmental Assessment (EA) for Shiprock, NM were published, and the preliminary draft EIS for Durango, CO, was prepared. Remedial Action Plans (RAPs) for Salt Lake City, UT, and Shiprock, NM were completed, and draft RAPs for Gunnison, CO, and Riverton, WY were prepared. Cooperative agreements with Oregon, Wyoming, and South Dakota were executed, and the Utah cooperative agreement was modified to assign the construction management responsibility to the state. An Interagency Agreement with TVA for disposal of the Edgemont vicinity property material was executed

  4. 48 CFR 1252.216-72 - Performance evaluation plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Performance evaluation....216-72 Performance evaluation plan. As prescribed in (TAR) 48 CFR 1216.406(b), insert the following clause: Performance Evaluation Plan (OCT 1994) (a) A Performance Evaluation Plan shall be unilaterally...

  5. Remedial Investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-09-01

    This Remedial Investigation (RI) work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. The potential for release of contamination to receptors through the various media is addressed, and a sampling and analysis plan is presented to determine the extent of release of contamination to the surrounding environment. Proposed activities include walkover radiation surveys at all sites, soil borings at SY-200, piezometer installation and water table sampling at SA-1 and SY-200, and surface water and sediment runoff sampling at all three sites. Data from the site characterization activities will be combined with data from ongoing site-wide monitoring programs (i.e., groundwater, surface water, and biological monitoring) to provide input for a screening-level risk assessment and evaluation of altemative remedial actions

  6. Objective Assessment of General Surgery Residents Followed by Remediation.

    Science.gov (United States)

    Gas, Becca L; Buckarma, EeeLN H; Mohan, Monali; Pandian, T K; Farley, David R

    Surgical training programs often lack objective assessment strategies. Complicated scheduling characteristics frequently make it difficult for surgical residents to undergo formal assessment; actually having the time and opportunity to remediate poor performance is an even greater problem. We developed a novel methodology of assessment for residents and created an efficient remediation system using a combination of simulation, online learning, and self-assessment options. Postgraduate year (PGY) 2 to 5 general surgery (GS) residents were tested in a 5 station, objective structured clinical examination style event called the Surgical X-Games. Stations were 15 minutes in length and tested both surgical knowledge and technical skills. Stations were scored on a scale of 1 to 5 (1 = Fail, 2 = Mediocre, 3 = Pass, 4 = Good, and 5 = Stellar). Station scores ≤ 2 were considered subpar and required remediation to a score ≥ 4. Five remediation sessions allowed residents the opportunity to practice the stations with staff surgeons. Videos of each skill or test of knowledge with clear instructions on how to perform at a stellar level were offered. Trainees also had the opportunity to checkout take-home task trainers to practice specific skills. Residents requiring remediation were then tested again in-person or sent in self-made videos of their performance. Academic medical center. PGY2, 3, 4, and 5 GS residents at Mayo Clinic in Rochester, MN. A total of, 35 residents participated in the Surgical X-Games in the spring of 2015. Among all, 31 (89%) had scores that were deemed subpar on at least 1 station. Overall, 18 (58%) residents attempted remediation. All 18 (100%) achieved a score ≥ 4 on the respective stations during a makeup attempt. Overall X-Games scores and those of PGY2s, 3s, and 4s were higher after remediation (p remediation. Despite difficulties with training logistics and busy resident schedules, it is feasible to objectively assess most GS trainees and

  7. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  8. Effects of peer social interaction on performance during computerized cognitive remediation therapy in patients with early course schizophrenia: A pilot study.

    Science.gov (United States)

    Sandoval, Luis R; González, Betzamel López; Stone, William S; Guimond, Synthia; Rivas, Cristina Torres; Sheynberg, David; Kuo, Susan S; Eack, Shaun; Keshavan, Matcheri S

    2017-09-04

    Recent studies show that computer-based training enhances cognition in schizophrenia; furthermore, socialization has also been found to improve cognitive functions. It is generally believed that non-social cognitive remediation using computer exercises would be a pre-requisite for therapeutic benefits from social cognitive training. However, it is also possible that social interaction by itself enhances non-social cognitive functions; this possibility has scarcely been explored in schizophrenia patients. This pilot study examined the effects of computer-based neurocognitive training, along with social interaction either with a peer (PSI) or without one (N-PSI). We hypothesized that PSI will enhance cognitive performance during computerized exercises in schizophrenia, as compared with N-PSI. Sixteen adult participants diagnosed with schizophrenia or schizoaffective disorder participating in an ongoing trial of Cognitive Enhancement Therapy completed several computerized neurocognitive remediation training sessions (the Orientation Remedial Module©, or ORM), either with a peer or without a peer. We observed a significant interaction between the effect of PSI and performance on the different cognitive exercises (p<0.05). More precisely, when patients performed the session with PSI, they demonstrated better cognitive performances than with N-PSI in the ORM exercise that provides training in processing speed, alertness, and reaction time (the standard Attention Reaction Conditioner, or ARC) (p<0.01, corrected). PSI did not significantly affect other cognitive domains such as target detection and spatial attention. Our findings suggest that PSI could improve cognitive performance, such as processing speed, during computerized cognitive training in schizophrenia. Additional studies investigating the effect of PSI during cognitive remediation are needed to further evaluate this hypothesis. Copyright © 2017. Published by Elsevier B.V.

  9. Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    The Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES ampersand H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES ampersand H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project

  10. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    Energy Technology Data Exchange (ETDEWEB)

    Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M. [Oak Ridge National Lab., TN (United States)

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

  11. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA

  12. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  13. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  14. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  15. Inactive Tanks Remediation Program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-06-01

    The overall objective of the Inactive Tank Remediation Program is to remediate all LLLW tanks that have been removed fimn service to the extent practicable in accordance with the FFA and CERCLA requirements. Applicable or relevant and appropriate requirements (ARARs) will be addressed in choosing a remediation alternative. Preference will be given to remedies that are highly reliable and provide long-term protection. Efforts will be directed toward permanently and significantly reducing the volume, toxicity, or mobility of hazardous substances, pollutants, and contaminants associated with the tank systems. Where indicated by operational or other restraints, interim measures short of full and complete remediation may be taken to maintain human health and ecological risks at acceptable levels until full remediation can be accomplished

  16. Readiness Review Plan for the Interim Remedial Action on Surface Debris in Waste Area Grouping 11 at Oak Ridge National Laboratory, Oak Ridge, TN

    International Nuclear Information System (INIS)

    1993-10-01

    This Readiness Review Plan was prepared by the Waste Area Grouping (WAG) 11 Site Project Readiness Review Team as an overview of the Interim Remedial Action on Surface Debris in WAG 11 project at Oak Ridge National Laboratory, including major readiness milestones, criteria development methodology, and a list of events to occur as part of the review process for determining readiness for each project phase

  17. Hanford well remediation and decommissioning plan

    International Nuclear Information System (INIS)

    Ledgerwood, R.K.

    1993-01-01

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

  18. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  19. 48 CFR 3052.216-72 - Performance evaluation plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Performance evaluation... CONTRACT CLAUSES Text of Provisions and Clauses 3052.216-72 Performance evaluation plan. As prescribed in... Evaluation Plan (DEC 2003) (a) A Performance Evaluation Plan shall be unilaterally established by the...

  20. 48 CFR 2452.216-73 - Performance evaluation plan.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Performance evaluation plan... 2452.216-73 Performance evaluation plan. As prescribed in 2416.406(e)(3), insert the following clause in all award fee contracts: Performance Evaluation Plan (AUG 1987) (a) The Government shall...

  1. Nuclear Site Remediation and Restoration during Decommissioning of Nuclear Installations. A Report by the NEA Co-operative Programme on Decommissioning

    International Nuclear Information System (INIS)

    Orr, Peter; Mitchell, Nick; Mobbs, Shelly; Bennest, Terry; Abu-Eid, Rateb-Boby; Berton, Marie-Anne; Dehaye, Catherine Ollivier; Pellenz, Gilles; Cruikshank, Julian; Diaz Arocas, Paloma; Garcia Tapias, Ester; Hess, Norbert; Hong, Sam-Bung; Miller, Susan; Monken-Fernandes, Horst; ); Morse, John; Nitzsche, Olaf; Ooms, Bart; Osimani, Celso; Stuart Walker

    2014-01-01

    Decommissioning of nuclear facilities and related remedial actions are currently being undertaken around the world to enable sites or parts of sites to be reused for other purposes. Remediation has generally been considered as the last step in a sequence of decommissioning steps, but the values of prevention, long-term planning and parallel remediation are increasingly being recognised as important steps in the process. This report, prepared by the Task Group on Nuclear Site Restoration of the NEA Co-operative Programme on Decommissioning, highlights lessons learnt from remediation experiences of NEA member countries that may be particularly helpful to practitioners of nuclear site remediation, regulators and site operators. It provides observations and recommendations to consider in the development of strategies and plans for efficient nuclear site remediation that ensures protection of workers and the environment. (authors)

  2. ANALYSIS OF REMEDIATION PROCESS OF THE GROUDWATER COTAMINATION IN AN ILLEGAL DUMPING SITE

    Science.gov (United States)

    Nishida, Norikazu; Furuichi, Toru; Ishii, Kazuei

    Among on-site remediation technologies applied to illegal dumping sites, a technology to remedy contaminated groundwater without removal of the dumped waste is expected to provide a great opportunity to fulfill a societal need due to its economic advantage compared to removal of all waste. However heterogeneously-distributed waste makes the remedial process difficult. In this study, an in situflushing technology was applied to an illegal dumping site in Kuwana city, Mie, in order to remedy groundwater contaminated with several volatile organic compounds (VOCs) within five years. The key to successfully achieve the target was to conduct a series of advanced remediation processes; introducing a new indicator by which multiple VOCs can be estimated integratelly, monitoring the progress of remediation with a contour map of VOC concentration as well as the weighted averages of the concentration derived from the indicator, pinpointing residual contaminants area, reexamining the plan, and taking additional steps that promote further remediation.

