WorldWideScience

Sample records for remarkably efficient synthesis

  1. Terahertz radiation generation by lasers with remarkable efficiency in electron–positron plasma

    International Nuclear Information System (INIS)

    Malik, Hitendra K.

    2015-01-01

    Photo-mixing of spatial-super-Gaussian lasers and electron–positron plasma are proposed for realizing a large amplitude nonlinear current in order to generate an efficient terahertz radiation. An external magnetic field together with a proper index of the lasers helps achieving controllable current and hence, the focused radiation of tunable frequency and power along with a remarkable efficiency of the scheme as ∼6%. - Highlights: • First proposal of photo-mixing of spatial-super-Gaussian (SSG) lasers in electron–positron (e–p) plasma. • Large amplitude nonlinear current due to the contribution of both the plasma species. • Magnetic field as an additional parameter for tunable THz radiation with a remarkable efficiency of ∼6%.

  2. Cyclodextrin-Scaffolded Alamethicin with Remarkably Efficient Membrane Permeabilizing Properties and Membrane Current Conductance

    DEFF Research Database (Denmark)

    Hjørringgaard, Claudia Ulrich; Vad, Brian Stougaard; Matchkov, Vladimir

    2012-01-01

    Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formati......-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels...

  3. Efficient Synthesis of Network Updates

    Science.gov (United States)

    2015-06-17

    mal Languages ]: Mathematical Logic—Temporal logic; C.2.3 [Computer-communication Networks]: Network Operations— Network Management Keywords synthesis...problem, and prove this algorithm to be correct (§4). • We present an incremental LTL model checker for loop-free models (§5). • We describe an OCaml ...canned” properties, we use a specification language that is expressive enough to encode these properties and others, as well as conjunctions

  4. Efficient total synthesis of (S)-14-azacamptothecin.

    Science.gov (United States)

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  5. Proclus' Elaboration of Platonic Remarks on the Problem of Evils, and their Relation to Divine Providence and Efficiency

    Directory of Open Access Journals (Sweden)

    Reza korrang beheshti

    2014-06-01

    Full Text Available Although there is not a fully developed theory of evil in Plato, some various remarks are interspersed throughout his dialogues which provided the main materials for subsequent Platonists to elaborate a systematic doctrine of evil. Proclus is the most distinguished philosopher of the later Neoplatonism whose view became authoritative within the School and thus is most representative of the Neoplatonic doctrine of evil. By a critical assessment of the antecedent theories of evil, Proclus attempts to give a monistic interpretation of Platonic remarks on the problem of evil. According to his explanation, the higher degrees and principles of Being are only and purely good and are not the causes of evils but the good things for all things alone. Evils, however, exist necessarily but only among particular beings in a relative, parasitic, accidental way and dependent upon the good. The parasitic accidental existence of evil does not have a real efficient cause. It arises due to an asymmetry between the activities of the several faculties or powers of a complex particular being. Moreover, the existence of evil is so mixed with and dependent upon the good that despite its opposition to the good, contributes, in its own manner, to the fulfillment of goodness of the whole Universe, being thus reconcilable with Divine Providence and Efficiency.

  6. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chongjie [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Ma, Li [Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mou, Shanli [Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao (China); Wang, Yibin, E-mail: wangyibin@fio.org.cn [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Miao, Jinlai, E-mail: miaojinlai@163.com [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); State Key Laboratory of Biological Fermentation Engineering of Beer (In Preparation), Qingdao (China)

    2015-03-15

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm{sup 2} UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field.

  7. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    International Nuclear Information System (INIS)

    Li, Chongjie; Ma, Li; Mou, Shanli; Wang, Yibin; Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao; Miao, Jinlai

    2015-01-01

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm 2 UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field

  8. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.

    Science.gov (United States)

    Kralchevska, Radina P; Prucek, Robert; Kolařík, Jan; Tuček, Jiří; Machala, Libor; Filip, Jan; Sharma, Virender K; Zbořil, Radek

    2016-10-15

    Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An Efficient, Green Chemical Synthesis of the Malaria Drug ...

    African Journals Online (AJOL)

    Purpose: To provide a robust, efficient synthesis of the malaria drug piperaquine for potential use in resource-poor settings. Methods: We used in-process analytical technologies (IPAT; HPLC) and a program of experiments to develop a synthesis of piperaquine that avoids the presence of a toxic impurity in the API and is ...

  10. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  11. Opening remarks

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-11-01

    In his opening remarks Mr. David R. Kyd briefly described the IAEA mission. Then he outlined main aim of the seminar which is bring together journalists, educators, officials and other specialists to let them hear and put questions to experts on various aspects of nuclear energy and techniques. Further he analyzed problems and prospects of energy development in Asia and particularly in China, including environmental considerations. The final part of the remarks was devoted comparative evaluation of different energy production technologies

  12. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  13. Efficient synthesis of phosphonodepsipeptides derived from norleucine

    Czech Academy of Sciences Publication Activity Database

    Pícha, Jan; Buděšínský, Miloš; Hančlová, Ivona; Šanda, Miloslav; Fiedler, Pavel; Vaněk, Václav; Jiráček, Jiří

    2009-01-01

    Roč. 65, č. 31 (2009), s. 6090-6103 ISSN 0040-4020 R&D Projects: GA ČR GA203/06/1405; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z40550506 Keywords : phosphonate * pseudopeptide * inhibitor * synthesis * norleucine Subject RIV: CC - Organic Chemistry Impact factor: 3.219, year: 2009

  14. Concluding remarks

    International Nuclear Information System (INIS)

    Nariai, H.

    2007-01-01

    This document provides the speech presented by Hideki Nariai on May 2007 at the workshop on transparency of nuclear regulatory activities. It aims to propose concluding remarks concerning nuclear safety and the necessity to be transparent to the general public. (A.L.B.)

  15. An Efficient Catalyst for the Synthesis of Schiff Bases

    International Nuclear Information System (INIS)

    Fareed, G.; Afza, N.; Kalhoro, M.A.

    2013-01-01

    An efficient high yielding synthesis of Schiff bases (1-17) is derived from condensation of 2-fluorenamine and 4-amino phenol with a variety of aldehydes catalyzed by dodecatungstosilicic acid P/sub 2/O/sub 5/ under solvent free conditions at room temperature. The catayst is found to be more efficient in terms of ease of reaction workup and high yields. This methodology contributes to an energy efficient, facile and environamental friendly synthesis for the preparation of Schiff bases. The structures of afforded Schiff bases were characterized by spectroscopic data and elemental analysis. (author)

  16. Mg2FeH6 Synthesis Efficiency Map

    Directory of Open Access Journals (Sweden)

    Katarzyna Witek

    2018-02-01

    Full Text Available The influences of the processing parameters on the Mg2FeH6 synthesis yield were studied. Mixtures of magnesium hydride (MgH2 and iron (Fe were mechanically milled in a planetary ball mill under argon for 0.5-, 1-, 2- and 3-h periods and subsequently sintered at temperatures from 300–500 ∘ C under hydrogen. The reaction yield, phase content and hydrogen storage properties of the received materials were investigated. The morphologies of the powders after synthesis were studied by SEM. The synthesis effectiveness map was presented. The obtained results prove that synthesis parameters, such as the milling time and synthesis temperature, greatly influence the reaction yield and material properties and show that extended mechanical milling may not be beneficial to the reaction efficiency.

  17. Concluding remarks

    International Nuclear Information System (INIS)

    Patrick, W.C.

    1996-01-01

    This section contains the concluding remarks of the workshop on rock mechanics issues in repository design and performance assessment. Technical issues such as spatial variability of rock properties, rock mass strength, measurement of loads, evaluation of long-term seal performance, and integration of data into design were discussed. Programmatic issues such as development of a coherent and consistent design methodology and implementation of that methodology were also reiterated

  18. Welcome remarks

    International Nuclear Information System (INIS)

    Zhao Hong

    1993-01-01

    In his opening remarks Mr. Zhao Hong stressed the importance of nuclear power for further economic development. He noticed that one of the main factors to obstruct the progress of nuclear energy is nuclear dread in public psychology and that enhancement of the public acceptance of nuclear power is an important task to promote the development of nuclear power. Than he described activities in China in public relation work in the field of nuclear energy. Importance of international cooperation on peaceful use of nuclear energy and supporting non-proliferation regime was stressed

  19. Opening remarks

    International Nuclear Information System (INIS)

    Southwood, Richard

    1987-01-01

    General opening remarks to a conference on the effects of low-level radiation on man, exploring particularly areas where disagreements have most frequently been voiced. The author comments on two approaches: a) the study, stepwise of putative cause and effect chains, using models which are tested by comparing calculated and observed effects. b) the epidemiological approach by extensive correlative study of cause, correlations and effect. Attention is drawn to the confidence to be accorded to any quantitative theory supported by both approaches, and the need for further analysis if the approaches give different indications. (U.K.)

  20. Alum an Efficient Catalyst for Erlenmeyer Synthesis

    African Journals Online (AJOL)

    NICO

    this paper we describe the use of alum as a catalyst in the. Erlenmeyer reaction, under solvent-free condition using ultra- sonic irradiation. The application of solvent-free reaction conditions in organic chemistry has been explored extensively within the last decade. It was shown to be an efficient technique for various organic.

  1. Efficient synthesis of benzothiazine and acrylamide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos; Barbosa Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Simone, Carlos Alberto de; Ellena, Javier Alcides, E-mail: irpitta@gmail.co [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  2. Efficient synthesis of benzothiazine and acrylamide compounds

    International Nuclear Information System (INIS)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha; Simone, Carlos Alberto de; Ellena, Javier Alcides

    2010-01-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  3. Concluding remarks

    International Nuclear Information System (INIS)

    Vogt, E.

    1989-05-01

    The workshop has covered in a very interesting and complete way the basic physics issues to be addressed by the complementary facilities, in Canada and Japan, intended to explore the intensity-frontier of strong-interaction physics. Japan has its new KEK facilities and its future Japanese Hadron Project (JHP): Canada has its present TRIUMF laboratory and its future KAON Factory. Both JHP and KAON appear very near to final construction approval. The possibilities are very great for new joint programs between the two countries which can lead the world in the new strong interaction physics. These concluding remarks describe the general science basis and particularly the models for the internationalization of science needed to make these new collaborations thrive

  4. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  5. An Efficient Synthesis of Enantiopure (R-heteroarylpyrimidine Analogs

    Directory of Open Access Journals (Sweden)

    Guo-Ming Zhao

    2013-09-01

    Full Text Available An efficient synthesis of enantiopure (R-heteroarylpyrimidine analogs is described here, which involves introduction of a chiral group, formation and separation of diasteroisomers and final transformation of an amide to an ester. The absolute configuration of the enantiopure HAPs is confirmed by X-ray analysis of their intermediates.

  6. Efficient Synthesis of 1-Sulfonyl-1,2,3-triazoles

    Science.gov (United States)

    Raushel, Jessica; Fokin, Valery V.

    2010-01-01

    An efficient room temperature method for the synthesis of 1-sulfonyl-1,2,3-triazoles from in situ generated copper(I) acetylides and sulfonyl azides is described. Copper(I) thiophene-2-carboxylate (CuTC) catalyst produces the title compounds under both non-basic anhydrous and aqueous conditions in good yields. PMID:20931987

  7. Novel efficient process for methanol synthesis by CO2 hydrogenation

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Pragt, J.J.; Vos, H.J.; Bargeman, Gerrald; de Groot, M.T.

    2016-01-01

    Methanol is an alternative fuel that offers a convenient solution for efficient energy storage. Complementary to carbon capture activities, significant effort is devoted to the development of technologies for methanol synthesis by hydrogenation of carbon dioxide. While CO2 is available from plenty

  8. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Science.gov (United States)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  9. Remarkable activity of nitrogen-doped hollow carbon spheres encapsulated Cu on synthesis of dimethyl carbonate: Role of effective nitrogen

    Science.gov (United States)

    Li, Haixia; Zhao, Jinxian; Shi, Ruina; Hao, Panpan; Liu, Shusen; Li, Zhong; Ren, Jun

    2018-04-01

    A critical aspect in the improvement of the catalytic performance of Cu-based catalysts for the synthesis of dimethyl carbonate (DMC) is the development of an appropriate support. In this work, nitrogen-doped hollow carbon spheres (NHCSs), with 240 nm average diameter, 17 nm shell thickness, uniform mesoporous structure and a specific surface area of 611 m2 g-1, were prepared via a two-step Stӧber method. By varying the quantity of nitrogen-containing phenols used in the preparation it has been possible to control the nitrogen content and, consequently, the sphericity of the NHCSs. It was found that perfect spheres were obtained for nitrogen contents below 5.4 wt.%. The catalysts (Cu@NHCSs) were prepared by the hydrothermal impregnation method. The catalytic activity towards DMC synthesis was notably enhanced due to the immobilization effect on Cu particles and the enhanced electron transfer effect exercised by the effective nitrogen species, including pyridinic-N and graphitic-N. When the average size of the copper nanoparticles was 7.4 nm and the nitrogen content was 4.0 wt.%, the values of space-time yield of DMC and of turnover frequency (TOF) reached 1528 mg/(g h) and 11.0 h-1, respectively. The TOF value of Cu@NHCSs was 6 times higher than non-doped Cu@Carbon (2.1 h-1). The present work introduces the potential application of nitrogen-doped carbon materials and presents a novel procedure for the preparation of catalysts for DMC synthesis.

  10. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    Science.gov (United States)

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Closing remarks

    International Nuclear Information System (INIS)

    Reig, J.

    2007-01-01

    Good afternoon. Before providing the closing remarks on behalf of the NEA, I would like to take this opportunity and make some personal reflections, if you allow me Mr. Chairman. I have had the opportunity to take part in the three workshops on public communication organised by the NEA. In the first one in Paris in 2000, representing my country, Spain, and in the two last ones in Ottawa in 2004 and Tokyo today, on behalf of the NEA. The topics for the three workshops follow a logical order, first the focus was on investing in trust in a time when public communication was becoming a big challenge for the regulators. Second, maintaining and measuring public confidence to assess how credible regulators are in front of the public; and finally here in Tokyo, transparency, which is a basic element to achieve trust and credibility. In my view, a regulatory decision has three main components, it has to be technically sound. legally correct and well communicated. The emphasis in the early years was in the technical matters, till legal issues became a key element to achieve the political acceptance from governments and local authorities. Finally the public communication aspects resulted into a major effort and challenge to achieve social acceptance. (author)

  12. Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis.

    Science.gov (United States)

    Zhu, Fucheng; Liu, Feng; Wu, Bin; He, Bingfang

    2016-12-28

    Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.

  13. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Pratibha, E-mail: rkpratibha@yahoo.com; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C. [Defence Research and Development Establishment (India)

    2012-01-15

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and {approx}25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 Degree-Sign C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, staphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 {mu}g/mL nano CuO killed 3 Multiplication-Sign 10{sup 8} CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 Multiplication-Sign 10{sup 6} CFU/mL E. coli were killed by 100 and 10 {mu}g/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  14. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    Science.gov (United States)

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  16. CuI nanoparticles as a remarkable catalyst in the synthesis of benzo[b][1,5]diazepines: an eco-friendly approach.

    Science.gov (United States)

    Ghasemzadeh, Mohammad Ali; Safaei-Ghomi, Javad

    2015-01-01

    Highly efficient CuI nanoparticles catalyzed one-pot synthesis of some benzo[b][1,5]diazepine derivatives via multi-component condensation of aromatic diamines, Meldrum's acid and isocyanides. The present approach creates a variety of benzo[b][1,5]diazepines as pharmaceutical and biologically active heterocyclic compounds in excellent yields and short reaction times. The salient features of the copper iodide nanoparticles are: easy preparation, cost-effective, high stability, low loading and reusability of the catalyst. The prepared copper iodide nanoparticles were fully characterized by XRD, EDX, FT-IR, SEM and TEM analysis.

  17. Synthesis of energy-efficient FSMs implemented in PLD circuits

    Science.gov (United States)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  18. Catalogue of Energy Efficiency Measures for France - Synthesis report

    International Nuclear Information System (INIS)

    2013-10-01

    ADEME wished to learn about existing effective energy efficiency measures implemented outside of France, whether cross-sectoral or targeted at a specific sector (industry, transport, buildings or agriculture). The objective of this survey was to determine whether any of these measures could be applied in France, with the goal of holding down the growth of energy consumption. This survey has led to the writing of a catalog of 53 two-page fact sheets describing the measures identified as interesting for France. These measures were analysed via classic criteria of evaluation such as cost-efficiency or impact, allowing to highlight the most successful measures for the French territory. ADEME presents you a synthesis of this survey in this document

  19. Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B Resistance and Efficient DNA Damage Repair

    Science.gov (United States)

    Albarracín, Virginia Helena; Pathak, Gopal P.; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.

  20. Efficient synthesis of a fluorine-18 labeled biotin derivative

    International Nuclear Information System (INIS)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-01-01

    Introduction: The natural occurring vitamin biotin, also known as vitamin H or vitamin B 7 , plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10 -15 M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [ 18 F]4 for a potential application in positron emission tomography (PET). Methods: Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [ 18 F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Results: Compound [ 18 F]4 was obtained from precursor compound 3 with an average specific activity of 16 GBq/μmol within 45 min and a radiochemical yield of 45 ± 5% (decay corrected). [ 18 F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [ 18 F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. Conclusion: An efficient synthesis for [ 18 F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [ 18 F]4.

  1. An efficient synthesis of D-galactose-based multivalent neoglycoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, S.F. de; Souza Filho, J.D. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Alves, Ricardo J., E-mail: ricardodylan@farmacia.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia; Figueiredo, Rute C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2012-11-15

    In this work, the synthesis of dimeric, trimeric and tetrameric D-galactose-based neoglycoconjugates is reported. The monosaccharide ligand was prepared in 5 straightforward steps from D-galactose using the Doebner modification of the Knoevenagel reaction for chain elongation. The ligand was coupled to 1,4-butanediamine, tris-(2-ethylamino)amine, pentaerythrityltetramine and PAMAM dendrimers (1,4-butanodiamine core G0 and 1,12-dodecanediamine core G0). The unprotected glycodendrimers were purified by size-exclusion chromatography (SEC). This was the only step in which a chromatographic method was employed throughout the synthetic route. This is a new and efficient strategy for the preparation of neoglycoconjugates. (author)

  2. Efficient synthesis of a fluorine-18 labeled biotin derivative.

    Science.gov (United States)

    Claesener, Michael; Breyholz, Hans-Jörg; Hermann, Sven; Faust, Andreas; Wagner, Stefan; Schober, Otmar; Schäfers, Michael; Kopka, Klaus

    2012-11-01

    The natural occurring vitamin biotin, also known as vitamin H or vitamin B(7), plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10(-15)M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [(18)F]4 for a potential application in positron emission tomography (PET). Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [(18)F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. Compound [(18)F]4 was obtained from precursor compound 3 with an average specific activity of 16GBq/μmol within 45min and a radiochemical yield of 45±5% (decay corrected). [(18)F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [(18)F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. An efficient synthesis for [(18)F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [(18)F]4. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study.

    Science.gov (United States)

    Kirillova, Marina V; Kuznetsov, Maxim L; Reis, Patrícia M; da Silva, José A L; da Silva, João J R Fraústo; Pombeiro, Armando J L

    2007-08-29

    Vanadium(IV or V) complexes with N,O- or O,O-ligands, i.e., [VO{N(CH2CH2O)3}], Ca[V(HIDPA)2] (synthetic amavadine), Ca[V(HIDA)2], or [Bu4N]2[V(HIDA)2] [HIDPA, HIDA = basic form of 2,2'-(hydroxyimino)dipropionic or -diacetic acid, respectively], [VO(CF3SO3)2], Ba[VO(nta)(H2O)]2 (nta = nitrilotriacetate), [VO(ada)(H2O)] (ada = N-2-acetamidoiminodiacetate), [VO(Hheida)(H2O)] (Hheida = 2-hydroxyethyliminodiacetate), [VO(bicine)] [bicine = basic form of N,N-bis(2-hydroxyethyl)glycine], and [VO(dipic)(OCH2CH3)] (dipic = pyridine-2,6-dicarboxylate), are catalyst precursors for the efficient single-pot conversion of methane into acetic acid, in trifluoroacetic acid (TFA) under moderate conditions, using peroxodisulfate as oxidant. Effects on the yields and TONs of various factors are reported. TFA acts as a carbonylating agent and CO is an inhibitor for some systems, although for others there is an optimum CO pressure. The most effective catalysts (as amavadine) bear triethanolaminate or (hydroxyimino)dicarboxylates and lead, in a single batch, to CH3COOH yields > 50% (based on CH4) or remarkably high TONs up to 5.6 x 103. The catalyst can remain active upon multiple recycling of its solution. Carboxylation proceeds via free radical mechanisms (CH3* can be trapped by CBrCl3), and theoretical calculations disclose a particularly favorable process involving the sequential formation of CH3*, CH3CO*, and CH3COO* which, upon H-abstraction (from TFA or CH4), yields acetic acid. The CH3COO* radical is formed by oxygenation of CH3CO* by a peroxo-V complex via a V{eta1-OOC(O)CH3} intermediate. Less favorable processes involve the oxidation of CH3CO* by the protonated (hydroperoxo) form of that peroxo-V complex or by peroxodisulfate. The calculations also indicate that (i) peroxodisulfate behaves as a source of sulfate radicals which are methane H-abstractors, as a peroxidative and oxidizing agent for vanadium, and as an oxidizing and coupling agent for CH3CO* and that (ii) TFA is

  4. An efficient one-pot synthesis of carbazole fused benzoquinolines ...

    Indian Academy of Sciences (India)

    KRIPALAYA RATHEESH ARYA

    2018-03-28

    org/ 10.1007/ ..... 1(a-d). 2. 3(a-d). 120°C. 1,3 a: R1 = R2 = R3 = H b: R1 = CH3, R2 = R3 = H c: R1 = R2 = H ..... moted green Friedländer synthesis: a versatile new malic ... and Curini M 2011 An alternative quinoline synthesis by.

  5. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    and KANIKA VIJ. Department of Chemistry, University of Delhi, Delhi 110 007, India ... Keywords. PVP-stabilized Ni nanoparticles; ethylene glycol; tetraketones; biscoumarins; ... ing interest in using nickel nanoparticles in organic synthesis ...

  6. Simple, Efficient and Green Synthesis of Oximes under Ultrasound ...

    African Journals Online (AJOL)

    NICO

    Faculty of Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran. ... The condensation of aldehydes and ketones with hydroxylamine hydrochloride gives oximes in 81–95 ... Oximes are important in organic synthesis not only for protec-.

  7. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  8. An efficient domino one-pot synthesis of novel spirofuran ...

    Indian Academy of Sciences (India)

    AFSHIN YAZDANI-ELAH-ABADI

    Abstract. A simple and convenient multi-component domino reaction has been described for the synthesis of novel ... interest due to their pharmaceutical and biological activ- ..... We gratefully acknowledge financial support from the Research.

  9. On synthesis and optimization of steam system networks. 1. Sustained boiler efficiency

    CSIR Research Space (South Africa)

    Majozi, T

    2010-08-01

    Full Text Available situations. This paper presents a process integration technique for network synthesis using conceptual and mathematical analysis without compromising boiler efficiency. It was found that the steam flow rate to the HEN could be reduced while maintaining boiler...

  10. An Efficient, Green Chemical Synthesis of the Malaria Drug ...

    African Journals Online (AJOL)

    Results : A green-chemical synthesis of piperaquine is described that proceeds in 92 – 93 % overall yield. ... Keywords: ACTs, Dihydroartemisinin Piperaquine, Dihydroartemisinin, Green Chemistry, Malaria, ..... Mathers CD, Ezzati M, Lopez AD. ... Medicines Programme [Homepage on the Internet]. Geneva ... An Alternative.

  11. Highly Efficient Method for Solvent-Free Synthesis of Diarylmethane ...

    African Journals Online (AJOL)

    NICO

    2011-02-25

    Feb 25, 2011 ... aFaculty of Chemistry, Bu-Ali Sina University, P.O. Box 651783868, Hamedan, Iran. ... Arylmethanes are useful compounds in organic synthesis and industry1 ... ketones,9,10 catalytic condensation of the Grignard reagent with.

  12. Effective and efficient FPGA synthesis through general functional decomposition

    NARCIS (Netherlands)

    Jozwiak, L.; Slusarczyk, A.S.; Chojnacki, A.

    2003-01-01

    In this paper, a new information-driven circuit synthesis method is discussed that targets LUT-based FPGAs and FPGA-based reconfigurable system-on-a-chip platforms. The method is based on the bottom–up general functional decomposition and theory of information relationship measures that we

  13. Sometimes, economic arguments provide better conditions for achieving energy efficiency in transport (A remarkable new market based approach on Commuter Mobility Management makes accessibility and energy efficiency go hand in hand)

    International Nuclear Information System (INIS)

    Elburg, Henk van

    2003-01-01

    Commuter Mobility Management (CMM) is broadly regarded as one of the most potential instruments to reduce the negative effects of mass commuting on the environment and energy demand. Until now, only 4% of private enterprise implemented CMM in the Netherlands. Business community turned out to be very reluctant in embracing CMM as a workable method. National employers' federations, representing more than 90% of employment in private sector, pictured CMM as a laborious and not effective instrument. Novem realised that the real issue was not so much about the practicability of the instrument, but more about the environmental and energy related arguments being used by the government. Novem took the initiative and invited the employers federations to participate in a unique project: the development of a Standard Set of CMM-incentives. In this project, environmental and energy related arguments were tactically avoided. The target scenario was to convince business community strictly with economic arguments. The project showed remarkable results. The influential employers' federations became more co-operative and accepted a 'Standard Set of incentives'. While not emphasising it, the 'hidden' positive effect on energy conservation is still substantial: 5% reduction of single occupant vehicle-trips during rush hours, each 'switcher' saving an average of 7,200 single occupant car kilometres each year. By 2010 this could nation wide result in a reduction of approximately 3PJ, about 4,3% of all energy used by private car travel in mass commuting. This explains the title: 'Sometimes, economic arguments provide better conditions for achieving energy efficiency in transport'

  14. Efficient Asymmetric Synthesis of S,S-2-methylsulfanyl-2-methylsulfinyl-1-indanone

    OpenAIRE

    Derisvaldo Rosa Paiva; Roberto da Silva Gomes

    2013-01-01

    Diastereoselective synthesis of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanol by reduction of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanone optically enriched demonstrating to be highly efficiency using the sulfanyl group as asymmetric induction control agent during an addition reaction to carbonyl group.The 2-methylsulfinyl-1-indanone was obtained for the first time in one unique step without further oxidation steps. The synthesis of SR, SS of 2-methylsulphinyl-1-indanone optically enrich...

  15. Synthesis and Characterization of Novel Copper(II 2D Coordination Polymers from a Fluorinated Flexible Ligand with Remarkable Clathration Ability

    Directory of Open Access Journals (Sweden)

    Kayoko Kasai

    2011-11-01

    Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.

  16. Ozone Synthesis Efficiency Upgrading in the Pulsed Point-to-Plane Gas Discharge

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Polyakov, A.V.; Pugach, S.G.

    2006-01-01

    Results are reported from the studies into electrodynamic characteristics of the barrierless point-to-plane gas discharge as a HV pulse of positive polarity is applied to the point electrode. The efficiency of ozone synthesis has been determined as a function of the length and repetition frequency of the HV pulse. It has been demonstrated that the electrodynamic characteristics of the discharge and the efficiency of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of HV power supply. The HV switch HTS-300 (BEHLKE Electronic GmbH) was used for HV pulse shaping

  17. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana

    2016-04-10

    In organic donor-acceptor systems, ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) are key determinants of the overall performance of photovoltaic devices. However, a profound understanding of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy are examined to provide the fundamental information necessary to fabricate and optimize organic solar cell devices. In real time, CT and CS are monitored at the interface between three fullerene acceptors (FAs) (PC71BM, PC61BM, and IC60BA) and the PTB7-Th donor polymer. Femtosecond transient absorption (fs-TA) data demonstrates that photoinduced electron transfer from the PTB7-Th polymer to each FA occurs on the sub-picosecond time scale, leading to the formation of long-lived radical ions. It is also found that the power conversion efficiency improves from 2% in IC60BA-based solar cells to >9% in PC71BM-based devices, in support of our time-resolved results. The insights reported in this manuscript provide a clear understanding of the key variables involved at the device interface, paving the way for the exploitation of efficient CS and subsequently improving the photoconversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. catalysed indolylation and pyrrolylation of isatins: Efficient synthesis ...

    Indian Academy of Sciences (India)

    Abstract. An efficient and cheap synthetic approach to 3,3-di(indolyl)oxindoles and 3,3-di(pyrrolyl) oxindoles has been developed via Zn(OTf)2 catalysed indolylation and pyrrolylation of isatins. A preliminary biochemical assay of the synthesized molecules in rodent models were performed to estimate the serum glutamate ...

  19. Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery.

    Science.gov (United States)

    Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing

    2018-03-30

    Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Novel and Efficient Synthesis of the Promising Drug Candidate Discodermolide

    Science.gov (United States)

    2010-02-01

    of its production may require its wide use as a livestock antibiotic , a market that seems to have disappeared. Therefore, as a purely practical...building block 9. Thus, chiral syn, anti stereotriad building blocks, useful for the preparation of polypropionate antibiotics , may be efficiently accessed... antibiotics that are used in human and veterinary medicine. In this paper, we illustrate the potential of a deconstruction-reconstruction strategy for the

  1. Sulfated polyborate: A mild, efficient catalyst for synthesis of N-tert ...

    Indian Academy of Sciences (India)

    Rapid, efficient and inexpensive method for synthesis of N-tert-butyl/N-trityl protected amides via Ritter reaction of nitriles with tertiary alcohols in the presence of a sulfated polyborate catalyst under solvent-free conditions is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and recyclability ...

  2. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  3. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-05-01

    Full Text Available Tannic acid (C76H52O46 has been found to be an efficient catalyst for one-pot synthesis of 2,4,5-triaryl substituted imidazoles by the reaction of an arylaldehyde, benzyl/benzoin and an ammonium acetate. The short reaction time and excellent yields making this protocol practical and economically attractive.

  4. Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl ...

    Indian Academy of Sciences (India)

    Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl) ... there has been a growing interest in Knoevenagel prod- ucts because many of them have ..... providing financial support and to the authorities of. Jawaharlal Nehru ...

  5. An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed ...

    African Journals Online (AJOL)

    An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed by ZnO Nanoparticles Thin-film. ... South African Journal of Chemistry ... The mild reaction conditions, reusability of the catalyst, easy work-up and high yields of products make the present protocol sustainable and advantageous compared to conventional ...

  6. NRC closing remarks

    International Nuclear Information System (INIS)

    Coffman, F.

    1994-01-01

    This section contains the edited transcript of the NRC closing remarks made by Mr. Franklin Coffman (Chief, Human Factors Branch, Office of Nuclear Regulatory Research) and Dr. Cecil Thomas (Deputy Director, Division of Reactor Controls and Human Factors, Office of Nuclear Reactor Regulation). This editing consisted of minimal editing to correct grammar and remove extraneous references to microphone volume, etc

  7. Remarks of Joseph Marrone

    International Nuclear Information System (INIS)

    Marrone, J.

    1985-01-01

    The author's remarks are directed primarily at proposals that have been made that would substantially tort law with respect to radiation claims in order to ease the ability of claimants to recovery damages from defendants. The change would be based upon what had been assumed to be a ''scientific'' means of measuring the ''probability'' that exposure to ionizing radiation was the case of a cancer in a particular claimant. The remarks are divided into three parts: a summary description of the nuclear insurance pools, including the tort radiation claims filed against the pools; and a brief description of claims against the Federal Government and its contractors; an examination of the elementary principles of tort law, and an outline of the threat that has developed that would transform it into a hybrid social benefits program; and comment on the danger to the integrity of science when it is injected into the legislative process

  8. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  9. Simple and Efficient Procedure for Synthesis of N'-Arylamidines Using Trimethylaluminum

    International Nuclear Information System (INIS)

    Korbad, Balaji L.; Lee, Sanghyeup

    2013-01-01

    In conclusion, we have developed simple and efficient procedure for the synthesis of N'-arylamidines using tri-methylaluminum, nitriles and aryl amines under mild condition. Aliphatic, aromatic nitriles were reacted well with a variety of aromatic amine to afford corresponding amidines in good to high yields. Amidines are an important class of compounds that have wide range of application in the fields of catalyst design, material science, medicinal chemistry and also shown the promising anti-inflammatory and analgesic activity. They are valuable synthons for synthesis of various heterocyclic compounds. In addition, recent studies have demonstrated their capacity to fix carbon dioxide

  10. Efficient Asymmetric Synthesis of S,S-2-methylsulfanyl-2-methylsulfinyl-1-indanone

    Directory of Open Access Journals (Sweden)

    Derisvaldo Rosa Paiva

    2013-05-01

    Full Text Available Diastereoselective synthesis of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanol by reduction of SS-2-methylsulfanyl-2-methylsulfinyl-1-indanone optically enriched demonstrating to be highly efficiency using the sulfanyl group as asymmetric induction control agent during an addition reaction to carbonyl group.The 2-methylsulfinyl-1-indanone was obtained for the first time in one unique step without further oxidation steps. The synthesis of SR, SS of 2-methylsulphinyl-1-indanone optically enriched in good yield and good enantiomeric excess determined by nuclear magnetic resonance technique employing the Kagan reagent as chiral shift agent.