  3. Structural remedies in merger regulation in a Cournot framework

    Czech Academy of Sciences Publication Activity Database

    Medvedev, Andrei

    -, 2004-006 (2004), s. 1-21 ISSN 1572-4042 Institutional research plan: CEZ:AV0Z7085904 Keywords : merger regulation * structural remedies * auction Subject RIV: AH - Economics http://www.tilburguniversity.nl/tilec/publications/discussionpapers/2004-006.pdf

  4. Impacted material placement plans

    International Nuclear Information System (INIS)

    Hickey, M.J.

    1997-01-01

    Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility

  5. Cognitive remediation therapy (CRT) benefits more to patients with schizophrenia with low initial memory performances.

    Science.gov (United States)

    Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle

    2015-01-01

    Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.

  6. The Department of Energy's Remedial Action Assessment System (RAAS): Decision support tools for performing streamlined feasibility studies

    International Nuclear Information System (INIS)

    White, M.K.

    1994-06-01

    The United States Department of Energy (DOE) faces the major task of cleaning up hundreds of waste sites across the nation, which will require completion of a large number of remedial investigation/feasibility studies (RI/FSs). The intent of each RI/FS is to characterize the waste problems and environmental conditions at the operable unit level, segment the remediation problem into manageable medium-specific and contaminant-specific pieces, define corresponding remediation objectives, and identify remedial response actions to satisfy those objectives. The RI/FS team can then identify combinations of remediation technologies that will meet the remediation objectives. Finally, the team must evaluate these remedial alternatives in terms of effectiveness, implementability, cost, and acceptability. The Remedial Action Assessment System (RAAS) is being developed by Pacific Northwest Laboratory (PNL) to support DOE in this effort

  7. When daily planning improves employee performance: The importance of planning type, engagement, and interruptions.

    Science.gov (United States)

    Parke, Michael R; Weinhardt, Justin M; Brodsky, Andrew; Tangirala, Subrahmaniam; DeVoe, Sanford E

    2018-03-01

    Does planning for a particular workday help employees perform better than on other days they fail to plan? We investigate this question by identifying 2 distinct types of daily work planning to explain why and when planning improves employees' daily performance. The first type is time management planning (TMP)-creating task lists, prioritizing tasks, and determining how and when to perform them. We propose that TMP enhances employees' performance by increasing their work engagement, but that these positive effects are weakened when employees face many interruptions in their day. The second type is contingent planning (CP) in which employees anticipate possible interruptions in their work and plan for them. We propose that CP helps employees stay engaged and perform well despite frequent interruptions. We investigate these hypotheses using a 2-week experience-sampling study. Our findings indicate that TMP's positive effects are conditioned upon the amount of interruptions, but CP has positive effects that are not influenced by the level of interruptions. Through this study, we help inform workers of the different planning methods they can use to increase their daily motivation and performance in dynamic work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    International Nuclear Information System (INIS)

    1993-02-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  10. BUSINESS PLANS INFORMED BY DESIGN

    DEFF Research Database (Denmark)

    Petersen, Sørren Ingomar; Heebøll, John

    2011-01-01

    Today the value created by applying design at a business model and innovation level as opposed to a design and process level is marginal. Interviews with product developers from academia and industry suggest this is due to a lack of design perspective when formulating and evaluating business plans...... types. These were the design of products based on sustainable and on disruptive technologies. In conclusion, we recommend a procedure to align and translate business plan content into inspirational design briefs for enhancing design concept synthesis performance........ To remedy this, we propose including Design Quality Criteria drivers in the formulation of business plans. While auditing entrepreneurial business plans and design briefs content gaps were revealed between them. Strategy and context differences as well as a negative correlation between investors’ business...

  11. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Falck, W.E.

    2002-01-01

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  12. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    International Nuclear Information System (INIS)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table

  13. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table.

  14. The role of the observational approach in RI planning: WAG 5 case study

    International Nuclear Information System (INIS)

    Brill, A.K.; Kuhaida, A.J. Jr.

    1992-10-01

    A Remedial Investigation (RI) Plan was developed for the Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) 5 in March 1988 and submitted to the Environmental Protection Agency (EPA) Region IV and the State of Tennessee for review and approval. The observational approach was evaluated by the ORNL Environmental Restoration (ER) Program and accepted by EPA as an accelerated and cost-effective approach to the RI/Feasibility Study (FS) process for remediation of WAG 5. The traditional approach used in preparing the 1988 RI Plan focused on data completeness, included a typical range of RI data-gathering activities for determining the nature and extent of contamination at WAG 5, and used multiple iterations of sampling activities to deal with uncertainties without consideration of potential deviations. In fall 1991, a revised Field Sampling Plan (FSP) was developed that used the observational approach to integrate site characterization with site remediation needs. This approach recognized the uncertainties of site characterization/remedial planning and developed contingency plans for dealing with them. The observational approach emphasizes data sufficiency to support remedial planning decisions for WAG 5

  15. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  16. Use of technical and economic analysis for optimizing technology selection and remedial design for contaminated sites

    International Nuclear Information System (INIS)

    Hardisty, P.E.; Brown, A.

    1996-01-01

    The decision to remediate a contaminated site can be seen from the macroeconomic and microeconomic viewpoints. Macroeconomics can be used to plan and account for the overall cost of pollution as part of a firm's production, and thus make overall decisions on the real cost of pollution and the level of clean-up which may be called for. Valuation of damaged resources, option values and intrinsic worth is an important part of this process. Once the decision to remediate has been taken, the question becomes how best to remediate. Microeconomic analysis deals with providing efficient allocative decisions for reaching specified goals. it is safe to say that cost is one of the single most important factors in site clean-up decision making. A basic rule of remediation is often taken to be the maximization of contaminant mass removed per dollar spent. However, remediation may also be governed by other objectives and constraints. In some situations, minimization of time, rather than cost, could be the constraint. Or perhaps the objective could be to achieve a set level of clean-up for the lowest possible cost, even if a large program would result in unit-cost reductions. Evaluation of the economics of a clean-up project is directly linked to the objectives of the site owner, and the constraints within which the remediation is to be performed. Economic analysis of remedial options for containment of a 350,000 L hydrocarbon spill migrating through fractured rock into a river in Alberta, Canada, clear direction to the site owner

  17. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  18. Decision process for Hanford sitewide groundwater remediation

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-06-01

    This document describes a decision process for planning future investigations and remediating contaminated groundwater at the Hanford Site in Richland, Washington. This decision process details the following: identifies key decisions and activities; defines the criteria used in making each decision; and defines the logic that links the decisions and the activities in a stepwise manner

  19. Proposed plan for the Tank 105-C Hazardous Waste Management Facility. Revision 1

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.

    1994-01-01

    This Proposed Plan was developed to describe the remedial action selected at the Tank 105-C Hazardous Waste Management Facility (HWMF) source-specific unit within the C-Area Fundamental Study Area (FSA) at the Savannah River Site (SRS) and to fulfill Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. This 8,400 gallon capacity tank was certified and accepted closed according to a closure plan approved by the state of South Carolina under the Resource Conservation and Recovery Act (RCRA) authority in January 1991. As a result of the closure, previously performed under RCRA, the unit poses no current or potential threat to human health or the environment. Accordingly, no further remedial action is necessary under CERCLA

  20. Environmental remediation activities at WISMUT GmbH, Germany

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Takahashi, Kuniaki; Miyasaka, Yasuhiko; Yamana, Hajimu

    2007-01-01

    The WISMUT GmbH has carried out environmental remediation activities since 1991 in former GDR (German Democratic Republic) to rehabilitate the environment and landscape which have been adversely affected by decades of unrestrained mining and processing of uranium ores. It is worthy of being mentioned especially that WISMUT GmbH's sites including waste rock dump, mill tailings pond, open pit mine and water treatment facilities with an area of 3,700ha have been rehabilitated practically and extensively, and these activities are planned to terminate in 2015 except for the water treatment. For safety assessment after remediation, the value of 1mSv/y (in excess of the background level) is applied to as an individual effective dose, from the recommendation of ICRP (International Commission on Radiological Protection). This report shows a summary of environmental remediation activities carried out by the WISMUT GmbH and related regulatory laws. (author)

  1. Sampling and analysis plan for the 100-D Ponds voluntary remediation project

    International Nuclear Information System (INIS)

    1996-08-01

    This Sampling and Analysis Plan (SAP) describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds Resource Conservation and Recovery Act (RCRA) treatment, storage, and/or disposal (TSD) unit. This SAP includes the Field Sampling Plan (FSP) presented in Section 2.0, and the Quality Assurance Project Plan (QAPjP) described in Section 3.0. The FSP defines the sampling and analytical methodologies to be performed, and the QAPjP provides or includes information on the requirements for precision, accuracy, representativeness, comparability, and completeness of the analytical data. This sampling and analysis plan was developed using the Environmental Protection Agency's Seven-Step Data Quality Objectives (DQO) Guidance (EPA, 1994). The purpose of the DQO meetings was (1) to identify the contaminants of concern and their cleanup levels under the Washington State Model Toxics Control Act (MTCA, WAC-173-340) Method B, and (2) to determine the number and locations of samples necessary to verify that the 100-D Ponds meet the cleanup criteria. The data collected will be used to support RCRA closure of this TSD unit

  2. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  3. Program summary for the Office of Remedial Action and Waste Technology

    International Nuclear Information System (INIS)

    1989-10-01

    The US Department of Energy is the lead Federal agency responsible for planning and implementing the programs that ensure safe and efficient management of nuclear wastes from both civilian and defense activities. Within the Department, three offices share this responsibility: the Office of Remedial Action and Waste Technology, the Office of Civilian Radioactive Waste Management, and the Office of Defense Waste and Transportation Management. This document summarizes the programs managed by the Office of Remedial Action and Waste Technology

  4. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... features of the selected remedy with respect to scope, performance, or cost. To amend the ROD, the lead...) Include appropriate language in the solicitation requiring potential prime contractors to submit... protection of human health and the environment, the operation of such treatment or other measures for a...

  5. Radon impact at a remediated uranium mine site in Japan

    International Nuclear Information System (INIS)

    Ishimori, Yuu

    2011-01-01

    This paper mainly illustrates the radon impact of the closed uranium mine site remediated in 2007. The site remediated is the waste rock site located on the steep slope of a hill about 1.5 km upstream from a residential area along a main ravine. Major remedial action was to cover these waste rock yards with weathering granite soil. The radon flux density after remediation was intended to be 0.1 Bqm -2 s -1 in consideration with the natural background level around Ningyo-toge because there is no value of radon flux density regulated in Japan. Our action decreased the radon concentration in the site to natural background level, approximately from 10 to 40 Bqm -3 , although relatively high concentration in excess of 100 Bqm -3 was observed before remediation. On the other hand, our action did not decrease the radon concentrations around the site in general. This fact proved that the limited source such as waste rocks affected the radon concentrations at neighboring area only. The similar tendencies were also observed in other environmental data such as radon progeny concentrations. In conclusion, these findings proved that our remedial action was successful against radon. This fact will lead to more reasonable action plans for other closed mine sites. (author)

  6. Barometric pumping with a twist: VOC containment and remediation without boreholes. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The majority of the planned remediation sites within the DOE complex are contaminated with volatile organic compounds (VOCs). In many instances the contamination has not reached the water table, does not pose an immediate threat, and is not considered a high priority problem. These sites will ultimately require remediation of some type, either by active vapor extraction, bioremediation, or excavation and ex-situ soil treatment. The cost of remediating these sites can range from $50 K to more than $150 K, depending on site characteristics, contaminants, and remediation method. Additionally, for many remediated sites, residual contamination exists which could not practically be removed by the applied remediation technology. These circumstances result in modest sites with contamination of limited risk, but by regulation they must still be controlled. A remediation solution being developed by Science and Engineering Associates, Inc. (SEA) for the Department of Energy serves as an in-situ containment and extraction methodology for sites where most or all of the contamination resides in the vadose zone soil. The approach capitalizes on the advective soil gas movement resulting from barometric pressure oscillations.

  7. Environmental Restoration Remedial Action quality assurance requirements document

    International Nuclear Information System (INIS)

    1991-01-01

    This document defines the quality assurance requirements for the US Department of Energy-Richland Operations Office Environmental Restoration Remedial Action program at the Hanford Site. The Environmental Restoration Remedial Action program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency. This document combines quality assurance requirements from various source documents into one set of requirements for use by the US Department of Energy-Richland Operations Office and other Environmental Restoration Remedial Action program participants. This document will serve as the basis for developing Quality Assurance Program Plans and implementing procedures by the participants. The requirements of this document will be applied to activities affecting quality, using a graded approach based on the importance of the item, service, or activity to the program objectives. The Quality Assurance Program that will be established using this document as the basis, together with other program and technical documents, form an integrated management control system for conducting the Environmental Restoration Remedial Action program activities in a manner that provides safety and protects the environment and public health

  8. Succession Planning and Financial Performance: Does Competition Matter?

    Science.gov (United States)

    Patidar, Nitish; Gupta, Shivani; Azbik, Ginger; Weech-Maldonado, Robert

    2016-01-01

    Succession planning has been defined as the process by which one or more successors are identified for key positions, development activities are planned for identified successors, or both. Limited research exists pertaining to the relationship between hospital succession planning and financial performance, particularly in the context of market competition. We used the resource-based view framework to analyze the differential effect of succession planning on hospitals' financial performance based on market competition. According to RBV, organizations can achieve higher performance by using their superior resources and capabilities. We used a panel design consisting of a national sample of hospitals in the United States for 2006-2010. We analyzed data using multivariate linear regression with facility random effects and year and state fixed effects. The sample included 22,717 hospital-year observations; more than one half of the hospitals (55.4%) had a succession planning program. The study found a positive relationship between the presence of succession planning and financial performance (β = 1.41, p planning programs on the basis of competition in their market.

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2

  10. Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public

  11. Adapting Advances in Remediation Science to Long-Term Surveillance

    International Nuclear Information System (INIS)

    Peterson, D.M.

    2006-01-01

    Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in groundwater and the vadose zone. (authors)

  12. Adapting Advances in Remediation Science to Long-Term Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [S.M. Stoller Corporation

    2006-03-01

    Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in the groundwater and the vadose zone.

  13. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-01-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  14. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  15. ERD UMTRA Project quality assurance program plan, Revision 7

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors

  16. Surface Water Interim Measures/Interim Remedial Action Plan/Environmental Assessment and Decision Document for South Walnut Creek Basin (Operable Unit No. 2)

    International Nuclear Information System (INIS)

    1991-01-01

    The Department of Energy (DOE) is pursuing an Interim Measure/Interim Remedial Action (IM/IRA) at the 903 Pad, Mound, and East Trenches Areas (Operable Unit No. 2) at the Rocky Flats Plant (RFP). This IM/IRA is to be conducted to minimize the release from these areas of hazardous substances that pose a potential threat to the public health and environment. The Plan involved the collection of contaminated surface water at specific locations, treatment by chemical precipitation, cross-flow membrane filtration and granular activated carbon (GAC) adsorption, and surface discharge of treated water. Information for the initial configuration of the Plan is presented in the document entitled ''Proposed Interim Measures/Interim Remedial Action Plan and Decision Document, 903 Pad, Mound, and East Trenches Areas, Operable Unit No. 2'' (IM/IRAP) dated 26 September 1990. Information concerning the proposed Surface Water IM/IRA was presented during a public meeting held from 7 to 10 p.m., Tuesday, 23 October 1990, at the Westminster City Park Recreation Center in Westminster, Colorado. This Responsiveness Summary presents DOE's response to all comments received at the public meeting, as well as those mailed to DOE during the public comment period which ended 24 November 1990. There were a number of technical comments on the plan that DOE has addressed herein. It is noted that several major issues were raised by the comments. Regardless of the estimated low risk to the public from construction and water transport activities, the popular sentiment of the public, based on comments received, is strong concern over worker and public health risks from these activities. In the light of public and municipal concerns, DOE proposes to eliminate from this IM/IRA the interbasin transfer of Woman Creek seepage to the South Walnut Creek drainage and to address collection and treatment of contaminated South Walnut Creek and Woman Creek surface water under two separate IM/IRAs

  17. Hydrogeologic investigations sampling plan: Revision 0

    International Nuclear Information System (INIS)

    1988-11-01

    The goal of this sampling plan is to identify and develop specific plans for those investigative actions necessary to: (1) characterize the hydrologic regime; (2) define the extent and impact of contamination; and (3) predict future contaminant migration for the Weldon Spring Site (WSS) and vicinity. The plan is part of the Weldon Spring Site Remedial Action Project (WSSRAP) sponsored by the US Department of Energy (DOE) and has been developed in accordance with US EPA Remedial Investigation (RI) and Data Quality Objective (DQO) guidelines. The plan consists of a sequence of activities including the evaluation of data, development of a conceptual model, identification of data uses and needs, and the design and implementation of a data collection program. Data will be obtained to: (1) confirm the presence or absence of contaminants; (2) define contaminant sources and modes of transport; (3) delineate extent of contaminant migration and predict future migration; and (4) provide information to support the evaluation and selection of remedial actions. 81 refs., 62 figs., 26 tabs

  18. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  19. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    International Nuclear Information System (INIS)

    ROOT, R.W.

    1999-01-01

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems

  20. Feasibility and Performance of Full-Scale In-situ Remediation of TCE by ERD in Clay Tills

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE-contamin......The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE...... been applied. The results showed that the chlorinated solvent TCE was converted into its daughter products (cDCE, VC and ethene) but complete conversion of contaminants to ethene (as expected) was not achieved within a timeframe of 4 years. Large variation in the effect of ERD in the clay matrix...... features in some parts of the clay tills. The bioactive zones may expand in zones where both donor and chlorinated compounds are present. In some cores TCE was depleted (degraded to DCE) in zones up to 1.8 m thick – an extent which could not be explained by diffusive loss to narrow bioactive zones. Hence...

  1. Remediation of radioactively contaminated facilities and the site of Russian Research Center Kurchatov Institute

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ponomarev-Stepnoj, N.N.; Volkov, V.G.

    2007-01-01

    One discusses the efforts to rehabilitate the radiation hazard installations and to remediate the contaminated territory of the Kurchatov Institute RSC undertaken in 2006-2007 in terms of the Remediation Project. The old radwaste storage facilities constructed at the site when the Institute was involved in activities to elaborate both war and civil nuclear technologies were the basic objects of the rehabilitation efforts. Paper describes the structure of the storage facilities covering the volume and the characteristics of the stored radwaste. Paper discusses the storage facility site layout parameters taken into consideration in the course of the remediation efforts. Paper describes the procedures, the sequence of the remediation efforts and the peculiar features of the planning and engineering approaches. Paper dwells upon the results of the rehabilitation and the remediation efforts [ru

  2. Three Performativities of Innovation in Public Transport Planning

    DEFF Research Database (Denmark)

    Lissandrello, Enza; Hrelja, Robert; Tennøy, Aud

    2017-01-01

    Focusing on planners’ own stories of innovation in public transport planning in three Nordic contexts (Denmark, Sweden and Norway), this article explores how individual planning professionals develop specific abilities that shape the possibilities of action and innovation in planning practices....... To illuminate how planning is dynamically renewed, revised and consolidated over time by the individual actions of planners, the article offers an interpretation of the performative qualities of planners by adapting Butler’s feminist critical theory on performativity to the public transport planning context...

  3. Optimising the remediation of sites contaminated by the Wismut uranium mining operations using performance and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pelz, F.; Jakubick, A.Th.; Kahnt, R. [Wismut GmbH, Chemnitz (Germany)

    2003-07-01

    The cost and risk assessment at Wismut GmbH is performed for optimising the remediation of sites contaminated by uranium mining and milling. An iterative either probabilistic or deterministic 'top-down' model of the remediation project as an integrated system is used. Initially all relevant processes are captured in a rather abstract and simplistic way. In the course of the model development those variables and processes to which results have been shown to be sensitive are described in more detail. This approach is useful for identifying any gaps in the knowledge base that have to be filled in the course of the multi-attributive decision making. The requirement for optimisation, also with respect to socio-economic impacts, is met by including other variables in addition to costs and health risks. (authors)

  4. Optimising the remediation of sites contaminated by the Wismut uranium mining operations using performance and risk assessment

    International Nuclear Information System (INIS)

    Pelz, F.; Jakubick, A.Th.; Kahnt, R.