  11. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Directory of Open Access Journals (Sweden)

    Xuezheng Liang

    2010-08-01

    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  12. An efficient synthesis and spectroscopic characterization of Schiff bases containing 9,10-anthracenedione moiety

    Directory of Open Access Journals (Sweden)

    Fareed Ghulam

    2013-01-01

    Full Text Available A new method has been developed for the synthesis of novel Schiff bases containg anthraquinone moiety using dodeca-Tungstosilicic acid/P2O5 under solvent free conditions at room temperature. The reaction was completed in 1-3 minutes with excellent yields. This method was found to be more efficient, easy and hazardous free for the synthesis of azomethines. The development of these type of methadologies in synthetic chemistry may contribute to green chemistry. The structures of synthesized novel Schiff bases was elucidated using 1H-NMR, 13C-NMR, LCMS, FTIR and CHN analysis.

  13. Stereoselective synthesis of hydroxy stilbenoids and styrenes by atom-efficient olefination with thiophthalides.

    Science.gov (United States)

    Mitra, Prithiba; Shome, Brateen; De, Saroj Ranjan; Sarkar, Anindya; Mal, Dipakranjan

    2012-04-14

    The synthesis of stilbenoids and styryl carboxylic acids is accomplished with high E-stereoselectivity by olefination of aldehydes with thiophthalides under basic conditions. The olefination is highly atom-efficient as it only loses elemental sulfur during the reaction. This olefination, in conjunction with retro Kolbe-Schmitt reaction, allows facile synthesis of E-hydroxystilbenoids with minimal employment of protecting groups. This study also discloses two important findings: formation of i) 4-methylsulfanyl isocoumarins and ii) an 2-arylindenone. This journal is © The Royal Society of Chemistry 2012

  14. Efficient Synthesis and Bioactivity of Novel Triazole Derivatives.

    Science.gov (United States)

    Hu, Boyang; Zhao, Hanqing; Chen, Zili; Xu, Chen; Zhao, Jianzhuang; Zhao, Wenting

    2018-03-21

    Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS) inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS), ¹H-NMR and 13 C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian , Sclerotinia sclerotiorum (Lib.) de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk.) Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR) were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.

  15. Efficient Synthesis and Bioactivity of Novel Triazole Derivatives

    Directory of Open Access Journals (Sweden)

    Boyang Hu

    2018-03-01

    Full Text Available Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS, 1H-NMR and 13C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian, Sclerotinia sclerotiorum (Lib. de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk. Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS. These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.

  16. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    International Nuclear Information System (INIS)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon

    2002-01-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of α.β-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids

  17. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon [Yeungnam Univ., Kyongsan (Korea, Republic of)

    2002-08-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of {alpha}.{beta}-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids.

  18. Remarks on superconductive networks

    International Nuclear Information System (INIS)

    Dominguez, D.; Lopez, A.R.N.; Simonin, J.M.

    1989-01-01

    Some remarks on the determination of the normal-superconductor phase boundary in random superconductive networks are made. A recently reported work by Soukoulis, Grest and Li which introduces weak links between nodes as these are removed in the site percolation problem is discussed. By the analysis of two simple geometries, it is shown that this procedure introduces spurious effects which mask the physical properties of the system. These affect in particular the field slope critical index and the sharpness of the normal-superconductor boundary. (Author)

  19. Seven remarkable days

    CERN Document Server

    This has been a truly remarkable seven days for CERN. Things have moved so fast that it has sometimes been hard to separate fact from fiction – all the more so since facts have often seemed too good to be true. It’s been a week of many firsts. Monday was the first time we’ve had two captured beams in the LHC. It’s the first time the LHC has functioned as a particle accelerator, boosting particles to the highest beam energy so far achieved at CERN. And it’s been a week in which we’ve seen the highest energy proton-proton collisions ever produced at CERN: our last hadron collider, the SPS was a proton-antiproton collider, a technically simpler machine than the LHC. This week’s successes are all the more remarkable precisely because of the complexity of the LHC. Unlike the SPS collider, it is two accelerators not one, making the job of commissioning nearly twice as difficult. I’d like to express my heartfelt thanks and congra...

  20. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  1. Synthesis of (R-Dihydropyridones as Key Intermediates for an Efficient Access to Piperidine Alkaloids

    Directory of Open Access Journals (Sweden)

    Serkos A Haroutounian

    2007-04-01

    Full Text Available The efficient transformation of D-glucal to (2R-hydroxymethyldihydro-pyridinone 5 in seven steps and 35 % overall yield is reported. Dihydropyridone 5 constitutes a versatile chiral building block for the synthesis of various piperidine alkaloids. In this regard, 5 was converted to piperidinol 13 and piperidinone 15, that may be further elaborated for the syntheses of (+-desoxoprosophylline (1 and deoxymannojirimycin (3 or D-mannolactam (4, respectively.

  2. An Efficient Method for the N-Bromosuccinimide Catalyzed Synthesis of Indolyl-Nitroalkanes

    Directory of Open Access Journals (Sweden)

    Ching-Fa Yao

    2009-10-01

    Full Text Available An efficient and practical method for the synthesis of indolyl-nitroalkane derivatives catalyzed by N-bromosuccinimide is described. The generality of this method was demonstrated by synthesizing an array of diverse 3-substituted indole derivatives by the reaction of different β-nitrostyrenes with various substituted indoles. Simple reaction conditions accompanied by good yields of indolyl-nitroalkanes are the merits of this methodology.

  3. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián

    2014-08-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  4. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gó mez-Suá rez, Adriá n; Gasperini, Danila; Vummaleti, Sai V. C.; Poater, Albert; Cavallo, Luigi; Nolan, Steven P.

    2014-01-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  5. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  6. Concluding theoretical remarks

    International Nuclear Information System (INIS)

    Ellis, J.

    1986-01-01

    My task in this talk is to review the happenings of this workshop from a theoretical perspective, and to emphasize lines for possible future research. My remarks are organized into a theoretical overview of the what, why, (mainly the hierarchy problem) how, (supersymmetry must be broken: softly or spontaneously, and if the latter, by means of a new U tilde(1) gauge group or through the chiral superfields) when (how heavy are supersymmetric partner particles in different types of theories) and where (can one find evidence for) supersymmetry. In the last part are discussed various ongoing and future searches for photinos γ tilde, gravitinos G tilde, the U vector boson, shiggses H tilde, squarks q tilde and sleptons l tilde, gluinos g tilde, winos W tilde and other gauginos, as well as hunts for indirect effects of supersymmetry, such as for example in baryon decay. Finally there is a little message of encouragement to our experimental colleagues, based on historical precedent. (orig.)

  7. Remarkable resilience of teeth.

    Science.gov (United States)

    Chai, Herzl; Lee, James J-W; Constantino, Paul J; Lucas, Peter W; Lawn, Brian R

    2009-05-05

    Tooth enamel is inherently weak, with fracture toughness comparable with glass, yet it is remarkably resilient, surviving millions of functional contacts over a lifetime. We propose a microstructural mechanism of damage resistance, based on observations from ex situ loading of human and sea otter molars (teeth with strikingly similar structural features). Section views of the enamel implicate tufts, hypomineralized crack-like defects at the enamel-dentin junction, as primary fracture sources. We report a stabilization in the evolution of these defects, by "stress shielding" from neighbors, by inhibition of ensuing crack extension from prism interweaving (decussation), and by self-healing. These factors, coupled with the capacity of the tooth configuration to limit the generation of tensile stresses in largely compressive biting, explain how teeth may absorb considerable damage over time without catastrophic failure, an outcome with strong implications concerning the adaptation of animal species to diet.

  8. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    Science.gov (United States)

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    International Nuclear Information System (INIS)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In

    2013-01-01

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones

  10. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In [Duksung Women' s Univ., Seoul (Korea, Republic of)

    2013-10-15

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones.

  11. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Bisht Surendra S

    2006-12-01

    Full Text Available Abstract Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  12. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  13. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  15. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  16. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  17. CAPITALIST CRISIS: BRIEF REMARKS

    Directory of Open Access Journals (Sweden)

    José Claudinei Lombardi

    2010-01-01

    Full Text Available Based on the joint context of the theory of crises and the resultant theory of revolutions of Marx and Engels for the analysis of the genesis, development and death of Capitalism, a summary of the historical confronts from which relations of capital have been hegemonic in the XX and XXI centuries is presented. Within this same context, a synthesis of the debates on the structural crisis of Capitalism in the past years is made with an emphasis on its relevance and seriousness in history. It is emphasized that communism is not an idea to be implemented but a reality to be constructed by real men in struggles, conquests and defeats. The revolution of a way of production is not made by itself or by decree, but it is in fact the product of organized men. It is claimed that the maturing of a struggle may lead to the formation of a wide front to articulate anti-capitalist and revolutionary forces. It is observed the need for a tactic and strategic organization to overcome the logics of the Capital and the role each educationalist must play to expand and deepen the debate.

  18. Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong-Boo; Song, Hajun; Kim, Sung-Soo [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-06-15

    Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

  19. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes.

    Science.gov (United States)

    Kovvuri, Jeshma; Nagaraju, Burri; Kamal, Ahmed; Srivastava, Ajay K

    2016-10-10

    A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.

  20. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  1. Transition metal oxide nanopowder and ionic liquid: an efficient system for the synthesis of diorganyl selenides, selenocysteine and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Gul, Kashif; Kawasoko, Cristiane Y.; Singh, Devender; Dornelles, Luciano; Rodrigues, Oscar E.D. [Universidade Federal de Santa Maria (UFSC), RS (Brazil). Dept. de Quimica. LabSelen-NanoBio; Braga, Antonio L. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica. LabSelen

    2010-07-01

    We have developed an efficient method for the synthesis of diorganyl selenides and {beta}-seleno amines using Zn, catalytic amounts of ZnO nanopowder, as a catalyst and ionic liquid as a recyclable solvent. This ZnO/ionic liquid system shows high efficiency in catalyzing these transformations with the formation of the desired products in high yields. (author)

  2. Highly Efficient Synthesis of 2-Aryl-3-methoxyacrylates via Suzuki-Miyaura Coupling Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Ho; Lee, Chun Ho; Song, Young Seob; Park, No Kyun; Kim, Bum Tae; Heo, Jung Nyoung [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2006-02-15

    We have developed a highly efficient and convergent synthesis of 2-aryl-3-methoxyacrylates via the Suzuki-Miyaura coupling reaction of α-iodo-β-methoxy-acrylate with arylboronic acids. The biological activities of 2-aryl-3-methoxyacrylate derivatives will be reported in due course. The Suzuki-Miyaura coupling reaction provides a convenient access to the carbon-carbon bond formation with high efficiency. Recently, a number of 2-aryl-3-methoxy-acrylates served as a key scaffold for the development of biologically active pharmaceuticals and agrochemicals. Especially, the discovery of the naturally-occurring fungicides, such as strobilurin A and oudemansin A, possessing a β-methoxyacrylate moiety was immediately seized great attention by industrial research groups to open a new era of the strobilurin family including azoxy-strobin and picoxystrobin.

  3. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  4. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and Evaluation of Tetramethylguanidinium-Polyethylenimine Polymers as Efficient Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Manohar Mahato

    2014-01-01

    Full Text Available Previously, we demonstrated that 6-(N,N,N′,N′-tetramethylguanidinium chloride-hexanoyl-polyethylenimine (THP polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N′,N′-tetramethylguanidinium-polyethylenimine (TP1-TP5 polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU. These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240–450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4–2.3-fold outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  6. Synthesis and evaluation of tetramethylguanidinium-polyethylenimine polymers as efficient gene delivery vectors.

    Science.gov (United States)

    Mahato, Manohar; Yadav, Santosh; Kumar, Pradeep; Sharma, Ashwani Kumar

    2014-01-01

    Previously, we demonstrated that 6-(N,N,N',N'-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N',N'-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240-450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4-2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  7. Highly efficient synthetic method onpyroacm resin using the boc SPPS protocol for C-terminal cysteine peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Juvekar, Vinayak; Kim, Kang Tae; Gong, Young Dae [Innovative Drug Library Research Center, Dept. of Chemistry, College of Science, Dongguk University, Seoul (Korea, Republic of)

    2017-01-15

    A very effective process on Pyroacm resin was developed for solid-phase peptide synthesis (SPPS) of C-terminal cysteine and cysteine ester peptides. The process uses cysteine side chain anchoring to the Pyroacm resin and the Boc protocol for SPPS. The Pyroacm resin showed remarkable stability under standard trifluoromethanesulfonic acid (TFMSA) cleavage condition. TFMSA cleavage of protecting groups generates a peptide-linked resin, which can be subjected to peptide modification reactions. Finally, the peptide can be cleaved from the resin using methoxycarbonylsulfenyl chloride. The utility of this protocol was demonstrated by its applications to the synthesis of model peptides, key intermediates in the preparation of natural products riparin 1.2 and a-factor.

  8. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation.

    Science.gov (United States)

    Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti

    2016-02-21

    A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.

  9. Highly efficient isocyanate-free microwave-assisted synthesis of [6]-oligourea

    KAUST Repository

    Qaroush, Abdussalam K.

    2013-01-01

    A new eco-friendly, isocyanate-free, energy-saving method for the production of [6]-oligourea, utilizing a green carbonylating agent, viz. propylene carbonate, is reported. It comprises an organocatalyzed, microwave-assisted, solvent-free synthesis. Two modes of microwave-assisted synthesis, viz. dynamic and fixed energy modes, were applied. Upon optimization, the dynamic mode gave 79% yields of [6]-oligourea. On the other hand, almost quantitative yields were obtained using the fixed mode, within 20 min, at 10 W and with the same catalyst loading. Combination of both organocatalysis and microwave energy input appears to be a key issue for the efficiency of the reaction, with the fixed energy mode being best suited. It should be noted that all data reported are reproducible (due to the homogeneous microwave technology used by CEM Discover S-Class of microwave reactors). To the best of our knowledge, this is the best eco-friendly synthetic approach for the preparation of the title oligomers. It paves the way for using more of the biorenewable and sustainable chemicals as a feedstock for the production of polyureas. The oligomer produced was analyzed by EA, ATR-FTIR, XRD, 1H and 13CNMR. Furthermore, thermal properties of the resulting [6]-oligourea were analyzed using TGA and DSC. © The Royal Society of Chemistry 2013.

  10. An efficient synthesis of 1α,25-dihydroxyvitamin D3 LC-biotin.

    Science.gov (United States)

    Kattner, Lars; Bernardi, Dan

    2017-10-01

    In recent years the apparent impact of vitamin D deficiency on human health has gained increased awareness. Consequently, the development of appropriate assays to measure the status of medicinally most relevant vitamin D metabolites in human blood, serum or relevant tissue is continuously being improved. Particularly, assaying of 1α,25-dihydroxyvitamin D 3 , in turn considered as the most active metabolite, is mainly indicated in disorders leading to calcaemia or those resulting from an impaired 1α-hydroxylation of 25-hydroxyvitamin D 3 . Thus, in some competitive protein binding and ELISA assays, biotin-linked 1α,25-dihydroxyvitamin D 3 (1α,25-dihydroxyvitamin D 3 LC-biotin) is employed for measurement of actual calicitriol concentration. A new efficient synthesis of 1α,25-dihydroxyvitamin D 3 LC-biotin is described, starting with readily available vitamin D 2 , and combining a classical approach to access 1α,25-dihydroxyvitamin D 3 , appropriate OH-protective group transformations, and a C-3-O-alkylation, suitable to connect the biotin-linker in a reliable, selective and high yielding strategy. The developed methodology is applicable to the synthesis of a wide variety of C-3-OH-linked vitamin D 3 and D 2 derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    Science.gov (United States)

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu

    2016-04-04

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  13. Rearrangement of 5-trimethylsilylthebaine on treatment with L-selectride: an efficient synthesis of (+)-bractazonine.

    Science.gov (United States)

    Chen, Weibin; Wu, Huifang; Bernard, Denzil; Metcalf, Matthew D; Deschamps, Jeffrey R; Flippen-Anderson, Judith L; MacKerell, Alexander D; Coop, Andrew

    2003-03-07

    Treatment of 5-trimethylsilylthebaine with L-Selectride gave rise to a rearrangement to 10-trimethylsilylbractazonine through migration of the phenyl group, whereas treatment of thebaine with strong Lewis acids is known to lead to a similar rearrangement through migration of the alkyl bridge to give, after reduction, (+)-neodihydrothebaine. It is suggested that the rearrangement of the alkyl group of thebaine is favored due to the formation of a tertiary benzylic cation. However, for 5-trimethylsilylthebaine, the lithium ion of L-Selectride acts as the Lewis acid and the beta-silyl effect dominates in the stabilization of any positive charge. This rearrangement provides a clear example of the greater relative migratory aptitude of phenyl groups over alkyl groups, and provides an efficient synthesis of (+)-bractazonine from thebaine.

  14. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez

    2015-01-01

    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  15. Efficient Information and Data Management in Synthesis and Design of Processing Netorks

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sin, Gürkan; Gani, Rafiqul

    industrial use of EWO, therefore, methods and tools for efficient information and data management need to be developed. In this contribution, we present a systematic data architecture, which is integrated in our framework for synthesis and design of processing networks (Quaglia et al., submitted). The data...... studies. The case studies are selected from different industrial segments, such as food processing (soybean processing network), water and wastewater management (refinery wastewater treatment and reuse; municipal water treatment) and biorefinery....... a large number (typically 1000-100,000) of data (Quaglia et. al, submitted). As a result, EWO problem formulation is a time and resource intensive task. Moreover, compilation errors results in faulty problem specifications, and may compromise the quality of the obtained solution. In order to enable...

  16. One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells

    KAUST Repository

    Chen, Hu; Bryant, Daniel; Troughton, Joel; Kirkus, Mindaugas; Neophytou, Marios; Miao, Xiaohe; Durrant, James R.; McCulloch, Iain

    2016-01-01

    A hole transporting material was designed for use in perovskite solar cells, with a facile one-step synthesis from inexpensive, com-mercially available reagents. The molecule comprises a central fluorinated phenyl core with pendant aryl amines, namely, 3,6-difluoro-N1,N1,N2,N2,N4,N4,N5,N5-octakis(4-methoxyphenyl)benzene-1,2,4,5-tetraamine (DFTAB). A power conversion efficiency of up to 10.4% was achieved in a mesoporous perovskite device architecture. The merits of a simple and potentially low cost syn-thetic route as well as promising performance in perovskite devices, encourages further development of this materials class as new low-cost hole transporting materials for the scale up of perovskite solar cells.

  17. Efficient synthesis and evaluation of bis-pyridinium/bis-quinolinium metallosalophens as antibiotic and antitumor candidates

    Science.gov (United States)

    Elshaarawy, Reda F. M.; Eldeen, Ibrahim M.; Hassan, Eman M.

    2017-01-01

    Inspired with the pharmacological diversity of salophens and in our endeavor to explore a new strategy which may conflict the invasion of drug resistance, we report herein efficient synthetic routes for the synthesis of new RO-salophen(Cl), pyridinium/quinolinium-based salophens (3a-e) and metallosalophens (4a-j). These new architectures have been structurally characterized by elemental and spectral analysis as well pharmacologically evaluated for their in vitro antimicrobial, against a common panel of pathogenic bacterial and fungal strains, and anticancer activities against human colon carcinoma (HCT-116) cell lines. Antimicrobial assay results revealed that all tested compounds exhibited moderate to superb broad-spectrum efficacy in comparison to the standard antibiotic with a preferential ability to perform as a fungicides than to act as bactericides. Noteworthy, VO(II)-salophens are more effective in reduction HCT-116 cell viability than Cu(II)-salophens. For example, VO(II)-salophen3 (4f) (IC50 = 2.13 μg/mL) was ca. 10-fold more efficient than Cu(II)-salophen3 (4e) (IC50 = 20.30 μg/mL).

  18. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    Science.gov (United States)

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  19. PEG-400 as an efficient and recyclable reaction medium for the synthesis of polyhydroquinolines via Hantzsch reaction

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-01-01

    Full Text Available Polyhydroquinoline derivatives have been prepared efficiently in a one-pot synthesis via Hantzsch condensation using PEG-400 as reaction medium. The present method does not involve any hazardous organic solvents or toxic catalysts. The present methodology offers several advantages such as simple procedure, excellent yields with shorter reaction times and purification of products by non-chromatographic methods.

  20. Fast and efficient green synthesis of thiosulfonate S-esters by microwave-supported permanganate oxidation of symmetrical disulfides

    DEFF Research Database (Denmark)

    Thi, Luu Thi Xuan; Thi Nguyen, Thao-Tran; Le, Thach Ngoc

    2015-01-01

    Potassium permanganate absorbed on copper(II) sulfate pentahydrate has been found to be an efficient, inexpensive, and green oxidation agent for the synthesis of “symmetrical” thiosulfonate S-esters by oxidation of the corresponding symmetrical disulfides. The oxidation reactions were carried out...

  1. Efficient Nazarov cyclization/Wagner-Meerwein rearrangement terminated by a Cu(II)-promoted oxidation: synthesis of 4-alkylidene cyclopentenones.

    Science.gov (United States)

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L; Neidig, Michael L; Frontier, Alison J

    2013-04-08

    The discovery and elucidation of a new Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described that constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  3. I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2,6-dicyano ...

    Indian Academy of Sciences (India)

    Abstract. Molecular iodine in the presence of potassium carbonate has been found to be an efficient and eco- friendly catalyst for the synthesis of polysubstituted dicyanoanilines from aldehydes, acetone and malononitrile under solvent-free thermal condition. The experimental procedure is simple, includes shorter reaction ...

  4. Evaluation of an automated double-synthesis module: efficiency and reliability of subsequent radiosyntheses of FHBG and FLT

    International Nuclear Information System (INIS)

    Niedermoser, Sabrina; Pape, Manuela; Gildehaus, Franz Josef; Wängler, Carmen; Hartenbach, Markus; Schirrmacher, Ralf; Bartenstein, Peter; Wängler, Björn

    2012-01-01

    We optimized the synthesis methods for 3′-deoxy-3′-[ 18 F]fluorothymidine ([ 18 F]FLT) and 9-(4-[ 18 F]fluoro-3-[hydroxymethyl]butyl)guanine) ([ 18 F]FHBG) and automated them on an Explora General Nucleophilic double-synthesis module. Furthermore, the synthesis efficiency and reliability and the formation of cross-contaminations of the products when preparing two consecutive batches were evaluated. Whereas the preinstalled FLT synthesis conditions required substantial modification in reaction and neutralization conditions to achieve radiochemical yields of up to 60% within 70±10 min including high-performance liquid chromatography purification, the synthesis of FHBG had to be implemented to the module to obtain competitive radiochemical yields of up to 40% in an overall synthesis time of 60±10 min. The radiochemical purities obtained were ≥99% and ≥96% for the synthesis of [ 18 F]FLT and [ 18 F]FHBG, respectively. No significant changes in yield or purity could be observed between both batch productions. We found that the yields and purities also did not change when performing FLT after FHBG syntheses and vice versa. Hence, we developed a synthesis setup that offers the opportunity to perform two subsequent syntheses of either [ 18 F]FLT, [ 18 F]FHBG or [ 18 F]FLT after [ 18 F]FHBG without decrease in radiochemical yields and purities. Also, no cross-contaminations were observed, which can be attributed to the use of separate product delivery tubes, purification columns and an automated intermediate cleaning program. These results open up the possibility of producing consecutively either two equal 18 F-fluorinated tracers or two different ones in high yields on the same synthesis module.

  5. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  6. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    Science.gov (United States)

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity. © 2012 Acoustical Society of America.

  7. Seedless synthesis and efficient recyclable catalytic activity of Ag@Fe nanocomposites towards methyl orange

    Science.gov (United States)

    Alzahrani, Salma Ahmed; Malik, Maqsood Ahmad; Al-Thabaiti, Shaeel Ahmed; Khan, Zaheer

    2018-03-01

    This work demonstrates a competitive reduction method of synthesis of nanomaterials. In this method along cetyltrimethylammonium bromide (CTAB), the reduction of Ag+ and Fe3+ ions is achieved by ascorbic acid-to-bimetallic Ag@Fe yellow-colored nanomaterials. The shape of UV-visible spectra and wavelengths absorbed of Ag@Fe can be tuned from ca. 290-600 nm by controlling [CTAB] and [Ag+]. The apparent first-order rate constants were calculated within the approximation of 6.1 × 10-3 s-1. The as-prepared Ag@Fe NPs have been found to be very important catalyst in terms of depredate methyl orange in vicinity of sodium borohydride (NaBH4), which exhibits excellent efficiency and re-usability in the prototypical reaction. The cmc of cationic surfactant CTAB has been determined by conductivity method under different experimental conditions. In the presence of CTAB, Ag+ and Fe3+ ions reduce to Ag@Fe core/shell nanoparticles, comprehend a change in wavelength and intensity of SRP band. The apparent first-order rate constant, activation energy, and turnover frequency for the methyl orange reduction catalyzed by Ag@Fe NPs were found to be 1.6 × 10-3 s-1, 58.2 kJ mol-1, and 1.1 × 10-3 s-1, respectively.

  8. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof

    Science.gov (United States)

    Sidoryk, Katarzyna; Filip, Katarzyna; Cmoch, Piotr; Łaszcz, Marta; Cybulski, Marcin

    2018-02-01

    The synthesis and molecular structure details of R- 3,4-dihydroxyphenyl lactic acid (danshensu) and related compounds, i.e. S isomer and the key intermediates have been described. Danshensu is an important water soluble phenolic acid of Salvia miltiorrhiza herb (danshen or red sag) with numerous applications in traditional Chinese medicine (TCM). Our synthetic approach was based on the Knoevenagel condensation of the protected 3,4-dihydroxybenzaldehyd and Meldrum acid derivative, followed by asymmetric Sharples dihydroxylation, reductive mono dehydroxylation and final deprotection. All compounds were characterized by various spectroscopic techniques: 1H-, 13C- magnetic resonance (NMR); Fourier-transformed infrared (FTIR); Raman, HR mass spectroscopy. For the determination of compound optical purities original HPLC methods were developed which allowed for the efficient resolution of danshensu R and S enantiomers as well as its intermediate enantiomers, using commercially available chiral stationary phases. Furthermore, in order to better understand danshensu specificity as a potential API in drug formulation, the physicochemical properties of the compounds were studied by thermal analysis, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

  9. Concluding Remarks | Ewing | Rwanda Journal

    African Journals Online (AJOL)

    Rwanda Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2015) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Concluding Remarks. Helen Ewing. Abstract. No Abstract. Full Text:.

  10. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    International Nuclear Information System (INIS)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon

    2012-01-01

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl 2 (p-cymene)] 2 /MS, 4A, BOP, Pd(OAc) 2 /PPh 3 , Cu(OAc) 2 /ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH 2 Cl 2 at rt for a prolonged reaction time (20 h) (Table 1). CH 2 CI 2 was chosen as reaction medium in this reaction due to the good solubility for both 1 and 3 in CH

  11. An Efficient Synthesis of Nitriles from Aldoximes Using Diethyl Phosphorocyanidate under Mild Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kieseung; An, Hyeonseong; Hwang, Chanyeon [Woosuk Univ.,Wanju (Korea, Republic of)

    2012-10-15

    Nitriles are valuable intermediates in organic synthesis not only because they serve as the appropriate precursors to various functional groups, but also because they are widely used as the key intermediates for pharmaceuticals, agrochemicals and various N-heterocyclic compounds. The cyano group itself is also frequently found in many biologically important molecules. Therefore, a variety of synthetic routes to nitriles from diverse chemical precursors have been developed. Among these routes, nitrile synthesis from aldoximes using an appropriate dehydrating agent has been a general and clean method. For this purpose, numerous reagents such as chlorosulfonyl isocyanate, di-2-pyridyl sulfite, Burgess reagent, [RuCl{sub 2}(p-cymene)]{sub 2}/MS, 4A, BOP, Pd(OAc){sub 2}/PPh{sub 3}, Cu(OAc){sub 2}/ultrasound have been developed. These reagents, however, may have limitations in some respects such as harsh reaction conditions, use of expensive or less readily available reagents, low yields, and lack of generality. Therefore, there is still a need to develop mild and general method for this conversion. Diethyl phosphorocyanidate (DEPC) was initially introduced as an efficient peptide coupling reagent, and has been utilized for useful organic reactions. Previously, we reported that 2-chloro-1-methylpyridinium iodide is an efficient and mild reagent for the dehydration of aldoximes to nitriles under mild conditions. In continuation of our interest in developing mild method for the conversion of aldoximes to nitriles, we herein wish to report the first application of DEPC to the efficient synthesis of nitriles from aldoximes under mild conditions (Scheme 1). In order to obtain the information regarding the optimum reaction conditions, 4-pyridine aldoxime (1a) was reacted with DEPC without base, and in presence of various base in CH{sub 2}Cl{sub 2} at rt for a prolonged reaction time (20 h) (Table 1). CH{sub 2}CI{sub 2} was chosen as reaction medium in this reaction due to the

  12. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  13. Synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines using an efficient heteropolyacid-catalyzed procedure.

    Science.gov (United States)

    Kaoua, Rachedine; Bennamane, Norah; Bakhta, Saliha; Benadji, Sihame; Rabia, Cherifa; Nedjar-Kolli, Bellara

    2010-12-28

    An efficient and improved procedure for the synthesis of 1,4-diazepine and 1,5-benzodiazepine derivatives via the reaction of ketimine intermediates with aldehydes in the presence of Keggin-type heteropolyacids (HPAs) was developed. High yields and short reaction times were obtained for both electron-releasing and electron-withdrawing substituted 1,4-diazepine  and 1,5-benzodiazepines derivatives.

  14. Efficient sonochemical synthesis of alkyl 4-aryl-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives.

    Science.gov (United States)

    Ruiz, Enrique; Rodríguez, Hortensia; Coro, Julieta; Niebla, Vladimir; Rodríguez, Alfredo; Martínez-Alvarez, Roberto; de Armas, Hector Novoa; Suárez, Margarita; Martín, Nazario

    2012-03-01

    A facile, efficient and environment-friendly protocol for the synthesis of 6-chloro-5-formyl-1,4-dihydropyridine derivatives has been developed by the convenient ultrasound-mediated reaction of 2(1H)pyridone derivatives with the Vilsmeier-Haack reagent. This method provides several advantages over current reaction methodologies including a simpler work-up procedure, shorter reaction times and higher yields. Copyright © 2011. Published by Elsevier B.V.

  15. Synthesis of Substituted 1,4-Diazepines and 1,5-Benzodiazepines Using an Efficient Heteropolyacid-Catalyzed Procedure

    Directory of Open Access Journals (Sweden)

    Sihame Benadji

    2010-12-01

    Full Text Available An efficient and improved procedure for the synthesis of 1,4-diazepine and 1,5-benzodiazepine derivatives via the reaction of ketimine intermediates with aldehydes in the presence of Keggin-type heteropolyacids (HPAs was developed. High yields and short reaction times were obtained for both electron-releasing and electron-withdrawing substituted 1,4-diazepine  and 1,5-benzodiazepines derivatives.

  16. Amberlyst-15: An Efficient and reusable heterogeneous catalyst for the synthesis of β-amino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Pathakota Venkata Ramana

    2015-12-01

    Full Text Available A simple and efficient method has been developed for the synthesis of β-amino carbonyl compounds from aromatic ketones, aldehydes and amines by Mannich reaction in the presence of amberlyst-15 as a reusable heterogeneous catalyst at room temperature under solvent-free conditions. The noteworthy advantages of the present method are short reaction times, good product yields, simple procedures and use of non-toxic catalyst.

  17. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Tang, Lin; Guo, Xuefeng; Yang, Yu; Zha, Zhenggen; Wang, Zhiyong

    2014-06-11

    A highly efficient and selective reaction for the synthesis of 2-substituted benzoxazoles and benzimidazoles catalyzed by Au/TiO2 has been developed via two hydrogen-transfer processes. This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C-N and C-O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.

  18. Remarks on the clump theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1986-07-01

    Further details are provided of a soon-to-be published dialog [Phys. Fluids 29 (July, 1986)] which discussed the role of the small scales in fluid clump theory. It is argued that the approximation of the clump lifetime which is compatible with exponentially rapid separation of adjacent orbits is inappropriate for the description of the dynamically important large scales. Various other remarks are made relating to the analytic treatment of strong drift-wave-like turbulence

  19. Remarks on the clump theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1986-01-01

    Further details are provided of a recently published dialog [Phys. Fluids 29 (July, 1986)] which discussed the role of the small scales in fluid clump theory. It is argued that the approximation of the clump lifetime which is compatible with exponentially rapid separation of adjacent orbits is inappropriate for the description of the dynamically important large scales. Various other remarks are made relating to the analytic treatment of strong drift-wave-like turbulence. (author)

  20. Remarks on High Energy Evolution

    OpenAIRE

    Kovner, Alex; Lublinsky, Michael

    2005-01-01

    We make several remarks on the B-JIMWLK hierarchy. First, we present a simple and instructive derivation of this equation by considering an arbitrary projectile wave function with small number of valence gluons. We also generalize the equation by including corrections which incorporate effects of high density in the projectile wave function. Second, we systematically derive the dipole model approximation to the hierarchy. We show that in the dipole approximation the hierarchy has a simplifyin...