    2003-01-01

    The cost and risk assessment at Wismut GmbH is performed for optimising the remediation of sites contaminated by uranium mining and milling. An iterative either probabilistic or deterministic 'top-down' model of the remediation project as an integrated system is used. Initially all relevant processes are captured in a rather abstract and simplistic way. In the course of the model development those variables and processes to which results have been shown to be sensitive are described in more detail. This approach is useful for identifying any gaps in the knowledge base that have to be filled in the course of the multi-attributive decision making. The requirement for optimisation, also with respect to socio-economic impacts, is met by including other variables in addition to costs and health risks. (authors)

  5. 118-B-1 excavation treatability test plan

    International Nuclear Information System (INIS)

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request number-sign M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal

  6. Absenteeism, Educational Plans, and Anxiety among Children with Incontinence and Their Parents

    Science.gov (United States)

    Filce, Hollie G.; LaVergne, Leslie

    2015-01-01

    Background: Children with incontinence have more absenteeism, poorer academic performance, and potential social difficulties during the school years. These children and their parents are at risk for illness-related anxiety. Whereas educational plans are designed to remediate educational, medical, and social-emotional barriers at school, little…

  7. Performance improvement plan in customer technical services

    International Nuclear Information System (INIS)

    Lachambre, L.

    1995-01-01

    This presentation centred around the philosophy, goals, and initiatives associated with Gaz Metropolitain's performance improvement plan. Various aspects of the plan including customer surveys, new customer service policies, the creation of small working units, the decentralization of the Montreal service department, and customer-harmonized shift schedules were explored. Implementation of new service plans and contracts, the formation of improvement groups related to human resources, human resource and productivity management, leadership training, and the use of performance indicators were also explained

  8. Modifications to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    International Nuclear Information System (INIS)

    1991-10-01

    This modification to the Green River Final Remedial Action Plan (FRAP) represents the changes made to the document in accordance with a joint agreement between the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) outlined in a letter dated August 7, 1991. As specified in this letter, methylene chloride will no longer be analyzed in groundwater samples collected from on-site monitor wells. All references to methylene chloride sampling have been deleted from the FRAP, as indicated by the pages in Section 2.0 of this document

  9. Tank waste remediation system vadose zone program plan

    International Nuclear Information System (INIS)

    Fredenburg, E.A.

    1998-01-01

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities

  10. Tank waste remediation system vadose zone program plan

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  11. Remediation of the Provisional Storage of Radioactive Waste near Zavratec

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    1998-01-01

    In 1996 the remediation of the provisional storage situated near village Zavratec in western part of Slovenia started. In this storage radioactive waste contaminated with radium has been stored for many decades The RAO Agency organized remedial works, in which these activities inventorying and repacking of radioactive waste were carried out. Simultaneously with these activities a detailed programme for covering public relations was prepared and implemented. On the basis of the experimental results and general storage conditions relocation of radioactive waste to the Slovenian central storage was recommended and it is planned to be concluded by the end of 1998. In this paper main remedial activities in the provisional storage of radioactive waste near Zavratec are presented. An important and most challenging part of these activities represent PR activities. (author)

  12. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  13. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  14. Present status of the Zavratec remediation project

    International Nuclear Information System (INIS)

    Zeleznik, N.; Stepisnik, M.; Mele, I.

    1997-01-01

    In 1992 the responsibility for the remediation of the temporary storage of radioactive waste near Zavratec was assigned to the Agency for Radwaste Management. The project was divided into two phases. First, in a study, different options for remediation were considered. In the second phase, performed in 1996, the measurements, inventorying and repacking of radioactive waste were carried out. Simultaneously with these activities a programme for covering public relations was prepared. One of the results of the public relation campaign is also a 15-minute video film, which was prepared from documentary material recorded during remedial activities, and will be presented here. (author)

  15. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  16. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    International Nuclear Information System (INIS)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-01-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA

  17. International experience in tailings pond remediation

    Energy Technology Data Exchange (ETDEWEB)

    MacG. Robertson, A. [Robertson GeoConsultants Ltd., Vancouver (Canada)

    2001-07-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  18. International experience in tailings pond remediation

    International Nuclear Information System (INIS)

    Robertson, A.MacG.

    2001-01-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  19. Remedial investigation/feasibility study work plan for the 100-FR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-3 operable unit. The 100-K Area consists of the 100-FR-3 groundwater operable unit and two source operable units. The 100-FR-3 operable unit includes all contamination found in the aquifer soils and water beneath the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination. A separate work plan has been initiated for the 100-FR-1 source operable unit (DOE-RL 1992a)

  20. Remedial investigation/feasibility study work plan for the 100-FR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    Four areas of the Hanford Site (the 100, 200,300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-1 operable unit. The 100-FR-1 source operable unit is one of two source operable units in the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of hazardous substance contamination. The groundwater affected or potentially affected by the entire 100-F Area is considered as a separate operable unit, the 100-FR-3 groundwater operable unit. A separate work plan has been initiated for the 100-FR-3 operable unit (DOE/RL 1992a)

  1. Remedying breaches or non-performance of the lease

    International Nuclear Information System (INIS)

    Sali, L.M.

    1998-01-01

    This paper discusses how natural gas and petroleum leases should be handled in the event of a dispute or non-performance, particularly in cases when the original parties to the lease have assigned their interests to others, which is currently a common practice. The most obvious concern is premature termination or default which, however, can be easily prevented by paying all delay rentals in a timely fashion, and at the proper address. In other types of default, most leases in use today contain a default clause which requires the party that asserts the existence of a default to serve notice to the party allegedly in default. Remedying the default is permitted, as it is in many other contracts. Interruptions in production is a frequent occasion for claiming default and many leases deal with shut-in production in special ways, but care must be exercised in interpreting the lease in question, for if there is an intention by the lessee to shut-in production due to economic or other considerations after the primary term expires there is virtually no way to bring that lease back to life, unless the facts clearly show that the parties knowingly effectively constructed a new lease

  2. Research on the characterization and conditioning of uranium mill tailings. III. Summary of uranium mill tailings conditioning research and implications regarding remedial actions

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Williams, J.M.

    1983-06-01

    This report summarizes the findings of research on uranium mill tailings conditioning technology development performed for the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). Hazards and risks posed by tailings piles are discussed in relation to the goal of conditioning the tailings to reduce these hazards. The results of our efforts regarding characterization of tailings, removal of radionuclides, mineral recovery, thermal stabilization, and engineering/economic analysis of conditioning are presented. The implications of these results for remedial action plans are discussed and conclusions regarding the applicability of these technologies are also presented

  3. Health Plan Performance Measurement within Medicare Subvention.

    Science.gov (United States)

    1998-06-01

    the causes of poor performance (Siren & Laffel, 1996). Although outcomes measures such as nosocomial infection rates, admission rates for select...defined. Traditional outcomes measures include infection rates, morbidity, and mortality. The problem with these traditional measures is... Maternal /Child Care Indicators Nursing Staffing Indicators Outcome Indicators Technical Outcomes Plan Performance Stability of Health Plan

  4. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  5. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description

  6. 14 CFR 136.13 - Helicopter performance plan and operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...

  7. Performance Assessment Strategy Plan for the Geologic Repository Program

    International Nuclear Information System (INIS)

    1990-01-01

    Performance assessment is a major constituent of the program being conducted by the US Department of Energy (DOE) to develop a geologic repository. Performance assessment is the set of activities needed for quantitative evaluations to assess compliance with the performance requirements in the regulations for a geologic repository and to support the development of the repository. The strategy for these evaluations has been documented in the Performance Assessment Strategy Plan (DOE, 1989). The implementation of the performance assessment strategy is defined in this document. This paper discusses the scope and objectives of the implementation plan, the relationship of the plan to other program plans, summarizes the performance assessment areas and the integrated strategy of the performance assessment program. 1 fig., 3 tabs

  8. Program management strategies for following EPA guidance for remedial design/remedial action at DOE sites

    International Nuclear Information System (INIS)

    Hopper, J.P.; Chew, J.R.; Kowalski, T.E.

    1991-01-01

    At the US Department of Energy (DOE) facilities, environmental restoration is being conducted in accordance with Federal Facilities Compliance Agreements (or Interagency Agreements). These agreements establish a cooperative working relationship and often define roles, responsibilities and authorities for conduct and oversight of the Remedial Action Programs. The US Environmental Protection Agency (EPA) has guidelines on how to initiate and perform remedial actions for sites they are remediating under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Re-Authorization Act (SARA). This paper addresses some of the difference and commonalities between the DOE project management procedures and EPA guidance documents. This report covers only the RD/RA phase of environmental restoration. On the surface, there are many apparent differences between the DOE and EPA project management processes. Upon closer review, however, many of the differences are the result of applying different terminology to the same phase of a project. By looking for the similarities in the two processes rather than hunting for differences, many communication problems are avoided. Understanding both processes also aids in figuring out when, how and to what extent EPA should participate in the RD/RA phase for DOE lead cleanup activities. The DOE Remedial Design and Remedial Action process is discussed in a stepwise manner and compared to the EPA process. Each element of the process is defined. Activities common to both the EPA and DOE are correlated. The annual DOE budget cycle for remediation projects and the four-year cycle for appropriation of remediation funds are discussed, and the constraints of this process examined. DOE orders as well as other requirements for RD/RA activities are summarized and correlated to EPA regulations where this is possible

  9. Assessing the wider environmental value of remediating land contamination

    NARCIS (Netherlands)

    Bardos, R.P.; Kearney, T.E.; Nathanail, C.P.; Weenk, A.; Martin, I.D.

    2000-01-01

    The aim of this paper is to consider qualitative and quantitative approaches for assessing the wider environmental value of remediating land contamination. In terms of the environmental element of sustainable development, a remediation project's overall environmental performance is the sum of the

  10. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  11. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  12. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  13. IAEA Coordinates International Mission on Remediation of Areas Off-site Fukushima Daiichi NPP

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency (IAEA) will dispatch an international expert mission to Japan to assist the country in its planning to remediate the areas off-site from the Fukushima Daiichi Nuclear Power Plant. Following a request by the Government of Japan, the mission, comprising 12 international and IAEA experts from several countries, will visit Japan between 7 and 15 October 2011 under the leadership of Mr. Juan Carlos Lentijo, General Director for Radiation Protection at Spain's nuclear regulatory authority. The team will go to several locations in the Fukushima Prefecture and conduct meetings in Tokyo with Japanese officials to: Provide assistance to Japan in its plans to manage remediation efforts; Review the country's remediation strategies, plans and work; and Share its findings with the international community. The IAEA mission will provide an opportunity for the international experts to exchange views with the Japanese authorities involved in the decontamination effort and other interested parties. It will also provide an opportunity for the IAEA to take stock of lessons learned from this important decontamination initiative. At the end of the mission a preliminary summary report will be provided to the Government of Japan and be made publically available. The team is also planning to hold a press briefing at the end of the mission. The final report of the mission will be presented to the Government in the month following the conclusion of the mission. Background The accident at Fukushima Daiichi Nuclear Power Plant has led to the radiological contamination of large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA organized an International Fact Finding Expert Mission Of The Fukushima Daiichi Nuclear Power Plant Accident Following The Great East Japan Earthquake And Tsunami, which was held between 24 May and 2 June 2011. The current mission is a

  14. 5 CFR 430.206 - Planning performance.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Planning performance. 430.206 Section 430.206 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Performance Appraisal for General Schedule, Prevailing Rate, and Certain Other Employees § 430.206...

  15. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    Hightower, M.

    1995-01-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  16. Tank waste remediation system environmental program plan

    International Nuclear Information System (INIS)

    Borneman, L.E.

    1998-01-01

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996)

  17. Tank waste remediation system environmental program plan

    Energy Technology Data Exchange (ETDEWEB)

    Borneman, L.E.

    1998-01-09

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  18. Rail transportation of Fernald remediation waste

    International Nuclear Information System (INIS)

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-01

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994

  19. 42 CFR 460.132 - Quality assessment and performance improvement plan.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Quality assessment and performance improvement plan... assessment and performance improvement plan. (a) Basic rule. A PACE organization must have a written quality assessment and performance improvement plan. (b) Annual review. The PACE governing body must review the plan...

  20. The Genesis of a Trauma Performance Improvement Plan.

    Science.gov (United States)

    Pidgeon, Kristopher

    2015-01-01

    The purpose of this article is to assist the trauma medical and program director with developing a performance improvement and patients safety plan (PIPS), which is a required component of a successful trauma verification process by the American College of Surgeons. This article will review trauma quality standards and will describe in detail the required elements of a successful trauma center's performance improvement plan including a written comprehensive plan that outlines the mission and vision of the PIPS Program, authority of the PIPS Program, PIPS Program Committee reporting structure to the other hospital committees, list of required PIPS multidisciplinary team members, the operational components of the utilized data management system (trauma registry), list of indicators/audit filters, levels of review, peer determinations, corrective action plan with implementation, event resolution, and reevaluation. Strategies to develop a successful trauma performance improvement plan are presented.

  1. Surface Water Interim Measures/Interim Remedial Action Plan/ Environmental and Decision Document, South Walnut Creek Basin, Operable Unit No.2

    International Nuclear Information System (INIS)

    1991-01-01

    Water quality investigations have identified the presence of volatile organic compound (VOC) and radionuclide contamination of surface water at the Rocky Flats Plant (RFP). The subject interim Measures/Interim Remedial Action Plan/Environmental Assessment (IM/IRAP/EA) addresses contaminated surface water in a portion of the South Walnut Creek drainage basin located within an area identified as Operable Unit No. 2 (OU 2). There is no immediate threat to public health and the environment posed by this surface water contamination. The affected surface water is contained within the plant boundary by existing detention ponds, and is treated prior to discharge for removal of volatile contaminants and suspended particulates to which radionuclides, if present, are likely to absorb. However, there is a potential threat and the Department of Energy (DOE) is implementing this Surface Water IM/IRAP at the request of the US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH). Implementation of the Surface Water IM/IRA will enhance the DOE's efforts towards containing and managing contaminated surface water, and will mitigate downgradient migration of contaminants. Another factor in implementing this IM/IRA is the length of time it will take to complete the investigations and engineering studies necessary to determine the final remedy for OU 2. 44 refs., 23 figs., 14 tabs

  2. Remediation in Practicing Physicians: Current and Alternative Conceptualizations.

    Science.gov (United States)

    Bourgeois-Law, Gisèle; Teunissen, Pim W; Regehr, Glenn

    2018-04-24

    Suboptimal performance in practicing physicians is a decades-old problem. The lack of a universally accepted definition of remediation, the paucity of research on best remediation practices, and the ongoing controversy regarding the institutional responsibility for enacting and overseeing this activity suggests that the remediation of physicians is not merely a difficult problem to solve, but a problem that the community does not grapple with meaningfully. Undoubtedly, logistical and political considerations contribute to this state of affairs; however, other underlying conceptual issues may also play a role in the medical profession's difficulties in engaging with the challenges around remediation.Through a review of the medical education and other literatures, the authors examined current conceptualizations of both remediation itself and the individual being remediated, as well as how the culture of medicine influences these conceptions. The authors explored how conceptualizations of remediation and the surrounding culture might affect not only the medical community's ability to support, but also its willingness to engage with physicians in need of remediation.Viewing remediation as a means of supporting practice change-rather than as a means of redressing gaps in knowledge and skill-might be a useful alternative conceptualization, providing a good place to start exploring new avenues of research. However, moving forward will require more than simply a reconceptualizion of remediation; it will also necessitate a change in how the community views its struggling members and a change in the medical culture that currently positions professional autonomy as the foundational premise for individual practice improvement.

  3. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  4. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  5. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    International Nuclear Information System (INIS)

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 90 r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL

  6. Light Duty Utility Arm computer software configuration management plan

    International Nuclear Information System (INIS)

    Philipp, B.L.

    1998-01-01

    This plan describes the configuration management for the Light Duty Utility Arm robotic manipulation arm control software. It identifies the requirement, associated documents, and the software control methodology. The Light Duty Utility Ann (LDUA) System is a multi-axis robotic manipulator arm and deployment vehicle, used to perform surveillance and characterization operations in support of remediation of defense nuclear wastes currently stored in the Hanford Underground Storage Tanks (USTs) through the available 30.5 cm (12 in.) risers. This plan describes the configuration management of the LDUA software

  7. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  8. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints

  9. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  10. Medicare Managed Care plan Performance, A Comparison...

    Data.gov (United States)

    U.S. Department of Health & Human Services — The study evaluates the performance of Medicare managed care, Medicare Advantage, Plans in comparison to Medicare fee-for-service Plans in three states with...

  11. A strategy for end point criteria for Superfund remediation

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1992-06-01

    Since the inception of cleanup for hazardous waste sites, estimating target cleanup levels has been the subject of considerable investigation and debate in the Superfund remediation process. Establishing formal procedures for assessing human health risks associated with hazardous waste sites has provided a conceptual framework for determining remediation goals and target cleanup levels (TCLs) based on human health and ecological risk consideration. This approach was once considered at variance with the concept of the pre-risk assessment period; that is, cleaning up to the background level, or using containment design or best available control technologies. The concept has been gradually adopted by the regulatory agencies and the parties responsible for cleanup. Evaluation of cleanup strategies at the outset of the planning stage will eventually benefit the parties responsible for cleanup and the oversight organizations, including regulatory agencies. Development of the strategies will provide an opportunity to promote an improvement in the pace and quality of many activities to be carried out. The strategies should help address the issues related to (1) improving remediation management activities to arrive at remediation as expeditiously as possible, (2) developing alternate remediation management activities, (3) identifying obstructing issues to management for resolution, (4) adapting the existing framework to correspond to the change in remediation statutes and guidelines, and (5) providing the basis for evaluating options for the record of decision process. This paper will discuss some of the issues and the research efforts that were addressed as part of the strategies requiring future discussion and comment

  12. Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis

    International Nuclear Information System (INIS)

    Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

    1995-12-01

    A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O ampersand M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts

  13. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Lightner, R.; Cormier, C.; Bierley, D.

    1995-01-01

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE's UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE's plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells

  14. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. DOE responses to comments from U.S. Nuclear Regulatory Commission and Colorado Department of Public Health and Environment

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains responses by the US Department of Energy to comments from the US Nuclear Regulatory Commission and the Colorado Department of Public Health and Environment on the Naturita remedial action plan. This was done in an attempt to clarify information. The site is an inactive uranium processing site at Naturita, Colorado

  15. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  16. Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Walker, S.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program

  17. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568

  19. Cost-effectiveness analysis of radon remediation in schools

    International Nuclear Information System (INIS)

    Kennedy, C.A.; Gray, A.M.

    2000-01-01

    sensitivity analysis show that the ratio is particularly sensitive to assumptions of two parameters including: the average capital cost of remediation and the discount rates chosen for the life yells. The overall model presented in this study can be applied to any other area, and alternative regional parameter estimates can be substituted if these are available. As the sensitivity analysis shows, however, remediation is likely to prove cost-effective even if these parameter estimates are substantially different. These results should help to inform further discussion of policy setting for radon remediation in various settings. It provides an empirical example of the type of economic analysis encouraged by both the UK NRPB (1986) and the ICRP (1983). General information on the average costs of remediation and potential savings to the health care system will be helpful as increasing numbers of local authorities start planning remediation programmes for the schools under their care. This study also highlights the need for the evaluation of other schools remediation-based radon-induced lung cancer prevention programmes in other countries using similar methodological techniques. (author)

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 7

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.; Fowler, J.W.