  1. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  2. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  3. Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2013-01-01

    Lipids and carbohydrates are employed in the nature to store internal energy due to the large number of the high energy atomic bonds in their structure. Internal energy stored in the bonds is used to fuel work producing engines or metabolic activity of living organisms. This paper investigates the thermodynamic efficiency of the glucose and lipid synthesis and breakdown by photosynthetic microalgae. Photosynthetic microalgae are able to convert 3.8% of the solar exergy into the chemical exergy of algal lipid. As the microalgae convert the first product of the photosynthesis, i.e. glucose, into lipid, 47–49% of the chemical exergy is lost. If the microalgal cell consumes the photosynthetically produced glucose for its own energy demand, then about 30% of the glucose exergy can be converted into work potential in case of immediate and short-term energy demands. Organism can convert about 22% of the glucose exergy into work potential after a long-term storage. If the algal lipid is harvested for biodiesel production and the produced biodiesel is combusted in a Diesel engine, then about 17% of the exergy of the photosynthetically produced glucose can be converted into useful work. Biodiesel is among the most popular renewable fuels. The lipids are harvested from their storage in the cells to produce biodiesel before following the lipid breakdown path of the cellular metabolism. Our analysis indicates that, extracting the first product of photosynthesis, i.e. glucose or glucose polymers instead of lipids may be more efficient thermodynamically, if new motors capable to extract their bond energy is developed. - Highlights: • Photosynthetic microalgae convert 3.8% of the solar exergy into the chemical exergy of algal lipid. • Converting the first product of the photosynthesis (glucose) into lipid causes 47–49% of exergy loss. • Organism can convert 30% of the glucose exergy into work potential for its own immediate or short-term energy demand. • Organism can

  4. An efficient and facile synthesis of divergent C-3/C-5 bis ...

    Indian Academy of Sciences (India)

    extensive attention in organic synthesis and also serve as potential synthons for the ... plays an important role in synthetic chemistry, because they also serve as ...... scope, rate acceleration and selective formation of bis-. MBH adduct with ...

  5. An efficient modification of ellipticine synthesis and preparation of 13-hydroxyellipticine

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Sejbal, J.; Rygerová, B.; Stiborová, M.

    2007-01-01

    Roč. 48, č. 39 (2007), s. 6893-6895 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z40550506 Keywords : 13-hydroxyellipticine * synthesis Subject RIV: CC - Organic Chemistry Impact factor: 2.615, year: 2007

  6. Fast and Efficient Synthesis of 4-Arylidene-3-phenylisoxazol-5-ones

    Directory of Open Access Journals (Sweden)

    Maryam Mirzazadeh

    2012-01-01

    Full Text Available A convenient and easy synthesis of 4-arylidene-3-phenylisoxazol-5-ones by the three-component reaction of hydroxylamine, ethyl benzoylacetate and aromatic aldehydes in the presence of DABCO in refluxing ethanol is reported.

  7. A Facile and Efficient Synthesis of (15R)-Latanoprost from Chiral ...

    Indian Academy of Sciences (India)

    aDepartment of Chemistry, JNTUH College of Engineering Jagtial, ... is not effective with these topically applied drugs, ... approaches for the synthesis of latanoprost.7 Recently, ... lected organic layer was washed with brine solution and.

  8. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    Science.gov (United States)

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  9. Microwave promoted simple, efficient and regioselective synthesis of trisubstituted imidazo[1,2-a]benzimidazoles on soluble support.

    Science.gov (United States)

    Chen, Li-Hsun; Hsiao, Ya-Shan; Yellol, Gorakh S; Sun, Chung-Ming

    2011-03-14

    An efficient microwave-assisted and soluble polymer-supported synthesis of medicinally important imidazole-fused benzimidazoles has been developed. The protocol involves the rapid condensation of polymer-bound amino benzimidazoles with various α-bromoketones and subsequent in situ intramolecular cyclization under microwave irradiation resulting in a one pot synthesis of imidazole interlacing benzimidazole polymer conjugates. The condensed product was obtained with excellent regioselectivity. The biologically interesting imidazo[1,2-a]benzimidazoles was released from polymer support at ambient temperature. Diversity in the triheterocyclic nucleus was achieved by the different substitutions at its 2, 3, and 9 positions. The new protocol has the advantages of short reaction time, easy workup process, excellent yields, reduced environmental impact, wide substrate scope and convenient procedure.

  10. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.

    Science.gov (United States)

    Bala, Manju; Verma, Praveen Kumar; Sharma, Deepika; Kumar, Neeraj; Singh, Bikram

    2015-05-01

    An efficient water-catalyzed method has been developed for the synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles in one step. The present method excludes the usage of toxic metal catalysts and bases to produce benzazoles in good to excellent yields. An efficient and versatile water-mediated method has been established for the synthesis of various 2-arylbenzazoles. The present protocol excludes the usage of any catalyst and additive provided excellent selectivities and yields with high functional group tolerance for the synthesis of 2-arylated benzimidazoles, benzoxazoles, and benzothiazoles. Benzazolones were also synthesized using similar reaction protocol.

  11. Nanoparticles and self-organisation: the emergence of hierarchical properties from the nanoparticle soup (i.e., the small is getting bigger). Concluding remarks for Faraday Discussion: Nanoparticle Synthesis and Assembly.

    Science.gov (United States)

    Schiffrin, David J

    2015-01-01

    Some four years ago, one of the participants in this Discussion (Prof. Nicholas Kotov) predicted that: "within five years we shall see multiple examples of electronic, sensor, optical and other devices utilizing self-assembled superstructures" (N. A. Kotov, J. Mater. Chem., 2011, 21, 16673-16674). Although this prediction came partially to fruition, we have witnessed an unprecedented interest in the properties of materials at the nanoscale. The point highlighted by Kotov, however, was the importance of self-assembly of structures from well characterised building blocks to yield hierarchical structures, hopefully with predictable properties, a concept that is an everyday pursuit of synthetic chemists. This Discussion has brought together researchers from a wide range of disciplines, i.e., colloid science, modelling, nanoparticle synthesis and organisation, magnetic and optical materials, and new imaging methods, within the excellent traditional Faraday Discussion format, to discuss advances in areas relevant to the main theme of the meeting.

  12. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    OpenAIRE

    Vesa Välimäki; Henri Penttinen; Mikael Laurson; Jonte Knif; Cumhur Erkut

    2004-01-01

    A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a s...

  13. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    Science.gov (United States)

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Phenylboronic acid catalysed synthesis of 1,5-benzodiazepines via ...

    Indian Academy of Sciences (India)

    Phenylboronic acid has been found to be an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives via cyclocondensation of -phenylenediamine and various ketones in good to excellent yields (82-91%) using acetonitrile as solvent at reflux condition. The remarkable advantages offered by this method are ...

  15. Editorial - a remark you made

    Directory of Open Access Journals (Sweden)

    Yngve Nordkvelle

    2007-12-01

    Full Text Available ”A remark you made” is the title of a wonderful tune by the famous jazz-rock group “Weather Report”, issued on the influential “Heavy weather” LP some 30 years ago. In an age where planning and rationalizing is the main issue in most contexts, whether it’s a matter of studying, teaching, doing research or using a diet, “A remark you made” is a symbol of attending to the unplanned, unforeseen and often, unwanted. In most accounts on cognitive development one is overtly focused on the manageable, on the predictable and expected, and not so attentive to the opposite. “A remark you made” makes us think again and reconsider what might be of value, in what we otherwise might neglect. A remark made by Terry Anderson at a conference last year (2006 was rather telling. Anderson is the renown distance educator from Athabasca University, Alberta Canada, and editor of our fellow e-journal “The International Review of Research in Open and Distance Learning”. I recite it here totally from my own memory, and I have never approached him to have it verified, falsified or commented. That doesn’t matter in this context. Standing on the podium, he lowered his voice and asked if any Danes were present in the room. There weren’t! Then he explained that his argument might be presented differently with Danes present: “You see – Danes seem to think that learning alone is no longer possible!” That remark caused quite a good laugh, not the least because any comment – good or bad – about fellow Scandinavians generally is considered to be a good joke. But it was also a comment on how not only distance education, or open and flexible learning, but learning theory in general is driven by the sociocultural learning theory, - and according to Anderson, particularly so in Denmark! Our first contribution in this issue is about the theory of media theory developed by one of our editors: Lars Qvortrup. Lars is now the rector of the Danish

  16. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  17. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  18. An Efficient Solvent-Free Protocol for the Synthesis of 1-Amidoalkyl-2-naphthols using Silica-Supported Molybdatophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Abdolkarim Zare

    2010-01-01

    Full Text Available A highly efficient, green and simple solvent-free method for the synthesis of 1-amidoalkyl-2-naphthols via one-pot multi-components condensation of 2-naphthol, aromatic aldehydes and amides in the presence of catalytic amount of silica-supported molybdatophosphoric acid (H3PMo12O40.xH2O/SiO2, 3.17 mol% is described. The reactions proceed rapidly and the title compounds are produced in high to excellent yields.

  19. A green and efficient method for the synthesis of homodimeric (β ...

    African Journals Online (AJOL)

    ... derivatives by intramolecular cyclization in various yields. Of particular interest is the use of the water as solvent of reaction and in absence of catalyst. Also these operating conditions protect the environment and economic points of view. Keywords: aqueous synthesis; bioactivity; dihydropyridine; dimedone; green method; ...

  20. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  1. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  2. A Simple and Efficient Synthesis of 12-Aryl-8,9,10,12 ...

    African Journals Online (AJOL)

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives via one-pot multi-component reaction of aldehydes, 2-naphthol and dimedone. The present approach creates a variety of biologically active heterocyclic compounds in excellent yields and short ...

  3. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Abstract. An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl ...

  4. Efficient one-pot four-component synthesis of fused thiazolopyridin-2 ...

    Indian Academy of Sciences (India)

    . 30. 70. 8. [Net3][Ac]. 1:1:1:1. 3. 30. 80. 9. [bmim][Cl]. 1:1:1:1. 3. 30. 78. 10 .... Catalyst-free one-pot synthesis of thiazolopyridin-2-ones. 1479. Table 3. Optimization of the activity of ionic liquid after reuse. Sl. No. No. of cycle. Yield (%). 1. I. 94. 3.

  5. Efficient synthesis of large-scale thinned arrays using a density-taper initialised genetic algorithm

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-09-01

    Full Text Available The use of the density-taper approach to initialise a genetic algorithm is shown to give excellent results in the synthesis of thinned arrays. This approach is shown to give better SLL values more consistently than using random values and difference...

  6. Copper-Catalyzed Asymmetric Allylic Alkylation of Halocrotonates : Efficient Synthesis of Versatile Chiral Multifunctional Building Blocks

    NARCIS (Netherlands)

    Hartog, Tim den; Maciá, Beatriz; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    The highly enantioselective synthesis of α-methyl-substituted esters is reported in up to 90% yield and up to 99% ee using copper-TaniaPhos as chiral catalyst. The transformation proved scalable to at least 6.6 mmol (1.7 g scale). The products of this transformation have been further elaborated to

  7. Efficient and 'green' microwave-assisted synthesis of haloalkylphosphonates via the Michaelis-Arbuzov reaction

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Holý, Antonín; Dračínský, Martin; Baszczyňski, Ondřej; Česnek, Michal; Janeba, Zlatko

    2011-01-01

    Roč. 13, č. 4 (2011), s. 882-888 ISSN 1463-9262 R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : microwave-assisted synthesis * haloalkylphosphonates * Michaelis-Arbuzov reaction Subject RIV: CC - Organic Chemistry Impact factor: 6.320, year: 2011

  8. One-pot efficient green synthesis of 1,4-dihydro-quinoxaline-2,3 ...

    Indian Academy of Sciences (India)

    Unknown

    Thermal and powder X-ray diffraction analysis was carried out for some hydrated crystals. Keywords. Green chemistry ... Elemental analyses were done using Carlo–Erba 1108 and Perkin–Elmer series II 2400 instruments. 2.3 General synthesis of quinoxaline derivatives ... with a pestle in a mortar at room temperature in an.

  9. Polyethylene glycol (PEG-400: An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Mekala

    2015-12-01

    Full Text Available Polyethylene glycol (PEG-400 was found to be an inexpensive, non-toxic, and effective medium for the one-pot synthesis of 1,2-disubstituted benzimidazoles in excellent yields. Eco-friendliness, low cost, high yields, and recyclability of the PEG-400 are the important features of this protocol.

  10. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method.

    Science.gov (United States)

    Selvaraj, M; Park, D-W; Kim, I; Kawi, S; Ha, C S

    2012-08-28

    Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).

  11. Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaowei; Gong, Binwei; Meng, Yanqiu [Shenyang Univ. of Chemical Technology, Shenyang (Korea, Republic of); Yan, Yunnan [Gannan Medical Univ., Ganzhou (Korea, Republic of); Tang, Xiaobo; Eric Xu, H.; Yi, Wei [Chinese Academy of Sciences, Shanghai (China); Li, Qiu [Univ. of Science and Technology of China, Suzhou (China)

    2013-10-15

    A new and alternative method for the efficient synthesis of indanylacetic acid 2 has been developed. The methodology used RuCl(p-cymene)[(R,R)-TsDPEN] as the catalyst and formic acid-triethylamine as the hydrogen source at room temperature under solvent-free conditions, and the reactions have excellent chemoselectivity and good compatibility of substrates. Used our developed method as the starting step, gram scale synthesis of GR24 was achieved smoothly with an overall yield of 72%. All the results suggested that further development of such methodology may be of interest. Further work to establish the mechanistic reasons for selectivity and to further explore the synthetic scope of this mode of transfer hydrogenation is in progress. The synthetic SL analog, GR24 is a very potent germination stimulant, which is widely used in parasitic weed research to stimulate germination and as a standard for comparison of new germinating agents. Owing to the prevalence of GR24, its total synthesis constitutes a hot area of research. So far all known synthetic routes of GR24 used indanylacetic acid 2 as a key intermediate, for which very few methods of building compound 2 have been reported.

  12. 3-D silver(I)-lanthanide(III) heterometallic-organic frameworks constructed from 2,2'-bipyridine-3,3'-dicarboxylic acid: synthesis, structure, photoluminescence, and their remarkable thermostability.

    Science.gov (United States)

    Zhou, Yunshan; Li, Xiaomin; Zhang, Lijuan; Guo, Yan; Shi, Zonghai

    2014-04-07

    A new family of silver(I)-lanthanide(III) heterometallic-organic frameworks having the formula [AgLn(bpdc)2] (Ln = Eu (1), Tb (2), Sm (3), Dy (4), Y (5), Yb (6), Er (7), Ho (8); H2bpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid), each of which crystallizes in the monoclinic space group C2/c with Z = 4, has been hydrothermally synthesized. The compounds were characterized by means of IR, elemental analysis, thermogravimetric-differential thermal analysis, and powder X-ray diffraction (XRD), wherein compounds 1, 2, and 4-8 were structurally characterized. The powder XRD and single-crystal structures of the title compounds indicate that all the compounds are isostructural and feature a three-dimensional (3-D) open framework. In the structures of the compounds, bpdc(2-) ligands link Ln(3+) through their carboxylic groups, resulting in the formation of a one-dimensional {Ln(bpdc)2}n infinite chain along the c direction. The adjacent chains are then connected to each other through the coordination interaction between Ag(+) and the pyridyl N atoms of bpdc(2-) ligands from the chains, resulting in a 3-D (2,4,6)-connected open framework with (4(11)·6(4))(4(3)·8(2)·10)(8)2 topology. The compounds show remarkable good thermally stability up to 370 °C because neither aquo ligands nor lattice water molecules exist in the composition of the compounds. The photoluminescent properties of compounds 1 and 2 were studied in detail. The energy level of the triplet states of the ligand H2bpdc 21,505 cm(-1) (465 nm) was determined based on the 77 K emission spectrum of the compound [Gd2(bpdc)3(phen)2(H2O)2]·6H2O 9. The (5)D0 and (5)D4 emission lifetimes (1.58 and 1.76 ms) and the overall quantum yields (21% and 22%) were determined for the compounds 1 and 2, respectively.

  13. Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent

    International Nuclear Information System (INIS)

    Wang Xialie; Wen Xiaohong; Liu Zhanpeng; Tan Yi; Yuan Ye; Zhang Ping

    2012-01-01

    Mass production of soluble graphene still remains a challenge, although several methodologies have been proposed. Here we report a rapid and efficient method for the synthesis of soluble graphene nanosheets (GNSs) with long-term dispersion stability in both aqueous and common organic solvents. Within only 12 min at 95 °C, exfoliated graphite oxide in ammonia solution (pH 10) was reduced to soluble GNSs using N-methyl-p-aminophenol sulfate (metol) as a reducing agent without external stabilizers. The prepared GNSs were characterized by different techniques and a comparison of metol and hydrazine hydrate as reducing agents was made. The results indicated that, with the advantages of being rapid, efficient, inexpensive and relatively environmentally friendly, the reduction of graphite oxide into soluble GNSs by metol is a promising substitute for hydrazine hydrate in the mass production of soluble GNSs. (paper)

  14. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  15. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-05-15

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides.

  16. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    International Nuclear Information System (INIS)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun

    2013-01-01

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides

  17. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  18. Efficient and reproducible synthesis of [1-{sup 11}C]acetyl chloride using the loop method

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Takuya [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Zhang, Ming-Rong [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: zhang@nirs.go.jp; Ogawa, Masanao [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-8686 (Japan); Fukumura, Toshimitsu; Kato, Koichi; Suzuki, Kazutoshi [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2009-02-15

    [1-{sup 11}C]Acetyl chloride ([{sup 11}C]AcCl), an important [{sup 11}C]acylating agent, was synthesized by reacting [{sup 11}C]CO{sub 2} with methylmagnesium bromide coated on the inner surface of a polyethylene loop (loop method). By optimizing the reaction conditions and synthesis parameters, [1-{sup 11}C]phenylacetate and [1-{sup 11}C]benzylacetate were produced from [{sup 11}C]AcCl in high radiochemical yield and specific activity.

  19. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    OpenAIRE

    Eren,Bilge; Bekdemir,Yunus

    2014-01-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, ¹H- and 13C-NMR spectroscopy. Short reaction times, good yields, easy purification...

  20. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Nicholas Cole [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni$\\subset$ SiO2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni$\\subset$SiO2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle

  1. Windpower `96 opening session remarks

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1996-12-31

    Opinions on political factors affecting the U.S. market for wind power are presented in this paper. The position of the Assistant Secretary of the Energy Efficiency and Renewable Energy Division of the U.S. Department of Energy is stated. Political aspects of renewable energy sources are reviewed. The link between clean energy sources and a clean environment is discussed. The role of the Federal Government in promoting clean energy sources is also discussed.

  2. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema

    2016-04-20

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  3. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema; Hadjichristidis, Nikolaos

    2016-01-01

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  4. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Eren, Bilge, E-mail: bilge.eren@bilecik.edu.tr [Faculty of Science and Arts, Department of Chemistry, Bilecik Seyh Edebali University, (Turkey); Bekdemir, Yunus [Faculty of Science and Arts, Canik Basari University, Samsun (Turkey)

    2014-07-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, {sup 1}H- and {sup 13}C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method. (author)

  5. Facile and efficient synthesis of [{sup 18}F]fluoromisonidazole using novel 2-nitroimidazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Do; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Hee-Kwon, E-mail: hkkim717@jbnu.ac.kr [Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Jung, Yongju [Department of Chemical Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-07-01

    [{sup 18}F]Fluoromisonidazole ([{sup 18}F]FMISO) is a hypoxia imaging marker utilized in positron emission tomography. Novel FMISO precursors were prepared from a commercially available material, and several reaction factors that affect synthesis of [{sup 18}F]FMISO were examined to achieve a higher fluorination yield. [{sup 18}F]FMISO was obtained from radiosynthesis, followed by the hydrolysis of protecting groups with HCl. New 2-nitroimidazole precursor showed a higher [{sup 18}F]fluorination and a higher synthetic yield. This result provided alternative guidelines for the preparation of hypoxia imaging marker. (author)

  6. 1,5-Anhydro-D-Fructose – Efficient Synthesis and Chemical Uses

    DEFF Research Database (Denmark)

    Lundt, Inge; Dekany, Gyula; Stütz, Arnold E.

    as well as for derivatives and analogues thereof. The potential of AF will be highlighted as will be the use of AF as a chiral building block for the preparation of other interesting compounds with biological activities such as, for example, Deoxymannojirimycin (DMJ). [1] S.M. Andersen, I. Lundt, J......1,5-Anhydro-D-fructose (AF) is a valuable chiral building block for organic synthesis.[1] However, the antioxidant and antimicrobial properties of AF are equally important.[1] Due to these interesting properties AF is heavily patented for the use in pharmaceuticals, foods and cosmetics. However...

  7. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    International Nuclear Information System (INIS)

    Eren, Bilge; Bekdemir, Yunus

    2014-01-01

    A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, 1 H- and 13 C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method. (author)

  9. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles

    Directory of Open Access Journals (Sweden)

    Bilge Eren

    2014-01-01

    Full Text Available A new convenient method for preparation of 2-substituted benzimidazoles and bis-benzimidazoles is presented. In this method, o-phenylenediamines were condensed with bisulfite adducts of various aldehydes and di-aldehydes under neat conditions by microwave heating. The results were also compared with results of synthesis by conventional heating under reflux. Structures of the products were confirmed by infrared, ¹H- and 13C-NMR spectroscopy. Short reaction times, good yields, easy purification of products, and mild reaction conditions are the main advantages of this method.

  10. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  11. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  12. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    International Nuclear Information System (INIS)

    Ahmed, Waqqar; Bhatti, Arshad Saleem; Ruitenbeek, Jan M. van

    2017-01-01

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl_4) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl_4, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl_4 in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl_4 molar ratio of 50 is sufficient for obtaining high yield of NRs.

  13. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    Directory of Open Access Journals (Sweden)

    Knif Jonte

    2004-01-01

    Full Text Available A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.

  14. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    Science.gov (United States)

    Välimäki, Vesa; Penttinen, Henri; Knif, Jonte; Laurson, Mikael; Erkut, Cumhur

    2004-12-01

    A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a second-order resonator that are excited with a common excitation signal. The second-order resonator, previously proposed for this purpose, approximately simulates the beating effect appearing in many harpsichord tones. The characteristic key-release thump terminating harpsichord tones is reproduced by triggering a sample that has been extracted from a recording. A digital filter model for the soundboard has been designed based on recorded bridge impulse responses of the harpsichord. The output of the string models is injected in the soundboard filter that imitates the reverberant nature of the soundbox and, particularly, the ringing of the short parts of the strings behind the bridge.

  15. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Waqqar; Bhatti, Arshad Saleem [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Ruitenbeek, Jan M. van, E-mail: Ruitenbeek@physics.leidenuniv.nl [Leiden University, Huygens-Kamerlingh Onnes Laboratory (Netherlands)

    2017-03-15

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl{sub 4}) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl{sub 4}, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl{sub 4} in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl{sub 4} molar ratio of 50 is sufficient for obtaining high yield of NRs.

  16. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  17. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao; Xia, Haijun; Yan, Hua; Chen, Xinzhi; Ranjit, Sadananda; Xie, Xiaoji; Tan, Davin; Lee, Richmond; Yang, Yanmei; Xing, Bengang; Huang, Kuo-Wei; Zhang, Pengfei; Liu, Xiaogang

    2012-01-01

    in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  18. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Chen, Shang

    2016-01-01

    Highlights: • Two dimensionless uniformity factors are presented to heat exchange network. • The grouping of process streams reduces the computational complexity of large-scale HENS problems. • The optimal sub-network can be obtained by Powell particle swarm optimization algorithm. • The method is illustrated by a case study involving 39 process streams, with a better solution. - Abstract: The optimal design of large-scale heat exchanger networks is a difficult task due to the inherent non-linear characteristics and the combinatorial nature of heat exchangers. To solve large-scale heat exchanger network synthesis (HENS) problems, two dimensionless uniformity factors to describe the heat exchanger network (HEN) uniformity in terms of the temperature difference and the accuracy of process stream grouping are deduced. Additionally, a novel algorithm that combines deterministic and stochastic optimizations to obtain an optimal sub-network with a suitable heat load for a given group of streams is proposed, and is named the Powell particle swarm optimization (PPSO). As a result, the synthesis of large-scale heat exchanger networks is divided into two corresponding sub-parts, namely, the grouping of process streams and the optimization of sub-networks. This approach reduces the computational complexity and increases the efficiency of the proposed method. The robustness and effectiveness of the proposed method are demonstrated by solving a large-scale HENS problem involving 39 process streams, and the results obtained are better than those previously published in the literature.

  19. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    International Nuclear Information System (INIS)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C.

    2013-01-01

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH 2 CONH 2 , NH 2 CR(NH) (R = H, Me, Ph, NH 2 , SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their 1 H and 13 C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  20. Synthesis of taurine–fluorescein conjugate and evaluation of its retina-targeted efficiency in vitro

    Directory of Open Access Journals (Sweden)

    Meihong Huang

    2014-12-01

    Full Text Available In this work, retinal penetration of fluorescein was achieved in vitro by covalent attachment of taurine to fluorescein, yielding the F–Tau conjugate. Nuclear magnetic resonance (NMR and high resolution mass spectrometry (HRMS were used to confirm the successful synthesis of F–Tau. The cellular uptake of F–Tau in adult retinal pigment epithelial cells (ARPE-19 and human retinal microvascular endothelial cells (hRMECs was visualized via confocal scanning microscopy. The results indicated an improvement of solubility and a reduction of logP of F–Tau compared with fluorescein. As compared with fluorescein, F–Tau showed little toxicity, and was retained longer by cells in uptake experiments. F–Tau also displayed higher transepithelial permeabilities than fluorescein in ARPE-19 and hRMECs monolayer cells (P<0.05. These results showed that taurine may be a useful ligand for targeting small-molecule hydrophobic pharmaceuticals into the retina.

  1. A straightforward and efficient synthesis of 3-(pyrimidinyl)propanoates from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Alex F.C.; Malavolta, Juliana L.; Souto, Alynne A.; Goularte, Rayane B.; Flores, Darlene C., E-mail: alex.fcf@ufsm.br [Universidade Federal de Santa Maria (UFSM/NUQUIMHE), RS (Brazil). Departamento de Quimica. Nucleo de Quimica de Heterociclos

    2013-04-15

    The cyclocondensation of methyl 7,7,7-trifluoro-4-methoxy-6-oxo-4-heptenoate and methyl 7,7,7-trichloro-4-methoxy-6-oxo-4-heptenoate, derived from levulinic acid with amidines [NH{sub 2}CONH{sub 2}, NH{sub 2}CR(NH) (R = H, Me, Ph, NH{sub 2}, SMe and 1H-pyrazol-1-yl), 5-amino-3-methyl-1H-pyrazol and 2-aminothiazole] into pyrimidine and pyrimidine-like derivatives as a new type of glutamate-like 3-(trihalomethylatedpyrimidinyl)propanoate is reported. Preparation of 3-(trihalomethylatedpyrimidinyl) propanohydrazides is also described. The synthetic potential of this straightforward protocol was established by the synthesis of fourteen new 3-(pyrimidinyl) propanoates in regular to good yields (38-92%). The structural assignments were based on the analysis of their {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) data. (author)

  2. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective and efficient synthesis of ethanol from dimethyl ether and syngas

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn

    well-established processes. Syngas can be produced from biomass, making the entire process sustainable and environmentally friendly. The main benefit of this method is its unprecedented selectivity towards EtOH, while MeOH, the primary by-product, and the unreacted syngas are easily recycled...... but it is not sufficiently active or stable to be applied industrially. In this PhD project, the formation of MA over Mordenite has been studied experimentally and by density functional theory (DFT) calculations. The DFT study of the reaction path has shown that ketene is a reaction intermediate, a result with has been...... in the feed, the deactivation rate decreases with increasing MA concentration. However, the precise connection is still unknown. The results of this PhD project contribute significantly to the understanding of the reactions taking place on Mordenite during MA synthesis and form a firm foundation...

  4. Efficient method of enzymatic synthesis of nucleosides labelled with 14C and 3H

    International Nuclear Information System (INIS)

    Nejedly, Z.; Filip, J.

    1988-01-01

    The method is presented of enzymatic synthesis of nucleosides labelled with 14 C or 3 H either uniformly or specifically in the base or the deoxyribosyl or ribosyl moiety. The method is based on the ribosylation or deoxyribosylation of the nucleic acid bases (non-labelled or labelled with 14 C or 3 H) by the catalytic effect of enzymes occurring in the supernatant fractions of non-purified homogenates of Escherichia coli B. bacteria. The non-labelled and labelled nucleosides are used as donors of ribosyl or deoxyribosyl groups. The HPLC method is used for separating labelled nucleosides. The radiochemical purity of the labelled nucleosides is higher than 98%, molar activity ranges from 9.2 to 18.5 GBq.mmol -1 ( 14 C-labelled compounds) and from 0.6 to 1.9 TBq.mmol -1 (3H-labelled compounds). (author). 4 figs., 8 refs

  5. Synthesis of NiO:V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation

    Directory of Open Access Journals (Sweden)

    Salam A. Mohammed

    2018-03-01

    Full Text Available Vanadium oxide has been largely exploited as a catalyst in many industrial applications. In this article, we show the synthesis of vanadium oxide (V2O5: Nickel Oxide (NiO composite using sol-gel method at optimum conditions. The composite nanomaterials were used to remove methyl orange from waste water via harnessing the photocatalytic activity of it which showed an excellent efficiency of removal at 88%, and 93% after the exposure to the light, and light with heating respectively. This will pave the way into further implementation of these nanomaterials in the removal of some other dyes and contaminants from wastewater. Keywords: Materials chemistry, Physical chemistry, Chemical engineering, Inorganic chemistry

  6. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Directory of Open Access Journals (Sweden)

    Szura Dominika

    2017-01-01

    Full Text Available Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  7. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    Science.gov (United States)

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  8. Climate and energy efficiency policies: synthesis of France commitments and results

    International Nuclear Information System (INIS)

    2011-01-01

    After a brief recall of the definitions of energy efficiency, of direct and indirect emissions, of total emissions, and of the main French commitments (first climate plan, energy policy orientations in the POPE law, Grenelle de l'Environnement, national action plan for energy efficiency, Grenelle laws), this document briefly presents the current situation and predictions in terms of energy consumption and greenhouse gas emissions. For different sectors, it presents key measures and evokes actual or expected results. These sectors are: energy production, housing and office building, transports, industry, State and local communities, agriculture and forest, information and education, wastes

  9. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Science.gov (United States)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  10. A Simple, Rapid and Efficient One-pot Protocol for the Synthesis of 2 ...

    African Journals Online (AJOL)

    NJD

    A rapid and efficient condensation reaction of 2-aminothiophenol with various fatty acids in solvent-free conditions with or without microwave irradiation was ... heterocyclic compounds that have widespread applications in pharmaceutical and ... catalyzed reaction of aryl halides with o-aminothiophenol in presence of carbon ...

  11. Surfactant-free synthesis of hierarchical niobic acid microflowers assembled from ultrathin nanosheets with efficient photoactivities

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenhao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Pan, Feng, E-mail: phypf2012@163.com [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Wang, Yanyan [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Xiao, Shuning [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); International Joint Lab on Resource Chemistry SHNU-NUS-PU, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Kai [Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); BNLMS, SKLSCUSS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China); Xu, Guo Qin [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov., 215123 (China); and others

    2017-01-15

    Highlights: • 3D hierarchical niobic acid microflower was synthesized by a surfactant-free method. • The microflower was composed of ultrathin nanosheets with ∼5 nm thickness. • The microflower showed high photoactivity owing to the 3D structural features. • This microflower was converted to Nb{sub 2}O{sub 5} without significant structural alteration. • Nb{sub 2}O{sub 5} nanoneedles can also be obtained by adjusting the pH value during synthesis. - Abstract: Hierarchical niobic acid (Nb{sub 2}O{sub 5}·nH{sub 2}O) microflowers are synthesized by a surfactant-free hydrothermal approach. The three-dimensional microflowers are assembled from two-dimensional ultrathin nanosheets with thickness of ∼5 nm. Using rhodamine B as a probe, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers exhibit high photocatalytic activity under UV light irradiation. Furthermore, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers are easily converted to niobium pentoxide without significant structural alteration.

  12. An Efficient and Versatile Synthesis of Isoflavones from 2-Methoxybenzoic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae In [Duksung Women' s University, Seoul (Korea, Republic of)

    2016-07-15

    Isoflavones (3-aryl-4H-1-benzopyran-4-ones) are found naturally in soybeans and many plants of the Leguminosae family. They have attracted much attention due to their biological activities, such as their anti-cancer, anti-inflammatory, and antifungal properties. Isoflavones intake through foods is important to human health, because they potentially regulate fatty acid metabolism and methoxy-substituted isoflavones in particular increase cell permeability. Isoflavones have also been synthesized by the coupling of 3-iodochromones with arylboronic acids. The condensation of 2'-hydroxyacetophenones with DMF dimethyl acetal formed 3-(dimethylamino)-2'-hydroxyphenylpropenones, which were cyclized using iodine to form 3-iodochromones. This process was followed by Suzuki coupling with arylboronic acids or aryl boronates to obtain isoflavones. The synthesis of isoflavones (6) from 5 was based on the formylation of the methylene group of 5 using DMF-POCl{sub 3}. Previously, the reaction of the DMF-POCl{sub 3} complex on benzyl 2-hydroxyphenyl ketones led to isoflavones, for which DMF was used as the reagent and solvent for 18 h at gentle reflux.

  13. Theories of superconductivity (a few remarks)

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1992-01-01

    The early history in the development of superconductivity. Idea of pairing, Schafroth and BCS types of theories. Some remarks on present state of the microscopical theory of high-temperature superconductors (HTSC). Mean field macroscopic theory of superconductivity and its specific features in HTSC. About generalized macroscopic theory applicable in critical region. Concluding remarks. (orig.)