    1986-09-01

    The 644 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the seventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. References are arranged alphabetically by leading author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  1. Tank waste remediation system privatization Phase 1 infrastructure, project W-519, project execution plan

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented

  2. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA [Environmental Protection Agency] standards (40 CFR Part 192)

    International Nuclear Information System (INIS)

    1989-01-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs

  3. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. It should be noted that the borrow sites included in this EIS were selected as the sources of the necessary borrow materials for impacts analyses purposes only. The borrow sites to be used for the remedial action will be selected during the final design. 21 figs., 18 tabs

  4. Remediation management of complex sites using an adaptive site management approach.

    Science.gov (United States)

    Price, John; Spreng, Carl; Hawley, Elisabeth L; Deeb, Rula

    2017-12-15

    Complex sites require a disproportionate amount of resources for environmental remediation and long timeframes to achieve remediation objectives, due to their complex geologic conditions, hydrogeologic conditions, geochemical conditions, contaminant-related conditions, large scale of contamination, and/or non-technical challenges. A recent team of state and federal environmental regulators, federal agency representatives, industry experts, community stakeholders, and academia worked together as an Interstate Technology & Regulatory Council (ITRC) team to compile resources and create new guidance on the remediation management of complex sites. This article summarizes the ITRC team's recommended process for addressing complex sites through an adaptive site management approach. The team provided guidance for site managers and other stakeholders to evaluate site complexities and determine site remediation potential, i.e., whether an adaptive site management approach is warranted. Adaptive site management was described as a comprehensive, flexible approach to iteratively evaluate and adjust the remedial strategy in response to remedy performance. Key aspects of adaptive site management were described, including tools for revising and updating the conceptual site model (CSM), the importance of setting interim objectives to define short-term milestones on the journey to achieving site objectives, establishing a performance model and metrics to evaluate progress towards meeting interim objectives, and comparing actual with predicted progress during scheduled periodic evaluations, and establishing decision criteria for when and how to adapt/modify/revise the remedial strategy in response to remedy performance. Key findings will be published in an ITRC Technical and Regulatory guidance document in 2017 and free training webinars will be conducted. More information is available at www.itrc-web.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Coordinating bifurcated remediation of soil and groundwater at sites containing multiple operable units

    International Nuclear Information System (INIS)

    Laney, D.F.

    1996-01-01

    On larger and/or more complex sites, remediation of soil and groundwater is sometimes bifurcated. This presents some unique advantages with respect to expedited cleanup of one medium, however, it requires skillful planning and significant forethought to ensure that initial remediation efforts do not preclude some long-term options, and/or unduly influence the subsequent selection of a technology for the other operable units and/or media. this paper examines how the decision to bifurcate should be approached, the various methods of bifurcation, the advantages and disadvantages of bifurcation, and the best methods to build flexibility into the design of initial remediation systems so as to allow for consideration of a fuller range of options for remediation of other operable units and/or media at a later time. Pollutants of concern include: metals; petroleum hydrocarbons; and chlorinated solvents

  6. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives

  7. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime's, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives

  8. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  10. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  11. Soil radiological characterisation and remediation at CIEMAT

    International Nuclear Information System (INIS)

    Correa, Cristina; Garcia Tapias, Esther; Leganes, Jose

    2012-01-01

    Located in Madrid, CIEMAT is the Spanish Centre for Energy-Related, Environmental and Technological Research. It used to have more than 60 facilities in operation that allowed a wide range of activities in the nuclear field and in the application of ionising radiations. At present, the centre includes several facilities; some of them are now obsolete, shut down and in dismantling phases. In 2000 CIEMAT started the 'Integrated plan for the improvement of CIEMAT facilities (PIMIC)', which includes activities for the decontamination, dismantling, rehabilitation of obsolete installations and soil remediation activities. A small contaminated area named with the Spanish word 'Lenteja' (Lentil), has had to be remediate and restored. In the 70's, an incidental leakage of radioactive liquid occurred during a transference operation from the Reprocessing Plant to the Liquid Treatment Installation, and contaminated about 1000 m 3 of soil. Remediation activities in this area started with an exhaustive radiological characterisation of the soil, including surface samples and up to 16 meters boreholes, and the development of a comprehensive radiological characterization methodology for pre-classification of materials. Once the framework was defined the following tasks were being carried out: preparation of the area, soil extraction activities and final radiological characterisation for release purposes. Next step will be the refilling of the resulting hole from the removal soil activities. This paper will describe the soil radiological characterization and remediation activities at the Lentil Zone in Ciemat Research Centre. (authors)

  12. Process for determining the remediation category of hazardous substance sites

    International Nuclear Information System (INIS)

    Sieben, A.K.

    1994-01-01

    An evaluation process has been developed that aids in selecting the appropriate remediation category of hazardous substance sites. Three general remediation categories have been established: No further Action: Potential Early Action: and Defer for RI/FS or Transition/Decontamination and Decommissioning. This evaluation method is a preliminary screening process only and will not identify the most appropriate remediation alternative for each site. The remedy selection process can proceed only after a remediation category is determined for each site. All sites are evaluated at a preliminary screening level to determine the general remediation category. After the first screen, a secondary evaluation is performed on both the PEA sites and the DEFER sites. For PEAs, this secondary evaluation will incorporate additional specific factors, such as a screening level risk assessment. For the DEFER sites feasibility factors will be used to distinguish between the sites which should undergo a normal RI/FS and the sites which will be recommended to be remediated in association with D ampersand D of buildings. Ultimately, all of the sites will be placed into one of four remediation categories

  13. Environmental remediation for the upstream of Yotsugi Mill Tailings Pond, Ningyo-toge Uranium Mine

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Torikai, Kazuyoshi; Fukushima, Shigeru; Sakao, Ryota; Taki, Tomihiro; Sato, Yasushi; Sakamoto, Atsushi

    2016-03-01

    Ningyo-toge Environmental Engineering Center has been conducting environmental remediation of the Ningyo-toge Uranium Mine, after decades of mine-related activities including uranium exploration, mining and test milling were terminated. The main purposes of the remediation are to take measures to ensure safety and radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. As part of the remediation, upstream part of the Yotsugi Mill Tailings Pond, the highest prioritized facility among all of the mine-related facilities, has been remediated to fiscal year 2012. In the remediation, multi-layered capping has been constructed using natural material on ground surface, after specifications and whole remediation procedure being examined in terms of long-term stability, radiation protection, economics, and other aspects. Monitoring has been carried out to confirm the effectiveness of the capping, in terms of settlement, underground temperature, dose-rate and radon exhalation rate. Monitoring of drainage volume of penetrated rainwater is planned to begin in future. Accumulated data will be examined and its result will be used for remediation of downstream part of the Pond. (author)

  14. Department of Energy Hazardous Waste Remedial Actions Program: An overview

    International Nuclear Information System (INIS)

    Eyman, L.D.; Swiger, R.F.

    1988-01-01

    This paper describes the national Department of Energy (DOE) program for managing hazardous waste. An overview of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP), including its mission, organizational structure, and major program elements, is given. The paper focuses on the contractor support role assigned to Martin Marietta Energy Systems, Inc., through the establishment of the HAZWRAP Support Contractor Office (SCO). The major SCO programs are described, and the organization for managing the programs is discussed. The HAZWRAP SCO approaches to waste management planning and to technology research, development, and demonstration are presented. The role of the SCO in the DOE Environmental Restoration Program and the development of the DOE Waste Information network are reviewed. Also discussed is the DOE Work for Others Program, where waste management decentralized support, via interagency agreements between DOE and the Department of Defense and DOE and the Environmental Protection Agency, is provided for those sponsors planning remedial response actions. 2 refs

  15. Environmental Chemistry Principles in Site Remediation (CEECHE 2018 Krakow Poland)

    Science.gov (United States)

    In CEECHE meeting, we will present scientific, engineering information and case studies on sustainable and innovative remediation technologies used in contaminated sites in Europe and the United States. One of the most important tasks to be performed to remediate contaminated si...

  16. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  17. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  18. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  19. Briefing paper -- Remedial Action Assessment System

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1990-04-01

    Congress has mandated a more comprehensive management of hazardous wastes with the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or ''Superfund'') and the Superfund Amendment and Reauthorization Act (SARA). This mandate includes restoration of disposal sites contaminated through past disposal practices. This mandate applies to facilities operated for and by the Department of Energy (DOE), just as it does to industrial and other institutions. To help implement the CERCLA/SARA remedial investigation and feasibility study (RI/FS) process in a consistent, timely, and cost-effective manner, a methodology needs to be developed that will allow definition, sorting, and screening of remediation technologies for each operable unit (waste site). This need is stated specifically in Section 2.2.2.1 of the October 1989 Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Plan of the DOE. This Briefing Paper is prepared to respond to this need. 1 fig

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  2. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.; Clapp, R.B.; Dearstone, K.; Dreier, R.B.; Early, T.O.; Herbes, S.E.; Loar, J.M.; Parr, P.D.; Southworth, G.R.

    1991-07-01

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  3. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... improvements is a 10 to 21% decrease in environmental impacts and an 8 to 20% decrease in resource depletion depending on the thermal remediation technology considered. The energy consumption was found to be the main contributor to most types of environmental impacts; this will, however, depend...

  4. UMTRA Project environmental, health, and safety plan

    International Nuclear Information System (INIS)

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH ampersand S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH ampersand S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs

  5. Summary Report of Comprehensive Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    reactivity (D003). Follow-on testing was conducted to demonstrate the effectiveness of zeolite stabilization for ignitable WypAll and cheesecloth debris and additional nitrate salt solutions (those exhibiting the oxidizer characteristic) to demonstrate the effectiveness of the remedy. Follow-on testing also included testing of surrogate materials containing Waste Lock 770, which is present in four of the RNS containers, and potential items of debris such as plywood and Celotex material. Testing to evaluate the effectiveness of the remedy was performed using the specific remediation processes that are planned for use at the WCRRF. Finally, testing was also performed to evaluate the holding capacity of zeolite using a highly acidic surrogate solution and to characterize the composition of gases generated during mixing of zeolite with surrogate solutions. All these tests demonstrated the effectiveness of adding zeolite as the planned remedy.