  14. Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency

    International Nuclear Information System (INIS)

    Wu, Yao; Xu, Fang; Guo, Defu; Gao, Zhiyong; Wu, Dapeng; Jiang, Kai

    2013-01-01

    ZnO/CdSe hierarchical heterostructure was prepared using pompon-like ZnO as substrate materials, and hexagonal CdSe nanoparticles were dispersed on the ZnO plates. The hybrid ZnO/CdSe samples were intensively investigated by XRD, SEM, TEM, HRTEM, PL and UV–vis absorption spectrum. The photocatalytic experiments confirm that ZnO/CdSe heterostructure exhibits improved photocatalytic efficiency compared to pure ZnO under visible light irradiation. CdSe nanoparticles are believed to serve as photosensitizers to extend the absorption spectrum to visible light region. In addition, the incorporation of CdSe can suppress the recombination of photogenerated electron-hole pairs, which contributes to the enhancement of photocatalytic efficiency.

  15. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  16. Nano-Ticl 4 .SiO 2 : a Versatile and Efficient Catalyst for Synthesis of ...

    African Journals Online (AJOL)

    Nano-TiCl4.SiO2 has been found to be an extremely efficient catalyst for the preparation of 3,4-dihydropyrimidinones/thiones via three-component reactions of an aldehyde, β-ketoester or β-diketone and urea or thiourea under mild conditions. Nano-TiCl4.SiO2 as a solid Lewis acid has been synthesized by reaction of ...

  17. Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.

    Science.gov (United States)

    Lin, Ching Yeh; Peh, Jessie; Coote, Michelle L

    2011-03-18

    The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.

  18. An efficient method for synthesis of bis(indolylmethane and di-bis(indolylmethane derivatives in environmentally benign conditions using TBAHS

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Siyadatifard

    2016-05-01

    Full Text Available An efficient procedure for the synthesis of bisindolylmethanes (BIMs from condensation of indole and aromatic aldehydes or ketones is described. The aromatic electrophilic substitution reactions of indole with aromatic aldehydes and ketones are achieved in the presence of tetrabutylammonium hydrogen sulfate (TBAHS as a mild and efficient solid acid catalyst. This methodology offers several advantages such as good yields, simple procedure, mild and environmentally benign conditions.

  19. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    Science.gov (United States)

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Efficient Lewis Acid Ionic Liquid-Catalyzed Synthesis of the Key Intermediate of Coenzyme Q10 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-12-01

    Full Text Available An efficient synthesis of a valuable intermediate of coenzyme Q10 by microwave-assisted Lewis acidic ionic liquid (IL-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF4-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF4-AlCl3. The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF4-ZnCl2 showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds. This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ10 on an industrial scale.

  1. Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance

    International Nuclear Information System (INIS)

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-01-01

    Graphical abstract: - Highlights: • Porous CeO 2 quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO 2 exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO 2 retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO 2 through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N 2 adsorption. The as-prepared CeO 2 products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO 2 quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO 2 is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO 2 absorbent retains the same performances in different pH solutions

  2. Zr(HSO44: An Efficient Catalyst for the Synthesis of 3-(2'- Benzothiazolyl-2,3-dihydroquinazolin- 4(1H-ones

    Directory of Open Access Journals (Sweden)

    Liqiang Wu

    2012-01-01

    Full Text Available A simple and efficient synthesis of 3-(2'-benzothiazolyl-2,3-dihydro quinazolin-4(1H- ones has been accomplished by the one-pot condensation of isatoic anhydride, aldehyde and 2-aminobenzothiazole under solvent-free conditions in the presence of Zr(HSO44.

  3. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones

    International Nuclear Information System (INIS)

    Fu, Weijun; Guo, Wenbo; Zhu, Mei; Xu, Chen; Xu, Fengjuan

    2013-01-01

    An efficient synthesis of 3-halofurans by the intramolecular cyclization of 2-(1-alkynyl)-2-alken-1-ones with cupric halide has been developed. A broad range of 3-chloro- and 3-bromofuran derivatives could be obtained in the present method in moderate to good yields. The 3-halofuran derivatives are potential synthetic intermediates for amplification of molecular complexity

  4. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.; Rodionov, Valentin; Kü hn, Fritz; Reiser, Oliver

    2012-01-01

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient

  5. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    Science.gov (United States)

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  6. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    Science.gov (United States)

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  7. An Efficient and Short Route for the Synthesis of Reverse Pyrrole Ribonucleosides

    Directory of Open Access Journals (Sweden)

    Pereira Letícia O. R.

    2002-01-01

    Full Text Available The synthesis of reverse pyrrole ribonucleosides methyl 5-C-(4-acetyl-5-methyl-pyrrol-1-yl-2,3-O-isopropylidene-5-deoxy- beta-D-ribofuranoside (10, methyl 5-C-(4-ethoxycarbonyl-5-methyl-pyrrol-1-yl-2,3-O-isopropylidene-5-deoxy- beta-D-ribofuranoside (11, methyl 5-C-(4-acetyl-5-methyl-pyrrol-1-yl-5-deoxy-beta-D-ribofuranoside (12, methyl 5-C-(4-ethoxycarbonyl-5-methyl-pyrrol-1-yl-5-deoxy- beta-D-ribofuranoside (13, methyl 5-deoxy-5-C-(3'-formyl-4'-hydroxypropyl-pyrrol-1'-yl-2,3-O-isopropylidene- beta-D-ribofuranoside (16 and methyl 5-deoxy-5-C-(3'-formyl-pyrrol-1'-yl-2,3-O-isopropylidene- beta-D-ribofuranoside (18 are described starting from readily available methyl 5-amino-5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (9. The synthetic strategy for the construction of the heterocyclic ring was based on the nucleophilic attack of (9 to 4-acetyl-2-n-butoxy-5-methyl-4,5-dihydrofuran (4, 4-carbetoxy-2-n-butoxy-5-methyl-4,5-dihydrofuran (5, 4-formyl-2-n-butoxy-4,5-dihydrofuran (6 and 4-formyl-1-methyl dioxabyciclo[3.3.0]oct-3-en (8, in situ. The later compounds were obtained from reaction between 3-diazo-2,4-pentadione (1, ethyl 2-diazoacetoacetate (2 or diazomalonaldehyde (3 and enol ethers using dirhodium tetraacetate as a catalyst.

  8. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  9. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting

    KAUST Repository

    Liang, Hanfeng

    2016-11-09

    Efficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.

  10. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  11. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao

    2012-01-01

    Sugar-based benzothiazoles are a new class of molecules promising for many biological applications. Here, we have synthesized a wide range of sugar-based benzothiazoles from readily accessible glycosyl thioureas by chemoselective, palladium-catalyzed C-S coupling reactions. Corroborated by theoretical calculations, a mechanistic investigation indicates that the coordination to the palladium by a pivaloyl carbonyl group and the presence of intramolecular hydrogen bonding play important roles in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  12. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts

    International Nuclear Information System (INIS)

    Liu Yong; Hu Juncheng; Li Jinlin

    2011-01-01

    Research highlights: → Highly efficient Ag species-TiO 2 nanoflakes catalyst was prepared. → The variety and relative amount of Ag species in TiO 2 can be well tuned. → The enhanced photocatalytic activity can be attributed to the Ag species. - Abstract: Ag species/TiO 2 nanoflakes photocatalysts with different relative contents (Ag + , Ag 2+ , Ag 0 ) have been successfully synthesized by a simple template-free synthetic strategy. X-ray photoelectron spectroscopy, X-ray diffraction, and UV-vis diffuse reflectance spectra indicated that the dopant ions (Ag + or Ag 2+ ) were partly incorporated into the titanium dioxide nanoflakes. Meanwhile, part of the silver ions migrated to the surface after the subsequent calcination and aggregated into ultra-small metallic Ag nanoclusters (NCs) (1-2 nm), which are well dispersed on the surface of TiO 2 nanoflakes. The photocatalytic activities of the Ag species/TiO 2 materials obtained were evaluated by testing the photodegradation of the azo dye reactive brilliant X-3B (X-3B) under near UV irradiation. Interestingly, it was found that the maximum photocatalytic efficiency was observed when Ag species coexisted in three valence states (Ag + , Ag 2+ , Ag 0 NCs), which was higher than that of Degussa P25. The high photocatalytic activity of the Ag species/TiO 2 can be attributed to the synergy effect of the three Ag species.

  13. Synthesis, characterization and corrosion inhibition efficiency of N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide

    Directory of Open Access Journals (Sweden)

    N. Zulfareen

    2016-01-01

    Full Text Available A mannich base namely N-(4-(Morpholinomethyl Carbamoyl Phenyl Furan-2-Carboxamide (MFC was synthesized and characterized by FT-IR, 1H NMR, and 13C NMR. The molecular weight of MFC was confirmed by LC-MS. The inhibition effect of MFC on brass in 1 M HCl medium has been investigated by weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and cyclic voltametry (CV. Thermodynamic parameters such as free energy, entropy and enthalpy were calculated to describe the mechanism of corrosion inhibitor. The inhibition efficiency of MFC increases with increase in concentration and temperature ranges from 30 °C to 60 °C. Polarization measurements indicated that MFC acts as a mixed type corrosion inhibitor. AC impedance indicates that Rct value increases with increase in the concentration of inhibitor. CV reveals that the oxidation of the copper is controlled by the addition of inhibitor on the brass metal. Surface analysis using scanning electron microscope (SEM shows a significant morphological improvement on the brass surface with the addition of the inhibitor. The adsorption of MFC on brass obeys Langmuir adsorption isotherm. The molecular structure of MFC was distorted to quantum chemical indices using density functional theory (DFT which indicates that the inhibition efficiency of MFC is closely related to quantum parameters.

  14. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  15. Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor.

    Science.gov (United States)

    Losantos, Raúl; Funes-Ardoiz, Ignacio; Aguilera, José; Herrera-Ceballos, Enrique; García-Iriepa, Cristina; Campos, Pedro J; Sampedro, Diego

    2017-03-01

    Skin cancer incidence has been increasing in the last decades, but most of the commercial formulations used as sunscreens are designed to protect only against solar erythema. Many of the active components present in sunscreens show critical weaknesses, such as low stability and toxicity. Thus, the development of more efficient components is an urgent health necessity and an attractive industrial target. We have rationally designed core moieties with increased photoprotective capacities and a new energy dissipation mechanism. Using these scaffolds, we have synthesized a series of compounds with tunable properties suitable for their use in sunscreens, and enhanced properties in terms of stability, light energy dissipation, and toxicity. Moreover, some representative compounds were included in final sunscreen formulations and a relevant solar protection factor boost was measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  17. Green synthesis of the reduced graphene oxide–CuI quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Seo, Bora [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Joo, Sang Hoon [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-12-15

    Graphical abstract: - Highlights: • Green synthesis of RGO–CuI quasi-shell–core nanocomposites without any surfactant. • Promising candidates as solar light active photocatalyst for dye degradation. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • The best photocatalytic activity to RhB has been attained for CuI–RGO (2 mg mL{sup −1}). - Abstract: Surfactant-free, reduced graphene oxide (RGO)–CuI quasi-shell−core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI–RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI–RGO core–shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI–RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL{sup −1} nanocomposite. The remarkable photocatalytic performance of the CuI–RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI–RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light

  18. Green synthesis of the reduced graphene oxide–CuI quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    International Nuclear Information System (INIS)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul; Seo, Bora; Joo, Sang Hoon; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • Green synthesis of RGO–CuI quasi-shell–core nanocomposites without any surfactant. • Promising candidates as solar light active photocatalyst for dye degradation. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • The best photocatalytic activity to RhB has been attained for CuI–RGO (2 mg mL −1 ). - Abstract: Surfactant-free, reduced graphene oxide (RGO)–CuI quasi-shell−core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI–RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI–RGO core–shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI–RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL −1 nanocomposite. The remarkable photocatalytic performance of the CuI–RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI–RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light-induced RGO

  19. Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S-Naproxen: Preparation of (R- and (S-Baclofen

    Directory of Open Access Journals (Sweden)

    Iris J. Montoya-Balbás

    2015-12-01

    Full Text Available An efficient synthesis of enantiomerically-pure β-aryl-γ-lactams is described. The principal feature of this synthesis is the practical resolution of β-aryl-γ-lactams with (S-Naproxen. The procedure is based on the Michael addition of nitromethane to benzylidenemalonates, which was easily obtained, followed by the reduction of the γ-nitroester in the presence of Raney nickel and the subsequent saponification/decarboxylation reaction. The utility of this methodology was highlighted by the preparation of enantiomerically-pure (R- and (S-Baclofen hydrochloride.

  20. Influence of a pulse duration of high-voltage supply on the efficiency of ozone synthesis in the 'needle-plane' electrode system

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Karas, V.I.; Kotjukov, O.V.; Poliakov, O.V.; Pugach, S.G.

    2007-01-01

    We present the results of studies of the electrodynamic characteristics of a barrier less discharge with electrodes of the 'needle-plane' type and a high-voltage pulse of positive polarity, being applied to the edge electrode. The efficiency of ozone synthesis is determined as a function of the pulse duration and repetition rate. It is shown that the electrodynamic characteristics of the discharge and the effectiveness of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of the pulse supply

  1. An efficient one-pot three-component synthesis of α-amino nitriles via Strecker reaction catalysed by bismuth(III nitrate

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2016-09-01

    Full Text Available A convenient and efficient one-pot method for the synthesis of a variety of α-amino nitriles from aldehydes, amines and trimethylsilyl cyanide (TMSCN in the presence of a catalytic amount of Bi(NO33 at room temperature in acetonitrile (MeCN is described. The significant features of this method are simple work-up procedure, inexpensive and non-toxic catalyst, shorter reaction times and excellent product yields. The catalyst Bi(NO33 can be reused. The reusability of the catalyst has been studied for the synthesis of various amino nitriles.

  2. Concluding Remarks: Experiment from a materials perspective

    International Nuclear Information System (INIS)

    Fisk, Z

    2011-01-01

    The author provides some remarks regarding the current status of experiments in strongly correlated electron systems. By construction, they are biased by the author's perspectives at the time of writing.

  3. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  4. Synthesis of Zirconium-Containing Polyhedral Oligometallasilsesquioxane as an Efficient Thermal Stabilizer for Silicone Rubber

    Directory of Open Access Journals (Sweden)

    Jiedong Qiu

    2018-05-01

    Full Text Available Free radicals play a negative role during the thermal degradation of silicone rubber (SR. Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.

  5. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  6. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  7. Efficient One-Pot Synthesis of 5-Chloromethylfurfural (CMF from Carbohydrates in Mild Biphasic Systems

    Directory of Open Access Journals (Sweden)

    Dimitris S. Argyropoulos

    2013-07-01

    Full Text Available 5-Halomethylfurfurals can be considered as platform chemicals of high reactivity making them useful for the preparation of a variety of important compounds. In this study, a one-pot route for the conversion of carbohydrates into 5-chloromethylfurfural (CMF in a simple and efficient (HCl-H3PO4/CHCl3 biphasic system has been investigated. Monosaccharides such as D-fructose, D-glucose and sorbose, disaccharides such as sucrose and cellobiose and polysaccharides such as cellulose were successfully converted into CMF in satisfactory yields under mild conditions. Our data shows that when using D-fructose the optimum yield of CMF was about 47%. This understanding allowed us to extent our work to biomaterials, such as wood powder and wood pulps with yields of CMF obtained being comparable to those seen with some of the enumerated mono and disaccharides. Overall, the proposed (HCl-H3PO4/CHCl3 optimized biphasic system provides a simple, mild, and cost-effective means to prepare CMF from renewable resources.

  8. SYNTHESIS OF MAGNETITE NANOPARTICLES AND EVALUATION OF ITS EFFICIENCY FOR ARSENIC REMOVAL FROM SIMULATED INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Khodabakhshi

    2011-09-01

    Full Text Available In this study the efficiency of magnetic nanoparticles for removal of trivalent arsenic from synthetic industrial wastewater was evaluated. The nanoparticles was prepared by sol-gel method and characterized by X-ray methods including XRD, XRF, and SEM, and vibrating sample magnetometer (VSM. The results showed that synthesized nanoparticles were in the size range of 40-300 nm, purity of about 90%, and magnetization of nanoparticles was 36.5emu/g. In initial conditions including: pH=7, As(III concentration of 10 mg/L, nanomagnetite concentration of 1g/L, shaking speed of 250 rpm and 20 minute retention time, 82% of As (III was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, SO42-, and Cl- was ignorable but for NO3- was significant. The adsorption data of magnetite nanoparticles fit well with Freundlich isotherm equations. The adsorption capacity of the Fe3O4 for As (III at pH=7 was obtained as 23.8 mg/g. It was concluded that magnetite nanoparticles have considerable potential in removal of As(III from synthetic industrial wastewaters.

  9. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  10. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis.

    Science.gov (United States)

    Rokitta, Sebastian D; Von Dassow, Peter; Rost, Björn; John, Uwe

    2014-12-02

    Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate

  11. Synthesis of 32P labelled phosphate sources with different solubility and their efficient s as fertilizers

    International Nuclear Information System (INIS)

    De Luca, Edgar Fernando; Boaretto, Antonio Enedi; Muraoka, Takashi

    1999-01-01

    The study was carried out at the Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo (CENA/USP), Brazil. With the objective to determine, by the isotopic tracer, the P recovery by rice (Oriza sativa) plants and eucalypt (Eucalyptus grandis) seedlings from the P sources with different solubilities, an experiment was carried out in greenhouse, using Quartzpsamment soil samples, which is very poor in P content. Monocalcium, bicalcium, and tricalcium phosphate, Ca(H2 32 PO4).H2O, CaH 32 PO4.2H2O and Ca3(32 PO4)2, respectively were obtained in laboratory. Their solubilities and the X-ray difratometry and differential thermal analysis comproved that the laboratory procedures were adequate for obtaining the desired compounds. These products were applied in the soil as fertilizers. Plants were harvested 60 days after growth period, digested and analysed for total P and 32 P counting through Cerenkov effect. The P recovery from the sources varied from 14.1% [Ca(H2 32 PO4).H2O] to 17.0% [CaH 32 PO4.2H2O] for eucalypt, and from 15.0% [Ca3(32 PO4)2] to 22.2% [CaH 32 PO4.2H2O] for rice. The rice plants showed better ability to absorb P from the laboratory prepared sources, but the eucalypt presented higher P nutritional efficiency index. The difference method, used for determining the P recovery, underestimated the eucalypt and rice plant ability to absorb this nutrient compared to the isotopic method

  12. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  13. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester.

    Science.gov (United States)

    Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He

    2017-10-01

    The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.

  14. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis.

    Science.gov (United States)

    Lu, Yanhong; Yang, Yang; Zhang, Tengfei; Ge, Zhen; Chang, Huicong; Xiao, Peishuang; Xie, Yuanyuan; Hua, Lei; Li, Qingyun; Li, Haiyang; Ma, Bo; Guan, Naijia; Ma, Yanfeng; Chen, Yongsheng

    2016-11-22

    Ammonia synthesis is the single most important chemical process in industry and has used the successful heterogeneous Haber-Bosch catalyst for over 100 years and requires processing under both high temperature (300-500 °C) and pressure (200-300 atm); thus, it has huge energy costs accounting for about 1-3% of human's energy consumption. Therefore, there has been a long and vigorous exploration to find a milder alternative process. Here, we demonstrate that by using an iron- and graphene-based catalyst, Fe@3DGraphene, hot (ejected) electrons from this composite catalyst induced by visible light in a wide range of wavelength up to red could efficiently facilitate the activation of N 2 and generate ammonia with H 2 directly at ambient pressure using light (including simulated sun light) illumination directly. No external voltage or electrochemical or any other agent is needed. The production rate increases with increasing light frequency under the same power and with increasing power under the same frequency. The mechanism is confirmed by the detection of the intermediate N 2 H 4 and also with a measured apparent activation energy only ∼1/4 of the iron based Haber-Bosch catalyst. Combined with the morphology control using alumina as the structural promoter, the catalyst retains its activity in a 50 h test.

  15. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Kim, Younghoon; Walters, Grant; Castañ eda, Juan Andres; Kanjanaboos, Pongsakorn; Yuan, Mingjian; Gong, Xiwen; Fan, Fengjia; Pan, Jun; Hoogland, Sjoerd; Comin, Riccardo; Bakr, Osman; Padilha, Lazaro A.; Nogueira, Ana F.; Sargent, Edward H.

    2016-01-01

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    Science.gov (United States)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  17. Multifunctional Fe3O4/Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein.

    Science.gov (United States)

    Abbas, Mohamed; RamuluTorati, Sri; Kim, CheolGi

    2017-02-14

    A novel and efficient chemical approach for the synthesis of Fe 3 O 4 /Au core/satellite nanocubes is reported. In a one-pot reaction, metallic Au nanodots were successfully deposited on the polyvinylpyrrolidone (PVP) functionalized Fe 3 O 4 nanocube surface for the fabrication of a core/satellite structure (Fe 3 O 4 /Au) by the reduction of HAuCl 4 using ammonia. Transmission electron microscopy and energy dispersive spectroscopy mapping revealed that small Au nanodots of about 2 nm average size decorated the surface of Fe 3 O 4 nanocubes. X-ray diffraction data was used to confirm the formation of both the phases of a cubic inverse spinel structure for Fe 3 O 4 and a bcc structure for Au in the core/satellite structure of Fe 3 O 4 /Au nanocubes. The magnetic properties of the seed Fe 3 O 4 nanocubes and Fe 3 O 4 /Au core/satellite nanocubes were measured by using a superconducting quantum interference device at 300 K. For biological application purposes, the as-synthesized Fe 3 O 4 /Au core/satellite nanocubes were functionalized by cysteamine followed by successful immobilization of streptavidin protein as confirmed through the fluorescence confocal microscopy images.

  18. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre

    2016-10-31

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  20. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  1. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  2. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  3. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  4. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.

    Science.gov (United States)

    Sochacka, E

    2001-01-01

    In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.

  5. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    Science.gov (United States)

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  6. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  7. Zinc (II) [tetra(4-methylphenyl)] Porphyrin: a Novel and Reusable Catalyst for Efficient Synthesis of 2,4,5-trisubstituted Imidazoles Under Ultrasound Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad; Khalili, Shiva Dehghan; Banitaba, Sayed Hossein; Dehghani, Hossein [Univ. of Kashan, Kashan (Iran, Islamic Republic of)

    2011-10-15

    An efficient three-component one-step synthesis of 2,4,5-trisubstituted imidazoles by condensation reaction of 1,2-diketones or α-hydroxyketones with aromatic aldehydes and ammonium acetate using Zinc (II) [tetra (4-methylphenyl)] porphyrin as a novel and reusable catalyst under ultrasound irradiation at ambient temperature is described. In this method, α-hydroxyketones as well as 1,2-diketones were converted to their corresponding 2,4,5-trisubstituted imidazoles in excellent yields.

  8. Polyethylene Glycol (PEG-400: An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin-6(7H-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deming Wang

    2013-10-01

    Full Text Available A mild and efficient synthesis of pyrazolo[3,4-b]pyridine-6(7H-one derivatives via a three-component reaction of an aldehyde, Meldrum’s acid and 3-methyl-1H-pyrazol-5-amine using recyclable polyethylene glycol (PEG-400 as a reaction medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions and begin environmentally friendly.

  9. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  10. Tannic Acid an Efficient Catalyst for the Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deepak S. Kawade

    2015-06-01

    Full Text Available Tannic acid explore a highly efficient catalytic activity for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives in excellent yields via cyclocondensation of aromatic aldehyde, β-naphthol and dimedone. Catalyst having advantages such as it is cheap and biodegradable and the protocol avoids the use of expensive catalyst and toxic solvent. We believe that this methodology is an efficient, simple, highly yielding, time saving and environmentally friendly. DOI: http://dx.doi.org/10.17807/orbital.v7i2.683

  11. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H-ones in aqueous medium

    Directory of Open Access Journals (Sweden)

    Hamzeh Kiyani

    2017-01-01

    Full Text Available Potassium phthalimide (PPI is employed as an efficient and effective basic organocatalyst for the one-pot three-component reaction of β-oxoesters with hydroxylamine hydrochloride and various aromatic aldehydes. This cyclocondensation reaction was performed in water as an environmentally benign solvent at room temperature giving 3,4-disubstituted isoxazol-5(4H-ones in good to excellent yields. PPI was found to be an effective organocatalyst for the synthesis of isoxazol-5(4H-one system. The advantages of this method are efficiency, clean, easy work-up, high yields, shorter reaction times, inexpensive, and readily available catalyst.

  12. Remarks about the hypothesis of limiting fragmentation

    International Nuclear Information System (INIS)

    Chou, T.T.; Yang, C.N.

    1987-01-01

    Remarks are made about the hypothesis of limiting fragmentation. In particular, the concept of favored and disfavored fragment distribution is introduced. Also, a sum rule is proved leading to a useful quantity called energy-fragmentation fraction. (author). 11 refs, 1 fig., 2 tabs

  13. A Novel and Efficient Five-Component Synthesis of Pyrazole Based Pyrido[2,3-d]pyrimidine-diones in Water: A Triply Green Synthesis

    Directory of Open Access Journals (Sweden)

    Majid M. Heravi

    2016-04-01

    Full Text Available A novel one pot synthesis of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-diones, via a five-component reaction, involving, hydrazine hydrate, ethyl acetoacetate, and 1,3-dimethyl barbituric acid, an appropriate aryl aldehydes and ammonium acetate catalyzed via both of heterogeneous and homogeneous catalysis in water, is reported.

  14. Synthesis of modified proanthocyanidins: easy and general introduction of a hydroxy group at C-6 of catechin; efficient synthesis of elephantorrhizol.

    Science.gov (United States)

    Boyer, François-Didier; Es-Safi, Nour-Eddine; Beauhaire, Josiane; Guernevé, Christine Le; Ducrot, Paul-Henri

    2005-02-01

    A general procedure for the oxidation of catechin derivatives is described, leading to the introduction of a new hydroxy group at C-6. This procedure has been applied for the synthesis of elephantorrhizol, a natural flavan-3-ol exhibiting a fully substituted cycle A.

  15. One-pot solvothermal synthesis of highly efficient, daylight active and recyclable Ag/AgBr coupled photocatalysts with synergistic dual photoexcitation

    International Nuclear Information System (INIS)

    Zhang, Caihong; Ai, Lunhong; Li, Lili; Jiang, Jing

    2014-01-01

    Highlights: • Ag/AgBr photocatalysts were controllably synthesized by solvothermal process. • Ag/AgBr composites showed excellent daylight driven photocatalytic activity. • The remarkable activity is attributed to the synergistic dual photoexcitation. -- Abstract: Efficient light harvesting has been considered to be critical for manipulating the photocatalytic behavior of photocatalysts, because it directly determines the generation of reactive redox charge carriers involved in photoreaction process. In this study, we present a successful example on efficient conversion of solar energy by Ag/AgBr coupled photocatalysts that hold unique synergistic dual photoexcitation. A series of Ag/AgBr coupled photocatalysts were controllably synthesized by an easily manipulated mild solvothermal process. The physicochemical properties of the as-prepared Ag/AgBr coupled photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The results showed the solvothermal reaction time played key role for control of crystalline structure, morphology, composition, and visible light absorption ability of the resulting photocatalysts. The as-prepared Ag/AgBr coupled photocatalysts exhibited remarkable photocatalytic performance and good reusability for decomposing organic dyes in aqueous solution under the irradiation of commercial 20 W cool daylight fluorescent lamp, owing to the synergistic dual photoexcitation cooperating between plasmonic Ag nanoparticles and narrow-band-gap AgBr

  16. Some concluding remarks about cold moderator development

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper is the transcription of remarks made at the conclusion of the Workshop on Cold Neutron Sources held at the Los Angeles National Laboratory, Los Alamos, New Mexico, March 5--7, 1990. Areas of interest include the following: scattering functions; cold moderator materials; radiation mixing of chemical composition; comparison of some pulsed moderator spectra; hydrogen mixtures; premoderators and shields; composite reflectors; exotic moderator materials; deuterated methanes; mixed moderator materials; and test facility availabilities. 2 refs., 4 figs., 1 tab

  17. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  18. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A new Ni(II complex as a novel and efficient recyclable catalyst for the synthesis of pyrano[2,3-d]pyrimidines

    Directory of Open Access Journals (Sweden)

    M. Habibi Kheirabadi

    2016-12-01

    Full Text Available A simple and highly efficient one-pot three-component synthesis of a series of pyrido[2,3-d]pyrimidines from the condensation of barbituric acid, malononitrile and aromatic aldehydes using catalytic amount of a new Ni(II complex based on 5-nitro-N1-((pyridin-2-ylmethylene benzene-1,2-diamine (NiL is reported. This new heterogeneous catalyst has the advantages of being environmentally friendly, simple work-up and high yields character.

  20. Some remarks on word formation in Danish

    DEFF Research Database (Denmark)

    Götzsche, Hans

    Abstract for the 25th Scandinavian Conference of Linguistics Some remarks on wordformation in Danish Some Danish word formation phenomena pose a problem for the linguist, being a predicament for analysis. In Danish a train leaves the station when it afgår ‘leaves’, while a minister may gå af......, there are some patterns for these Danish compounds concerning their internal semantics, in that the same lexical items may be used for different purposes depending on whether they are formed as a straightforward linear sequence (a word formation) or a reversed sequence (a phrase). The problem is (i) how the two...

  1. Some Remarks on Stability of Generalized Equations

    Czech Academy of Sciences Publication Activity Database

    Outrata, Jiří; Henrion, R.; Kruger, A.Y.

    2013-01-01

    Roč. 159, č. 3 (2013), s. 681-697 ISSN 0022-3239 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Parameterized generalized equation * Regular and limiting coderivative * Constant rank CQ * Mathematical program with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.406, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-some remarks on stability of generalized equations.pdf

  2. Development of REI meetings (concluding remarks)

    International Nuclear Information System (INIS)

    Roessler, K.

    1988-01-01

    It is an honour and a pleasure to deliver the concluding remarks of this Fourth International Conference on Radiation Effects in Insulators. After commenting upon the present meeting, the genesis of REI conferences, their aims and position relative to related meetings in radiation and ion implantation research will be treated, particularly in order to inform new-comers. The development of the last four REI meetings will be discussed on the base of a statistical analysis. Some recommendations and an outlook of future trends will be given. (orig.)

  3. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  4. The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related beta-D-galactofuranosyl-pyranoside disaccharides

    Czech Academy of Sciences Publication Activity Database

    Chlubnová, I.; Králová, B.; Dvořáková, H.; Hošek, P.; Spiwok, V.; Filipp, Dominik; Nugier-Chauvin, C.; Daniellou, R.; Ferrieres, V.

    2014-01-01

    Roč. 12, č. 19 (2014), s. 3080-3089 ISSN 1477-0520 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68378050 Keywords : Galactofuranosyl-pyranoside dipeptides * Araf51 enzymatic synthesis * computer modelling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2014

  5. An efficient synthesis of linear β-(1→6)-galactan oligosaccharides related to plant cell wall glycans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch; Arentoft, Camilla Anna Søholt; Boos, Irene

    2017-01-01

    Galactans are linear structures mainly found in arabinogalactan glycans and RG-I side chains. As a follow-up to our work on both β-(1→3)-linked and β-(1→4)-linked galactans, we herein report a convergent synthesis of β-(1→6)-galactan using our previously synthesized 4,6-benzylidene protected disa...

  6. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  7. Arx: a toolset for the efficient simulation and direct synthesis of high-performance signal processing algorithms

    NARCIS (Netherlands)

    Hofstra, K.L.; Gerez, Sabih H.

    2007-01-01

    This paper addresses the efficient implementation of highperformance signal-processing algorithms. In early stages of such designs many computation-intensive simulations may be necessary. This calls for hardware description formalisms targeted for efficient simulation (such as the programming

  8. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  9. Chemical physics of electroactive materials: concluding remarks.

    Science.gov (United States)

    Rutland, Mark W

    2017-07-01

    It is an honour to be charged with providing the concluding remarks for a Faraday Discussion. As many have remarked before, it is nonetheless a prodigious task, and what follows is necessarily a personal, and probably perverse, view of a watershed event in the Chemical Physics of Electroactive materials. The spirit of the conference was captured in a single sentence during the meeting itself."It is the nexus between rheology, electrochemistry, colloid science and energy storage". The current scientific climate is increasingly dominated by a limited number of global challenges, and there is thus a tendency for research to resemble a football match played by 6 year olds, where everyone on the field chases the (funding) ball instead of playing to their "discipline". It is thus reassuring to see how the application of rigorous chemical physics is leading to ingenious new solutions for both energy storage and harvesting, via, for example, nanoactuation, electrowetting, ionic materials and nanoplasmonics. In fact, the same language of chemical physics allows seamless transition between applications as diverse as mechano-electric energy generation, active moisture transport and plasmonic shutters - even the origins of life were addressed in the context of electro-autocatalysis!

  10. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high-efficiency

  11. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  12. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui

    2017-07-04

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

  13. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    Science.gov (United States)

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  14. Synthesis and simulation of efficient divided wall column sequences for bioethanol recovery and purification from an actual lignocellulosic fermentation broth

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-01-01

    Actual lignocellulosic fermentation broth has intrinsic multiphase and multicomponent nature and calls for complex separation systems in both bioethanol recovery and purification [Torres-Ortega, C. E.; Rong, B.-G. Ind. Eng. Chem. Res. 2016, 55, 210]. In this work, we present the synthesis...... of column sections as novel synthesis approaches to formulate hybrid units and divided wall columns. Rigorous simulation in Aspen Plus V8.0 was used to simulate the intensified separation systems. The new intensified alternatives achieved relevant savings, ranging from 17 to 23% in TAC (total annual costs......), and ranging from 18 to 28% in TEC (total energy consumption). Moreover, reduction of the number of separation units varied from the original eight units down to three units. Finally, we performed a sensitivity analysis varying the bioethanol concentration in the fermentation broth between the reference case...

  15. Rumen microbial protein synthesis and nitrogen efficiency as affected by tanniferous and non-tanniferous forage legumes incubated individually or together in Rumen Simulation Technique.

    Science.gov (United States)

    Grosse Brinkhaus, Anja; Bee, Giuseppe; Schwarm, Angela; Kreuzer, Michael; Dohme-Meier, Frigga; Zeitz, Johanna O

    2018-03-01

    A limited availability of microbial protein can impair productivity in ruminants. Ruminal nitrogen efficiency might be optimised by combining high-quality forage legumes such as red clover (RC), which has unfavourably high ruminal protein degradability, with tanniferous legumes like sainfoin (SF) and birdsfoot trefoil (BT). Silages from SF and from BT cultivars [Bull (BB) and Polom (BP)] were incubated singly or in combination with RC using the Rumen Simulation Technique (n = 6). The tanniferous legumes, when compared to RC, changed the total short-chain fatty acid profile by increasing propionate proportions at the expense of butyrate. Silage from SF contained the most condensed tannins (CTs) (136 g CT kg -1 dry matter) and clearly differed in various traits from the BT and RC silages. The apparent nutrient degradability (small with SF), microbial protein synthesis, and calculated content of potentially utilisable crude protein (large with SF) indicated that SF had the greatest efficiency in ruminal protein synthesis. The effects of combining SF with RC were mostly linear. The potential of sainfoin to improve protein supply, demonstrated either individually or in combination with a high-performance forage legume, indicates its potential usefulness in complementing protein-deficient ruminant diets and high-quality forages rich in rumen-degradable protein. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature

    Directory of Open Access Journals (Sweden)

    Bi Bi Fatemeh Mirjalili

    2012-07-01

    Full Text Available A rapid one-pot method has been developed for the synthesis of azo dyes via ‎sequential diazotization–diazo coupling of aromatic amines with coupling agents at room ‎temperature in the presence of BF3.SiO2 as acidic catalyst. The obtained aryl diazonium salts bearing silica supported boron tri-flouride counter ion‎ was sufficiently stable to be kept at room ‎temperature in the dry state.‎

  17. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Hradil, Ondřej; Baszczyňski, Ondřej; Dračínský, Martin; Klepetářová, Blanka; Holý, Antonín; Balzarini, J.; Janeba, Zlatko

    2012-01-01

    Roč. 68, č. 3 (2012), s. 865-871 ISSN 0040-4020 R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Grant - others:K.U. Leuven(BE) GOA 10/014 Institutional research plan: CEZ:AV0Z40550506 Keywords : phosphonic acids * pyrimidines * 1,3,5-triazines * microwave-assisted synthesis * influenza virus Subject RIV: CC - Organic Chemistry Impact factor: 2.803, year: 2012

  18. Efficient synthesis of (+/-)-4-methyloctanoic acid, aggregation pheromone of rhinoceros beetles of the genus Oryctes (Coleoptera: Dynastidae, Scarabaeidae).

    Science.gov (United States)

    Ragoussis, Valentine; Giannikopoulos, Alexandros; Skoka, Efthymia; Grivas, Panagiotis

    2007-06-27

    (+/-)-4-Methyloctanoic acid and its ethyl ester are aggregation pheromones of many rhinoceros beetles of the genus Oryctes and are investigated for the control of these pests by olfactory trapping. A simple, economical, and high-yield (>50%) synthesis of (+/-)-4-methyloctanoic acid and its ethyl ester is presented starting from n-hexanal. The key step in this sequence is an orthoester Claisen rearrangement for the elongation of the carbon chain by two.

  19. Remarks about the displaced spectra techniques

    International Nuclear Information System (INIS)

    Behringer, K.; Pineyro, J.

    1989-01-01

    In a recent paper a new method, called displaced spectra techniques, was presented for distinguishing between sinusoidal components and narrowband random noise contributions in otherwise random noise data. It is based on Fourier transform techniques, and uses the power spectral density (PSD) and a newly-introduced second-order displaced power spectra density (SDPSD) function. In order to distinguish between the two peak types, a validation criterion has been established. In this note, three topics are covered: a) improved numerical data for the validation criterion are given by using the refined estimation procedure of the PSD and SDPSD functions by the Welch method; b) the validation criterion requires the subtraction of the background below the peaks. A semiautomatic procedure is described; c) it was observed that peaks in the real part of the SDPSD function can be accompanied by fine structure phenomena which are unresolved in the PSD function. A few remarks are made about this problem. (author)

  20. Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO_2 catalyst

    International Nuclear Information System (INIS)

    Singha, Rajib Kumar; Shukla, Astha; Yadav, Aditya; Adak, Shubhadeep; Iqbal, Zafar; Siddiqui, Nazia; Bal, Rajaram

    2016-01-01

    Highlights: • Tri-reforming of methane is an energy efficient process to produce synthesis gas. • Nanocrystalline Ni–ZrO_2 catalyst is prepared for tri-reforming of methane. • Strong metal-support interaction is the driving force for high activity. • The process produces synthesis gas with H_2/CO ratio of around 2. • The produced synthesis gas can be used to synthesize methanol. - Abstract: We report the synthesis of nanocrystalline Ni–ZrO_2 catalyst for tri-reforming of methane (5CH_4 + O_2 + CO_2 + 2H_2O → 6CO + 12H_2) to produce synthesis gas with H_2/CO mole ratio ∼2. Nanocrystalline Ni–ZrO_2 catalyst of size between 10 and 40 nm was prepared by hydrothermal method using cetyltrimethylammonium bromide (CTAB) as a surfactant. The prepared catalysts were characterized by N_2-physisorption studies, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature programmed reduction (TPR), H_2-chemisorpton, thermo-gravimetric analysis (TGA), Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The catalytic activity was monitored over temperature range between 500 and 800 °C. Different reaction parameters like temperature, Ni-loading, gas hourly space velocity (GHSV) and time on stream (TOS) were studied in detail. 4.8 wt% Ni loading for Ni–ZrO_2 catalyst was found to be the optimum Ni loading which showed the superior catalytic activity for methane tri-reforming. The catalyst was found to be stable for more than 100 h on time on stream with methane, carbon dioxide and steam conversion of ∼95% at 800 °C. The H_2/CO ratio was almost constant to 1.9 throughout the time on stream experiment. Highly dispersed nickel and the presence of strong metal support interaction were found to be the key factor for the superior activity of the catalyst. The effect of O_2 and H_2O concentration on reactant conversions and H_2/CO ratios were also

  1. Synthesis of nitrogen-doped graphene–ZnS quantum dots composites with highly efficient visible light photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shu-Dong; Tang, Gang [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Ma, Yi-Fei [CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren' ai Road, Suzhou, Jiangsu 215123 (China); Song, Lei [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China)

    2015-02-01

    Nitrogen-doped graphene–ZnS quantum dots (NG–ZnS QDs) were synthesized by a one-pot hydrothermal process using graphene oxide and [(Zn{sub 2}S{sub 2}) (pa)] nanosheets as precursors. The results demonstrated that ZnS QDs deposited on the surface of the nitrogen-doped graphene (NG). Combined with series of our analysis and characterization, we found that [(Zn{sub 2}S{sub 2}) (pa)] nanosheets were used not only as the sources of ZnS QDs but also as the sources of nitrogen. Moreover, photocatalytic experiment of NG–ZnS QDs for organic dyes was conducted under visible light irradiation, and the results exhibited that the photocatalytic activities of resultant composites could be remarkably enhanced. This simple and catalyst-free approach for depositing ZnS QDs onto NG may provide an alternative way for preparation of other composites based on NG under mild conditions, which showed their potential applications in wastewater treatment. - Graphical abstract: Schematic of the four-step process of the photon-driven CT model for NG–ZnS QDs. - Highlights: • A new strategy was present to synthesize nitrogen-doped graphene–ZnS quantum dots (NG–ZnS QDs) composites. • [(Zn{sub 2}S{sub 2}) (pa)] nanosheets were used not only as the sources of ZnS QDs but also as the sources of nitrogen. • The photocatalytic activities of NG–ZnS QDs could be remarkably enhanced.

  2. An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Recyclable Alumina-Supported Heteropolyoxometalates

    Directory of Open Access Journals (Sweden)

    Diego M. Ruiz

    2012-01-01

    Full Text Available We report a suitable quinoxaline synthesis using molybdophosphovanadates supported on commercial alumina cylinders as catalysts. These catalysts were prepared by incipient wetness impregnation. The catalytic test was performed under different reaction conditions in order to know the performance of the synthesized catalysts. The method shows high yields of quinoxaline derivatives under heterogeneous conditions. Quinoxaline formation was obtained using benzyl, o-phenylenediamine, and toluene as reaction solvent at room temperature. The CuH2PMo11VO40 supported on alumina showed higher activity in the tested reaction. Finally, various quinoxalines were prepared under mild conditions and with excellent yields.

  3. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid

    Directory of Open Access Journals (Sweden)

    Rajesh K. Singh

    2018-01-01

    Full Text Available A new, facile, cost-effective and environment-friendly protocol is reported for the synthesis of 1-amidoalkyl-2-naphthols exploring tannic acid as a novel, cheap and biodegradable catalyst. β-naphthol is condensed with substituted aromatic aldehydes and various amides using catalytic amount of tannic acid in the absence of solvent under thermal (hot plate and oil bath and microwave irradiation techniques. This green protocol offers many advantages such as short reaction time, use of environment-friendly and cheap catalyst and good to excellent yields.

  4. Efficient FeCl3/SiO2 as heterogeneous nanocatalysis for the synthesis of benzimidazoles under mild conditions

    Science.gov (United States)

    Taher, Mohammad Ali; Karami, Changiz; Arabi, Mehdi Sheikh; Ahmadian, Hossein; Karami, Yasaman

    2016-11-01

    Iron(III) supported on nano silica as a new catalyst has been synthesized. Structural properties of this complex have been studied by TEM, SEM and EDX. The average crystalline size of Iron(III) supported on nano silica is 30-50 nm. Catalytic activity of this catalyst has been investigated by synthesis of benzimidazoles from 1, 2-diaminobenzene and aromatic aldehydes, and also the other variables investigated such as the amount of catalyst, reaction temperature and the effect of various solvents are also studied. The present procedure offers several advantages such as short reaction time, simple workup, recovery and reusability of the catalyst.

  5. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    Science.gov (United States)

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  6. The end of a remarkable era

    CERN Multimedia

    2011-01-01

    An important era in particle physics is coming to an end: the US Department of Energy announced on Monday that it will not fund an extension to Tevatron running beyond 2011. It is a poignant moment for particle physics as we prepare to bid farewell to a machine that has changed our view of the Universe, and played a significant role in paving the way for the new era that is opening up with the LHC.   The Tevatron has been at the high-energy frontier of particle physics for over a quarter of a century. That’s a remarkable achievement by any account, and the physics results are there to prove it. As well as bringing us the discovery of the top quark in 1995, the Tevatron’s experiments have provided vitally important precision measurements covering the full spectrum of Standard Model physics, not to mention hints of what may lie beyond. With several months of running still to come, it would be a foolish gambler who bet against further new physics emerging before the Teva...

  7. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio

    1993-01-01

    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  8. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    International Nuclear Information System (INIS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-01-01

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  10. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute-Deemed University, Gandhigram 624 302, Tamilnadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)

    2016-10-30

    Graphical abstract: The green synthesis of highly fluorescent N-CDs was achieved using the extract of unripe P. mume fruit as a carbon precursor by a one-pot simple hydrothermal-carbonization method. The resulting N-CDs were used as a staining agent for the fluorescence imaging of MDA-MB-231 cells. Display Omitted - Highlights: • The green synthesis of highly fluorescent N-CDs using the extract of unripe P. mume. • The N-CDs were synthesized by one-pot hydrothermal-carbonization method. • This method of synthesis is a simple, cost effective and eco-friendly route. • N-CDs will be a good alternative for fluorescent dyes and SQDs for bio-applications. - Abstract: Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV–vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  11. One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-light Photocatalytic H2 Evolution.

    Science.gov (United States)

    Fang, Zhenyuan; Hong, Yuanzhi; Li, Di; Luo, Bifu; Mao, Baodong; Shi, Weidong

    2018-06-01

    Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ>420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation and prolonged charge carrier lifetime. Moreover, the obvious up-shift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets, but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

  12. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles

    International Nuclear Information System (INIS)

    Solano, Eduardo; Perez-Mirabet, Leonardo; Martinez-Julian, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Yañez, Ramón; Pomar, Alberto; Ricart, Susagna; Ros, Josep

    2012-01-01

    Well-defined synthesis conditions of high quality MFe 2 O 4 (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe 2 O 4 , CoFe 2 O 4 , and ZnFe 2 O 4 .

  13. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts

    KAUST Repository

    Chen, Wei

    2013-01-01

    Core-shell heterostructured Cu/Cu2O nanowires with a high aspect ratio were synthesized from Cu foam using a novel oxidation/reduction process. In situ XRD was used as an efficient tool to acquire phase transformation details during the temperature-programmed oxidation of Cu foam and the subsequent reduction process. Based on knowledge of the crucial phase transformation, optimal synthesis conditions for producing high-quality CuO and core-shell Cu/Cu2O nanowires were determined. In favor of efficient charge separation induced by the special core-shell heterostructure and the advanced three-dimensional spatial configuration, Cu/Cu2O nanowires exhibited superior visible-light activity in the degradation of methylene blue. The present study illustrates a novel strategy for fabricating efficiently core-shell heterostructured nanowires and provides the potential for developing their applications in electronic devices, for environmental remediation and in solar energy utilization fields. This journal is © The Royal Society of Chemistry.

  14. Synthesis and Characterization of Antireflective ZnO Nanoparticles Coatings Used for Energy Improving Efficiency of Silicone Solar Cells

    Science.gov (United States)

    Pîslaru-Dǎnescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela

    2018-03-01

    The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.

  15. In situ synthesis of CdS decorated titanate nanosheets with highly efficient visible-light-induced photoactivity

    International Nuclear Information System (INIS)

    Liu, Zhi; Fang, Pengfei; Liu, Fuwei; Zhang, Yupeng; Liu, Xinzhao; Lu, Dingze; Li, Delong; Wang, Shaojie

    2014-01-01

    Appropriately dispersed CdS nanoparticles were intimately embedded into titanate nanosheets (TNS) through ion-exchange and in situ sulfurization process. The sheet-like intermediates of titanate during the transforming process into nanotubes were firstly used as substrate for the decoration of CdS nanoparticles, and the synthesis route was achieved by ion-exchange process between titanate precursor and Cd 2+ ions solution, and the following sulfuration process by using Na 2 S solutions. The catalytic activity of the photocatalyst was investigated by photodegradation of Rhodamine B under visible light irradiation. With an optimal Cd/Ti molar ratio of 15%, the CdS/TNS composite exhibits the highest photocatalytic performance, which is approximately 5.4 times greater than that of pure TNS. The mechanism of the separation behavior of the photogenerated charges was also discussed.

  16. Novel approach for heterocyclization: a clean and efficient synthesis and biological evaluation of 4-oxothiazolidines under microwave technique

    International Nuclear Information System (INIS)

    Desai, Krunal G.; Desai, K.R.

    2006-01-01

    A new selective method has been developed for rapid synthesis of 2-(aryl)-3-[2-benzoimidazolythio)-acetamidyl]-4-oxothiazolidines 4a-j by the heterocyclization of 2-{(1H-benzemidazol)-ylthio}-N-benzylidene aceto hydrazide 3a-j with HSCH2COOH under microwave irradiation (MWI) is described. The reaction rate and yield is enhanced tremendously under MWI as compared to conventional methods. All the compounds have been screened for their antifungal activity against Candida albicans and Aspergillus niger, antibacterial activity against Escherchia coli and Staphylococcus aureus. In the primary screening, some of the compounds exhibited appreciable activity. The structures of the synthesized compounds 4a-j have been characterized on the basis of their elemental analysis, IR, HNMR and Mass spectral data. (author)

  17. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  18. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. OSU-6: A Highly Efficient, Metal-Free, Heterogeneous Catalyst for the Click Synthesis of 5-Benzyl and 5-Aryl-1H-tetrazoles

    Directory of Open Access Journals (Sweden)

    Baskar Nammalwar

    2015-12-01

    Full Text Available OSU-6, an MCM-41 type hexagonal mesoporous silica with mild Brönsted acid properties, has been used as an efficient, metal-free, heterogeneous catalyst for the click synthesis of 5-benzyl and 5-aryl-1H-tetrazoles from nitriles in DMF at 90 °C. This catalyst offers advantages including ease of operation, milder conditions, high yields, and reusability. Studies are presented that demonstrate the robust nature of the catalyst under the optimized reaction conditions. OSU-6 promotes the 1,3-dipolar addition of azides to nitriles without significant degradation or clogging of the nanoporous structure. The catalyst can be reused up to five times without a significant reduction in yield, and it does not require treatment with acid between reactions.

  20. Efficient continuous-flow synthesis of novel 1,2,3-triazole-substituted β-aminocyclohexanecarboxylic acid derivatives with gram-scale production

    Directory of Open Access Journals (Sweden)

    Sándor B. Ötvös

    2013-07-01

    Full Text Available The preparation of novel multi-substituted 1,2,3-triazole-modified β-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted β-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects.

  1. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  2. An Efficient Solid-phase Parallel Synthesis of 2-Amino and 2-Amidobenzo[d]oxazole Derivatives via Cyclization Reactions of 2-Hydroxyphenylthiourea Resin

    International Nuclear Information System (INIS)

    Jung, Selin; Kim, Seulgi; Lee, Geehyung; Gong, Youngdae

    2012-01-01

    An efficient solid-phase methodology has been developed for the synthesis of 2-amino and 2-amidobenzo[d]-oxazole derivatives. The key step in this procedure involves the preparation of polymer-bound 2-aminobenzo-[d]oxazole resins 4 by cyclization reaction of 2-hydroxyphenylthiourea resin 3. The resin-bound 2-hydroxy-phenylthiourea 3 is produced by the addition of 2-aminophenol to the isothiocyanate-terminated resin 2 and serve as a key intermediate for the linker resin. This core skeleton 2-aminobenzo[d]oxazole resin 4 undergoes functionalization reaction with various electrophiles, such as alkylhalides and acid chlorides to generate 2-amino and 2-amidobenzo[d]oxazole resins 5 and 6 respectively. Finally, 2-amino and 2-amidobenzo[d]oxazole derivatives 7 and 8 are then generated in good yields and purities by cleavage of the respective resins 5 and 6 under trifluoroacetic acid (TFA) in dichloromethane (CH 2 Cl 2 )

  3. Efficient Enzymatic Routes for the Synthesis of New Eight-membered Cyclic β-Amino Acid and β-Lactam Enantiomers

    Directory of Open Access Journals (Sweden)

    Enikő Forró

    2017-12-01

    Full Text Available Efficient enzymatic resolutions are reported for the preparation of new eight-membered ring-fused enantiomeric β-amino acids [(1R,2S-9 and (1S,2R-9] and β-lactams [(1S,8R-3, (1R,8S-3 (1S,8R-4 and (1R,8S-7], through asymmetric acylation of (±-4 (E > 100 or enantioselective hydrolysis (E > 200 of the corresponding inactivated (±-3 or activated (±-4 β-lactams, catalyzed by PSIM or CAL-B in an organic solvent. CAL-B-catalyzed ring cleavage of (±-6 (E > 200 resulted in the unreacted (1S,8R-6, potential intermediate for the synthesis of enantiomeric anatoxin-a. The best strategies, in view of E, reaction rate and product yields, which underline the importance of substrate engineering, are highlighted.

  4. Simple and Efficient One-Pot Synthesis, Spectroscopic Characterization and Crystal Structure of Methyl 5-(4-Chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Imtiaz Khan

    2012-07-01

    Full Text Available A facile one-pot synthesis of methyl 5-(4-chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate (4 is described. The title compound was efficiently synthesized by the reaction of phenyl hydrazine, dimethyl acetylenedicarboxylate and 4-chlorobenzoyl chloride in dichloromethane under reflux in good yield. The structure of the target compound was deduced by modern spectroscopic and analytical techniques and unequivocally confirmed by a single crystal X-ray diffraction analysis. The crystal of the title compound belongs to orthorhombic system, space group P 21 21 21 with cell parameters a = 6.6491(3 Å, b = 7.9627(6 Å, c = 30.621(5 Å, α = β = γ = 90° and Z = 4. The crystal packing of the compound (4 is stabilized by an offset π-stacking between the planar benzoyl-substituted diazole moieties.

  5. [11C]PR04.MZ, a promising DAT ligand for low concentration imaging: synthesis, efficient 11C-O-methylation and initial small animal PET studies

    International Nuclear Information System (INIS)

    Riss, P.J.; Hooker, J.; Alexoff, D.; Kim, Sung-Won; Fowler, J.S.; Roesch, F.

    2009-01-01

    PR04.MZ was designed as a highly selective dopamine transporter inhibitor, derived from natural cocaine. Its binding profile indicates that [ 11 C]PR04.MZ may be suited as a PET radioligand for the non-invasive exploration of striatal and extrastriatal DAT populations. As a key feature, its structural design facilitates both, labelling with fluorine-18 at its terminally fluorinated butynyl moiety and carbon-11 at its methyl ester function. The present report concerns the efficient [ 11 C]MeI mediated synthesis of [ 11 C]PR04.MZ from an O-desmethyl precursor trifluoroacetic acid salt with Rb 2 CO 3 in DMF in up to 95 ± 5% labelling yield. A preliminary μPET-experiment demonstrates the reversible, highly specific binding of [ 11 C]PR04.MZ in the brain of a male Sprague-Dawley rat.

  6. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin-Hua; Zhang, E. [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Tang, Gui-Mei, E-mail: meiguit@163.com [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Wang, Yong-Tao, E-mail: ceswyt@qlu.edu.cn [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Cui, Yue-Zhi [Department of Chemical Engineering, Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353 (China); Ng, Seik Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-09-15

    Three new metal coordination complexes, namely, [Co(BPO){sub 2}(H{sub 2}O){sub 4}](BS){sub 2}(H{sub 2}O){sub 2} (1), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](ABS){sub 2}(H{sub 2}O){sub 2} (2), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](MBS){sub 2}(H{sub 2}O){sub 2} (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O–H···O/N) and packing interactions (C–H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. - Graphical abstract: Three new metal coordination complexes with bipyridinyl-oxadiazole were obtained under hydrothermal conditions, which display a zero-dimensional motif, and show high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. Display Omitted.

  7. Recent advances in membrane materials: introductory remarks

    International Nuclear Information System (INIS)

    Ayral, A.

    2007-01-01

    A lot of separation operations are currently performed using membranes both for production processes and for environmental applications. The main part of the used membranes are organic membranes but for specific conditions of utilization inorganic or organic-inorganic membranes have been also developed. Among the applications for gas separation, some examples are the removal of hydrogen from ammonia synthesis gas, the removal of carbon dioxide from natural gas and air separation. Environmental considerations like massive scale air and water pollution and also the gradual rarefaction of fossil energy resources gave rise to the concept of sustainable growth and to related strategies like process intensification, the reuse of water and solvents at their point of use, hydrogen as energy vector (requiring H 2 production...)..Membranes will have a key part to play in the new technologies associated with these strategies. Intensive efforts of research and development are now engaged everywhere in the world to develop high performance membranes for those emerging applications. Membrane science is a multidisciplinary scientific and technological domain covering mainly materials science, physical chemistry, chemical engineering, modeling. This issue (Annales de chimie - Science des materiaux, 2007 Vol.32 N.2) provides a wide review of recent advances in membrane materials. It is based on the contributions of experts in different fields of membrane materials (organic, organic-inorganic hybrid, composite, carbon, metallic, ceramic; dense, porous, surface modified materials). (O.M.)

  8. Some remarks on NAA in geochemical research

    International Nuclear Information System (INIS)

    Geisler, M.

    1985-01-01

    A review is given of certain applications of NAA in geology. The emphasis is placed on reactor activation and the efficiency of NAA in gelogical research. The statements made are illustrated by a few examples showing the determination of rare elements in granites and fluorites, measurement of osmium and intercomparisons of accuracy of NAA by comparing results of the same sample analyzed by several laboratories

  9. A Rapid and Efficient Sonogashira Protocol and Improved Synthesis of Free Fatty Acid 1 (FFA1) Receptor Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Ulven, Trond

    2010-01-01

    A protocol for rapid and efficient Pd/Cu-catalyzed coupling of aryl bromides and iodides to terminal alkynes has been developed with use of 2-(di-tert-butylphosphino)-N-phenylindole (cataCXium PIntB) as ligand in TMEDA and water. The new protocol successfully couples substrates which failed...

  10. An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes

    International Nuclear Information System (INIS)

    Zhu, Mei; Fu, Weijun; Xun, Chen; Zou, Guanglong

    2012-01-01

    An efficient synthetic method for the preparation of quinolines through indium(III) chloride-catalyzed tandem addition-cyclization-oxidation reactions of imines with alkynes was developed. The processes can provide a diverse range of quinoline derivatives in good yields from simple imines and alkynes

  11. An Efficient Synthesis of Phenols via Oxidative Hydroxylation of Arylboronic Acids Using (NH42S2O8

    Directory of Open Access Journals (Sweden)

    Claudia A. Contreras-Celedón

    2014-01-01

    Full Text Available A mild and efficient method for the ipso-hydroxylation of arylboronic acids to the corresponding phenols was developed using (NH42S2O8 as an oxidizing agent. The reactions were performed under metal-, ligand-, and base-free conditions.

  12. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure

    International Nuclear Information System (INIS)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong

    2017-01-01

    Highlights: • Visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalysts were prepared. • Pr 6 O 11 /Ag 3 PO 4 /Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr 6 O 11 /Ag 3 PO 4 /Pt composite was given. - Abstract: Ag 3 PO 4 is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr 6 O 11 or Ag 3 PO 4 , the prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr 6 O 11 /Ag 3 PO 4 /Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr 6 O 11, Ag 3 PO 4 and Pt.

  13. An efficient solvent-free synthesis of imidazolines and benzimidazoles using K 4[Fe(CN 6] catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer A. Shaikh

    2012-01-01

    Full Text Available Imidazolines and Benzimidazoles have been efficiently synthesized in high yields by treatment of 1,2-diamine with aldehydes using the metal co-ordinate complex K 4[Fe(CN 6] as a catalysis. The method was carried out under solvent free condition via oxidation of carbon-nitrogen bond. The process is green, mild and inexpensive.

  14. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  15. Fully automated synthesis of (phosphopeptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization

    Directory of Open Access Journals (Sweden)

    Goldstein David J

    2005-01-01

    Full Text Available Abstract Background Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src. Results The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR autophosphorylation site (pY1173 antibody ELISA (9H2 was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phosphopeptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of

  16. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    Science.gov (United States)

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  17. Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Tao; Yang, Chao; Rao, Xuehui; Wang, Jide [Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China); Niu, Chunge, E-mail: ncg@petrochina.com.cn [Petrochemical Research Institute, Karamay Petrochemical Company, Karamay 834000 (China); Su, Xintai, E-mail: suxintai827@163.com [Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 (China)

    2014-02-15

    The iron oxide nanoparticles had been successfully synthesized via an additive-free hydrolysis process at 75 °C for 12 h. The product was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N{sub 2} adsorption–desorption. The results of XRD and N{sub 2} adsorption–desorption demonstrated that the as-prepared product was mainly α-Fe{sub 2}O{sub 3} with a large surface area of 164.1 m{sup 2} g{sup −1}. The TEM images illustrated that the as-prepared product was found to consist of a mixture of irregular spherical nanoparticles (a diameter of ∼50 nm) and nanowhiskers (a diameter of ∼50 nm and uneven length). The as-prepared product was used to investigate its promising applications in water treatment. Due to its small size and large surface area, the maximum adsorption capacities of Congo red and Cr(VI) have been determined using the Langmuir equation and found to reach up to 253.8 and 17.0 mg g{sup −1}, respectively. The facile synthesis method and the superior adsorption performance derived from the iron oxide nanoparticles display the potential applications for the removal of Congo red and Cr(VI) from aqueous solution.

  18. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

    Science.gov (United States)

    Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong

    2018-01-31

    A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

  19. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain computer interface

    Science.gov (United States)

    Wang, Tao; He, Bin

    2004-03-01

    The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.

  20. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Design and efficient synthesis of novel haptens and complete antigens for the AOZ, a toxic metabolite of furazolidone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A good strategy was brought forward for designing efficient haptens and complete antigens for 3-amino-2-oxazolidinone (AOZ).Haptens designed newly were achieved facilely in good yield by using LiCl-N(Et)3 as new catalysis system, the structure of which was elucidated by spectroscopy analysis, such as NMR and MS. Novel antigens for AOZ were prepared successfully by convenient indicated that the haptens with a short unsaturated side chain can evoke specific immune response effectively.

  2. Polyvinylpolypyrrolidone-Supported Boron Trifluoride; Highly Efficient Catalyst for the Synthesis of N-tert-Butyl Amides

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary

    2012-01-01

    Full Text Available Highly efficient method for the preparation of N-tert-butyl amides by reaction of nitriles with tert-butyl acetate is described using polyvinylpolypyrrolidone-supported boron trifluoride (PVPP-BF3 at 70°C in good to excellent yields. Selective amidation of benzonitrile in the presence of acetonitrile was also achieved. polyvinylpolypyrrolidone-boron trifluoride complex shows non-corrosive and stable solid catalyst elevated Lewis acid property.

  3. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  4. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.

    Science.gov (United States)

    Byun, Ho-June; Lee, Ju Chul; Yang, Heesun

    2011-03-01

    InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  6. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    Science.gov (United States)

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  7. One-Pot Soft-Template Synthesis of Nanostructured Copper-Supported Mesoporous Carbon FDU-15 Electrocatalysts for Efficient CO2 Reduction.

    Science.gov (United States)

    Şahin, Nihat Ege; Comminges, Clément; Le Valant, Anthony; Kiener, Julien; Parmentier, Julien; Napporn, Teko W; Melinte, Georgian; Ersen, Ovidiu; Kokoh, Kouakou B

    2018-03-14

    Copper-supported mesoporous carbon nanocatalysts (Cu/FDU-15) were synthesized using an easy and convenient one-pot soft-template method for low-overvoltage CO 2 electroreduction. TEM imaging revealed the presence of large Cu nanoparticles (diameter 140 nm) with Cu 2 O nanoparticles (16 nm) as an additional phase. From the electron tomography observations, we found that the copper particles were placed inside and on the exterior surface of the porous FDU-15 support, providing an accessible surface for electrocatalytic reactions. CO 2 electrolyses showed that the mesostructured Cu/FDU-15-350 cathode materials were active towards CO 2 conversion to formic acid with 22 % Faradaic efficiency at a remarkably low overpotential of 290 mV, hydrogen being the only side-product. The catalyst's activity correlates to the calculated metallic surface area, as determined from a geometrical model, confirming that the mesoporous channels act as a diffusion path for the CO 2 molecule, and that the whole Cu surface is accessible to CO 2 , even if particles are entrapped in the carbon matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    Science.gov (United States)

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  9. Electrospinning in Situ Synthesis of Graphene-Doped Porous Copper Indium Disulfide/Carbon Composite Nanofibers for Highly Efficient Counter Electrode in Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    He, Jianxin; Zhou, Mengjuan; Wang, Lidan; Zhao, Shuyuan; Wang, Qian; Ding, Bin; Cui, Shizhong

    2016-01-01

    Highlights: • P-GN@CuInS 2(*) /C nanofibers were fabricated via electrospinning, in situ synthesis. • CuInS 2 nanocrystals were uniformly anchored in wrapped RGO to form nanofiber structure. • P-GN@CuInS 2 /C nanofibers exhibited porous and 3D superfine fiber morphology. • Graphene nanosheets led well-dispersed growth of CuInS 2 nanocrystals in nanofibers. • DSSC assembled using p-GN@CuInS 2 /C CE delivered a conversion efficiency of 7.23%. - Abstract: Porous graphene-doped copper indium disulfide/carbon (p-GN@CuInS 2 /C) composite nanofibers were fabricated via electrospinning, in situ synthesis, and carbonization. A polyacrylonitrile (PAN) solution containing graphene oxide nanosheets, copper dichloride (CuCl 2 ), indium trichloride (InCl 3 ), and thiourea (Tu.) in a mixed solvent of N,N-dimethylformamide/trichloromethane (DMF/CF) was used as the precursor solution for electrospinning. The resulting porous GN@CuInS 2 /C nanofibers were 107 ± 24 nm in diameter, and graphene nanosheets anchored with chalcopyrite CuInS 2 nanocrystals 7–12 nm in diameter were overlapped and embedded in the carbon matrix, aligning along the fiber axial direction. The Brunauer–Emmett–Teller (BET) surface area of the p-GN@CuInS 2 /C composite nanofibers was 795 m 2 /g, with a total pore volume of 0.71 cm 3 /g. These values were significantly larger than those of the sample without graphene and CuInS 2 /C nanofibers. A dye-sensitized solar cell (DSSC) assembled using the p-GN@CuInS 2 /C nanofibers as the counter electrode (CE) delivered a photoelectric conversion efficiency of 7.23%, which was higher than the efficiencies of DSSCs assembled using the samples without graphene (6.48%) and with the CuInS 2 /C nanofibers (5.45%). It was also much higher than that of the DSSC with a Pt CE (6.34%). The excellent photoelectric performance of the p-GN@CuInS 2 /C CE was attributed to its special hierarchical porous structure, which facilitated permeation of the liquid

  10. Prepared remarks of Martin L. Allday

    International Nuclear Information System (INIS)

    Allday, M.L.