  6. Evaluation of home lead remediation in an Australian mining community.

    Science.gov (United States)

    Boreland, F; Lesjak, M; Lyle, D

    2009-12-20

    In 1994 a comprehensive program was established to reduce children's blood lead levels in Broken Hill, NSW, Australia. Home remediation (abatement of lead hazards in a child's home) was included as part of a case management strategy for children with blood lead levels >or=15 microg/dL. Children with blood lead levels >or=30 microg/dL were offered immediate home remediation. Children with blood lead levels of 15-29 microg/dL were allocated to 'immediate' or 'delayed' home remediation; a subset of these participated in a randomized controlled trial (RCT) to evaluate the effectiveness of home remediation for reducing blood lead levels. One hundred and seventeen children received home remediation. One hundred and thirteen returned for follow-up blood tests, 88 of whom participated in the RCT. On average children's blood lead levels decreased by 1.7 microg/dL (10%) in the 6 months after remediation and by 2.2 microg/dL (13%) in the 6-12 months after remediation. However, remediation did not significantly change the rate of decline in blood lead levels (P=0.609). There was no evidence of association between change in children's blood lead levels and changes in lead loading in their homes. The results are consistent with the published literature, which suggests that home remediation does not reduce children's exposure to lead sufficiently to cause a moderate or greater decrease in their blood lead level. In communities where lead is widely dispersed, the study suggests that it is important to assess potential sources and pathways by which children are exposed to lead when developing an intervention plan, and the need for multiple interventions to effectively reduce blood lead levels. The findings reinforce the ongoing need for rigorous epidemiological evaluation of lead management programs to improve the evidence base, and for effective primary prevention to avoid children being exposed to lead in the first place.

  7. Emergency planning. Can the cost of remedial actions be compared to the value of the health effects they save

    International Nuclear Information System (INIS)

    Frittelli, L.; Tamburrano, A.

    1981-01-01

    When an accidental release of radioactive material occurs the exposure of the people concerned can be reduced only by remedial actions, applied to individuals (evacuation) or their environment (e.g. by land interdiction, by impoundment of contaminated products). The adoption of remedial actions should be based on a balance between the damage they cause and the reduction in health effects they can achieve. In this paper a 'cost-effectiveness' analysis is attempted by comparing the costs of remedial actions with the monetary value of the collective dose avoided by them. Remedial actions are undertaken to prevent non-stochastic effects in the exposed population and to limit stochastic effects therein. The damage caused by the remedial actions is evaluated by taking into account the loss of value of interdicted property, the costs for decontaminating land and structures, the loss of income of evacuated people. The options in remedial actions (interdiction, decontamination, goods removal) which minimize the total costs are supposed to be adopted at every location. The collective effective dose equivalent avoided by the remedial actions is computed by taking into account the external exposure from the cloud and from the contaminated ground, and the internal exposure from material inhaled from the passing cloud or inhaled from matter resuspended after deposition on the ground. The extent of the resulting total damage (both economic and health aspects) is partly determined by the intervention level chosen for defining the time and space features of remedial actions. As a result, the total damage has a lower value for an intervention level of about 0.1 Sv for large and medium releases from a nuclear power plant in a not very highly developed site. For a contained release no value of the intervention level optimizes the balance between health and economic consequences. (author)

  8. Operation and Maintenance Plan for the 300-FF-5 Operable Unit

    International Nuclear Information System (INIS)

    Singleton, K.M.

    1996-09-01

    This document is the operation and maintenance plan for the 300-FF-5 groundwater operable unit. The purpose of this plan is to identify tasks necessary to verify the effectiveness of the selected alternative. This plan also describes the monitoring program and administrative tasks that will be used as the preferred alternative for the remediation of groundwater in the 300-FF-5 Operable Unit. The preferred alternative selected for remediation of groundwater consists of institutional controls

  9. Proceedings: Primary water stress corrosion cracking: 1989 EPRI remedial measures workshop

    International Nuclear Information System (INIS)

    Gorman, J.A.

    1990-04-01

    A meeting on ''PWSCC Remedial Measures'' was organized to give those working in this area an opportunity to share their results, ideas and plans with regard to development and application of remedial measures directed against the primary water stress corrosion cracking (PWSCC) phenomenon affecting alloy 600 steam generator tubes. Topics discussed included: utility experience and strategies; nondestructive examination (NDE) methods for PWSCC; technical topics ranging from predictive methods for occurrence of PWSCC to results of corrosion tests; and services provided by vendors that can help prevent the occurrence of PWSCC or can help address problems caused by PWSCC once it occurs

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  11. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    International Nuclear Information System (INIS)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP's Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE's site restoration activities

  12. Waste feed delivery environmental permits and approvals plan

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This document describes the range of environmental actions, including required permits and other agency approvals, that may affect waste feed delivery (WFD) activities in the Hanford Site's Tank Waste Remediation System (TWRS). This plan expands on the summary level information in the Tank Waste Remediation System Environmental Program Plan (HNF 1773) to address requirements that are most pertinent to WFD. This plan outlines alternative approaches to satisfying applicable environmental standards, and describes selected strategies for acquiring permits and other approvals needed for WFD to proceed. Appendices at the end of this plan provide preliminary cost and schedule estimates for implementing the selected strategies. The rest of this section summarizes the scope of WFD activities, including important TWRS operating information, and describes in more detail the objectives, structure, and content of this plan

  13. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience

    International Nuclear Information System (INIS)

    Richardson, W.S.; Phillips, C.R.; Hicks, R.; Luttrell, J.; Cox, C.

    1999-01-01

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. The South Wilmington Area remedial cost estimating methodology (RCEM) -- A planning tool and reality check for brownfield development

    International Nuclear Information System (INIS)

    Yancheski, T.B.; Swanson, J.E.

    1996-01-01

    The South Wilmington Area (SWA), which is comprised of 200 acres of multi-use urban lowlands adjacent to the Christina River, is a brownfields area that has been targeted for redevelopment/restoration as part of a major waterfront revitalization project for the City of Wilmington, Delaware. The vision for this riverfront development, which is being promoted by a state-funded development corporation, includes plans for a new harbor, convention and entertainment facilities, upscale residences, an urban wildlife refuge, and the restoration of the Christina River. However, the environmental quality of the SWA has been seriously impacted by an assortment of historic and current heavy industrial land-uses since the late 1800's, and extensive environmental cleanup of this area will be required as part of any redevelopment plan. Given that the environmental cleanup cost will be a major factor in determining the overall economic feasibility of brownfield development in the SWA, a reliable means of estimating potential preliminary remedial costs, without the expense of costly investigative and engineering studies, was needed to assist with this redevelopment initiative. The primary chemicals-of-concern (COCs) area-wide are lead and petroleum compounds, however, there are hot-spot occurrences of polynuclear aromatic hydrocarbons (PAHs), PCBs, and other heavy metals such as arsenic and mercury

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms

  16. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  17. The Effects of Remedial Mathematics on the Learning of Economics

    DEFF Research Database (Denmark)

    Lagerlöf, Johan N. M.; Seltzer, Andrew J.

    2009-01-01

    The authors examined the effects of remedial mathematics on performance in university-level economics courses using a natural experiment. They studied exam results prior and subsequent to the implementation of a remedial mathematics course that was compulsory for a subset of students...... and unavailable for the others, controlling for background variables. They found that, consistent with previous studies, the level of and performance in secondary school mathematics have strong predictive power on students' performances at university-level economics. However, they found relatively little evidence...

  18. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  19. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  20. Improved operational performance through the use of business planning tools

    International Nuclear Information System (INIS)

    Hoelscher, H.L.

    1996-01-01

    Improved operational performance at Point Beach Nuclear Plant is based on a focused business plan. Quantitative goals that compare past performance with the performance of potential competitors are the basis of the business plan. This establishes goals for the nuclear power business unit which support corporate goals. Strategies and objectives are then developed to meet the established goals. To continue support for these strategies and objectives, individual performance plans are developed for all management personnel. These performance management plans identify individual contributor actions to support the goals, and also provide periodic feedback for changes to better prioritize individual actions. Performance criteria are also established to measure progress toward achieving the goals. The author also has a program to provide incentives for improved performance based upon success of the organization in achieving established goals

  1. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  2. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  3. Test planning and performance

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    Testing plan should include Safety guide Q4 - Inspection and testing - A testing plan should be prepared including following information: General information (facility name, item or system reference, procurement document reference, document reference number and status, associated procedures and drawings); A sequential listing of all testing activities; Procedure, work instruction, specification or standard to be followed in respect of each operation and test; Acceptance criteria; Identification of who is performing tests; Identification of hold points; Type of records to be prepared for each test; Persons and organizations having authority for final acceptance. Proposed activities sequence is: visual, electrical and mechanical checks; environmental tests (thermal aging, vibrations aging, radioactive aging); performance evaluation in extreme conditions; dynamic tests with functional checks; final electrical and mechanical checks The planning of the tests should always be performed taking into account an interpretative model: a very tight cooperation is advisable between experimental people and numerical people dealing with the analysis of more or less complex models for the seismic assessment of structures and components. Preparatory phase should include the choice of the following items should be agreed upon with the final user of the tests: Excitation points, Excitation types, Excitation amplitude with respect to frequency, Measuring points. Data acquisition, recording and storage, should take into account the characteristics of the successive data processing: to much data can be cumbersome to be processed, but to few data can make unusable the experimental results. The parameters for time history acquisition should be chosen taking into account data processing: for Shock Response Spectrum calculation some special requirements should be met: frequency bounded signal, high frequency sampling, shock noise. For stationary random-like excitation, the sample length

  4. Tank Waste Remediation System decisions and risk assessment

    International Nuclear Information System (INIS)

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed

  5. Redmedial Action Plan for the Risk-Based Remediation of Site ST14 (SWMU 68), LPSTID 104819; the Former Base Refueling Area (A0C7); the French Underdrain System (SWMU 64); and the North Oil/Water Separator (SWMU 67), Carswell Air Force Base, Naval Air Station Fort Worth Joint Reserve Base, Texas. Volume 1: Report

    National Research Council Canada - National Science Library

    1997-01-01

    ...) to prepare a remedial action plan (RAP) in support of a risk-based remediation decision for soil and groundwater contaminated with fuel hydrocarbons at Site ST14 at Carswell Air Force Base (AFB), Texas...