    1992-01-01

    This paper discusses the need for removing needless regulatory obstacles to natural gas industry which prevents competitiveness with other energy sources. The author presents three points which he believes will help reach this goal. The first point is to remove all regulatory pricing controls on wellhead prices. The second point is the development of a good distribution system, especially pipelines, which can quickly respond to serve new or emerging market areas. Finally, the author promotes pipeline rates that promote efficiency, allow for reasonable stability in long-term delivery, and send the right signals to the construction industry. The paper goes on to discuss the deregulation needed to promote pipeline construction activities and allow for transportation of natural gas to become competitive among the various transportation sectors

  11. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation

    Science.gov (United States)

    Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng

    2018-03-01

    The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.

  12. Efficient synthesis of glycosylated phenazine natural products and analogs with DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors

    DEFF Research Database (Denmark)

    Laursen, Jane B.; Petersen, Lars; Jensen, K.J.

    2003-01-01

    Inspired by the occurrence and function of phenazines in natural products, new glycosylated analogs were designed and synthesized. DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors were used in an efficient and easily-handled glycosylation protocol compatible with combinatorial chemistry....... Benzoylated D-glucose, D-galactose and L-quinovose DISAL glycosyl donors were synthesized in high yields and used under mild conditions to glycosylate methyl saphenate and 2-hydroxyphenazine. The glycosides were screened for biological activity and one compound showed inhibitory activity towards topoisomerase...

  13. Synthesis of vertical MnO_2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    International Nuclear Information System (INIS)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-01-01

    Highlights: • The three-dimensional nanocomposites based on vertical MnO_2 array on hemp-derived carbon (HDC) were prepared by hydrothermal method. • The 3D v-MnO_2/HDC nanocomposites showed well-defined porous nature with a high specific surface area of 382.3 m"2 g"−"1. • PET glycolysis was performed using the 3D v-MnO_2/HDC nanocomposites as a catalyst, leading to efficient catalytic performance. - Abstract: Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO_2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO_2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO_2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  14. Synthesis and characterization of nanocomposite GO@α-Fe2O3:Efficient material for dye removal

    Science.gov (United States)

    Mandal, B.; Panda, J.; Tudu, B.

    2018-05-01

    In this work a composite of Graphene Oxide (GO) supported α-Fe2O3 nanoparticles (GF) has been synthesized via a simple co-precipitation method. Structural, and morphological study of nanocomposite (GF) are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The XRD study indicates that Graphene oxide is implanted with well crystalline α-Fe2O3 which has pure rhombohedral phase. Surface morphological study of SEM depicts sphere-like shaped α-Fe2O3 particles with formation of clusters have been embedded on Graphene oxide nano sheet. TEM image reveals that GO sheet acts as a good supporting material for anchoring nano sized α -Fe2O3 particles. Efficiency of dye removal of the prepared GF composite has been measured by the degradation of methylene blue (MB) in an aqueous solution under visible light irradiation. The degradation of the dye has been evaluated by a UV-visible spectroscopy, by decrease in the intensity of absorbance and concentration. The degradation efficiency of GF is found to be 90% towards MB.

  15. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  16. Generation IV international forum 2002 - remarks

    International Nuclear Information System (INIS)

    Abraham, S.

    2002-01-01

    Analyses and forecasts underscore the important role of nuclear power in energy supply in the 21st century. Important aspects in this respect are the conservation of fossil resources, the protection of the world's climate, and the continuity of supply. Present 1st and 2nd generation nuclear power plants ensure an economical and technically mature electricity supply. Advanced systems offering, e.g., higher efficiency of fuel utilization, simplified systems technology, and advanced safety characteristics, can make available additional benefits in using nuclear power. Upon an initiative of the U.S. Department of Energy (DOE), ten countries combine their efforts in developing such reactor concepts in the Generation IV International Forum (GIF). Argentina, Brazil, Canada, France, Japan, South Africa, South Korea, Switzerland, the United Kingdom, and the United States pursue the common objective in GIF to identify suitable nuclear power systems and promote their development up to the envisaged readiness for construction in 2030. Besides technical and economic questions of nuclear power generation, also other aspects must be considered with a view to the future use of nuclear power. The particularly relevant issues, such as the management of radioactive waste, the intensification of research and development, and international cooperation, have been taken up by the Bush administration at an early point in time and have been, or will be, incorporated in practical solutions, as in the case of the Yucca Mountain repository project. (orig.)

  17. Au-Cu core-shell nanocube-catalyzed click reactions for efficient synthesis of diverse triazoles.

    Science.gov (United States)

    Madasu, Mahesh; Hsia, Chi-Fu; Huang, Michael H

    2017-06-01

    Au-Cu core-shell nanocubes and octahedra synthesized in aqueous solution were employed to catalyze a 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 °C for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of a regioselective 1,4-triazole product, while octahedra only recorded 46% yield. The Au-Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes. The product yields ranged from 78 to 99%. Clearly the Au-Cu cubes exposing {100} surfaces are an excellent and green catalyst for click reactions.

  18. Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst

    International Nuclear Information System (INIS)

    Fan Haimei; Wang Dejun; Wang Lingling; Li Haiyan; Wang Ping; Jiang Tengfei; Xie Tengfeng

    2011-01-01

    Different morphologies of monoclinic BiVO 4 with smaller size were hydrothermal synthesized by simply adjusting the amount of surfactant (polyvinyl pyrrolidone PVP K30) added. The detailed field emission scanning electron microscope (FESEM) analysis revealed that the amount of PVP added could significantly affect the morphology and size of BiVO 4 . Their photocatalytic activities were evaluated by the decolorization of methylene blue (MB) aqueous solution under visible-light irradiation (λ > 400 nm), and the as-prepared sample with well-assembled flower-like morphology showed a much higher photocatalytic activity due to larger specific surface area and higher separation efficiency of photo-induced carriers. The relationship between the behavior of photo-induced carriers and photocatalytic activity was studied using the surface photovoltage spectroscopy (SPS) and corresponding phase spectra.

  19. Synthesis of Pt-Ru PSB-Py catalysis by {gamma}-irradiation and their electrocatalytic efficiency for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Ah; Sim, Kwang Sik; Choi, Seong Ho [Hannam University, Daejeon (Korea, Republic of); Jung, Sung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-09-15

    We report here that deposition of Pt-Ru catalysis on the surface of core-shell conductive balls by radiation-chemical reduction of Pt and Ru ions, in order to use as catalysis in a fuel cell. The poly(styrene-co-4-vinylphenylboronic acid)-pyrrole (PSB-Py) with core-shell structure was obtained by in situ polymerization of pyrrole in the presence of the poly(styrene-co-4-vinylphenylboronic acid) (PSB). Subsequently, Pt-Ru catalysis were deposited onto PSB-Py ball by {gamma}-irradiation, in the presence/absence of poly(vinypyrolidone) (PVP) to prepare electrocatalysis for a fuel cell. The catalytic efficiency of Pt-Ru PSB-Py catalyst was examined for carbon monoxide (CO) stripping and methanol oxidation.

  20. Synthesis of Pt-Ru PSB-Py catalysis by γ-irradiation and their electrocatalytic efficiency for methanol oxidation

    International Nuclear Information System (INIS)

    Yoon, Jung Ah; Sim, Kwang Sik; Choi, Seong Ho; Jung, Sung Hee

    2009-01-01

    We report here that deposition of Pt-Ru catalysis on the surface of core-shell conductive balls by radiation-chemical reduction of Pt and Ru ions, in order to use as catalysis in a fuel cell. The poly(styrene-co-4-vinylphenylboronic acid)-pyrrole (PSB-Py) with core-shell structure was obtained by in situ polymerization of pyrrole in the presence of the poly(styrene-co-4-vinylphenylboronic acid) (PSB). Subsequently, Pt-Ru catalysis were deposited onto PSB-Py ball by γ-irradiation, in the presence/absence of poly(vinypyrolidone) (PVP) to prepare electrocatalysis for a fuel cell. The catalytic efficiency of Pt-Ru PSB-Py catalyst was examined for carbon monoxide (CO) stripping and methanol oxidation

  1. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    Science.gov (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  2. Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Elias, Liju; Hegde, A. Chitharanjan

    2016-01-01

    Highlights: • Electrocatalytic activity of Ni-P alloy is improved by Ag nanoparticle incorporation. • Ni-P-Ag electrode is developed through sol-enhanced electrodeposition. • Ni-P-Ag composite coating shows better electrocatalytic efficiency for HER. - Abstract: The effect of addition of silver nanoparticle sol (SNS) into Ni-P plating bath was studied in terms of the variation in electrocatalytic behavior of the developed coatings in 1.0 M KOH. Ni-P-Ag composite coating was achieved through direct electrolysis by adding a known quantity of the conventionally prepared SNS into Ni-P bath. Ni-P-Ag coatings electrodeposited galvanostatically on copper under different conditions of the bath was used as electrode material for alkaline hydrogen evolution reaction (HER). The optimal concentration of the SNS required for maximum electrocatalytic activity towards HER was obtained by adding different volumes of SNS (from 0 to 50 mL L −1 ) into the bath. The HER efficiency of the test electrodes in 1.0 M KOH medium was examined using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. The kinetics of HER on the alloy and composite electrodes were established through Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. Energy dispersive spectroscopy (EDS) was used to confirm the incorporation of Ag nanoparticles into the Ni-P alloy matrix. The microstructure and morphology of the alloy and composite coatings were analyzed by Scanning Electron Microscopy (SEM). A significant improvement in the electrocatalytic property of nano-Ag derived composite coatings was found, and was attributed to the enhanced electroactive sites of Ag particles. Deposition conditions to maximize the electrocatalytic activity of Ni-P-Ag nanocomposite coatings in relation to traditional Ni-P alloy coatings was arrived, and results are discussed.

  3. Remarks on the Foundations of Biology

    Directory of Open Access Journals (Sweden)

    Seán Ó Nualláin

    2008-10-01

    Full Text Available p class="MsoNormal"span style="font-size: 12pt"This paper attempts, inevitably briefly, aspannbsp; /spanre-categorization and partial resolution of some foundational issues in biology.spannbsp; /spanAn initialspannbsp; /spanground-clearing exercise extends the notion of causality in biology from merely the efficient cause to include also final and formal causality./span/p p class="MsoNormal"span style="font-size: 12pt"The HGPspannbsp; /spancan be looked on as an attempt to ground explanation of the phenotype in terms of an efficient cause rooted in a gene.spannbsp; /spanThis notion gives rise to the first section discussing the computational metaphor and epigenesis and suggesting ways to extend this metaphor. The extended notion of causality alluded to above is necessary, but not sufficient, to demarcate a specific explanatory realm for the biological.spannbsp; /spanWhile the universe can ultimately, perhaps,be explainedspannbsp; /spanby quantum fluctuations being computed through the laws of nature, the origin of life remains a mystery.spannbsp;nbsp; /spanThe ground-clearing exercise refers to coincidences that motivate the cosmological anthropic /span/p p class="MsoNormal"span style="font-size: 12pt"principle, before raising an alert about the possibility of similar thermodynamic laws facilitating the emergence of life./span/p p class="MsoNormal"span style="font-size: 12pt"nbsp;/span/p p class="MsoNormal"span style="font-size: 12pt"Life itself seems to involve symbolic operations that can be described by the grammatical rules within tightly -defined limits of complexity.spannbsp;nbsp; /spanThe nascent field of biosemiotics has extended this argument, often in a Peircean direction.spannbsp; /spanYet, even here, the task involved needs to be specified. Is the organism creating proteins to launch an immune counter-attack ?spannbsp;nbsp; /spanAlternatively, is a pluripotent stem cell generating an entire organism?spannbsp; /spanWe consider what

  4. Preface: Introductory Remarks: Linear Scaling Methods

    Science.gov (United States)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up

  5. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus.

    Directory of Open Access Journals (Sweden)

    Vidya P Nair

    2016-04-01

    Full Text Available Hepatitis E virus (HEV causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4. Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp, X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1 and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient

  6. Sol-gel synthesis of anatase nanopowders for efficient photocatalytic degradation of herbicide Clomazone in aqueous media

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2017-01-01

    Full Text Available TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH42SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM. The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH42SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45018

  7. Synthesis of a red electrophosphorescent heteroleptic iridium complex and its application in efficient polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Xiuju; Xu Yunhua; Sun Yiheng; Shi Huahong; Zhu Xuhui; Cao Yong

    2007-01-01

    The preparation and characterization of a heteroleptic iridium complex [2-(benzo[b]thiophen-2-yl)pyridine]Ir(III)[2-(4H-1,2,4-triazol-3-yl) pyridine] [(Btp) 2 Ir(PZ)] were reported (2-(benzo[b]thiophen-2-yl)pyridine = Btp; 2-(4H-1,2,4-triazol-3-yl)pyridine = PZ). Electrophosphorescence was investigated in the device structure [indium-tin-oxide (ITO)/poly(ethlenedioxythiophene) (PEDOT)/poly(vinylcarbazole)(PVK)/Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl (PFO): (Btp) 2 Ir(PZ)/Ba/Al] by using this iridium complex as guest and PFO as host. The red electrophosphorescent devices showed a peak emission at approximately 604 nm and shoulder at 654 nm with the Commission International de'Eclairage (CIE) coordinates of (0.64, 0.35) and external quantum efficiency of 7.7% at a doping concentration of 8 wt.% without an electron-transporting material in the emitting layer

  8. Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation

    Science.gov (United States)

    Han, Weijia; Ren, Long; Qi, Xiang; Liu, Yundan; Wei, Xiaolin; Huang, Zongyu; Zhong, Jianxin

    2014-04-01

    A novel ternary CdS/ZnO/graphene composite has been successfully prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-step hydrothermal method. The microstructures and properties have been examined by X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive spectroscope (EDS), transmission electron microscopy, Raman and UV-vis diffuse reflectance spectra (DRS). The characterization results reveal that the crystalline of the composite is very well, the graphene sheets were tightly coated with ZnO and CdS nanoparticles, and the light-harvesting was effectively strengthened. Taking photoelectrochemical test, the ternary CdS/ZnO/graphene composite exhibits enhanced photocatalytic activity compared with its foundation matrix binary composites and pure ZnO and CdS. The improved photocatalytic performance can be attributed to the enhanced light absorption, the extremely efficient charge separation, as well as superior durability of the ternary composite. It is proposed that graphene-based composites by coupling graphene to suitable, multiple semiconductors can not only greatly improve the capacity for photocatalytic, but also expand the exploration and utilization of graphene-based nanocomposites for energy conversion.

  9. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  10. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production

    Science.gov (United States)

    Ni, Dawei; Shen, Haiyan; Li, Huiqiao; Ma, Ying; Zhai, Tianyou

    2017-07-01

    Recently, copper species have been extensively investigated to replace Pt as efficient co-catalysts for the evolution of H2 due to their low cost and relatively high activity. Cu nanoparticles less than 5 nm are successfully decorated on TiO2 surface in this work by an easy and mild milling process. These Cu nanoparticles are highly dispersed on TiO2 when the loading amount of Cu is no more than 10 wt%. The sizes of Cu nanoparticles can be controlled by changing the milling environment and decrease in the order of Cu-ethanol > Cu-water > Cu nanoparticles obtained through drying milling. The highest and stable hydrogen generation can be realized on Cu/TiO2 with 2.0 wt% Cu and sizes of Cu nanoparticles ranging from 2 to 4 nm, in which high and stable photocurrent confirms promoted photogenerated charge separation. Smaller Cu clusters are demonstrated to be detrimental to hydrogen evolution at same Cu content. High loading of Cu nanoparticles of 2-4 nm will benefit photogenerated electron-hole recombination and thus decrease the activity of Cu/TiO2. The results here demonstrate the key roles of Cu cluster size in addition to Cu coverage on photocatalytic activity of Cu/TiO2 composite photocatalysts.

  11. Synthesis of vertical MnO2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    Science.gov (United States)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-06-01

    Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  12. Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS

    Science.gov (United States)

    Shahedi, Zahra; Jafari, Mohammad Reza

    2017-01-01

    In this study, an organometallic complex based on aluminum ions is synthesized. And it is utilized as fluorescent material in the organic light-emitting diodes (OLEDs). The synthesized complex was characterized using XRD, UV-Vis, FT-IR as well as PL spectroscopy analyses. The energy levels of Al complex were determined by cyclic voltammetry measurements. Then, the effects of ZnO nanoparticles (NPs) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, on the electrical and optical performance of the organic light-emitting diodes have been investigated. For this purpose, two samples containing ITO/PEDOT:PSS/PVK/Alq3/PBD/Al with two different concentration and two samples containing ITO/PEDOT:PSS:ZnO/PVK/Alq3/PBD/Al with two different concentration were prepared. Then, hole transport, electron transport and emissive layers were deposited by the spin coating method and the cathode layer (Al) was deposited by the thermal evaporation method. The OLED simulation was also done by constructing the model and choosing appropriate parameters. Then, the experimental data were collected and the results interpreted both qualitatively and quantitatively. The results of the simulations were compared with experimental data of the J-V spectra. Comparing experimental data and simulation results showed that the electrical and optical efficiency of the samples with ZnO NPs is appreciably higher than the samples without ZnO NPs.

  13. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    Science.gov (United States)

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  14. Facile synthesis of nitrogen-doped reduced graphene oxide as an efficient counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing

    2018-04-01

    A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.

  15. Total synthesis and allelopathic activity of cytosporones A-C

    Energy Technology Data Exchange (ETDEWEB)

    Zamberlam, Charles E.M.; Meza, Alisson; Lima, Denis P. de; Beatriz, Adilson [Centro de Ciencias Exatas e Tecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Leite, Carla Braga; Marques, Maria Rita [Centro de Ciencias Biologicas e da Saude, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil)

    2012-07-01

    The search for efficient, environmentally friendly herbicides has been the focus of numerous studies on the organic synthesis of compounds isolated from natural sources. Cytosporones, which are phenolic lipids isolated from fungi, exhibit noteworthy biological properties. This paper reports the preparation of cytosporones A-C from the same starting material through a short synthetic route, with good yields. All compounds were tested for allelopathic activity on lettuce (Lactuca sativa L) seeds. Cytosporone A and its methylated precursor showed remarkable allelopathic activity, inhibiting seed germination and plantule growth. (author)

  16. Total synthesis and allelopathic activity of cytosporones A-C

    International Nuclear Information System (INIS)

    Zamberlam, Charles E.M.; Meza, Alisson; Lima, Denis P. de; Beatriz, Adilson; Leite, Carla Braga; Marques, Maria Rita

    2012-01-01

    The search for efficient, environmentally friendly herbicides has been the focus of numerous studies on the organic synthesis of compounds isolated from natural sources. Cytosporones, which are phenolic lipids isolated from fungi, exhibit noteworthy biological properties. This paper reports the preparation of cytosporones A-C from the same starting material through a short synthetic route, with good yields. All compounds were tested for allelopathic activity on lettuce (Lactuca sativa L) seeds. Cytosporone A and its methylated precursor showed remarkable allelopathic activity, inhibiting seed germination and plantule growth. (author)

  17. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  18. Noncovalent synthesis of protein dendrimers

    NARCIS (Netherlands)

    Lempens, E.H.M.; Baal, van I.; Dongen, van J.L.J.; Hackeng, T.M.; Merkx, M.; Meijer, E.W.

    2009-01-01

    The covalent synthesis of complex biomolecular systems such as multivalent protein dendrimers often proceeds with low efficiency, thereby making alternative strategies based on noncovalent chemistry of high interest. Here, the synthesis of protein dendrimers using a strong but noncovalent

  19. Synthesis of efficient silica supported TiO_2/Ag_2O heterostructured catalyst with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau; Yassin, Jemal Mohammed; Ahmed, Kedir Ebrahim; Abdullah, Hairus

    2017-01-01

    Graphical abstract: Proposed charge separation mechanism and degradation of dye with photocatalyst under light irradiation. - Highlights: • n-type TiO_2 inside and p-type Ag_2O outside was designed. • The p–n junction formation built in an electric field. • The p–n junction facilitates the electrons and holes separation. • The degradation of dye becomes more effective with Ag_2O/TiO_2 catalyst. - Abstract: We develop the n-type TiO_2 coated on SiO_2 support abbreviated as SiO_2/TiO_2 (ST) followed by deposition of p-type Ag_2O nanoparticles outside for the purpose of photocatalytic degradation of organic pollutants. Different composite catalysts were prepared with changing the amount AgNO_3 (such as 0%, 5%, 10%, 20%, and 30%) and the composites were abbreviated as ST, STA-5, STA-10, STA-20, and STA-30, respectively. The composite catalysts were characterized with different techniques and tested for Rhodamine B (RhB) dye degradation under UV and visible light. Among the composite catalysts, the degradation efficiency of STA-20 was the highest and it degraded about 99% within 40 min under UV light-irradiation. However, the ST, STA-5, STA-10, and STA-30 composite catalysts could degrade about 21%, 47%, 58%, and 75% of the dye, respectively. Furthermore, the STA-5, STA-10, STA-20, and STA-30 composites were also tested and about 39%, 47%, 57%, and 42% of the dye, respectively, was degraded under visible light source. Hence, the formation of p–n junction heterostructure between n-type TiO_2 and p-type Ag_2O could enhance the degradation of RhB in both UV and visible light irradiation. It could be also potentially applicable photocatalyst for environmental remediation.

  20. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production

    International Nuclear Information System (INIS)

    Ni, Dawei; Shen, Haiyan; Li, Huiqiao; Ma, Ying; Zhai, Tianyou

    2017-01-01

    Highlights: • Cu nanodots were decorated on TiO 2 surface through ball milling method. • Its size distribution was investigated in water and ethanolic medium. • Photocurrent response and hydrogen evolution was improved. • Performance was found to be dependent on size of Cu nanodots. - Abstract: Recently, copper species have been extensively investigated to replace Pt as efficient co-catalysts for the evolution of H 2 due to their low cost and relatively high activity. Cu nanoparticles less than 5 nm are successfully decorated on TiO 2 surface in this work by an easy and mild milling process. These Cu nanoparticles are highly dispersed on TiO 2 when the loading amount of Cu is no more than 10 wt%. The sizes of Cu nanoparticles can be controlled by changing the milling environment and decrease in the order of Cu-ethanol > Cu-water > Cu nanoparticles obtained through drying milling. The highest and stable hydrogen generation can be realized on Cu/TiO 2 with 2.0 wt% Cu and sizes of Cu nanoparticles ranging from 2 to 4 nm, in which high and stable photocurrent confirms promoted photogenerated charge separation. Smaller Cu clusters are demonstrated to be detrimental to hydrogen evolution at same Cu content. High loading of Cu nanoparticles of 2–4 nm will benefit photogenerated electron-hole recombination and thus decrease the activity of Cu/TiO 2 . The results here demonstrate the key roles of Cu cluster size in addition to Cu coverage on photocatalytic activity of Cu/TiO 2 composite photocatalysts.

  1. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution

    International Nuclear Information System (INIS)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • Doping of Ce into Fe 3 O 4 was achieved based on a facile solvothermal method. • After doping, the removal capacity was increased by 5 times for “Sb(V)” and 2 times for “Sb(III)”. • Decreasing pH improved adsorption of Sb(V) but decreased adsorption of Sb(III). • Antimony sorption mechanisms on Ce-doped Fe 3 O 4 were illustrated. - Abstract: Aqueous antimony (Sb) pollution from human activity is of great concern in drinking water due to its adverse health effect. Magnetic Fe 3 O 4 particles, with high separation ability from solution, have been considered as a low-cost Sb adsorbent for contaminants. However, the limited adsorption capacity has restricted its practical application. In this study, a solvothermal approach was developed for doping Ce(III) into Fe 3 O 4 , thereby increasing the adsorption efficacy for both Sb(III) and Sb(V). In contrast to un-doped Fe 3 O 4 , the adsorption capacity towards Sb(III) and Sb(V) in Ce-doped materials increased from 111.4 to 224.2 mg/g and from 37.2 to 188.1 mg/g at neutral pH, respectively. Based on the combined results of XPS, XRD, and FTIR, it confirmed that Ce atom successfully doped into the Fe 3 O 4 structure, resulting in the decreased particle size, increased the surface area, and isoelectric point. Furthermore, the vibrating sample magnetometer (VSM) results showed that the Ce doping process had some side effects on the primitive magnetic property, but remaining the high separation potential during water treatment. According to the high removal efficiency and magnetic property, the Ce-doped Fe 3 O 4 of great simplicity should be a promising adsorbent for aqueous Sb removal.

  2. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    Science.gov (United States)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  3. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  4. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  5. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres

    Science.gov (United States)

    Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang

    2017-12-01

    A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.

  6. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lifeng; Zhao, Di; Yang, Yang [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-03-15

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.

  7. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction.

    Science.gov (United States)

    Li, Aitao; Acevedo-Rocha, Carlos G; Sun, Zhoutong; Cox, Tony; Xu, Jia Lucy; Reetz, Manfred T

    2018-02-02

    Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Shuai Li; Bo Li; Liang Ma; Jia Yang; Hangxun Xu

    2017-01-01

    Facile synthetic approaches toward the development of efficient and durable nonprecious metal catalysts for the oxygen reduction reaction (ORR) are very important for commercializing advanced electrochemical devices such as fuel cells and metal-air batteries.Here we report a novel template approach to synthesize mesoporous Fe-N-doped carbon catalysts encapsulated with Fe3C nanoparticles.In this approach,the layer-structured FeOCl was first used as a template for the synthesis of a three-dimensional polypyrrole (PPy) structure.During the removal of the FeOCl template,the Fe3+ can be absorbed by PPy and then converted into Fe3C nanoparticles and Fe-N-C sites during the pyrolyzing process.As a result,the as-prepared catalysts could exhibit superior electrocatalytic ORR performance to the commercial Pt/C catalyst in alkaline solutions.Furthermore,the Zn-air battery assembled using the mesoporous carbon catalyst as the air electrode could surpass the commercial Pt/C catalyst in terms of the power density and energy density.

  9. Efficient Synthesis of Glaziovianin A Isoflavone Series from Dill and Parsley Extracts and Their in Vitro/in Vivo Antimitotic Activity.

    Science.gov (United States)

    Semenov, Victor V; Tsyganov, Dmitry V; Semenova, Marina N; Chuprov-Netochin, Roman N; Raihstat, Mikhail M; Konyushkin, Leonid D; Volynchuk, Polina B; Marusich, Elena I; Nazarenko, Vera V; Leonov, Sergey V; Kiselyov, Alex S

    2016-05-27

    A concise six-step protocol for the synthesis of isoflavone glaziovianin A (GVA) and its alkoxyphenyl derivatives 9 starting with readily available plant metabolites from dill and parsley seeds was developed. The reaction sequence involved an efficient conversion of the key intermediate epoxides 7 into the respective β-ketoaldehydes 8 followed by their Cu(I)-mediated cyclization into the target series 9. The biological activity of GVA and its derivatives was evaluated using a panel of seven human cancer cell lines and an in vivo sea urchin embryo assay. Both screening platforms confirmed the antimitotic effect of the parent GVA (9cg) and its alkoxy derivatives. Structure-activity relationship studies suggested that compounds 9cd and 9cf substituted with trimethoxy- and dillapiol-derived B-rings, respectively, were less active than the parent 9cg. Of the evaluated human cancer cell lines, the A375 melanoma cell line was the most sensitive to the tested molecules. Notably, the target compounds were not cytotoxic against human peripheral blood mononuclear cells up to 10 μM concentration. Phenotypic readouts from the sea urchin assay unequivocally suggest a direct microtubule-destabilizing effect of isoflavones 9cg, 9cd, and 9cf.

  10. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    Science.gov (United States)

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solution-phase synthesis of a hindered N-methylated tetrapeptide using Bts-protected amino acid chlorides: efficient coupling and methylation steps allow purification by extraction.

    Science.gov (United States)

    Vedejs, E; Kongkittingam, C

    2000-04-21

    N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.

  12. Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation

    International Nuclear Information System (INIS)

    Han, Weijia; Ren, Long; Qi, Xiang; Liu, Yundan; Wei, Xiaolin; Huang, Zongyu; Zhong, Jianxin

    2014-01-01

    Graphical abstract: A graphene-based ternary composite was prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-pot hydrothermal process. The as-prepared ternary CdS/ZnO/graphene composite has shown excellent photoelectrochemical activity, which indicate that it may have a great potential application in photoelectrochemical hydrogen production from water reduction under sunlight. - Highlights: • A graphene-based ternary composite was prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-step hydrothermal method. • The CdS/ZnO/graphene composite demonstrated improved light-harvesting and superior durability photoelectrochemical activity. • The ternary composite can hinder the recombination of photo electrons and holes and improve charge transfer to enhance the photocatalytic activity. - Abstract: A novel ternary CdS/ZnO/graphene composite has been successfully prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-step hydrothermal method. The microstructures and properties have been examined by X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive spectroscope (EDS), transmission electron microscopy, Raman and UV–vis diffuse reflectance spectra (DRS). The characterization results reveal that the crystalline of the composite is very well, the graphene sheets were tightly coated with ZnO and CdS nanoparticles, and the light-harvesting was effectively strengthened. Taking photoelectrochemical test, the ternary CdS/ZnO/graphene composite exhibits enhanced photocatalytic activity compared with its foundation matrix binary composites and pure ZnO and CdS. The improved photocatalytic performance can be attributed to the enhanced light absorption, the extremely efficient charge separation, as well as superior durability of the ternary composite. It is proposed that graphene-based composites by coupling graphene to suitable, multiple

  13. Opening Remarks: SciDAC 2007

    Science.gov (United States)

    Strayer, Michael

    2007-09-01

    to Ken Kennedy, we shall designate the ECPI grants to beginning faculty in Computer Science as the Ken Kennedy Fellowship. Watch the ASCR website for more information about ECPI and other early career programs in the computational sciences. We look to you, our scientists, researchers, and visionaries to take X-scale computing and use it to explode scientific discovery in your fields. We at SciDAC will work to ensure that this tool is the sharpest and most precise and efficient instrument to carve away the unknown and reveal the most exciting secrets and stimulating scientific discoveries of our time. The partnership between research and computing is the marriage that will spur greater discovery, and as Spencer said to Susan in Robert Parker's novel, `Sudden Mischief', `We stick together long enough, and we may get as smart as hell'. Michael Strayer

  14. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  15. The Forest Industry Program. Synthesis; Efficient use of energy and other resources; Effektivare energi- och resursanvaendning. Syntes av det skogsindustriella programmet

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Carl

    2009-02-15

    system efficiencies but so far only theoretically. Concluding remarks The achievements so far have established a foundation for the industry to deal with expected constraints on emissions as well as on the impact of regulations on residual products. The exploitation of bio energy for internal and external commercial use has been successful and of great economic benefits to the industry and with a substantial contribution to meet the EU climate goals. Substantial knowledge has been achieved in various fields and few loopholes have been identified within the fields covered by the projects. Still the programme will encounter new and important issues that need to be addressed by the Industry in the future not the least due to the rapid development of the business environment. Issues of the future The most challenging issues in the future concern system design when closing processes, integration of systems, introduction of bio refinery concepts in the mill etc.

  16. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  17. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control

    Directory of Open Access Journals (Sweden)

    Salunke GR

    2014-05-01

     nm (AgAuNPs, respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO3 within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO3 and HAuCl4, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20–30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%–99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii. Conclusion: This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms. Keywords: P. zeylanica, AgNPs, AuNPs, AgAuNPs, biofilm inhibition and disruption, GC-TOF-MS

  18. Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Tahmasbi, Bahman; Yari, Ako [Univ. of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-05-15

    N-Propylsulfamic acid supported onto magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at 100 .deg. C under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.

  19. Environmental Friendly Azide-Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3-Triazole Derivatives by Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘建明; 刘慕文; 岳园园; 姚美焕; 卓克垒

    2012-01-01

    An efficient click synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, epoxides, terminal alkynes, and sodium azides in the presence of copper salts and relative benzimidazole salts have been developed. This procedure eliminates the need to handle potentially organic azides, which are generated in situ. A broad spec- trum of substrates can participate in the process effectively to produce the desired products in good yields.

  20. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  1. Some remarks on a scenario of supersymmetry in quantum mechanics

    International Nuclear Information System (INIS)

    Jannussis, A.; Tsohantzis, I; Vavougios, D.

    1990-01-01

    Some remarks are given on a recent paper of Lahiri, Kumar Roy and Bagchi who have constructed a scenario of supersymmetry in quantum mechanics by imposing a structure on the raising and lowering operators

  2. Remarks on the elaboration of an English–Spanish ...

    African Journals Online (AJOL)

    Spanish word-combination dictionary examined here, some concluding remarks are made with regard to the educational implications of this kind of dictionary primarily aimed at intermediate- to advanced-level Spanish-speaking EFL learners.

  3. Tris(2-aminoethyl)amine-based α-branched fatty acid amides - Synthesis of lipids and comparative study of transfection efficiency of their lipid formulations.

    Science.gov (United States)

    Erdmann, Nicole; Wölk, Christian; Schulze, Ingo; Janich, Christopher; Folz, Manuela; Drescher, Simon; Dittrich, Matthias; Meister, Annette; Vogel, Jürgen; Groth, Thomas; Dobner, Bodo; Langner, Andreas

    2015-10-01

    The synthesis of a new class of cationic lipids, tris(2-aminoethyl)amine-based α-branched fatty acid amides, is described resulting in a series of lipids with specific variations in the lipophilic as well as the hydrophilic part of the lipids. In-vitro structure/transfection relationships were established by application of complexes of these lipids with plasmid DNA (pDNA) to different cell lines. The α-branched fatty acid amide bearing two tetradecyl chains and two lysine molecules (T14diLys) in mixture with the co-lipid 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphoethanolamine (DOPE) (1/2, n/n) exhibits effective pDNA transfer in three different cell lines, namely Hep-G2, A549, and COS-7. The presence of 10% serum during lipoplex incubation of the cells did not affect the transfection efficiency. Based on that, detailed investigations of the complexation of pDNA with the lipid formulation T14diLys/DOPE 1/2 (n/n) were carried out with respect to particle size and charge using dynamic light scattering (DLS), ζ-potential measurements, and transmission electron microscopy (TEM). Additionally, the lipoplex uptake was investigated by confocal laser scanning microscopy (CLSM). Overall, lipoplexes prepared from T14diLys/DOPE 1/2 (n/n) offer large potential as lipid-based polynucleotide carriers and further justify advanced examinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application

    Science.gov (United States)

    Das, S.; Sa, K.; Alam, I.; Mahakul, P. C.; Raiguru, J.; Subramanyam, B. V. R. S.; Mahanandia, P.

    2018-05-01

    In this energy crisis era, the urgent calls for clean energy converter realizes the importance of photovoltaic device, which offers the highest probability of delivering a sustainable way of harvesting solar energy. The active absorber layer has its significance towards the performance of photovoltaic device by absorbing solar light and creating electron-hole pair inside layer. Being a direct p-type semiconductor, Cu2ZnSnS4 generally referred as CZTS has emerged as potential absorber towards photovoltaics application in recent decades as it offers the advantage of tunable band gap near optimal region ˜1.45-1.65 eV favorably match the solar spectrum and a high absorption coefficient ˜104 cm-1. The further improvement in the performance of CZTS based photovoltaics has involved the use of carbon nanotubes (CNTs). Semiconductors hybridized with carbonaceous materials (CNTs) have been the center of attraction in the scientific community with beneficial contribution in enhancing optoelectronic properties. The incorporation of CNTs shows effectiveness in charge carrier transfer pathways which ultimately could enhance the photo conversion efficiency (PCE) of photovoltaic device cell (PVC). Here, a facile hydrothermal one-pot synthesis of CZTS nanoparticles and MWCNTs composite towards photovoltaics application is reported. The phase and structural analysis of CZTS nanoparticles as well as CZTS/MWCNTs composite is done by XRD. From FERSEM and TEM (LRTEM & HRTEM) analysis the CZTS nanoparticles decorated over the surface of MWCNTs is confirmed. The optical band gap of CZTS/MWCNTs composite is estimated to be 1.62 eV from UV-Visible spectra.

  5. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption.

    Science.gov (United States)

    Singh, Gurwinder; Lakhi, Kripal S; Kim, In Young; Kim, Sungho; Srivastava, Prashant; Naidu, Ravi; Vinu, Ajayan

    2017-09-06

    A simple and efficient way to synthesize activated mesoporous biocarbons (AMBs) with extremely high BET surface area and large pore volume has been achieved for the first time through a simple solid state activation of freely available biomass, Arundo donax, with zinc chloride. The textural parameters of the AMB can easily be controlled by varying the activation temperature. It is demonstrated that the mesoporosity of AMB can be finely tuned with a simple adjustment of the amount of activating agent. AMB with almost 100% mesoporosity can be achieved using the activating agent and the biomass ratio of 5 and carbonization at 500 °C. Under the optimized conditions, AMB with a BET surface area of 3298 m 2 g -1 and a pore volume of 1.9 cm 3 g -1 can be prepared. While being used as an adsorbent for CO 2 capture, AMB registers an impressively high pressure CO 2 adsorption capacity of 30.2 mmol g -1 at 30 bar which is much higher than that of activated carbon (AC), multiwalled carbon nanotubes (MWCNTs), highly ordered mesoporous carbons, and mesoporous carbon nitrides. AMB also shows high stability with excellent regeneration properties under vacuum and temperatures of up to 250 °C. These impressive textural parameters and high CO 2 adsorption capacity of AMB clearly reveal its potential as a promising adsorbent for high-pressure CO 2 capture and storage application. Also, the simple one-step synthesis strategy outlined in this work would provide a pathway to generate a series of novel mesoporous activated biocarbons from different biomasses.

  6. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO{sub 2} nanocrystals as high rate lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boyang, E-mail: byliu@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Shao, Yingfeng, E-mail: shaoyf@lnm.imech.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics (China); Zhang, Yuliang, E-mail: ylzhang@shmtu.edu.cn; Zhang, Fuhua, E-mail: fhzhang@shmtu.edu.cn; Zhong, Ning, E-mail: ningzhong@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Li, Wenge, E-mail: wgli@shmtu.edu.cn [Shanghai Maritime University, Merchant Marine College (China)

    2016-12-15

    A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO{sub 2} nanocrystals (MoO{sub 2}@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO{sub 2} nanocrystals, resulting in the formation of core-shell structure. The MoO{sub 2} nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO{sub 2} nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO{sub 2} nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO{sub 2}@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g{sup −1} after 50 cycles at a current density of 3 A g{sup −1}, owing to the effective protection of carbon shell.

  7. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5',5'-triphosphate bridge.

    Science.gov (United States)

    Zytek, Malgorzata; Kowalska, Joanna; Lukaszewicz, Maciej; Wojtczak, Blazej A; Zuberek, Joanna; Ferenc-Mrozek, Aleksandra; Darzynkiewicz, Edward; Niedzwiecka, Anna; Jemielity, Jacek

    2014-12-07

    A trimethylguanosine (TMG) cap is present at the 5' end of several small nuclear and nucleolar RNAs. Recently, it has been reported that the TMG cap is a potential nuclear import signal for nucleus-targeting therapeutic nucleic acids and proteins. The import is mediated by recognition of the TMG cap by the snRNA transporting protein, snurportin1. This work describes the synthesis and properties of a series of dinucleotide TMG cap (m3(2,2,7)GpppG) analogs modified in the 5',5'-triphosphate bridge as tools to study TMG cap-dependent biological processes. The bridge was altered at different positions by introducing either bridging (imidodiphosphate, O to NH and methylenebisphosphonate, O to CH2) or non-bridging (phosphorothioate, O to S and boranophosphate, O to BH3) modifications, or by elongation to tetraphosphate. The stability of novel analogs in blood serum was studied to reveal that the α,β-bridging O to NH substitution (m3(2,2,7)GppNHpG) confers the highest resistance. Short RNAs capped with analogs containing α,β-bridging (m3(2,2,7)GppNHpG) or β-non-bridging (m3(2,2,7)GppSpG D2) modifications were resistant to decapping pyrophosphatase, hNudt16. Preliminary studies on binding by human snurportin1 revealed that both O to NH and O to S substitutions support this binding. Due to favorable properties in all three assays, m3(2,2,7)GppNHpG was selected as a promising candidate for further studies on the efficiency of the TMG cap as a nuclear import signal.

  9. Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater.

    Science.gov (United States)

    Kostić, Miloš; Radović, Miljana; Velinov, Nena; Najdanović, Slobodan; Bojić, Danijela; Hurt, Andrew; Bojić, Aleksandar

    2018-09-15

    In this study, co-precipitation synthesis of the mesoporous triple-metal nanosorbent from Fe, Cu, Ni layered double hydroxide (FeCuNi-LDH), on the basis of the data obtained from the TG analysis was carried out. The FTIR spectroscopy and XRD results confirm the formation of CuO, NiO and Fe 2 O 3 nanoparticles, while the EDX analysis does not show significant variations on the surface in elemental composition. BET analysis shows that FeCuNi-280 (FeCuNi-LDH calcinated at 280 °C) with mesoporous structure, has larger surface area compared to FeCuNi-LDH and FeCuNi-550 (FeCuNi-LDH calcinated at 550 °C). The value of pH PZC of FeCuNi-280 is found to be 8.66. Obtained FeCuNi-280 material showed the ability for efficient removal of dye Reactive Blue 19 (RB19) from water, with a very high sorption capacity of 480.79 mg/g at optimal conditions: the sorbent dose of 0.6 g/dm 3 , stirring speed of 280 rpm and pH 2. The kinetics results of the sorption process were well fitted by pseudo-second order and Chrastil model, and the sorption isotherm was well described by Sips, Langmuir and Brouers-Sotolongo model. FeCuNi-280 was easily regenerated with aqueous solution of NaOH, and reutilization was successfully done in five sorption cycles. The present study show that easy-to-prepare, relatively inexpensive nanosorbent FeCuNi-280 is among the best sorbents for the removal of RB19 dye from water solution and wastewater from textile industry in wide range of pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: The formation mechanism and the structure changes during the application for CO oxidation.

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-04-13

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts towards CO oxidation. This study focuses on explaining the crystalline-amorphous-crystalline transformations during thermolysis process of Mn-MIL-100 and studying the structure changes during the reaction process for CO oxidation. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250°C (a-Mn-250) showed a smaller specific surface area (4 m2/g), but displayed a high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction process. When used a-Mn-250 were treated with reaction atmosphere at high temperature (named used a-Mn-250-S), the amorphous catalysts transformed to Mn2O3. Meanwhile, BET surface area (164 m2/g) and the catalytic performance both sharply increased. In addition, used a-Mn-250-S catalyst transformed from Mn2O3 to Mn3O4, resulting in the slightly decrease of catalytic activity under the presence of 1 vol% water vapor in the stream. A schematic of the structure changes during the reaction process was proposed. The achievement of our synthesis relies on the increase of BET surface area using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a high quantity of surface active oxygen species, oxygen vacancies and good low temperature reduction behavior. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie; Guo, Liping

    2015-01-01

    Highlights: • Novel hyperfine Co 3 O 4 nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co 3 O 4 nanocrystals and excellent e − transport rates. • A large current sensitivity of 955.9 μA cm −2 mM −1 toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co 3 O 4 nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co 3 O 4 nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co 3 O 4 -ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co 3 O 4 -macroporous carbon, Co 3 O 4 -reduced graphene oxide, and free Co 3 O 4 nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm −2 mM −1 between 0 and 0.8 mM and 955.9 μA cm −2 mM −1 between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl − ). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co 3 O 4 nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co 3 O 4 NPs in nanoscale spaces ensured intimate contact between Co 3 O 4 nanocrystals and the conducting OMC matrix). The superior catalytic activity and selectivity make Co 3 O 4 -OMC very promising for application in direct

  12. Facile synthesis of ultrafine Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie, E-mail: baoxj133@nenu.edu.cn; Guo, Liping, E-mail: guolp078@nenu.edu.cn

    2015-02-25

    Highlights: • Novel hyperfine Co{sub 3}O{sub 4} nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co{sub 3}O{sub 4} nanocrystals and excellent e{sup −} transport rates. • A large current sensitivity of 955.9 μA cm{sup −2} mM{sup −1} toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co{sub 3}O{sub 4} nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co{sub 3}O{sub 4}-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co{sub 3}O{sub 4}-macroporous carbon, Co{sub 3}O{sub 4}-reduced graphene oxide, and free Co{sub 3}O{sub 4} nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm{sup −2} mM{sup −1} between 0 and 0.8 mM and 955.9 μA cm{sup −2} mM{sup −1} between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl{sup −}). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co{sub 3}O{sub 4} nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co{sub 3}O{sub 4} NPs in nanoscale spaces ensured intimate contact between Co{sub 3}O{sub 4} nanocrystals and the

  13. Efficient synthesis of substituted uranocenes

    International Nuclear Information System (INIS)

    Miller, J.T.; DeKock, C.W.

    1979-01-01

    Dilithium n-butylcyclooctatetraenide is prepared by reaction of 2 equiv of n-butyllithium with 1 equiv of cyclooctatetraene in diethyl ether at 25 0 C. Treatment of this solution with 0.5 equiv of UCl 4 dissolved in tetrahydrofuran followed by Soxhlet extraction with hexane resulted in a 50% yield of 1,1'-di-n-butyluranocene based on cyclooctatetraene. Treatment of 1,1'-di-n-butyluranocene with nitrobenzene resulted in a 51% yield of azobenzene based on cyclooctatetraene

  14. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  15. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  16. Remarkably enhanced photoluminescence of hexagonal GdPO4·nH2O:Eu with decreasing size

    International Nuclear Information System (INIS)

    Lu Shaozhe; Zhang Jiahua; Zhang Jishen; Zhao Haifeng; Luo Yongshi; Ren Xinguang

    2010-01-01

    The hexagonal rhabdophane-type GdPO 4 hydrate (GdPO 4 ·nH 2 O) was synthesized via a simple hydrothermal process. The size and morphology of the products can be tunable by adjusting the pH of reaction systems through the addition of aqueous NaOH. The nanorods with a width of 50-100 nm and a length of about 1 μm were obtained in the absence of NaOH (pH = 2), while a significant reduction of size (width: ∼ 10 nm, length: ∼ 50 nm) was observed for the product synthesized in the presence of NaOH (pH = 10). Surprisingly, the small-sized product exhibits a remarkably enhanced photoluminescence quantum yield and long excited state lifetime in comparison with those of the large-sized product. This abnormal luminescence phenomenon is discussed and explained. The EDS and XPS measurements revealed the presence of Na + in the small-sized samples. These Na + cations were probably bonded to the surface O 2- dangling bonds, which thus reduces the number of surface defects that usually serve as the nonradiative energy transfer center channels. A considerable reduction of surface defect centers results in the increase of the emission efficiency and excited state lifetime in a small-sized sample. Obviously, the controlled synthesis of rare-earth-doped nanoparticles with a small size, but with relatively strong luminescence, is significant for their applications in the areas of technologies including optoelectronics, sensing and bioimaging.

  17. 2011 Asia Pacific Few-Body Conference Summary Remarks

    International Nuclear Information System (INIS)

    Gibson, B. F.

    2013-01-01

    These remarks represent the author’s personal perspective regarding ideas presented at this fifth Asia Pacific Conference on Few-Body Problems in Physics. They are not intended as a comprehensive summary of what we witnessed during this week of stimulating presentations and intense discussions. However, these remarks do characterize some of the physics we heard and some of the key questions raised. The ideas presented will hopefully outlive the rapporteurs who brought their work and that of others to our attention here in the International Hall of the Sungkyunkwan University in Seoul, Republic of Korea. (author)

  18. A Remarkable Recent Transition in the Solar Dynamo

    NARCIS (Netherlands)

    de Jager, C.; Akasofu, S.-I.; Duhau, S.; Livingston, W.C.; Nieuwenhuijzen, H.; Potgieter, M.S.

    2016-01-01

    We summarize the major aspects of the remarkable, fairly long lasting period(∼ 2005 to ∼ 2010) of low solar activity, that we will call the Transition. It is the transitionalstage between the Grand Maximum of the 20th century and a forthcoming (most probablyRegular) episode of solar activity. The

  19. Remarks on the low value obtained for the Hubble constant

    International Nuclear Information System (INIS)

    Jaakkola, Toivo

    1975-01-01

    Some remarks are made on the basis of the data given by Sandage and Tamman, suggesting that these authors have over-estimated the distances to the most luminous galaxies and obtained a value too low for the Hubble constant [fr

  20. Collisionless shocks and upstream waves and particles: Introductory remarks

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1981-01-01

    We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come

  1. Some remarks on electron scattering in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1988-01-01

    Potential scattering of electrons in a quantized radiation field is reconsidered. Some remarks are made on the validity of the Kroll-Watson scattering formula and on the close connection of this formula with the classical transition rate of scattering in a radiation field. (17 refs.)

  2. Polypyridyl iron(II) complexes showing remarkable photocytotoxicity ...

    Indian Academy of Sciences (India)

    aditya

    Polypyridyl iron(II) complexes showing remarkable photocytotoxicity in visible light. ADITYA GARAI a. , UTTARA BASU a. , ILA PANT b. , PATURU KONDAIAH*. ,b. AND. AKHIL R. CHAKRAVARTY*. ,a a. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore. 560012, India. E-mail: ...

  3. Discussant Remarks on Session: Statistical Aspects of Measuring the Internet

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Les

    1999-04-02

    These remarks will briefly summarize what we learn from the talks in this session, and add some more areas in Internet Measurement that may provide challenges for statisticians. It will also point out some reasons why statisticians may be interested in working in this area.

  4. The European Public Prosecutor's Office (EPPO): Introductory Remarks

    NARCIS (Netherlands)

    Vervaele, J.A.E.

    2018-01-01

    These introductory remarks deal with the reasons why the EPPO is perceived by some as a controversial body. These reasons are mirrored with the problem identification and the causes thereof. The size of EU fraud and related corruption and money laundering, both at the income and expenditure side, is

  5. Remarks concerning two sympatric seedeaters Poliospiza spp. in ...

    African Journals Online (AJOL)

    Turner, D.A., Finch, B.F, & Hunter, N.D. Remarks concerning the all-black coastal boubous. (Laniarius ... Currently, however, there is little evidence to support such a theory, and it is .... twigs with its beak in order to increase the size of the hole.

  6. Some remarks on the Bonnor-Swaminarayan solution

    International Nuclear Information System (INIS)

    Berezdivin, R.; Herrera, L.

    1976-01-01

    The letter re-examines the Bonnor-Swaminarayan solution with the aim to try a clarification of its physical interpretation. The radiative nature of the solution as suggested by Bicak is questioned and some remarks on this topic are given

  7. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  8. An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of its Biological Activities

    Energy Technology Data Exchange (ETDEWEB)

    Kategaonkar, Amol H.; Sonar, Swapnil S.; Pokalwar, Rajkumar U.; Shingate, Bapurao B.; Shingare, Murlidhar S. [Babasaheb Ambedkar Marathwada University, Maharashtra (India); Kategaonkar, Atul H. [Maharashtra Institute of Pharmacy, Maharashtra (India)

    2010-06-15

    An efficient and novel one-pot synthesis of new 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives from 1-naphthol, various anilines and formalin at room temperature grinding is presented. The six-membered N,O-heterocyclic skeleton was constructed via zirconyl(IV) chloride promoted Mannich type reaction. In vitro antimicrobial activities of synthesized compounds have been investigated against Gram-positive Bacillus subtilis, Gram negative Escherichia coli and two fungi Candida albicans and Aspergillus niger in comparison with standard drugs. The results of preliminary bioassay indicate that some of title compounds possess significant antibacterial and antifungal activity.

  9. Non-Covalent Supported of l-Proline on Graphene Oxide/Fe3O4 Nanocomposite: A Novel, Highly Efficient and Superparamagnetically Separable Catalyst for the Synthesis of Bis-Pyrazole Derivatives

    Directory of Open Access Journals (Sweden)

    Mosadegh Keshavarz

    2018-02-01

    Full Text Available A superparamagnetic graphene oxide/Fe3O4/l-proline nano hybrid that was obtained from the non-covalent immobilization of l-proline on graphene oxide/Fe3O4 nanocomposite was used as a new magnetically separable catalyst for the efficient synthesis of 4,4′-(arylmethylenebis(1H-pyrazol-5-ol derivatives. The prepared heterogeneous catalyst was characterized using FTIR, TGA, DTG, XRD, TEM, SEM, and elemental analysis techniques. Short reaction times (5–15 min, excellent yields (87–98%, and simple experimental procedure with an easy work-up are some of the advantages of the introduced catalyst.

  10. An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A and elaboration of the (Z,Z,E)-triene acid system.

    Science.gov (United States)

    Smith, Amos B; Dong, Shuzhi

    2009-03-05

    An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A (1), in conjunction with an effective, stereocontrolled protocol to arrive at the requisite (Z,Z,E)-triene acid system has been developed. Highlights of the core construction entail a three-component union, a KHMDS-promoted epoxide ring formation-ring opening cascade, a Takai olefination, and a chemoselective Sharpless dihydroxylation. Assembly of the triene acid system was then achieved via Stille cross-coupling with the ethyl ester of (Z,Z)-5-tributylstannyl-2,4-pentadienoic acid, followed by mild hydrolysis preserving the triene configuration.

  11. B2O3/Al2O3 as a new, highly efficient and reusable heterogeneous catalyst for the selective synthesis of β-enamino ketones and esters under solvent-free conditions

    International Nuclear Information System (INIS)

    Chen, Jiu-Xi; Gao, Wen-Xia; Jin, Hui-Le; Ding, Jin-Chang; Wu, Hua-Yue

    2010-01-01

    Boron oxide adsorbed on alumina (B 2 O 3 /Al 2 O 3 ) has been found to be a new and highly efficient heterogeneous catalyst for the synthesis of β-enamino ketones and esters by the enamination of various primary and secondary amines with β-dicarbonyl compounds under solvent-free conditions. The important features of this methodology are broad substrate scope, high yield, no requirement of metal catalysts, high regio- and chemoselectivity and environmental friendliness. In addition, the catalyst could be recovered easily after the reactions and reused without evident loss of reactivity. (author)

  12. Ultrasound-assisted synthesis of β-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Naghi Saadatjoo

    2017-02-01

    The present methodology offers several advantages, such as good yields, short reaction times and a recyclable catalyst with a very easy work up. In addition, the obtained results indicated that MNPs can be used as an effective and inexpensive catalyst for stereoselective synthesis of β-amino carbonyl by a one-pot three component condensation of aldehydes, ketones and amines.

  13. Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir-Blodgett organic field effect transistors.

    Science.gov (United States)

    Borshchev, O V; Sizov, A S; Agina, E V; Bessonov, A A; Ponomarenko, S A

    2017-01-16

    For the first time, the synthesis of organosilicon derivatives of dialkyl[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) capable of forming a semiconducting monolayer at the water-air interface is reported. Self-assembled monolayer organic field-effect transistors prepared from these materials using the Langmuir-Blodgett technique showed high hole mobilities and excellent air stability.

  14. Silica sulfuric acid and as an efficient catalyst for the Friedlander quinoline synthesis from simple ketones and ortho - amino aryl ketones under microwave irradiation

    International Nuclear Information System (INIS)

    Zolfigol, M. A.; Salehi, P.; Shiri, M.; Faal Rastegar, T.; Ghaderi, A.

    2008-01-01

    The synthesis of quinoline derivatives via Friedlander method from ortho-amino aryl ketones in the presence of a catalytic amount of silica sulfuric acid under solvent-free condition and microwave irradiation was described. A good range of simple ketones such as cyclohexanone and deoxybenzoin were used

  15. Efficient one-pot enzymatic synthesis of alpha-(1 -> 4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1 -> 4)-glucostdic disacchandes from maltose and five monosacchandes in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction Thus phosphorolysis...

  16. Efficient, highly enantioselective synthesis of selina-1,3, 7(11)-trien-8-one, a major component of the essential oil of Eugenia uniflora.

    Science.gov (United States)

    Kanazawa, A; Patin, A; Greene, A E

    2000-09-01

    The first synthesis of selina-1,3,7(11)-trien-8-one (1), a major constituent of the essential oil from the leaves of Eugenia uniflora, has been accomplished, with excellent stereo- and regiocontrol, in eight steps and in 12% overall yield from the known octalone derivative 2a.

  17. Highly Efficient Catalytic Synthesis of α-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair

    NARCIS (Netherlands)

    Belokon, Yuri N.; Kochetkov, Konstantin A.; Churkina, Tatiana D.; Ikonnikov, Nikolai S.; Larionov, Oleg V.; Harutyunyan, Syuzanna R.; Vyskočil, Štepán; North, Michael; Kagan, Henri B.

    2001-01-01

    A facile and fast enantioselective synthesis of α-amino acids with high ee values was achieved by the asymmetric alkylation of the glycine derivative under phase-transfer conditions with (R)- or (S)-2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN). The ee value of the catalyst can be as little as 40 %

  18. An Efficient Procedure Based on a MW-Assisted Horner–Wadsworth-Emmons Reaction for the Synthesis of (Z-3,3-Trisubstituted-a,b-unsaturated Esters

    Directory of Open Access Journals (Sweden)

    Ornella Azzolina

    2010-08-01

    Full Text Available A microwave-assisted HWE olefination process of readily accessible aryl-alkyl ketones has been developed to provide a rapid access to (Z-3,3-trisubstituted-α,β-unsaturated methyl esters, key building blocks for the synthesis of biologically active compounds.

  19. Ammonia treatment of wheat straw. 2. Efficiency of microbial protein synthesis, rumen microbial protein pool size and turnover, and small intestinal protein digestion in sheep.

    NARCIS (Netherlands)

    Oosting, S.J.; Viets, T.C.; Lammers-Wienhoven, S.C.W.; Bruchem, van J.

    1993-01-01

    Ammonia-treated wheat straw (AWS) was compared with untreated wheat straw (UWS) and untreated wheat straw supplemented with urea (SWS) in an experiment with 6 wether sheep. Microbial protein synthesis increased after ammonia treatment due to the higher intake of rumen degradable organic matter (OM).

  20. An efficient solvent-free synthesis of meso-substituted dipyrromethanes using SnCl2•2H2O catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh

    2012-07-01

    Full Text Available Highly rapid and simple methodology has been developed for the quantitative synthesis of meso-substituted dipyrromethanes from lowest pyrrole/aldehyde ratio. The method was carried out by using SnCl2•2H2O as a catalyst under solvent free condition. The method is environmentally friendly, easy to workup, and gives excellent yield of the products.

  1. Synthesis and Summary Report on State of the Art, Drivers and Stakeholders of Energy Efficiency in Agricullture, and Potential of Energy Saving Measures

    NARCIS (Netherlands)

    Visser, de C.L.M.; Buisonje, de F.E.; Ellen, H.H.; Stanghellini, C.; Voort, van der M.P.J.

    2012-01-01

    Improvements in the energy efficiency of agricultural production have the potential to significantly reduce energy inputs and thereby reducing production costs and greenhouse gas emissions. Energy efficiency analysis depicts the distribution of energy inputs in a given agricultural production system

  2. Remarkable recoveries: research and practice from a patient's perspective.

    Science.gov (United States)

    Barasch, Marc Ian

    2008-08-01

    Mind-body therapies are often portrayed in the literature as self-palliative, adjunctive, and complementary, but rarely as contributive to cure. Many physicians continue to view them as acceptable indulgences so long as they are harmless and the patient remains fully compliant with a standard treatment regimen. The possibility that such modalities might help drive the healing process itself is infrequently acknowledged. This article addresses the topic of such therapies, examining remarkable recoveries in cancer, and suggesting the need for a "Remarkable Recovery Registry" to expand the literature on these cases. The author discusses the importance of complementary alternative medicine, and emotional and pyschologic support in the treatment regimen, and the need for health care providers and patients to work together to provide the best emotional environment for the healing process.

  3. Adiabatic analysis of collisions. III. Remarks on the spin model

    International Nuclear Information System (INIS)

    Fano, U.

    1979-01-01

    Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems

  4. A remark on the energy conditions for Hawking's area theorem

    Science.gov (United States)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  5. Remarks of the SFRP working group about ICRP recommendations

    International Nuclear Information System (INIS)

    Schieber, C.; Cordoliani, Y.S.

    2005-01-01

    Remarks of the SFRP working group about ICRP recommendations. The International Commission on Radiological Protection has proposed last summer on its Web site the draft text of the 2005 ICRP recommendations for consultation. As it was done for the previous drafts, the French Society for Radiation Protection, has sent his comments to the ICRP, through a specific working group. The text sent to the ICRP is presented here to the readers of the SFRP's Journal. (author)

  6. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    Science.gov (United States)

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  7. Copper-doped silica cuprous sulfate: A highly efficient heterogeneous nano-catalyst for one-pot three-component synthesis of 1-H-2-substituted benzimidazoles from 2-bromoanilines, aldehydes, and [bmim]N3

    Directory of Open Access Journals (Sweden)

    Somayeh Behrouz

    2018-03-01

    Full Text Available A facile and highly efficient one-pot three-component synthesis of 1-H-2-substituted benzimidazole derivatives from readily available substrates catalyzed by copper-doped silica cuprous sulfate (CDSCS is described. In this method, treatment of diverse 2-bromoanilines, aldehydes, and [bmim]N3 in DMF at 110 °C in the presence of CDSCS as a highly efficient heterogeneous nano-catalyst affords the corresponding 1-H-2-substituted benzimidazoles in good to excellent yields. The CDSCS is an inexpensive and stable nano-catalyst that could be simply prepared, recovered and reused for many consecutive reaction runs without significant loss of its activity.

  8. Efficient automated synthesis of 2-(5-["1"8F]fluoropentyl)-2-methylmalonic acid (["1"8F]ML-10) on a commercial available ["1"8F]FDG synthesis module

    International Nuclear Information System (INIS)

    Liu, Shaoyu; Nie, Dahong; Jiang, Shende; Tang, Ganghua

    2017-01-01

    ["1"8F]ML-10 (2-(5-["1"8F]fluoro-pentyl)-2-methylmalonic acid) is a small molecule positron emission tomography (PET) probe for apoptosis imaging. Automated synthesis of ["1"8F]ML-10 was developed by using two different purification methods through a direct saponification procedure on a modified commercial ["1"8F]Fluoro-2-Deoxyglucose (["1"8F]FDG) synthesizer. C18 purification method 1: The final ["1"8F]ML-10 solution containing ethanol was obtained with radiochemical yields of 60±5% (n=5) at the end of bombardment (EOB) and radiochemical purity of 98% in 35 min. Al_2O_3 and SCX purification method 2: To avoid possible side effects of a conventional ethanol-containing formulation, an new ethanol-free solution of ["1"8F]ML-10 was also developed, the radiochemical yields was 50±5% (n=5, EOB) within 45 min and the radiochemical purity was 98%. - Highlights: • The production of ["1"8F]ML-10 was optimized by using a straightforward saponification procedure. • Automated synthesis was performed on a commonly FDG synthesis module. • An ethanol-containing ["1"8F]ML-10 formulation was obtained with high radiochemical yield in a shorter time. • An ethanol-free formulation method of ["1"8F]ML-10 was also developed.

  9. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Urata, Shuzo; Uno, Yukiko; Kurosaki, Yohei; Yasuda, Jiro

    2018-06-12

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection. Copyright © 2018. Published by Elsevier Inc.

  10. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    Science.gov (United States)

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.

  11. Synthesis of green TiO{sub 2}/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M.; Fasasi, T.A.; Dastageer, M.A. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Department of Environmental Health, Faculty of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah (Saudi Arabia); Qahtan, T.F.; Faiz, M.; Khattak, G.D. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2015-12-01

    Graphical abstract: - Highlights: • Facile strategy for synthesis of green catalyst (TiO{sub 2}/ZnO/CdS) was developed. • Clean synthesis of green catalyst was done using pulsed laser ablation in liquids. • Synthesized composite size ranges between 10 and 40 nm confirmed by HRTEM studies. • Enhanced improvement was noticed in the carriers transport in the visible region. • Visible region absorption opens door to many applications for solar energy harvesting. - Abstract: The main limitation on the applications of TiO{sub 2} as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO{sub 2}) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron–hole recombination in the TiO{sub 2} while CdS is used to increase the light harvesting efficiency of TiO{sub 2} in the visible spectral region. The absorption spectrum of the TiO{sub 2}/ZnO/CdS composite obtained from the UV–vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO{sub 2} whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  12. Hantzsch reaction and quinoxaline synthesis using 1-methyl-3-(2-(sulfooxyethyl-1H-imidazol-3-ium chloride as a new, efficient and BrØnsted acidic ionic liquid catalyst

    Directory of Open Access Journals (Sweden)

    Sami Sajjadifar

    2013-10-01

    Full Text Available In this work, the efficiency, generality and applicability of new BrØnsted acidic ionic liquid (BAIL 1-methyl-3-(2-(sulfooxyethyl-1H-imidazol-3-ium chloride {[Msei]Cl} as heterogeneous and green catalyst for organic transformations are studied. Herein, the following one-pot multi-component reactions in the presence of [Msei]Cl are investigated: (i the synthesis of quinoxaline derivatives from the reaction of phenylenediamines and 1,2-diketones in EtOH under mild conditions (room temperature, (ii the preparation of 1,4-dihydropyridines from one-pot multi component condensation of 1,3-dicarbonyl compounds, NH4OAcand aldehydes under solvent-free conditions at moderate temperature (90 °C. High yields, relatively short reaction times, efficiency, generality, clean process, simple methodology, low cost, easy work-up, ease of preparation and regeneration of the catalyst and green conditions (in the synthesis of the quinoxaline derivatives are advantages of the application of [Mesi]Cl as catalyst in the above organic reactions.

  13. Efficient Synthesis of Ethanol from CH4 and Syngas on a Cu-Co/TiO2 Catalyst Using a Stepwise Reactor

    Science.gov (United States)

    Zuo, Zhi-Jun; Peng, Fen; Huang, Wei

    2016-10-01

    Ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst is studied using experiments, density functional theory (DFT) and microkinetic modelling. The experimental results indicate that the active sites of ethanol synthesis from CH4 and syngas are Cu and CoO, over which the ethanol selectivity is approximately 98.30% in a continuous stepwise reactor. DFT and microkinetic modelling results show that *CH3 is the most abundant species and can be formed from *CH4 dehydrogenation or through the process of *CO hydrogenation. Next, the insertion of *CO into *CH3 forms *CH3CO. Finally, ethanol is formed through *CH3CO and *CH3COH hydrogenation. According to our results, small particles of metallic Cu and CoO as well as a strongly synergistic effect between metallic Cu and CoO are beneficial for ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst.

  14. Time-efficient and convenient synthesis of [18F]altanserin for human PET imaging by a new work-up procedure

    International Nuclear Information System (INIS)

    Massarweh, G.; Kovacevic, M.; Rosa-Neto, P.; Evans, A.C.; Diksic, M.; Schirrmacher, R.

    2009-01-01

    [ 18 F]Altanserin, an important PET radioligand for the in vivo imaging of the 5-HT 2A receptor, was synthesized from its precursor nitro-altanserin in DMF or DMSO at high temperatures of 150 deg. C in an overall radiochemical yield (EOB) of 23-25% after 75 min. A new solid phase work-up procedure involving the acidification of the crude reaction mixture and a C18-SepPak-solid phase separation preceded the final HPLC purification. This led to a significantly reduced synthesis time as a result of a stable and early elution from the HPLC column using improved HPLC conditions (MeOH/THF/NaOAc 0.05 N pH 5: 27/18/55, flow: 5 mL/min, Symetry Prep 7 μm C18 (Waters)). The synthesis was performed semi-automatically in a modified GE TracerLab synthesis module using an in-house-developed program. The synthesized [ 18 F]altanserin was used in our ongoing human and animal PET imaging studies.

  15. Time-efficient and convenient synthesis of [{sup 18}F]altanserin for human PET imaging by a new work-up procedure

    Energy Technology Data Exchange (ETDEWEB)

    Massarweh, G. [McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec (Canada)], E-mail: gassan.wassarweh@mcgill.ca; Kovacevic, M.; Rosa-Neto, P.; Evans, A.C.; Diksic, M. [McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec (Canada); Schirrmacher, R. [McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec (Canada)], E-mail: ralf.schirrmacher@mcgill.ca

    2009-11-15

    [{sup 18}F]Altanserin, an important PET radioligand for the in vivo imaging of the 5-HT{sub 2A} receptor, was synthesized from its precursor nitro-altanserin in DMF or DMSO at high temperatures of 150 deg. C in an overall radiochemical yield (EOB) of 23-25% after 75 min. A new solid phase work-up procedure involving the acidification of the crude reaction mixture and a C18-SepPak-solid phase separation preceded the final HPLC purification. This led to a significantly reduced synthesis time as a result of a stable and early elution from the HPLC column using improved HPLC conditions (MeOH/THF/NaOAc 0.05 N pH 5: 27/18/55, flow: 5 mL/min, Symetry Prep 7 {mu}m C18 (Waters)). The synthesis was performed semi-automatically in a modified GE TracerLab synthesis module using an in-house-developed program. The synthesized [{sup 18}F]altanserin was used in our ongoing human and animal PET imaging studies.

  16. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  17. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  18. Remarks on the 'Grenelle Environnement' portfolio of measures

    International Nuclear Information System (INIS)

    2009-01-01

    The Boston Consulting Group has presented its remarks on the economic impact of the portfolio of measures issued from the 'Grenelle de l'Environnement' workshop that was held in France and involved people with a variety of backgrounds (government representatives, politicians, companies, professional syndicates, NGOs, scientists and university professors, etc.). These measures (covering sectors such as agriculture, biodiversity, wastes, renewable energies, transport, buildings, risk prevention, etc.) are said to potentially generate 450 billions Euros of economic activities and 600,000 jobs during 12 years. Their direct impacts on the environment would be a 14 percent reduction in greenhouse gases between 2010 and 2020. Concerning renewable energies, investment focusing is suggested

  19. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  20. Unbound color, prefaced by remarks on baryon spectroscopy

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    Theoretical and experimental issues related to the possibility that color is unbound are surveyed. This implies that quarks, gluons and other particles carrying color can exist as isolated objects. It is surprisingly difficult to distinguish models with unbound color from those in which color is permanently confined. None-the-less, the present situation seems discouraging for unbound color because there is no unambiguous support for it and because the crucial prediction of formation of a colored gluon in e + e - collisions has been ruled out wherever sufficient data exists. The above survey is prefaced by remarks on the symmetric quark model for baryon spectroscopy

  1. Remarkable rates of lightning strike mortality in Malawi.

    Science.gov (United States)

    Mulder, Monique Borgerhoff; Msalu, Lameck; Caro, Tim; Salerno, Jonathan

    2012-01-01

    Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential lightning strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from lightning was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that lightning constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area.

  2. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  3. Remarkable Computing - the Challenge of Designing for the Home

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves

    2004-01-01

    The vision of ubiquitous computing is floating into the domain of the household, despite arguments that lessons from design of workplace artefacts cannot be blindly transferred into the domain of the household. This paper discusses why the ideal of unremarkable or ubiquitous computing is too narrow...... with respect to the household. It points out how understanding technology use, is a matter of looking into the process of use and on how the specific context of the home, in several ways, call for technology to be remarkable rather than unremarkable....

  4. Some remarks about large p/sub perpendicular/ spin effects

    International Nuclear Information System (INIS)

    Field, R.D.

    1977-01-01

    A discussion of the ingredients necessary to make predictions concerning single and double spin measurements in large p/sub perpendicular to/ inclusive processes is presented. Remarks are made as to what might be expected and what might be learned from such measurements. Various models for the production of large p/sub perpendicular to/ mesons have quite different spin structure and hence can be expected to give differing predictions. However, it is not possible at this time to make quantitative calculations, and it is possible (not probable) that the interesting spin observables will be negligibly small

  5. Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A

    2009-01-01

    the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups. Results To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2...... analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from...

  6. Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere.

    Science.gov (United States)

    Jimenez, Jose L

    2016-07-18

    This article summarises the Concluding remarks from the Faraday Discussion on Chemistry in the Urban Atmosphere. The following themes are addressed: (a) new results that inform our understanding of the evolving sources and composition of the urban atmosphere ("News"); (b) results that identify gaps in our understanding that necessitate further work ("Gaps"); (c) the emerging instrumentation revolution and some of the challenges that it brings; (d) the structural issues of insufficient support for the analysis of field campaigns; and (e) some important areas that were missing from this Faraday Discussion and that should receive an increasing focus in the future.

  7. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    Directory of Open Access Journals (Sweden)

    Francesco Pace

    2009-04-01

    Full Text Available Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate, we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as well as acylation reactions. Use of this catalyst in truly catalytic amounts (0.04-1.0 mol% resulted in highly selective transformations and yields over 95%. (Remark by the authors: We are describing only one example each for the various types of reactions. Therefore, it would be more appropriate to write (here and in the Introduction and in the Conclusion sections: “Wagner-Meerwein rearrangement, Friedel-Crafts alkylation and ring closure, as well as acylation reactions”

  8. A straightforward and efficient method for the synthesis of diversely substituted {beta}-aminoketones and {gamma}-aminoalcohols from 3-(N,N-dimethylamino)propiophenones as starting materials

    Energy Technology Data Exchange (ETDEWEB)

    Abonia, Rodrigo; Arteaga, Danny; Castillo, Juan; Insuasty, Braulio; Quiroga, Jairo; Ortiz, Alejandro, E-mail: rodrigo.abonia@correounivalle.edu.co [Universidad del Valle, Cali (Colombia). Department of Chemistry. Research Group of Heterocyclic Compounds

    2013-09-15

    Libraries of novel {beta}-aminoketones and {gamma}-aminoalcohols showing a wide structural diversity were easily obtained from a simple approach, using 3-(N,N-dimethylamino)propiophenone derivatives as key starting material. The procedure involved initially an N-alkylation of secondary benzylamines with propiophenone salts yielding the desired {beta}-aminoketones. Chemical or catalytic reduction of their carbonyl groups provided the final {gamma}-aminoalcohols in good yields. This protocol proved to be convenient as an alternative route for the synthesis of the local anesthetic Falicain Registered-Sign and for the topic antifungal drug Naftifine Registered-Sign . (author)

  9. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...... is potentially enantioselective, and key steps were the [2,3] sigmatropic rearrangement of 11 to 12 via the corresponding allylic selenide (86% yield) and ruthenium-catalyzed RCM of 13 to 14 (80%). (C) 1999 Elsevier Science Ltd. All rights reserved....

  10. A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester

    KAUST Repository

    Samal, Akshaya Kumar

    2016-11-24

    A versatile synthetic method was applied for the preparation of Sn containing bimetallic catalysts. The synthesis was performed by simply mixing the super hydride [LiB(C2H5)(3)H], with a metal (Ru, Rh or Ir) salt and an organotin complex in tetrahydrofuran solvent without using any surfactant. This leads to the formation of monodispersed M-Sn (M = Ru, Rh or Ir) bimetallic nanoparticles (NPs). These bimetallic catalysts show high performances in the hydrogenolysis of ester to the corresponding alcohol.

  11. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity.

    Science.gov (United States)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J; Jørgensen, Frank G; Als, Thomas D; Le Hellard, Stephanie; Espeseth, Thomas; Sullivan, Patrick F; Hultman, Christina M; Kjærgaard, Peter C; Schierup, Mikkel H; Mailund, Thomas

    2016-10-01

    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R 2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country. Copyright © 2016 by the Genetics Society of America.

  12. Escaping the flybottle: solipsism and method in Wittgenstein's Philosophical Remarks

    Directory of Open Access Journals (Sweden)

    Jônadas Techio

    2012-12-01

    Full Text Available The paper supports a dialectical interpretation of Wittgenstein's method focusing on the analysis of the conditions of experience presented in his Philosophical Remarks. By means of a close reading of some key passages dealing with solipsism I will try to lay bare their self-subverting character: the fact that they amount to miniature dialectical exercises offering specific directions to pass from particular pieces of disguised nonsense to corresponding pieces of patent nonsense. Yet, in order to follow those directions one needs to allow oneself to become simultaneously tempted by and suspicious of their all-too-evident "metaphysical tone" - a tone which, as we shall see, is particularly manifest in those claims purporting to state what can or cannot be the case, and, still more particularly, those purporting to state what can or cannot be done in language or thought, thus leading to the view that there are some (determinate things which are ineffable or unthinkable. I conclude by suggesting that in writing those remarks Wittgenstein was still moved by an ethical project, which gets conspicuously displayed in these reiterations of his attempts to cure the readers (and himself from some of the temptations expressed by solipsism.

  13. Au3+/Au0 Supported on Chromium(III Terephthalate Metal Organic Framework (MIL-101 as an Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available Post-synthesis modification is a useful method for the functionalization of metal–organic frameworks (MOFs. A novel catalyst Au@MIL-101-ED-SA (ED = ethylenediamine, SA = salicylaldehyde, containing coexisting Au3+ ions and Au0 nanoparticles, was prepared successfully by post-synthesis modification with ethylenediamine, salicylaldehyde and gold. Gold nanoparticles supported on MIL-101 (Au@MIL-101 were prepared successfully by the impregnation method. Au@MIL-101-ED-SA and Au@MIL-101 were characterized by N2 adsorption–desorption, X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectrometry. Au@MIL-101-ED-SA and Au@MIL-101 were applied as environmentally friendly catalysts in the three-component coupling reaction of aldehydes, amines, and alkynes for the preparation of diverse propargylamines. Au@MIL-101-ED-SA contained a fraction of cationic gold (Au3+/Au0 = 0.9 and showed higher catalytic activity than Au@MIL-101, which was prepared by the impregnation method. Furthermore, the reactions were performed under heterogeneous conditions and the novel catalyst was successfully recycled for four consecutive runs.

  14. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts

    KAUST Repository

    Chen, Wei; Fan, Zhongli; Lai, Zhiping

    2013-01-01

    strategy for fabricating efficiently core-shell heterostructured nanowires and provides the potential for developing their applications in electronic devices, for environmental remediation and in solar energy utilization fields. This journal is © The Royal

  15. Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling

    Directory of Open Access Journals (Sweden)

    Mujeeb Khan

    2017-01-01

    Full Text Available Suzuki-Miyaura coupling reaction catalyzed by the palladium (Pd-based nanomaterials is one of the most versatile methods for the preparation of biaryls. However, use of organic solvents as reaction medium causes a big threat to environment due to the generation of toxic byproducts as waste during the work up of these reactions. Therefore, the use of water as reaction media has attracted tremendous attention due to its environmental, economic, and safety benefits. In this study, we report on the synthesis of green Pd@graphene nanocatalyst based on an in situ functionalization approach which exhibited excellent catalytic activity towards the Suzuki–Miyaura cross-coupling reactions of phenyl halides with phenyl boronic acids under facile conditions in water. The green and environmentally friendly synthesis of Pd@graphene nanocatalyst (PG-HRG-Pd is carried out by simultaneous reduction of graphene oxide (GRO and PdCl2 using Pulicaria glutinosa extract (PGE as reducing and stabilizing agent. The phytomolecules present in the plant extract (PE not only facilitated the reduction of PdCl2, but also helped to stabilize the surface of PG-HRG-Pd nanocatalyst, which significantly enhanced the dispersibility of nanocatalyst in water. The identification of PG-HRG-Pd was established by various spectroscopic and microscopic techniques, including, high-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, ultraviolet–visible spectroscopy (UV-Vis, Fourier transform infrared spectroscopy (FT-IR, and Raman spectroscopy. The as-prepared PG-HRG-Pd nanocatalyst demonstrated excellent catalytic activity towards the Suzuki-Miyaura cross coupling reactions under aqueous, ligand free, and aerobic conditions. Apart from this the reusability of the catalyst was also evaluated and the catalyst yielded excellent results upon reuse for several times with marginal loss of its catalytic performance. Therefore, the method developed for the green

  16. Rapid and facile CuCl assistant synthesis of PtCu3 nanoframes as efficient catalysts for electroxidation of methanol

    Science.gov (United States)

    Bai, Lei; Bai, Yuwei

    2018-02-01

    Hollow-structured nanomaterials generally showed enhanced catalytic abilities due to their high utilization. In this work, a general method for the synthesis of PtCu3 nanoframes was reported with the employment of hexadecyltrimethylammonium chloride (CTAC), copper(I) chloride, and various kinds of platinum precursors such as K2PtCl6, H2PtCl6, and Pt(acac)2. It was revealed that the presence of CTAC was crucial for the formation of frame structures. On the one hand, CTAC could act as a structure director, and on the other hand, the galvanic replacement and etching effect of the chloride ions together with oxygen was also responsible for the formation of the frame structure. A similar effect was also evidenced in the case of hexadecyltrimethylammonium bromide. Finally, the as-obtained PtCu3 nanoframes demonstrated high catalytic abilities in the oxidation of methanol as a model reaction. [Figure not available: see fulltext.

  17. Controlled Synthesis of Heterostructured SnO2-CuO Composite Hollow Microspheres as Efficient Cu-Based Catalysts for the Rochow Reaction

    Directory of Open Access Journals (Sweden)

    Hezhi Liu

    2018-04-01

    Full Text Available In this work, we report the design and synthesis of a series of heterostructured SnO2-CuO hollow microspherical catalysts (H-SnO2(x-CuO, x is the weight ratio of Sn/Cu for the Rochow reaction. The microspherical catalysts with nanosheets and nanoparticles as building blocks were prepared by a facile one-pot hydrothermal method coupled with calcination. When tested for the Rochow reaction, the prepared H-SnO2(0.2-CuO composite exhibited higher dimethyldichlorosilane selectivity (88.2% and Si conversion (36.7% than the solid CuO, hollow CuO and other H-SnO2(x-CuO microspherical samples, because in the former there is a stronger synergistic interaction between CuO and SnO2.

  18. CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydro pyridines

    International Nuclear Information System (INIS)

    Safaeighomi, Javad; Ziarati, Abolfazl; Teymuri, Raheleh

    2012-01-01

    A simple one-pot synthesis of two derivatives of 1,4-dihydro pyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydro pyridines have attracted large interest due to pharmacological and biological activities

  19. Nano magnetite (Fe3O4, an efficient and robust catalyst for the one-pot synthesis of 1-(aryl(piperidin-1-ylmethylnaphthalene-2-ol and 1-(α-amido alkyl-2-naphthol under ultrasound irradiation

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary

    2017-01-01

    Full Text Available The direct three component reaction via condensation of aldehydes, 2-naphthol and piperidine or acetamide to generate 1-(aryl(piperidin-1-ylmethylnaphthalene-2-ol and N-((2-hydroxy naphthalene-1-yl(arylmethylacetamide derivatives has been carried out over Fe3O4 magnetic nanoparticle with high efficiency under ultrasound irradiation. These reactions were studied under different conditions. In terms of reaction time and yield, it was found that optimum results were obtained for the synthesis of 1-(aryl(piperidin-1-ylmethylnaphthalene-2-ol under solvent free condition and for preparation of N-((2-hydroxynaphthalene-1-yl(arylmethylacetamide in acetic acid under ultrasound irradiation at 80 °C. Clean methodologies, easy workup procedure, and high yields are some advantages of this work.

  20. General and efficient one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones from sugar terminal alkynes by Sonogashira/tetra-n- butylammonium permanganate oxidation.

    Science.gov (United States)

    Zhang, Fuyi; Wu, Xiaopei; Wang, Liming; Liu, Hong; Zhao, Yufen

    2015-11-19

    A new approach for one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones has been achieved by the reaction of various sugar terminal alkynes with heterocyclic(aryl) iodides at room temperature. This one-pot protocol includes Sonogashira coupling and mild n-Bu4NMnO4 oxidation reaction. This method is mild, general and efficient. Fifty-six examples have been given and the sugar/heterocyclic(aryl) 1,2-diketones were obtained in 71-94% yields. The sugar terminal alkynes include 9 structurally different sugars in pyranose, furanose, and acyclic form which have various protecting groups, sensitive groups, and sterically bulky substituents. The heterocyclic(aryl) iodides include sterically bulky heterocyclic compounds and iodobenzenes with electron-donating, electron-neutral, and electron-withdrawing substituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Remarks before the Beijing meeting of the pacific basin conference

    International Nuclear Information System (INIS)

    Rusche, B.C.

    1987-01-01

    A substantial amount of new generating capacity must be added in the United States before the turn of the century. Noting that the Light Water Reactor (LWR) has enjoyed a remarkably good safety record, the United States Department of Energy (DOE) is working actively to restore public and investor confidence in nuclear power. DOE is working with U.S. industry to encourage licensing reform, simplification and standardization of large plant designs, and resolution of the waste managment issues. We also are pursuing new, more tolerant, lower cost designs and are prepared to share our technology advances with other nations under mutually acceptable conditions and are determined to be a reliable supplier of equipment and enrichment services. (author)

  2. Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity

    Science.gov (United States)

    Li, Zhenqing; He, Chaoyu; Ouyang, Tao; Zhang, Chunxiao; Tang, Chao; Römer, Rudolf A.; Zhong, Jianxin

    2018-04-01

    We construct a class of two-dimensional (2D) phosphorus allotropes by assembling a previously proposed ultrathin metastable phosphorus nanotube into planar structures in different stacking orientations. Based on first-principles methods, the structures, stabilities, and fundamental electronic properties of these allotropes are systematically investigated. Our results show that these 2D van der Waals phosphorene allotropes possess remarkable stabilities due to the strong intertube van der Waals interactions, which cause an energy release of about 30 - 70 meV /atom , depending on their stacking details. Most of them are confirmed to be energetically more favorable than the experimentally viable α -P and β -P . Three of them, showing a relatively higher probability of being synthesized in the future, are further confirmed to be dynamically stable semiconductors with strain-tunable band gaps and intrinsic piezoelectricity, which may have potential applications in nanosized sensors, piezotronics, and energy harvesting in portable electronic nanodevices.

  3. Some remarks on the design of HIF current multiplication rings

    International Nuclear Information System (INIS)

    Reich, K.H.

    1983-12-01

    The conceptual design of heavy ion fusion drivers has now reached a state, where the overall approach has become fairly clear. One design features an RF linac plus current and beam multiplication rings. The present remarks concern the assignment of multiturn injection, beam storage and bunching to an optimized number of rings and transport lines, as well as some criteria for their designs. The main parameter constraints are discussed, showing how they can be met, although there is little flexibility at the present stage of understanding and technology. A shortened version of this report is scheduled for presentation at the ''INS International Symposium on Heavy Ion Accelerators and Their Application to Inertial Fusion'' Tokyo, January 23-27 1984. (author)

  4. Remarks on the Colonized Libido: Trying to Think beyond Patriarchy

    Directory of Open Access Journals (Sweden)

    Hilan Bensusan

    2004-01-01

    Full Text Available In these remarks I attempt to think through some of the consequences of the way we conceive and live our desires. I try to contrast those desires with both our idea of freedom and the way we usually understand nature. This takes me quickly to issues such as pornography, male identity and then to how we gain and preserve our self-esteem. This, in turn, takes me to issues that are somehow linked to the institutional and emotional structures of patriarchy under a regime of heterosexuality as a norm. I try to consider these issues from the point of view of someone who was trained within the practices and thoughts of masculinity and is bothered by the consequences of such training. I endeavour to find a way to rethink the colonization of our desires so that we can find paths to an exercise of our capacities of desire that could be somehow freer.

  5. Self-assembly of hollow MoS{sub 2} microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aishi; Cui, Renjie; He, Yanna; Wang, Qi [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Jian, E-mail: iamjzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Yang, Jianping [School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Li, Xing’ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China)

    2017-07-31

    Highlights: • A new hollow MoS{sub 2} microflakes are prepared by hydrothermal synthesis firstly. • SEM and TEM study show the structural nature of hollow microflakes in depth. • The unique hollow structures have large surface area owing to the cavity. • The hollow microflakes show better HER performance than their solid counterparts. - Abstract: Molybdenum disulfide (MoS{sub 2}) has emerged as a promising non-precious metal catalyst for hydrogen evolution reaction (HER) in recent years. Some strategies including nanotechnology as well as atom doping have been employed in the preparing of electrocatalysts for high-activity and stability. To the best of our knowledge, hollow MoS{sub 2} microflakes assembled from ultrathin nanosheets have not been prepared previously. In this work, a simple, facile and environmentally friendly hydrothermal synthesis was utilized for the fabrication of hollow MoS{sub 2} microflakes for the first time. The unique hollow structures have fascinating properties, such as the large surface and low density. The morphology and structure of MoS{sub 2} microflakes were confirmed by XRD, SEM, TEM and Raman. The composition of these materials was identified by the X-ray photoelectron spectroscopy. Notably, the as-prepared hollow MoS{sub 2} microflakes showed better electrocatalytic activity than other samples. The hollow flake-like structure can not only increase the active edge sites owing to the large specific surface area, but also enhance the electron transport to improve the electrocatalytic activity. Benefiting from these factors, the hollow MoS{sub 2} microflakes exhibited electrocatalytic activity and excellent stability with a low overpotential about 85 mV and a Tafel slope of 59 mV per decade.

  6. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  7. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution.

    Science.gov (United States)

    Pu, Mengjie; Guan, Zeyu; Ma, Yongwen; Wan, Jinquan; Wang, Yan; Brusseau, Mark L; Chi, Haiyuan

    2018-01-05

    A series of MIL-53(Fe) materials were synthesized using a solvothermal method under different temperature and time conditions and were used as catalysts to activate persulfate and degrade Orange G (OG). Influences of the above conditions on the crystal structure and catalytic behavior were investigated. Degradation of OG under different conditions was evaluated, and the possible activation mechanism was speculated. The results indicate that high synthesis temperature (larger than 170 °C) leads to poor crystallinity and low catalytic activity, while MIL-53(Fe) cannot fully develop at low temperature (100 or 120 °C). The extension of synthesis time from 5 h to 3 d can increase the crystallinity of the samples, but weakened the catalytic activity, which was caused by the reduction of BET surface area and the amount of Fe (II)-coordinative unsaturated sites. Among all the samples, MIL-53(Fe)-A possesses the best crystal structure and catalytic activity. In optimal conditions, OG can be totally decolorized after degradation for 90 min, and a removal rate of 74% for COD was attained after 120 min. The initial solution pH had great influence on OG degradation, with the greatest removal in acidic pH environment. ESR spectra showed that sulfate radical (SO 4 - ·), hydroxyl radical (OH·), persulfate radical (S 2 O 8 - ·), and superoxide radical (O 2 ·) exist in this system under acidic conditions. Furthermore, with the increase of pH, the relative amount of O 2 · increases while that of OH· and SO 4 - · decreases, resulting in a reduced oxidizing capacity of the system.

  8. The Social Interplay of Disciplinarity and Interdisciplinarity. Some Introductory Remarks

    Directory of Open Access Journals (Sweden)

    Reinhold Hedtke

    2006-12-01

    Full Text Available Social Science Education as a subject field in schools is an intrinsic pluridisciplinary feature, whatever disciplines are included, however it may be organised and wherever it may be institutionalised. Civic education, economic education, social education and historical education each comprise several academic disciplines even if they are thought to be completely independent subjects. From the start on, disciplinarity and interdisciplinarity are on the agenda for any subject related to social science education and are one of its main problems. For these introductory remarks interdisciplinarity can be simply defined as relating two or more academic disciplines or school subjects to each other if this is done in a purposeful, systematic, explicit and reflective way. The overarching goal is to improve education that is to enhance students' understandings of the worlds and their abilities to act within and towards them. A relationship between disciplines or subjects which misses one or more of the four characteristics can be called pluridisciplinary or multidisciplinary (cf. Audigier 2006. In the following I first want to discuss some aspects of disciplinarity and interdisciplinarity at schools and at universities and the weakness of interdisciplinarity. I sketch some social science based ideas on the interrelationship between the subject structure of the academic world and the world of schools (3. and of some tendency to commonalities or even unification of social sciences and related competencies (4.. I conclude with some remarks on different kinds of knowledge (5.. Last but not least, I'll give an overview on the papers in this issue of the Journal of Social Science Education (6..

  9. Study of various synthesis techniques of nanomaterials

    Science.gov (United States)

    Patil, Madhuri; Sharma, Deepika; Dive, Avinash; Mahajan, Sandeep; Sharma, Ramphal

    2018-05-01

    Development of synthesis techniques of realizing nano-materials over a range of sizes, shapes, and chemical compositions is an important aspect of nanotechnology. The remarkable size dependent physical & chemical properties of particles have fascinated and inspired research activity in this direction. This paper describes some aspects on synthesis and characterization of particles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes. A brief discussion on processing of thin-films is also described.

  10. A Highly Efficient Method for Synthesis of Bisarylmethylidenes of Cyclic Ketones in [BMIm]Cl/NaOH System as New and Recyclable Catalyst

    Directory of Open Access Journals (Sweden)

    Shahrzad Javanshir

    2014-03-01

    Full Text Available An ionic liquid 1-Butyl-3-methylimidazoliumchloride[BMIm]Cl/sodium hydroxide system, was employed as a catalyst for the fast and one-pot crossed aldol-condensation of various aromatic aldehydes and cyclic ketones, to produce a variety of substituted α,α'-bis(benzylidene-cycloalkanones under neat conditions. This process is simple, efficient and environmentally benign and proceeds in high yield and short reaction times. The ionic liquid can be recycled for subsequent reactions without any appreciable loss of efficiency.

  11. A novel sodium iodide and ammonium molybdate co-catalytic system for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide under ultrasound irradiation.

    Science.gov (United States)

    Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan

    2014-03-01

    The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. STICS: surface-tethered iterative carbohydrate synthesis.

    Science.gov (United States)

    Pornsuriyasak, Papapida; Ranade, Sneha C; Li, Aixiao; Parlato, M Cristina; Sims, Charles R; Shulga, Olga V; Stine, Keith J; Demchenko, Alexei V

    2009-04-14

    A new surface-tethered iterative carbohydrate synthesis (STICS) technology is presented in which a surface functionalized 'stick' made of chemically stable high surface area porous gold allows one to perform cost efficient and simple synthesis of oligosaccharide chains; at the end of the synthesis, the oligosaccharide can be cleaved off and the stick reused for subsequent syntheses.

  13. Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins.

    Science.gov (United States)

    Lin, Guo; Gao, Chaohong; Zheng, Qiong; Lei, Zhixian; Geng, Huijuan; Lin, Zian; Yang, Huanghao; Cai, Zongwei

    2017-03-28

    Core-shell structured magnetic covalent organic frameworks (Fe 3 O 4 @COFs) were synthesized via a facile approach at room temperature. Combining the advantages of high porosity, magnetic responsiveness, chemical stability and selectivity, Fe 3 O 4 @COFs can serve as an ideal absorbent for the highly efficient enrichment of peptides and the simultaneous exclusion of proteins from complex biological samples.

  14. Vanillin Synthesis from 4-Hydroxybenzaldehyde

    Science.gov (United States)

    Taber, Douglass F.; Patel, Shweta; Hambleton, Travis M.; Winkel, Emma E.

    2007-01-01

    A regioselective, safe and efficient method for the synthesis of vanillin from 4-hydroxybenzaldehyde is being described. The vanillin derived from the process is cheap and can be used as a flavor or in the paper industry.

  15. Synthesis of calcium-phosphorous doped TiO{sub 2} nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sofia A., E-mail: sofiafonso@msn.com [CMEMS – Center of MicroElectroMechanical Systems, Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães (Portugal); IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Patel, Sweetu B. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Mechanical Engineering, Michigan Technological University, 49931 Houghton, MI (United States); Sukotjo, Cortino [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Departmenmt of Restorative Dentistry, University of Illinois at Chicago, 60612 Chicago, IL (United States); Mathew, Mathew T. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL (United States); Department of Biomedical Science, UIC School of Medicine at Rockford, 61107 Rockford, IL (United States); Filho, Paulo N. [IBTN/Br – Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP – Universidade Estadual Paulista, Faculdade de Ciências, 17033-360 Bauru, São Paulo (Brazil); Faculdade de Ciências, Departamento de Física, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo (Brazil); Celis, Jean-Pierre [Department of Materials Engineering, KU Leuven, 3001 Leuven (Belgium); and others

    2017-03-31

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO{sub 2}) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO{sub 2} nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO{sub 2} nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO{sub 2} nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, CaHPO{sub 4} and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated

  16. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  17. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH.

    Science.gov (United States)

    Kumar, V V; Pichon, C; Refregiers, M; Guerin, B; Midoux, P; Chaudhuri, A

    2003-08-01

    Presence of endosome-disrupting multiple histidine functionalities in the molecular architecture of cationic polymers, such as polylysine, has previously been demonstrated to significantly enhance their in vitro gene delivery efficiencies. Towards harnessing improved transfection property through covalent grafting of endosome-disrupting single histidine functionality in the molecular structure of cationic lipids, herein, we report on the design, the synthesis and the transfection efficiency of two novel nonglycerol-based histidylated cationic amphiphiles. We found that L-histidine-(N,N-di-n-hexadecylamine)ethylamide (lipid 1) and L-histidine-(N,N-di-n-hexadecylamine,-N-methyl)ethylamide (lipid 2) in combination with cholesterol gave efficient transfections into various cell lines. The transfection efficiency of Chol/lipid 1 lipoplexes into HepG2 cells was two order of magnitude higher than that of FuGENE(TM)6 and DC-Chol lipoplexes, whereas it was similar into A549, 293T7 and HeLa cells. A better efficiency was obtained with Chol/lipid 2 lipoplexes when using the cytosolic luciferase expression vector (pT7Luc) under the control of the bacterial T7 promoter. Membrane fusion activity measurements using fluorescence resonance energy transfer (FRET) technique showed that the histidine head-groups of Chol/lipid 1 liposomes mediated membrane fusion in the pH range 5-7. In addition, the transgene expression results using the T7Luc expression vector convincingly support the endosome-disrupting role of the presently described mono-histidylated cationic transfection lipids and the release of DNA into the cytosol. We conclude that covalent grafting of a single histidine amino acid residue to suitable twin-chain hydrophobic compounds is able to impart remarkable transfection properties on the resulting mono-histidylated cationic amphiphile, presumably via the endosome-disrupting characteristics of the histidine functionalities.

  18. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis

    Science.gov (United States)

    Mandegarzad, Sakineh; Raoof, Jahan Bakhsh; Hosseini, Sayed Reza; Ojani, Reza

    2018-04-01

    In this study, a novel catalyst based on Cu-Pd bimetallic nanoparticles supported on nanoporous carbon composite (NPCC) is successfully fabricated through three-step process and used as an electrocatalyst towards hydrogen evolution reaction (HER). At the first step, MOF-199 is synthesized via two distinct strategies; (1) hydrothermal (HT) and (2) electrochemical (EC). Next, the synthesized MOF-199 is used as a template in order to prepare Cu/NPCC by direct carbonization under N2 atmosphere followed by galvanic replacement reaction of Cu metals by PdII ions. All the prepared materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and nitrogen adsorption/desorption measurements. The effect of synthesis method of MOF-199 on the electrocatalytic activity of the final product towards HER is investigated. The electrochemical measurements indicate that Cu-Pd/NPCC derived from the MOF prepared by EC method (Cu-Pd/NPCC/EC) exhibits an enhanced catalytic activity towards HER in H2SO4 solution than the Cu-Pd/NPCC/HT. This improvement may be attributed to using of supporting electrolyte in the preparation of Cu-Pd/NPCC/EC.

  19. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  20. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity

    Science.gov (United States)

    Alajmi, Mohamed F.; Ahmed, Jahangeer; Hussain, Afzal; Ahamad, Tansir; Alhokbany, Norah; Amir, Samira; Ahmad, Tokeer; Alshehri, Saad M.

    2018-04-01

    Iron oxide (Fe3O4) nanoparticles (NPs) were prepared at room temperature by one-step synthesis via green chemistry using aqueous extracts of Pandanus odoratissimus leaves. Fe3O4 NPs show uniform particle size distribution with an average diameter of 5.0 nm. BET surface area and average pore diameter of the nanoparticles were found to be 150 m2/g and 3.0 nm, respectively. FTIR, Raman, EDAX and XPS studies were also carried out to confirm the phase purity of the prepared materials. Electrochemical water splitting reactions have been carried out using Fe3O4 NPs as electrocatalysts in 0.1 M KOH electrolyte solution. Polarization studies confirm dual nature of Fe3O4 electro-catalysts in water electrolysis for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Potentiodynamic polarization curves reveal low Tafel values of 295 and 126 mV/dec (± 2) for OER and ORR, respectively. The overpotential for water oxidation reaction was found to be 390 mV (± 5) at the current density of 1 mA/cm2 in 0.1 M KOH. Chronoamperometry and chronopotentiometry experiments were conducted for stability tests of the electrodes.