  6. Remediation of an oily leachate pond in Estonia.

    Science.gov (United States)

    Kriipsalu, Mait; Marques, Marcia; Hogland, William

    2005-12-01

    Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.

  7. Characterization of radioactively contaminated sites for remediation purposes

    International Nuclear Information System (INIS)

    1998-05-01

    Characterization of the contaminated site is essential before embarking on a programme for its remediation and ultimate restoration. Reliable and suitable data must be obtained regarding the distribution and physical, chemical and nuclear properties of all radioactive contaminants. Characterization data is necessary for assessing the associated radiation risks and is used in support of the required engineering design and project planning for the environmental restoration. In addition, continuing characterization can provide information regarding efficiency of the cleanup methods and influence possible redirection of work efforts. Similarly, at the end of the remediation phase, characterization and ongoing monitoring can be used to demonstrate completion and success of the cleanup process. The suggested methodology represents a contribution attempting to solve the issue of preremediation characterization in a general manner. However, a number of difficulties might make this methodology unsuitable for general application across the diverse social, environmental and political systems in the IAEA Member States. This TECDOC covers the methodologies used to characterize radioactively contaminated sites for the purpose of remediating the potential sources of radiation exposure and assessing the hazards to human health and the environment

  8. Remediation challenges posed by the fate and transport properties of MTBE

    International Nuclear Information System (INIS)

    Day, M.J.

    2002-01-01

    Releases of fuel from underground tank systems have been a major source of groundwater contamination for several decades. The fate and transport characteristics of fuel components significantly influence the potential risk to groundwater supplies and the methodologies to manage and remediate contamination at fuel release sites. The recognition that MTBE can be more mobile in groundwater systems than other components of oxygenated fuels has put an increased emphasis on early detection and response to fuel leaks and spills. Remediation of oxygenated fuel releases usually follows a sequence of tasks: receptor protection, source control, residual and dissolved phase remediation, and monitored natural attenuation. Good characterization of hydrogeological and geochemical conditions is required because understanding the fate and transport of fuel components is critical to developing an appropriate management plan and an efficient remediation program. Understanding the specific site conditions allows appropriate selection and sequencing of remedial technologies. The physical and chemical characteristics of MTBE can result in a higher mobility in the subsurface, compared with the BTEX components of a gasoline release. These same characteristics make MTBE more readily extractable from the subsurface compared with BTEX. There is an impression that remediating gasoline releases containing MTBE requires costly, specialized technologies compared with those employed to deal with non-oxygenated fuel releases. However, the characteristics of MTBE are well suited to traditional, physical remedial approaches that have proven to be effective with the other components of gasoline. Technologies such as groundwater extraction, soil vapor extraction (SVE), and thermal desorption work exceptionally well with MTBE due to its low adsorptive and high vapor pressure characteristics. Similarly, recent studies have demonstrated that MTBE is biodegradable under a wide variety of conditions

  9. In Situ Thermal NAPL Remediation at the Northeast Site Pinellas Environmental Restoration Project

    International Nuclear Information System (INIS)

    Juhlin, R.; Butherus, M.

    2006-01-01

    The U.S. Department of Energy (DOE) is conducting thermal remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site that is part of the Pinellas Environmental Restoration Project. The Northeast Site is located on the Young - Rainey Science, Technology, and Research (STAR) Center in Largo, Florida. The STAR Center was formerly a DOE facility. The NAPL remediation was performed at Area A and is currently being performed at Area B at the Northeast Site. The remediation at Area A was completed in 2003 and covered an area of 900 m 2 (10,000 ft 2 ) and a depth of remediation that extended to 10.7 m (35 ft) below ground surface. Cleanup levels achieved were at or below maximum contaminant levels in almost all locations. The remediation project at Area B is ongoing and covers an area of 3,240 m 2 (36,000 ft 2 ), a volume of 41,300 m (54,000 yd 3), and a depth of remediation to 12 m (40 ft) below ground surface. In addition, a portion of the subsurface under an occupied building in Area B is included in the remediation. The cleanup levels achieved from this remediation will be available in the Area B Final Report that will be posted on the DOE Office of Legacy Management web site (www.lm.doe.gov/land/sites/fl/ pinellas/pinellas.htm) in January 2007. Electrical resistive heating and steam were the chosen remediation methods at both areas. Lessons learned from the Area A remediation were incorporated into the Area B remediation and could benefit managers of similar remediation projects. (authors)

  10. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  11. Cognitive Remediation in Schizophrenia: Current Status and Future Perspectives

    Science.gov (United States)

    Deste, Giacomo; De Peri, Luca

    2013-01-01

    Objectives. This study is aimed to review the current scientific literature on cognitive remediation in schizophrenia. In particular, the main structured protocols of cognitive remediation developed for schizophrenia are presented and the main results reported in recent meta-analyses are summarized. Possible benefits of cognitive remediation in the early course of schizophrenia and in subjects at risk for psychosis are also discussed. Methods. Electronic search of the relevant studies which appeared in the PubMed database until April 2013 has been performed and all the meta-analyses and review articles on cognitive remediation in schizophrenia have been also taken into account. Results. Numerous intervention programs have been designed, applied, and evaluated, with the objective of improving cognition and social functioning in schizophrenia. Several quantitative reviews have established that cognitive remediation is effective in reducing cognitive deficits and in improving functional outcome of the disorder. Furthermore, the studies available support the usefulness of cognitive remediation when applied in the early course of schizophrenia and even in subjects at risk of the disease. Conclusions. Cognitive remediation is a promising approach to improve real-world functioning in schizophrenia and should be considered a key strategy for early intervention in the psychoses. PMID:24455253

  12. Green Chemistry and Engineering Opportunity Assessment (GC&EOA) to US Army. A Case Study in Sustainable Remediation

    Science.gov (United States)

    2009-11-30

    transport of airborne contaminants and dust o Use heavy equipment efficiently (e.g. diesel emission reduction plan) o Maximize use of machinery equipped...remediation) Design for Energy Efficiency Favor low-energy technologies ( bioremediation , phytoremediation) where possible and effective; Use...Selection of a Remediation Scenario for a Diesel - Contaminated Site Using LCA. International Journal of Life Cycle Assessment 12(4), 239-251

  13. Using risk-based remedy selection to minimize remedial response costs -- A case history

    International Nuclear Information System (INIS)

    Cox, S.A.; Hochreiter, J.J. Jr.; Stout, D.J.

    1995-01-01

    The authors used a risk-based remedy selection at a former coal tar emulsion production facility in a heavily industrialized area of northern New Jersey. Historical site activities resulted in extensive contamination of shallow site soils from high molecular weight Polycyclic Aromatic Hydrocarbons (PAHs), including potentially carcinogenic PAHs (cPAHs). Then-current risk-based proposed soil cleanup goals developed by the New Jersey Department of Environmental Protection (NJDEP) were not representative of potential exposures under current or future exposure scenarios. Alternate soil cleanup goals were calculated, incorporating relevant input variables that accurately reflected site conditions and potential receptors/exposure scenarios; these cleanup goals demonstrated the site did not pose the degree of risk assumed by the NJDEP. However, they were not accepted by NJDEP as performance standards for remedial activities for ''policy'' reasons

  14. Financial Performance of Health Plans in Medicaid Mana...

    Data.gov (United States)

    U.S. Department of Health & Human Services — This study assesses the financial performance of health plans that enroll Medicaid members across the key plan traits, specifically Medicaid dominant, publicly...

  15. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Lane, N.K.; Swenson, L.

    1994-01-01

    Risk assessment is one of the many tools used to evaluate and select remedial alternatives and evaluate the risk associated with selected remedial alternatives during and after implementation. The risk evaluation of remedial alternatives (RERA) is performed to ensure selected alternatives are protective of human health and the environment. Final remedy selection is promulgated in a record of decision (ROD) and risks of the selected alternatives are documented. Included in the ROD documentation are the risk-related analyses for long-term effectiveness, short-term effectiveness, and overall protection of human health and the environment including how a remedy will eliminate, reduce or control risks and whether exposure will be reduced to acceptable levels. A major goal of RERA in the process leading to a ROD is to provide decision-makers with specific risk information that may be needed to choose among alternatives. For the Hanford Site, there are many considerations that must be addressed from a risk perspective. These include the large size of the Hanford Site, the presence of both chemical and radionuclide contamination, one likelihood of many analogues sites, public and worker health and safety, and stakeholder concern with ecological impacts from site contamination and remedial actions. A RERA methodology has been promulgated to (1) identify the points in the process leading to a ROD where risk assessment input is either required or desirable and (2) provide guidance on how to evaluate risks associated with remedial alternatives under consideration. The methodology and evaluations parallel EPA guidance requiring consideration of short-term impacts and the overall protectiveness of remedial actions for evaluating potential human health and ecological risks during selection of remedial alternatives, implementation of remedial measures, and following completion of remedial action

  16. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill I, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1994-03-01

    This document refers to data concerning the Environmental Restoration Program implemented at the Oak Ridge Y-12 plant. Topics discussed include: Remediation plans for the burial grounds, sanitary landfill I, oil retention ponds, S-3 ponds, and the boneyard/burnyard at Y-12. This document also contains information about the environmental policies regulating the remediation

  17. National conference on environmental remediation science and technology: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  18. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan

  19. Chemical hygiene plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan was written to administer and monitor safety measures and chemical hygiene principles in the TAC Uranium Mill Tailing Remedial Action Project sample preparation facility in Albuquerque, New Mexico. It applies to toxic and/or hazardous materials to radioactive materials

  20. Phase 1 remedial investigation report for 200-BP-1 operable unit

    International Nuclear Information System (INIS)

    1993-09-01

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit