WorldWideScience

Sample records for relief devices piping

  1. Venting of gas deflagrations through relief pipes

    OpenAIRE

    Ferrara, Gabriele

    2006-01-01

    Vent devices for gas and dust explosions are often ducted to safety locations by means of relief pipes for the discharge of hot combustion products or blast waves (NFPA 68, 2002). The presence of the duct is likely to increase the severity of the explosion with respect to simply vented vessels posing a problem for the proper design of this venting configuration. The phenomenology of the vented explosion is complicated as the interaction of combustion in the duct with primary combustion in...

  2. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Science.gov (United States)

    2010-10-01

    ... heavier, except for sacrificial devices. Malleable metal, stainless steel, or ductile iron must be used in.... Stainless steel may be used for internal components such as shutoff discs and springs except where... inspections in § 180.416(f) of this subchapter. (iii) Mark each hose assembly with the month and year of its...

  3. CFD analysis of gas explosions vented through relief pipes.

    Science.gov (United States)

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  4. Pipe closing device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    The closing device closes the upper end of a support tube for monitoring samples. It meshes with the upper connecting piece of the monitorung sample capsule, and loads the capsule within the bore of the support tube, so that it is fixed but can be released. The closing device consists of an interlocking component with a chamber and several ratchets which hang down. The interlocking component surrounds the actuating component for positioning the ratchets. The interlocking and actuating components are movable axially relative to each other. (DG) [de

  5. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  6. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  7. Main steam system piping response under safety/relief valve opening events

    International Nuclear Information System (INIS)

    Swain, E.O.; Esswein, G.A.; Hwang, H.L.; Nieh, C.T.

    1980-01-01

    The stresses in the main steam branch pipe of a Boiling Water Reactor due to safety/relief valve blowdown has been measured from an in situ piping system test. The test results were compared with analytical results. The predicted stresses using the current state of art analytical methods used for BWR SRV discharge transient piping response loads were found to be conservative when compared to the measured stress values. 3 refs

  8. Structural analysis strategies of the pressurized relief and safety valves discharge piping of NPP Angra 1

    International Nuclear Information System (INIS)

    Lima, Maria Ines Prates de; Kuramoto, Edson; Suanno, Rodolfo

    2002-01-01

    The pressurizer relief and safety valve system provides the reactor coolant system overpressure protection and, therefore, it is fundamental for the security of a nuclear plant. This paper discusses the safety valve loop seal strategies adopted by others nuclear power plants over the world in order to attend the recommendations of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short Term Recommendations). The technical option adopted for Angra 1 consists in making specific modifications on the original piping and support configuration of the pressurizer relief and safety valve system. These modifications were proposed in order to reduce the high stress levels induced by the thermal-hydrodynamic loads caused by the discharge of the sub-cooled water during the opening of the relief or the safety valves. Several thermal-hydraulic models were tested to assess the influence of the seal water heating and the simultaneous opening of the valves in order to minimize the thermal hydrodynamic loads effects. The piping structural analysis was performed, using the computer program system KWUROHR, to satisfy the requirements of the appropriate equations of the code ASME Section III, Subsections NB3650 and NC3650. (author)

  9. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  10. Device for overlapping of a column of pump compressor pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Akhmerov, M.N.; Asadullin, Kh.F.; Prokopov, O.I.

    1980-02-16

    A device is proposed for automatic overlapping of pump compressor pipes of gushing petroleum and gas wells when losses occur near the well. The objective of the invention is to increase efficiency of the overlapping of the pipe column by recharging the device directly at the hole without disassembling the head equipment. This objective is achieved as follows. The device is equipped with elastic spacers located in the channels of a ring. They are mounted with the possibility of interaction with ball catches. A drawing and description of the device are given.

  11. Nonlinear fluid/structure interaction relating a rupture-disc pressure-relief device

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Shin, Y.W.; Youngdahl, C.K.

    1983-01-01

    Rupture disc assemblies are used in piping network systems as a pressure-relief device. The reverse-buckling type is chosen for application in a liquid metal fast breeder reactor. This assembly is used successfully in systems in which the fluid is highly compressible, such as air; the opening up of the disc by the knife setup is complete. However, this is not true for a liquid system; it had been observed experimentally that the disc may open up only partially or not at all. Therefore, to realistically understand and represent a rupture disc assembly in a liquid environment, the fluid-structure interactions between the liquid medium and the disc assembly must be considered. The methods for analyzing the fluid and the disc and the mechanism interconnecting them are presented. The fluid is allowed to cavitate through a column-cavitation model and the disc is allowed to become plastically deformed through the classic Von Mises' yield criteria, when necessary

  12. RELAP5/MOD3 assessment for calculation of safety and relief valve discharge piping hydrodynamic loads

    International Nuclear Information System (INIS)

    Stubbe, E.J.; VanHoenacker, L.; Otero, R.

    1994-02-01

    This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in the calculation of transient hydrodynamic loads on safety and relief discharge pipes. Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by EPRI. The hydrodynamic loads are very important for the discharge piping design because of the fast opening of the valves and the presence of liquid in the upstream loop seals. The code results are compared to experimental load measurements performed at the Combustion Engineering Laboratory in Windsor (US). Those measurements were part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident. This particular kind of transients challenges the applicability of the following code models: two-phase choked discharge; interphase drag in conditions with large density gradients; heat transfer to metallic structures in fast changing conditions; two-phase flow at abrupt expansions. The code applicability to this kind of transients is investigated. Some sensitivity analyses to different code and model options are performed. Finally, the suitability of the code and some modeling guidelines are discussed

  13. Experiments about the integrity of BWR relief pipes in postulated radiolysis gas combustion. Scenario No.2. Minor steam leakages without any lowering of the water level

    International Nuclear Information System (INIS)

    Friedrich, A.; Grune, J.; Sempert, K.; Stern, G.; Kuznetsov, M.; Redlinger, R.; Breitung, W.; Franke, T.

    2008-01-01

    The experiments described in this article were performed to study this comprehensive radiolysis gas scenario: - The relief pipe is filled completely with radiolysis gas (2H 2 +O 2 ). - After opening of the S and R valve, the radiolysis gas is compressed adiabatically by the incoming steam without mixing. - Roughly at the point of peak pressure in the relief pipe (20 bar) the radiolysis gas ignites. This dynamic scenario was studied in steady-state model experiments with a test pipe which corresponds to the relief pipes installed in KKP-1 in terms of materials, dimensions, and manufacturing control. The initial conditions and boundary conditions of the experiments were conservative. In the course of the tests, the maximum dynamic strain and the residual plastic deformation of the test pipe were measured via the transient detonation load. The maximum dynamic strain measured was 0.75%, the maximum residual plastic strain reached 0.15%. The pipe suffered no other deformation above and beyond this slight plastic strain. The radiolysis gas detonation was simulated very well numerically. Using the calculated pressure loads in a structural dynamics model also showed good agreement with the measured maximum dynamic pipe strains. In this way, the experimental findings were confirmed theoretically. The experiments and the calculations showed that postulated radiolysis gas reactions during pressure relief cannot jeopardize the integrity of the relief pipe. (orig.)

  14. Device for covering a string of pump-compressor pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Prokopov, O.I.; Rastorgyev, M.A.

    1982-01-01

    The invention refers to oil field equipment, and more specifically to devices for automatic coverage of the flow of gusher oil and gas wells during the development of a fire near the well. A device is described for covering the string of pump-compressor pipes which includes a housing with piston connected to the string of pump-compressor pipes, shoe, seat and assembly for fixing the piston in the upper position with heat-sensitive substance. It is distinguished by the fact that in order to improve reliability of its triggering when a fire develops, the assembly for fixing the piston is equipped with hydraulic cylinders whose rods are connected to the piston, and the heat sensitive substance is placed in the vessels whose cavities are connected to the above-piston cavities of the hydraulic cylinders and are connected by a common collector.

  15. Effect of initial fluid-system pressures on the behavior of a rupture-disc pressure-relief device

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Shin, Y.W.; Kot, C.A.

    1983-01-01

    Rupture disc assemblies are used in piping network systems as a pressure-relief device to protect the system from being exposed to excess pressures. Among the various disc assemblies, the reverse-buckling type is chosen for application in the Clinch River Breeder Reactor. This rupture-disc assembly consists of a portion of a thin spherical shell with its convex side subjected to the fluid system. The reverse-buckling type rupture disc assemblies have been used successfully in environments where the fluid is gas, i.e. highly compressible, and their performances have been judged as adequate in the liquid environment. To analyze the piping system, an analysis method is needed taking into consideration of the fluid/disc interaction, the nonlinear dynamic buckling phenomenon of the disc, and the possible cavitation of the fluid. A computer code SWAAM-I had been written at the Components Technology Division, Argonne National Laboratory. Among its many functions, one is to compute the response of 1-dimensional pressure pulse propagation including the effects of many different types of boundary conditions and possible pipe plasticity

  16. Device for forced lowering of pipes into a well

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Fedotov, I.N.; Prokopov, O.I.

    1982-01-01

    A device is proposed for forced lowering of pipes into a well which includes a load-lifting unit with boom, winch and cable of the block and tackle system, elevator, fixed and mobile tool grab coils, of which the latter is connected by tie cables to the drum of its drive and the reverse cables through rollers with weight-counterweights. In order to reduce metal consumption and to improve convenient operation, the drum of the drive of the mobile tool grab coil is connected to the winch shaft through a clutch and the rollers of the weights-counterweights are installed on the boom of the load-lifting unit in the plane of the block and tackle system.

  17. A checking device for pipes in which a high pressure fluid is circulated

    International Nuclear Information System (INIS)

    Bauerle, R.D.; Pitt, W.A.; White, M.A.

    1974-01-01

    A checking device for restricting the movements of a pipe in which a high pressure fluid is circulated, should said pipe happen to be ruptured. That device comprises a U-shaped checking, or retaining bar surrounding the pipe, and slightly spaced therefrom at each end of said bar a support member fixed to a frame member of the steam generator and an articulated connection between each of said ends and its respective support-member. That device can be applied to nuclear steam boilers [fr

  18. Safety catching device for pipes in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1976-01-01

    The safety catching device consists of a steel wire passed in U-shape around the pipe to be caught and supported by two anchor ties embedded in the concrete of the missile shielding cylinder. This flexible catching device is to cause the energy released in case of a pipe rupture to be absorbed and no dangerous bending shesses to be transferred to the walls of the missile shielding cylinder. (UWI) [de

  19. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  20. Device for measuring the flow rate of a fluid moving through a pipe

    International Nuclear Information System (INIS)

    Barge, Gilles; Bouchard, Patrick; Chaix, J.E.; Rigaud, J.L.; Vivaldi, Andre.

    1981-01-01

    A device is described for measuring the flow rate, in particular through large section pipes, such as those found in water type nuclear reactors, thermal power stations and gas loops. This device includes a plate drilled with holes crossed by a fluid and held in the pipe by deformable components on which are secured strain gauges forming the detecting element of an electronic device for processing the signal emitted by the gauges. This device can be employed, for instance, for measuring the flow rate of a coolant in the primary system of a nuclear reactor [fr

  1. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  2. A pleural vacuum relief device for pleural drain unit use in the hyperbaric environment.

    Science.gov (United States)

    Gelsomino, Marco; Tsouras, Theo; Millar, Ian; Fock, Andrew

    2017-09-01

    When a standard water-seal pleural drain unit (PDU) is used under hyperbaric conditions there are scenarios where excessive negative intrapleural pressure (IPP) and/or fluid reflux can be induced, risking significant morbidity. We developed and tested a pleural vacuum relief (PVR) device which automatically manages these risks, whilst allowing more rapid hyperbaric pressure change rates. The custom-made PVR device consists of a one-way pressure relief valve connected in line with a sterile micro filter selected for its specific flow capacity. The PVR device is designed for connection to the patient side sampling port of a PDU system, allowing inflow of ambient air whenever negative pressure is present, creating a small, controlled air leak which prevents excessive negative pressure. The hyperbaric performance of a Pleur-Evac A-6000 intercostal drain was assessed with and without this added device by measuring simulated IPP with an electronic pressure monitor connected at the patient end of the PDU. IPP readings were taken at 10, 15, 20 and 30 cmH₂O of suction (set on the drain unit) at compression rates of 10, 30, 60, 80, 90 and 180 kPa·min⁻¹ to a pressure of 280 kPa. At any compression rate of > 10 kPa·min⁻¹, the negative IPP generated by the Pleur-Evac A-6000 alone was excessive and resulted in back flow through the PDU water seal. By adding the PVR device, the generated negative IPP remains within a clinically acceptable range, allowing compression rates of at least 30 kPa·min⁻¹ with suction settings up to -20 cmH₂O during all phases of hyperbaric treatment. The PDU PVR device we have developed works well, minimising attendant workload and automatically avoiding the excessive negative IPPs that can otherwise occur. This device should only be used with suction.

  3. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  4. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  5. Development of measuring device for inner surfaces of embedded piping (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hirokuni [Ohyo Koken Kogyo Co., Ltd., Tokyo (Japan); Hatakeyama, Mutsuo [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan); Tachibana, Mitsuo; Yanagihara, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures {beta}-rays and {gamma}-rays and an inner cylindrical detector set after a shielding plate for shield of {beta}-rays measures {gamma}-rays. The {beta}-ray counting rates are derived by subtracting {gamma}-ray counts measured by the inner detector from {gamma}- and {beta}-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of {sup 60}Co was found to be about 0.17 Bq/cm{sup 2} with measurement time of 30 seconds. It is expected that 0.2 Bq/cm{sup 2} corresponding to clearance level of {sup 60}Co (0.4 Bq/g) can be evaluated with measurement time of 2 seconds, which is equal to measurement speed of 54 m/h. (author)

  6. Development of measuring device for inner surfaces of embedded piping (Contract research)

    CERN Document Server

    Itoh, H; Tachibana, M; Yanagihara, S

    2003-01-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures beta-rays and gamma-rays and an inner cylindrical detector set after a shielding plate for shield of beta-rays measures gamma-rays. The beta-ray counting rates are derived by subtracting gamma-ray counts measured by the inner detector from gamma- and beta-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of sup 6 sup 0 Co was found to be about 0.17 Bq/cm sup 2 with measurement time of 30 seconds. It is expected that 0.2 Bq/cm sup 2 co...

  7. Safety catching device for pipe lines in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1975-01-01

    The safety catching device for pipes in the missile shielding cylinders consists of a flexible steel cable surrounding the pipe in a distance in U-shape. The arrester cable - which works as a spring and is freely movable in all directions - is attached to the cylinder wall. For this, the ends of the cable are primarily fastened to anchor boxes which are then inserted in a stay tube with the same axis as the cable ends. The anchor boxes are fastened to the outer wall of the missile shielding cylinder by anchor bolts and holding plates. (DG/AK) [de

  8. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  9. Sample problem calculations related to two-phase flow transients in a PWR relief-piping network

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1981-03-01

    Two sample problems related with the fast transients of water/steam flow in the relief line of a PWR pressurizer were calculated with a network-flow analysis computer code STAC (System Transient-Flow Analysis Code). The sample problems were supplied by EPRI and are designed to test computer codes or computational methods to determine whether they have the basic capability to handle the important flow features present in a typical relief line of a PWR pressurizer. It was found necessary to implement into the STAC code a number of additional boundary conditions in order to calculate the sample problems. This includes the dynamics of the fluid interface that is treated as a moving boundary. This report describes the methodologies adopted for handling the newly implemented boundary conditions and the computational results of the two sample problems. In order to demonstrate the accuracies achieved in the STAC code results, analytical solutions are also obtained and used as a basis for comparison

  10. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  11. Device for film deposition and implantation of ions inside pipes of low diameter

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Perekrjostov, V.I.; Tyurin, Yu.N.; Wood, B.P.

    2002-01-01

    Two principally new devices, which can be applied to deposit coatings inside the pipes of low diameter, have been developed. The thickness of coatings and films can be varied. To deposit coatings of a low thickness (about 2 nm) on inside pipe walls using a vacuum-arc source and a sputtering device, which is composed of the pipe applied for anode cooling, the constant magnet, the magnetic circuit, the anode, the cathode, the pipe subjected for coating deposition, the cathode holder, etc. Using this device, we have deposited TiC, Ta, Cr, TiN coatings of various thickness ranging from scores of nano-meters to several micro-meters and with very good adhesion to the substrate. To increase adhesion, we applied 10 to 20 kV voltage during ion implantation to the substrate. To study element and structure composition, we applied RBS, TEM, SEM, XRD analyses, micro-hardness, wear resistance tests and also those for corrosion resistance in acid media. Another version of the source was based on the pulsed plasma-detonation technology and applied an evaporating electrode (for implantation) and a powder, which was injected into a plasma jet. The jet velocity reached several kilometers per second. Current of several kilo-amps passed through the plasma jet and increased its energy. The produced in this way coating thickness reached 30 to 400 micro-meter. Application of the vacuum-arc source for subsequent coating deposition allowed us to improve the servicing characteristics of surface layers. We have deposited NiAl, CoAl, A1 2 O 3 , WC-Co, Hastelloy and stainless steel SS316L

  12. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  13. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  14. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    Science.gov (United States)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  15. On the capacity-formula for pressure relief devices of tanks for dangerous goods; Die Kapazitaetsformel fuer Druckentlastungsvorrichtungen von Gefahrguttanks

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, J. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2000-09-01

    Each tank-container respectively portable tank for multimodal purposes has to be closed and fitted with safety devices (pressure relief devices). Pressure relief devices have to meet essential requirements concerning their total delivery capacity in condition of complete engulfment of the tank in fire. The total capacity of these devices should be sufficient to limit the pressure in the tank in each case to its test pressure, maximally. The total delivery capacity has to be determined by applying a formula which had been developed in the USA and taken over later on into international and national regulations on the transport of dangerous goods. The derivation of this formula will be described and evaluated with regard to given facts related to general thermodynamics and fire test results. (orig.) [German] Wesentliche Anforderung an Sicherheitseinrichtungen (Druckentlastungsvorrichtungen) fuer Tanks und Tankcontainer im multimodalen Verkehr ist, dass diese Einrichtungen im Feuerfall eine Gesamtdurchflussmenge aufweisen muessen, die zumindest einen Druckanstieg ueber den Pruefdruck hinaus verhindert. Die Ermittlung der Gesamtdurchflussmenge erfolgt nach einer in den USA entwickelten, in internationale und nationale Verkehrsvorschriften uebernommenen Zahlenwertgleichung (Kapazitaetsformel). Die Herleitung dieser Zahlenwertgleichung sowohl aus allgemein thermodynamischen als auch empirischen Gegebenheiten wird beschrieben und bewertet. (orig.)

  16. A welding device for a socket in a hard-to-get-to circular pipe connection piece

    International Nuclear Information System (INIS)

    Deschamps, J.P.

    1995-01-01

    The welding device allows for the assembly of a socket inside the collection piece of an auxiliary pipe at the bottom of a dissolver tube; the device comprises a support around which is mounted a rotating welding head with a gear motor. Clamping of the socket around the head is achieved by the means of pneumatically driven clamping sections. A pulley and gutter tension device is aimed at securing the electric and metal supply cables. 9 refs., 3 figs

  17. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  18. Device of connecting the metal sheet lining a concrete enclosure to a pipe opening inside the enclosure

    International Nuclear Information System (INIS)

    Petit, Guy.

    1975-01-01

    Said invention relates to a sealed device connecting a metal sheet anchored on the internal side of a concrete vessel containing a hot pressurized fluid, with a metallic pipe opening inside said vessel. It is intended for heat insulating structures so-called 'hot skin' used for the pressure vessels of some boiling water reactors. Said invention is intended for different types of said pipe such as: the penetrations for the inlets and outlets of the primary circuit, or anchoring cylindrical sheaths used as supports of components or other elements located inside said pressure vessel [fr

  19. Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures

    International Nuclear Information System (INIS)

    Uche, C; Elston, S J; Parry-Jones, L A

    2005-01-01

    Nematic liquid crystals have been shown to exhibit zenithal electro-optic bistability in devices containing sinusoidal and deformed sinusoidal gratings. Recently it has been shown that zenithal bistable states can also be supported at isolated edges of square gratings. In this paper, we present microscopic observations of bistability in cells containing sinusoidal gratings and long-pitch square gratings. We have also investigated a novel display based on square wells. High frame-rate video microscopy was used to obtain time-sequenced images when the devices were switched with monopolar pulses. These show that zenithal bistable switching can occur by two different processes: (i) domain growth (observed in cells containing sinusoidal gratings) and (ii) homogenous switching (observed in cells containing isolated edges

  20. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Oh Jae-Won

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics

  1. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Jae-Won Oh

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

  2. Device for inspection and/or repair of a pipe of a steam raising unit of a nuclear power station

    International Nuclear Information System (INIS)

    Vermaat, H.P.

    1986-01-01

    Eddy current sensors are introduced into the pipe from the steam raising unit chamber. The two-part device on the supporting pillar is used to support the sensors and to position them, and so is an arm connected to it via a clutch. It is accommodated inside the steam raising chamber, but can be operated remotely from outside the steam raising chamber. This reduces the radiation loading of the operating staff. (DG) [de

  3. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  4. Device for the automatic X-ray testing of welded joints of pipes

    International Nuclear Information System (INIS)

    Ries, K.; Hannoschieck, K.; Rozic, K.M.; Basler, G.

    1979-01-01

    The notification flows of the tested pipes determined by the ultrasonic inspection are transmitted to the X-ray film automatic charger in the X-ray test room. The roll table for the pipes from the ultrasonic inspection to the X-ray test room is provided with an arrangement for weld detection and tube lathe, so that the X-ray films can be set on the corresponding spot by means of a cantilever. (RW) [de

  5. Method and device for characterization of two-phase flow in pipes

    International Nuclear Information System (INIS)

    Skarsvaag, K.; Sunde, A.J.

    1993-01-01

    Gamma radiation transmission measurements are made with one-shot-collimation to determine the distribution of voids within a gas-liquid mixture flowing in a pipe. The distribution of voids in selected portions of the pipe, taken together with statistical and logical tests applied thereto, provides information from which are determined: type of flow pattern or flow regime, the profile of a large gas bubble in slug flow, and the gas and the liquid volume flow rates in slug flow. 4 refs

  6. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  7. Experimental analysis on a 1:2 scale model of the double light pipe, an innovative technological device for daylight transmission

    Energy Technology Data Exchange (ETDEWEB)

    Baroncini, C.; Boccia, O.; Chella, F.; Zazzini, P. [D.S.S.A.R.R. Faculty of Architecture, University ' ' G. D' Annunzio' ' Viale Pindaro 42, 65127 Pescara (Italy)

    2010-02-15

    In this paper the authors present the double light pipe, an innovative technological device, designed as an evolution of a traditional light pipe, which distributes daylight to underground areas of a building, illuminating, at the same time, the passage areas thanks to a larger collector and a second transparent pipe attached to the first one. Unlike the traditional light pipe, thanks to this double illuminating function it can be located in the middle of a room, despite its encumbrance. In this paper the technological design of the double light pipe is presented and the results of an experimental analysis on a reduced scale (1:2) model are shown. Internal illuminance data over horizontal and vertical work-planes were measured in various sky conditions with or without direct solar radiation. Being this innovative device obtained by a light pipe integrated with a second pipe, it performs like a traditional light pipe for the final room and, at the same time, illuminates the intermediate room giving it uniform and high quality light, particularly indicated for wide plant areas, such as show-rooms or museums. (author)

  8. Behavior of Corrosion of a Heat Pipe Cooling Device in a Computer

    Directory of Open Access Journals (Sweden)

    S. Rittidech

    2017-12-01

    Full Text Available The aim of this study was to perform life testing and to determine the effect of working time on the corrosion of a heat pipe used for cooling in a computer. The heat pipe was made from a copper tube. The heat pipe consists of evaporator and condenser section. It had a specification similar with the use in ordinary computers, the working fluid being distilled water. When the computer starts, the concentration of the copper solution slightly increases. The greater copper concentration was 0.00062 ppm upon 3000-5000 hours of testing. The surface traces of corrosion rises due to the oxidation of the porous material within the working fluid. The test found that oxygen (O and carbon (C are component contents.

  9. Evaluation of dynamic loads induced by transient regimes of fluid flows in the pipe systems and devices of reducing the loads and their effects

    International Nuclear Information System (INIS)

    Serban, Viorel; Chirita, Alexandru Mihai; Androne, Marian; Alexandru, Constantin; Ciuca, Camelia; Badara, Janina; Alexandru, Carmen

    1995-01-01

    The paper presents the analytic methods for estimating the dynamic effects induced in pipe systems in transient regimes. They are based on computation programs developed in order to check the behaviour of ECCS and EWS under 'water hammer effect' and the behaviour of the primary circuit system under stresses caused by pipe cracks. Computation examples are presented in order to emphasize the capabilities of the programs to model transient phenomena in complex pipe networks. The overpressure induced by the water hammer effect, as revealed by comparing several transient regimes, depends on the fluid viscosity, the initial speed, the duration of starting the transient regime, the system rigidity, etc. Values several ten times higher that the initial one could be thus reached. An overview of new types of devices designed for damping the effect of water hammer phenomenon, as well as of sustaining supports for pipe systems and equipment able to damp the vibrations produced by the transient regimes of fluid flows and seismic movements is presented. These devices have also to cope with the high shocks produced by pipe breakage as well as high static loads. The paper contains the following sections: 1. Introduction; 2. Evaluating dynamic loads associated to the water hammer phenomenon; 3. Determining loads associated to the water hammer phenomenon for the ECC system of the Cernavoda NPP Unit 1; 4. Device for reducing the water hammer effects; 5. Evaluating dynamic loads associated to pipe cracks; 6. Determining loads associated to pipe cracks in the Cernavoda NPP primary circuit; 7. Devices for absorbing and damping the dynamic loads in pipe systems and equipment; 8. Conclusions. (authors)

  10. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seniuk, P.J.

    1996-12-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, {open_quotes}Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plants{close_quotes}. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O&M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O&M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion.

  11. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    International Nuclear Information System (INIS)

    Seniuk, P.J.

    1996-01-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, open-quotes Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plantsclose quotes. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O ampersand M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O ampersand M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion

  12. ACED devices and SECAF supports for the control of structure, pipe network and equipment behaviour at seismic movements in order to enhance the safety margin

    International Nuclear Information System (INIS)

    Serban, Viorel; Prisecaru, I.; Cretu, D.; Moldoveanu, T.

    2002-01-01

    In order to enhance the safety margin of structure, pipe networks and equipment associated to the existing NPPs, the classic consolidation solutions are very expensive and many times, impossible to be implemented. Structures, pipe networks, systems and equipment have geometries imposed by the basic construction requirements, operating and safety requirements and their modifications is not always possible. In order to enhance the strength capacity of (new or old) structures, systems and equipment mechanical devices with controlled elasticity and damping (ACED) have been designed, constructed and experimented. These devices are capable to support very large static loads over which dynamic loads (shock, vibration and seismic movements) overlap (which are damped). To increase the strength capacity of (new or existing) pipe networks and equipment connecting with pipes, SECAF supports that allow displacements from thermal expansions with low reaction force have been designed, constructed and experimented. SECAF supports are capable elastically to take permanent loads over which shocks, vibrations and seismic movements (which are damp) overlap. ACED devices and SECAF supports can be used to rehabilitate the existing NPPs with law financial costs and an increase of their strength capacity up to 100% under seismic movements, shocks and vibrations. ACED devices and SECAF supports do not require maintenance, are not affected by presence of a radiation field and their estimated service-life is similar to the NPPs

  13. Approach for a modeling extension for relief valves in one-dimensional calculation codes with respect to the evaluation of water hammer effects in piping systems; Ansatz zur Erweiterung der Modellierung von Rueckschlagklappen in 1-D Rechencodes hinsichtlich der Bewertung von Druckstoessen in Rohrleitungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Frings, Malte; Malcher, Daniel [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Relief valves are used in industrial plants for instance as safeguarding of the system pressure in case of pump failures. Pump failures and automatic changeovers to redundant aggregates cause a flow reversal which induces the stop valve closure. This process can cause water hammer effects in the piping system. The backflow velocity defines the maximum load in the piping system. The presented approach taking into account this effect of medium displacement in the RELAP calculations yields significant differences to the former results. Validation using experimental data is required.

  14. Relief valve testing study

    International Nuclear Information System (INIS)

    BROMM, R.D.

    2001-01-01

    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  15. Device for achieving pressure balance in the steam generator of a power plant in case of a main-steam pipe or a feedwater pipe break

    International Nuclear Information System (INIS)

    Wietelmann, F.

    1978-01-01

    In order to increase the safety in the steam generator of a power plant in case of a pipe break, the possibility of a pressure balance between the feedwater inlet and the initial steam outlet chambers is allowed for. According to the invention, the partition wall separating these two chambers will exhibit several overflow openings, each of which will be provided with a closure and half of which may be opened to one side only, care having been taken that in case of an accident on occurrence of a certain differential pressure they will always be opened to the low-pressure side. As closures caps, which may be swing out of the way, or rupture diaphragms are mentioned. (UWI) 891 HP [de

  16. Alternative medicine - pain relief

    Science.gov (United States)

    Acupuncture - pain relief; Hypnosis - pain relief; Guided imagery - pain relief ... neck, shoulder, knee, or elbow) Osteoarthritis Rheumatoid arthritis Hypnosis is a focused state of concentration. With self- ...

  17. Protection and isolation device for pipe maintenance, particularly for pipes of nuclear power plants. Dispositif d'isolement et de protection pour intervention sur tuyauterie, notamment tuyauterie de centrale nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dohlen, G.; Le Marquis, J.C.; Oberlin, C.

    1984-09-28

    The device is aimed to be introduced and deployed inside a pipe, to collect and remove debris (dust or scraps) or foreign bodies, resulting from the work especially maintenance work being carried out. It comprises a central mast, a deformable sealing joint, mating with the interior of the conduit; a number of arms regularly distributed around the mast, which can be folded back against the mast, to permit introduction of the device into the conduit, each arm supporting the joint at one end and being pivoted on a common base at its other end; mechanical compression apparatus, connected to the mast and the base for deploying the apparatus, and flattening the joint against the interior surface of the conduit to which it is mated; and two sheets of material, each supported at its periphery by the joint, at least one of the sheets being suitable for isolating in sealed manner the space volumes which it delimits. The invention applies to maintenance operations for which the pipes have to be maintained under a controlled inert gas atmosphere, such as sodium circuits maintenance of nuclear power plants.

  18. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  19. A Designer Fluid For Aluminum Phase Change Devices. Performance Enhancement in Copper Heat Pipes Performance Enhancement in Copper Heat Pipes. Volume 3

    Science.gov (United States)

    2016-11-17

    comprised of a hollow metal shell filled with a small amount of working fluid creating a device that is extremely lightweight. Phase change devices...critical angle, the droplet unpins and the diameter decreases with a constant contact angle as the liquid core shrinks toward the center. Deegan et al...measurement system The thermocouple switch was encased in a box with fiberglass insulation to create an isothermal environment for the switch leads

  20. Dynamic simulation of relief line during loss of insulation vacuum of the ITER cryoline

    Science.gov (United States)

    Badgujar, S.; Kosek, J.; Grillot, D.; Forgeas, A.; Sarkar, B.; Shah, N.; Choukekar, K.; Chang, H.-S.

    2017-12-01

    The ITER cryoline (CL) system consists of 37 types of vacuum jacketed transfer lines which forms a complex structured network with a total length of about 5 km, spread inside the Tokamak building, on a dedicated plant bridge and in the Cryoplant building/area. One of them, the low pressure relief line (RL) recovers helium discharged from process safety relief valves of the different cryogenic users and is sent it back to the Cryoplant via heater and recovery system. The process pipe diameters of the RL vary from DN 50 to DN 200 and the length is more than 1500 m. Loss of insulation vacuum (LIV) of a CL is one of the worst scenarios apart from LIV in Auxiliary Cold Boxes (ACBs). The Torus and Cryostat CL is chosen to simulate the virtual LIV and to study the anticipated behavior of the RL. Both helium LIV (LIV due to leak in helium pipe) and air LIV (LIV due to air ingress in outer vacuum jacket of the cryoline) with and without fire) have been simulated during this study. After the brief description of the CL system, the paper will describe the EcosimPro® model prepared for the dynamic study. The paper will also describe the results like minimum temperature of RL, mass flow and maximum pressure in the RL which are essentially used to choose the type and location of safety relief devices to protect the CL process pipes.

  1. Intravenous sufentanil and morphine for post-cardiac surgery pain relief using patient-controlled analgesia (pca) device: a randomized double-blind clinical trial

    International Nuclear Information System (INIS)

    Alavi, S.M.; Kish, R.F.; Farsad, F.; Imani, F.; Sheikhvatan, M.

    2010-01-01

    Selection of the best analgesic technique in patients undergoing major surgeries can result in lower morbidity and satisfactory postoperative pain relief. In the present study, we tried to compare the effect of morphine and sufentanil on postoperative pain severity and hemodynamic changes by using patient-controlled analgesia (PCA) device in patients who were candidate for coronary artery bypass surgery (CABG). It was a randomized double-blinded clinical trial in which 120 patients aged 30-65 years, ASA physical status I-III, candidate for CABG in Shahid Rajaee hospital in Tehran were included. Before anesthesia, patients were randomly assigned to one of three groups to receive sufentanil (n=40), morphine (n=40) or normal saline (n=40). After tracheal extubation at intensive care unit, PCA was started by, sufentanil 4mg for the first group, morphine 2mg for the second group and normal saline, at same volume for the third group, intravenously with 10 minute lockout interval. Postoperative pain was evaluated by VAS scale, 1, 6, 12, 18 and 24 hours after extubation and systolic blood pressure, arterial oxygen saturation, PCO2 and PO2 were recorded 24 hours after extubation. VAS scores at rest revealed significantly less pain for patients in sufentanil and morphine groups than normal saline group, throughout the twenty-four hours after operation (P<0.001). However, there were no significant differences in the means of VAS scores between sufentanil and morphine groups. Among studied hemodynamic parameters, only systolic blood pressure was reduced more in morphine than sufentanil group (P<0.001). After CABG surgery, administration of intravenous sufentanil and morphine using PCA can lead to similar reduction of postoperative pain severity. (author)

  2. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  3. Safety relief valve alternate analysis method

    International Nuclear Information System (INIS)

    Adams, R.H.; Javid, A.; Khatua, T.P.

    1981-01-01

    An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)

  4. Theoretical and experimental analysis of a solar thermoelectric power generation device based on gravity-assisted heat pipes and solar irradiation

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming; Xu, Daochun

    2016-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by device is boosted from around 1 V to more than 4 V. • An output current and voltage of the device is acquired as 343 mA and 1057 mV. • The device provides output power 362.56 mW in no electricity conditions. • The economic value of device is demonstrated. - Abstract: Solar thermoelectric power generation has been widely used to solve the power supply limitation issue for low-power wireless sensors because of its light weight, high reliability, low cost, lack of noise, and environmental friendliness. A solar thermoelectric power generation system based on gravity-assisted heat pipes and solar radiation is devised in this paper, and its behavior is continuously measured in realistic outdoor circumstances. The effects of key parameters, including solar luminous flux, load resistance, a proportional coefficient, and a relative Seebeck coefficient, are analyzed. Related experimental results show that the device can output a voltage of 1057 mV and an electrical current of 343 mA, resulting in an output power of 362.56 mW. With a stable external energy conversion module under aluminous flux of 7.81 × 10"4 lx, the voltage converted from the nature solar radiation is boosted from 1057 mV to 4.40 V, which meets the rated operating voltage of low power consumption components, such as low-power wireless sensors and ZigBee modules. An economic analysis of the system shows that the solar thermoelectric power generation device is both economically and technically competitive when it is applied in a low-voltage wireless sensor network.

  5. System and Method for Traversing Pipes

    Science.gov (United States)

    Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)

    2017-01-01

    A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.

  6. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  7. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  8. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  9. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  10. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  11. Pipe connector

    International Nuclear Information System (INIS)

    Sullivan, T.E.; Pardini, J.A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  13. IPM Pipe

    Science.gov (United States)

    Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login

  14. Tissue holding device for use during surgical procedure, has contact body with suction foot and suction mouth that is surrounded by rim, and suction pipe connected to suction chamber

    OpenAIRE

    Vonck, D.; Goossens, R.H.M.; Flipsen, S.F.J.; Jakimowicz, J.J.; Van der Putten, E.P.W.

    2009-01-01

    The device has a locking ring (5), a connector (6), and a contact body (1) with a suction foot and a suction mouth (8), where the mouth is surrounded by a rim (10), which is substantially located in a plane of the suction foot. A suction chamber (9) has a sieve-shaped inner wall (2) and a transparent side wall, and a suction pipe (11) is connected to the chamber.

  15. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  16. Root cause evaluation of pressurizer relief valve leakage

    International Nuclear Information System (INIS)

    Olson, D.E.; Voll, B.J.

    1996-01-01

    Pressurizer relief valves at two pressurized water reactor units experienced unacceptable leakage during plant heatup. The leakage was suspected to be caused by excessive pipe loads on the valves. This paper describes how monitoring via hard-wired transducers and a digital data acquisition system was used to quantify the pipe loads on the valves, and assist in determining the root cause of the pipe loads and appropriate corrective actions. The selection of the parameters monitored, how the monitoring was accomplished and interpretation of the results is discussed. The corrective actions implemented based on the monitoring results are also discussed

  17. An Innovative and Portable Multimodal Pain Relief Device for the Management of Neuropathic Low Back Pain - a Study from Kashmir (Southeast Asia).

    Science.gov (United States)

    Tarfarosh, Shah Faisal Ahmad; Lone, Baseer-Ul-Rasool; Beigh, Mirza-Idrees-Ul-Haq; Manzoor, Mushbiq

    2016-06-29

    We developed a portable multimodal system with seven different mechanisms of pain relief incorporated into a lumbar belt called the Comfort-N-Harmony Belt (C&H belt). Here, we describe the technical details of the system and also summarize the effects of this multimodal pain relieving technology as an adjuvant to analgesics versus analgesics alone, on the level of pain, improvement of psychological status, disability, and the quality of life in the patients with neuropathic low back pain (LBP). We tracked the volunteers who were following up at a tertiary health care center for the complaints of neuropathic LBP of minimum three months duration and were on analgesics alone with no relief in the severity of the pain. Study group A (n = 45) consisted of volunteers with LBP on C&H belt therapy, along with the usually prescribed analgesic intake, and group B (n = 45) with LBP volunteers on analgesics, plus a similar looking but plain leather belt (placebo). For pain, the VAS (Visual Analogue Scale); for anxiety and depression, the (HADS) Hospital Anxiety-Depression Scale; for disability, the RMDQ (Roland Morris Disability Questionnaire); and for quality of life, (NHP) Nottingham-Health-Profile were used before and after the study period.  There were no significant differences in demographic variables between the groups (p improved compared to the pre-treatment scores (p improvements in the scores of NHP-energy level and NHP-social isolation (p 0.05). However, in comparison of pre- and post-treatment scores, the pre-treatment score values of RMDQ, NHP-pain, NHP-physical activity, and NHP-social isolation were much higher in group A compared to the group B, but still these scores were, in a statistically significant manner, improved in group A compared to the group B after the study period was over (p improving function and quality of life, and help in relieving the associated anxiety and depression in patients with chronic neuropathic LBP than the analgesics alone

  18. 46 CFR 76.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... outside against corrosion unless specifically approved otherwise by the Commandant. (d) A pressure relief... pressure of not less than 6,000 p.s.i. (b) All piping, in nominal sizes not over 3/4 inch, shall be at... necessary, protected against injury. (g) Drains and dirt traps shall be fitted where necessary to prevent...

  19. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  20. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  1. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical current...

  2. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  3. Cooling device upon reactor isolation

    International Nuclear Information System (INIS)

    Otsu, Tatsuya

    1995-01-01

    A vacuum breaking valve is disposed to a sucking pipeline of vacuum pumps. A sucking port of the breaking valve is connected with an exhaustion side of a relief valve of a liquid nitrogen-filled tank by way of communication pipes. When a cooling device is operated upon reactor isolation and the vacuum pumps are operated, a three directional electromagnetic valve is operated, and nitrogen discharged out of the exhaustion port of the relief valve of the liquid nitrogen-filled tank is sent to a nitrogen releasing port on the suction side of the vacuum breaking valve by way of the communication pipes and released to atmosphere. When the pressure in the vacuum tank is excessively lowered in this state and the vacuum breaking valve is opened, nitrogen flows from the nitrogen discharge port into the vacuum tank through the breaking valve, and are sent to a pressure suppression chamber by the vacuum pumps. Since a great amount of nitrogen is sent to the pressure suppression chamber, and the inflow of the air is reduced, increase of oxygen concentration in the pressure suppression chamber can be suppressed. (I.N.)

  4. Relief of knee flexion contracture and gait improvement following adaptive training for an assist device in a transtibial amputee: A case study.

    Science.gov (United States)

    Kim, Sol-Bi; Ko, Chang-Yong; Son, Jinho; Kang, Sungjae; Ryu, Jeicheong; Mun, Museong

    2017-01-01

    Management of a knee contracture is important for regaining gait ability in transtibial amputees. However, there has been little study of prosthesis training for enhancing mobility and improving range of motion in cases of restricted knee extension. This study aimed to evaluate the effects of adaptive training for an assist device (ATAD) for a transtibial amputee with a knee flexion contracture (KFC). A male transtibial amputee with KFC performed 4 months of ATAD with a multidisciplinary team. During the ATAD, the passive range of motion (PROM) in the knee, amputee mobility predictor (AMP) assessment, center of pressure (COP) on a force plate-equipped treadmill, gait features determined by three-dimensional motion analysis, and Short-Form 36 Item Health Survey (SF-36) scores were evaluated. Following ATAD, PROM showed immediate improvement (135.6 ± 2.4° at baseline, 142.5 ± 1.7° at Step 1, 152.1 ± 1.8° at Step 2, 165.8 ± 1.9° at Step 3, and 166.0 ± 1.4° at Step 4); this was followed by an enhanced COP. Gradually, gait features also improved. Additionally, the AMP score (5 at baseline to 29 at Step 4) and K-level (K0 at baseline to K3 at Step 4) increased after ATAD. Along with these improvements, the SF-36 score also improved. ATAD could be beneficial for transtibial amputees by relieving knee contractures and improving gait.

  5. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  6. Safety/relief valve quencher loads: evaluation for BWR Mark II and III containments

    International Nuclear Information System (INIS)

    Su, T.M.

    1982-10-01

    Boiling water reactor (BWR) plants are equipped with safety/relief valves (SRVs) to protect the reactor from overpressurization. Plant operational transients, such as turbine trips, will actuate the SRV. Once the SRV opens, the air column within the partially submerged discharge line is compressed by the high-pressure steam released from the reactor. The compressed air discharged into the suppression pool produces high-pressure bubbles. Oscillatory expansion and contraction of these bubbles create hydrodynamic loads on the containment structures, piping, and equipment inside containment. This report presents the results of the staff's evaluation of SRV loads. The evaluation, however, is limited to the quencher devices used in Mark II and III containments. With respect to Mark I containments, the SRV acceptance criteria are presented in NUREG-0661 issued July 1980. The staff acceptance criteria for SRV loads for Mark II and III containments are presented in this report

  7. System for fast and accurate filling of a two-phase cooling device, notably a heat pipe, adapted for use in an automated process

    NARCIS (Netherlands)

    Wits, Wessel Willems; Ten Hoeve, Harm Jan; Te Riele Gert, Jan; Van Es, Johannes

    2013-01-01

    The current invention relates to a system for fast and accurate filling of a two-phase cooling device, comprising a binding device (30) intended to be hermetically mounted onto the cooling device, the binding device (30) comprising a through-hole (32) able to be in fluid contact with the cooling

  8. SYSTEM FOR FAST AND ACCURATE FILLING OF A TWO-PHASE COOLING DEVICE, NOTABLY A HEAT PIPE, ADAPTED FOR USE IN AN AUTOMATED PROCESS

    NARCIS (Netherlands)

    Wits, Wessel Willems; Ten Hoeve, Harm Jan; Te Riele Gert, Jan; Van Es, Johannes

    2013-01-01

    The current invention relates to a system for fast and accurate filling of a two- phase cooling device, comprising a binding device (30) intended to be hermetically mounted onto the cooling device, the binding device (30) comprising a through-hole (32) able to be in fluid contact with the cooling

  9. SYSTEM FOR FAST AND ACCURATE FILLING OF A TWO-PHASE COOLING DEVICE, NOTABLY A HEAT PIPE, ADAPTED FOR USE IN AN AUTOMATED PROCESS

    NARCIS (Netherlands)

    Wits, Wessel Willems; Ten Hoeve, Harm Jan; Te Riele Gert, Jan; Van Es, Johannes; Wits, Wessel Willems; Ten Hoeve, Harm Jan; Te Riele, Gerhardus Wilhelmus; Van Es, Johannes

    2014-01-01

    The current invention relates to a system for fast and accurate filling of a two-phase cooling device, comprising a binding device (30) intended to be hermetically mounted onto the cooling device, the binding device (30) comprising a through-hole (32) able to be in fluid contact with the cooling

  10. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  11. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  13. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  14. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  15. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  16. Probabilistic design of relief wells as piping mitigation measure

    OpenAIRE

    Miranda Eguez, Carlos Amado

    2014-01-01

    El presente estudio identifica la posibilidad de diseñar pozos de alivio artesianos como medida de mitigación en contra de tubificación producida por filtración de agua bajo estructuras de protección contra inundaciones. El diseño está basado en la teoría de análisis de riesgo y probabilidad de falla . El análisis de las presiones de poros usando los pozos de alivio se lo realiza con las guías y recomendaciones del Cuerpo de Ingenieros de los Estados Unidos de América. También se presenta una...

  17. Paper relief architecture

    NARCIS (Netherlands)

    Latka, J.F.

    2014-01-01

    The article presents two contemporary projects of paper structures relief architecture designed and built by Shigeru Ban Architects and Voluntary Architect Network. Author of the article took part in design and construction process of one of the projects. The project of Yaan Nursery School, which

  18. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to relieve...

  19. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  20. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  1. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  2. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  3. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  4. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  5. Advanced industrial ceramic heat pipe recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Strumpf, H.J.; Stillwagon, T.L.; Kotchick, D.M.; Coombs, M.G.

    1988-01-01

    This paper summarizes the results of an investigation involving the use of ceramic heat pipe recuperators for high-temperature heat recovery from industrial furnaces. The function of the recuperator is to preheat combustion air with furnace exhaust gas. The heat pipe recuperator comprises a bundle of individual ceramic heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. Because each heat pipe is essentially an independent heat exchanger, the failure of a single tube does not compromise recuperator integrity, has only a minimal effect on overall heat exchanger performance and enables easier replacement of individual heat pipes. In addition, the heat pipe acts as an essentially isothermal heat transfer device, leading to a high thermodynamic efficiency. Cost estimates developed for heat pipe recuperator systems indicate favorable payback periods. Laboratory studies have demonstrated the feasibility of fabricating the required ceramic tubes, coating the inside of the tubes with CVD tungsten, and sealing the heat pipe with an electron-beam-welded or vacuum-brazed end cap.

  6. Pressure piping systems examination. 2. ed

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This Code is Part 13 of the IP Model Code of Safe Practice in the Petroleum Industry. Its purpose is to provide a guide to safe practices in the in-service examination and test of piping systems used in the petroleum and chemical industries. The Code gives general requirements regarding the provision and maintenance of adequate documentation, in-service examination, the control of modifications and repairs, examination frequency, protective devices and testing of piping systems. (author)

  7. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...

  8. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  9. Gasket-holder to put in place gaskets for connection of pipes with clamp fittings

    International Nuclear Information System (INIS)

    Fiori, R.

    1989-01-01

    Gasket-holder comprising 2 arms with tongues holding the gasket and fixing devices on a pipe clamp fitting and centering means. Application is made to fit circular gaskets on pipe with conic end in adverse environment [fr

  10. Safety relief valve instabilities; Instabiles Verhalten beim Betrieb von direkt belasteten Sicherheitsventilen

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, Thorsten; Bloemeling, Frank; Jung, Andreas; Schaffrath, Andreas [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2012-11-01

    The opening and closing of safety relief valves induce pressure vibrations and respective loads on the piping system. The quantification of the internal pressure load and the pipe segment forces for the proof of the structural integrity of the piping system and the supports is performed using the code DYVRO. It is not clear whether the calculated result of high-frequent opening and closing shows a realistic behavior or is caused by a simplified modeling. The contribution offers strategic recommendations to avoid unrealistic calculations.

  11. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  12. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  13. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  14. Surveys of embedded piping for Shoreham license termination

    International Nuclear Information System (INIS)

    Williams, D.E. Jr.

    2004-01-01

    In planning the decommissioning of the Shoreham Nuclear Power Station (SNPS) in Wading River, N.Y., it was determined that the cost of removing contaminated floor drain piping was prohibitive. The piping is typically embedded approximately four feet deep in reinforced concrete, often below structural I-beams. A decision was made to develop remote survey devices ('pipe crawlers') that would allow SNPS to decontaminate and survey embedded piping within NRC free release limits. Pipe crawlers currently in use at SNPS are able to traverse multiple 45 and 90 degree bends while maintaining all detectors in the required geometry (less than 1 cm detector to surface distance). The following aspects of this project will be presented: 1) System classification and cost-benefit analysis 2) Overview of system decontamination 3) Pipe crawler mechanical and electrical development 4) Detector backgrounds and MDA's 5) Additional devices and techniques 6) NRC position on crawler use. 7) SNPS results to date. (author)

  15. Music for pain relief.

    Science.gov (United States)

    Cepeda, M S; Carr, D B; Lau, J; Alvarez, H

    2006-04-19

    The efficacy of music for the treatment of pain has not been established. To evaluate the effect of music on acute, chronic or cancer pain intensity, pain relief, and analgesic requirements. We searched The Cochrane Library, MEDLINE, EMBASE, PsycINFO, LILACS and the references in retrieved manuscripts. There was no language restriction. We included randomized controlled trials that evaluated the effect of music on any type of pain in children or adults. We excluded trials that reported results of concurrent non-pharmacological therapies. Data was extracted by two independent review authors. We calculated the mean difference in pain intensity levels, percentage of patients with at least 50% pain relief, and opioid requirements. We converted opioid consumption to morphine equivalents. To explore heterogeneity, studies that evaluated adults, children, acute, chronic, malignant, labor, procedural, or experimental pain were evaluated separately, as well as those studies in which patients chose the type of music. Fifty-one studies involving 1867 subjects exposed to music and 1796 controls met inclusion criteria. In the 31 studies evaluating mean pain intensity there was a considerable variation in the effect of music, indicating statistical heterogeneity ( I(2) = 85.3%). After grouping the studies according to the pain model, this heterogeneity remained, with the exception of the studies that evaluated acute postoperative pain. In this last group, patients exposed to music had pain intensity that was 0.5 units lower on a zero to ten scale than unexposed subjects (95% CI: -0.9 to -0.2). Studies that permitted patients to select the music did not reveal a benefit from music; the decline in pain intensity was 0.2 units, 95% CI (-0.7 to 0.2). Four studies reported the proportion of subjects with at least 50% pain relief; subjects exposed to music had a 70% higher likelihood of having pain relief than unexposed subjects (95% CI: 1.21 to 2.37). NNT = 5 (95% CI: 4 to 13). Three

  16. Relief system for limiting overpressures in nuclear power plants, especially power plants with BWRs

    International Nuclear Information System (INIS)

    Kuehnel, R.

    1977-01-01

    Here obviously an injection system is applied, which elsewhere serves for conveying purposes. One or more vent pipes of a pressure suppression system are conducted vertically from above into a suppression chamber with a cushion and terminate below the water surface. A larger pipe section below the water surface contains the installations according to the invention. From an inner pipe steam can be released into the annulus between the inner and an outer pipe and water can enter the inner pipe from the annulus. This is achieved by the injection effect if steam with high flow density, e.g. 1000 kg/m 2 xsec, flows through the vent pipe into the suppression chamber, subcooled according to its saturation pressure. The steam flow, subdivided several times, is already condensing within both pipes thanks to intensive mixing with water and expansion to the enlarged cross-section of the outer pipe. For manufacturing seasons the relief system is constructed as a separate component being pushed with its inner diameter over the vent pipe and tightly welded to it. (HP) [de

  17. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  18. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  19. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  20. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  1. Safety and relief valves in light water reactors

    International Nuclear Information System (INIS)

    Singh, A.

    1985-12-01

    Information is presented to: provide an introduction to and descriptions of various types of safety and relief valves in both PWR and BWR plants; describe anticipated operating conditions for these valves; describe the test facilities, procedures, and major results for both types of valves; present an extensive discussion of modeling and analysis of safety and relief valve performance, including the prediction of flow capacity and stability during operation; deal with the analyses related to the prediction of thermal-hydraulic loads on discharge piping and comparison against test data; discuss results of small-scale valve tests and flow visualization studies through transparent valve models; and describe an EPRI study for optimizing a typical PWR over-pressure protection system to enhance the availability and reliability of plant operation and thus reduce operation costs

  2. High-performance heat pipes for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  3. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  4. Conceptual design of a device for charging PIG's batteries, using the hydraulic energy from the flow in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ricardo E.; Dutra, Max S. [Alberto Luiz Coimbra Institute for Graduate and Research Studies (COPPE-UFRJ), Rio de Janeiro, RJ (Brazil). Mechanical Engineering Program], e-mail: rramirez@ufrj.br, e-mail: max@mecanica.coppe.ufrj.br

    2009-07-01

    Some actual projects deal with development of PIGs with speed control for liquid pipelines, with the possibility of controlled displacement including counter flow locomotion, in order to inspect and service in 'unpiggable lines' and flexible lines. In this case, it is normal to carry energy consumption greater than the energy disposable in the batteries. This work proposes a device composed by a turbine and an electric generator; presents a preliminary mechanical design of the turbine for the specific requirements of the application like internal pressure inside the line, a range of relative velocities between the PIG and the pipeline and adequate material for the environmental conditions. One of the priority requirements is that the geometric form of the turbine and generator mate with a proposed form of the PIG minimizing the pressure drop in the line for the different work conditions. The electric design defines the magnets characteristics, geometric forms, dimensions and number of turns to obtain the required voltage and power for charging a nominal pack of batteries. (author)

  5. Arrangement to reduce the failure frequency of heat condensate pipes

    International Nuclear Information System (INIS)

    Liskow, E.; Apelt, W.; Krause, W.; Meisel, L.

    1988-01-01

    The arrangement of throttling devices in heat condensate pipes of NPP with WWER-440 type reactors aims at reducing their failure frequency, ensuring an energetically favourable operation, and enhancing the availability and safety of NPP units

  6. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  7. Riser pipe elevator

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.; Jimenez, A.F.

    1987-09-08

    This patent describes a method for storing and retrieving a riser pipe, comprising the steps of: providing an upright annular magazine comprised of an inside annular wall and an outside annular wall, the magazine having an open top; storing the riser pipe in a substantially vertically oriented position within the annular magazine; and moving the riser pipe upwardly through the open top of the annular magazine at an angle to the vertical along at least a portion of the length of the riser pipe.

  8. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  9. Piping equipment; Materiel petrole

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)

  10. Equipment for fully automatic radiographic pipe inspection

    International Nuclear Information System (INIS)

    Basler, G.; Sperl, H.; Weinschenk, K.

    1977-01-01

    The patent describes a device for fully automatic radiographic testing of large pipes with longitudinal welds. Furthermore the invention enables automatic marking of films in radiographic inspection with regard to a ticketing of the test piece and of that part of it where testing took place. (RW) [de

  11. Groundbreaking approach to disaster relief

    OpenAIRE

    2008-01-01

    The humanitarian response to Cyclone Nargis, which struck Myanmar on 2 and 3 May, heralds a fundamentally new approach to relief coordination. As a result, a unique survey showed what really happened to the survivors. Sarah Cumberland reports.

  12. Southern Alaska Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building coastal-relief models (CRM) for select U.S. coastal regions. Bathymetric, topographic, and shoreline data...

  13. Decongestants: OTC Relief for Congestion

    Science.gov (United States)

    ... CorrectlyPain Relievers: Understanding Your OTC OptionsAntacids and Acid Reducers: OTC Relief for Heartburn and Acid RefluxOTC Cough ... Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics ...

  14. Allergy Relief for Your Child

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Allergy Relief for Your Child Share Tweet Linkedin Pin ... at the FDA. Avoid Pollen, Mold and Other Allergy Triggers If your child has seasonal allergies, pay ...

  15. Microstructural characterization of pipe bomb fragments

    International Nuclear Information System (INIS)

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-01-01

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  16. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  17. The role of heat pipes in intensified unit operations

    International Nuclear Information System (INIS)

    Reay, David; Harvey, Adam

    2013-01-01

    Heat pipes are heat transfer devices that rely, most commonly, on the evaporation and condensation of a working fluid contained within them, with passive pumping of the condensate back to the evaporator. They are sometimes referred to as ‘thermal superconductors’ because of their exceptionally high effective thermal conductivity (substantially higher than any metal). This, together with several other characteristics make them attractive to a range of intensified unit operations, particularly reactors. The majority of modern computers deploy heat pipes for cooling of the CPU. The application areas of heat pipes come within a number of broad groups, each of which describes a property of the heat pipe. The ones particularly relevant to chemical reactors are: i. Separation of heat source and sink. ii. Temperature flattening, or isothermalisation. iii. Temperature control. Chemical reactors, as a heat pipe application area, highlight the benefits of the heat pipe based on isothermalisation/temperature flattening device and on being a highly effective heat transfer unit. Temperature control, done passively, is also of relevance. Heat pipe technology offers a number of potential benefits to reactor performance and operation. The aim of increased yield of high purity, high added value chemicals means less waste and higher profitability. Other intensified unit operations, such as those employing sorption processes, can also profit from heat pipe technology. This paper describes several variants of heat pipe and the opportunities for their use in intensified plant, and will give some current examples. -- Highlights: ► Heat pipes – thermal superconductors – can lead to improved chemical reactor performance. ► Isothermalisation within a reactor vessel is an ideal application. ► The variable conductance heat pipe can control reaction temperatures within close limits. ► Heat pipes can be beneficial in intensified reactors

  18. Thermonuclear device

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Yamamoto, Masahiro; Furuyama, Masayuki; Saito, Ryusei.

    1981-01-01

    Purpose: To enable the efficient and rapid cooling of a vacuum vessel by cooling with gas when the temperature of the vacuum vessel is higher than the boiling point of water and cooling with water when the temperature is lower than the boiling point of water. Constitution: A cooling pipe is provided through an insulating pipe on the outer periphery of a vacuum vessel. The cooling pipe communicates through a cooling gas valve and a coolant valve with a cooling gas supply device and a coolant supply device, and a heat exchanger is disposed at the pipe. When the vessel is higher than the boiling point of the coolant the coolant valve is closed and the cooling gas valve is opened and gas is supplied to cool the vessel. The gas is recoverd through a heat exchanger. On the other hand, when the temperature of vessel is lower than the boiling point of the coolant, the gas valve is closed, the coolant valve is opened, and the vessel is cooled with coolant. The vacuum vessel can be cooled for short time employing both the gas and the coolant together. (Yoshino, Y.)

  19. 24 CFR 3280.705 - Gas piping systems.

    Science.gov (United States)

    2010-04-01

    ... upstream of the connection. (3) The connection(s) may be made by a listed quick disconnect device which... separated. (4) The flexible connector, direct plumbing pipe, or “quick disconnect” device shall be provided... disconnect device is installed, a 3 inch by 13/4 inch minimum size tag made of etched, metal-stamped or...

  20. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain...

  1. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  2. These Pipes Are "Happening"

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  3. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  4. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  5. An elevator for lifting and turning pipes

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, S.P.; Borchenkov, G.I.; Komarov, V.N.; Lebedev, D.A.

    1983-01-01

    An elevator is proposed for lifting and turning pipes, which includes a body and a bushing hinged to it with projections and a shank with a threaded adapter and cams which interact with the projections of the bushing. In order to increase the operational safety of the device through ensuring the capability of eliminating drops in the torque from the shank to the body when raising and extracting drill pipes, the body is equipped with eccentric cams rigidly connected to it, while the shank is equipped with a ring movable connected with it. The eccentric cams are installed between the bushing and the body with the capability of interacting with the shank ring.

  6. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  7. Simulation experiments for a large leak sodium-water reaction analysis. Volume 4. IHTS/relief system simulation tests

    International Nuclear Information System (INIS)

    Ploeger, D.W.

    1978-09-01

    Tests were performed in which a simplified 1/8-scale model of the intermediate heat transfer system and relief system of a LMFBR was subjected to a simulated sodium-water reaction in a steam generator. Pressures in the intermediate heat exchanger (IHX) and in the pipe were measured. The flow of water through the relief system was photographed and its velocity was measured. The forces on the relief system elbows resulting from the fluid flow were also measured. The tests were performed primarily to validate pulse propagation codes used for design and for direct use as design data

  8. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  9. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  10. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  11. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  12. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  13. Simplified pipe gun

    International Nuclear Information System (INIS)

    Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-01-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar

  14. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  15. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed; Alsolami, Fawaz; Chikalov, Igor; Algharbi, Salem; Aboudi, Faisal; Khudiri, Musab

    2016-01-01

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  16. Stress relief of transition zones

    International Nuclear Information System (INIS)

    Woodward, J.; van Rooyen, D.

    1984-01-01

    This paper considers the problem of intergranular stress corrosion cracking, initiated on the primary side, in the expansion transition region of roller expanded Alloy 600 tubing. In general it is believed that residual stresses, arising from the expansion process, are the cause of the problem. The work reported here concentrated on the identification of an optimal, in-situ stress relief treatment

  17. Petroleum industry assists hurricane relief

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas

  18. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  19. Pictorial relief for equiluminant images

    NARCIS (Netherlands)

    Van Doorn, A.J.; De Ridder, H.; Koenderink, J.J.

    2005-01-01

    Pictorial relief depends strongly on “cues” in the image. For isoluminant renderings some cues are missing, namely all information that is related to luminance contrast (e.g., shading, atmospheric perspective). It has been suggested that spatial discrimination and especially pictorial space suffer

  20. Shaded Relief of Rio Sao Francisco, Brazil

    Science.gov (United States)

    2000-01-01

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200

  1. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  2. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  3. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  4. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  5. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  6. Development of high pressure pipe scanners

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R.

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results

  7. High frequency statistical energy analysis applied to fluid filled pipe systems

    NARCIS (Netherlands)

    Beek, P.J.G. van; Smeulers, J.P.M.

    2013-01-01

    In pipe systems, carrying gas with high velocities, broadband turbulent pulsations can be generated causing strong vibrations and fatigue failure, called Acoustic Fatigue. This occurs at valves with high pressure differences (i.e. chokes), relief valves and obstructions in the flow, such as sharp

  8. BOA II: pipe-asbestos insulation removal system

    International Nuclear Information System (INIS)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-01-01

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  9. 28 CFR 36.504 - Relief.

    Science.gov (United States)

    2010-07-01

    ... COMMERCIAL FACILITIES Enforcement § 36.504 Relief. (a) Authority of court. In a civil action under § 36.503, the court— (1) May grant any equitable relief that such court considers to be appropriate, including... disabilities; (2) May award other relief as the court considers to be appropriate, including monetary damages...

  10. Effectiveness of Property Tax Relief in Oregon.

    Science.gov (United States)

    Hartman, William T.; Hwang, C. S.

    This study examines the effects of the 1979 Oregon Property Tax Relief Plan on 1980-81 school district budget decisions by comparing the available tax relief, the school expenditures, and the tax levies in the state for the years 1975-81. The history of direct and indirect property tax relief in Oregon is sketched for the years prior to 1979; the…

  11. Service Learning Through Disaster Relief

    Directory of Open Access Journals (Sweden)

    Donna J. Duerst

    2010-06-01

    Full Text Available The Rock County 4-H Disaster Relief Committee raised $1,550 to aid tsunami victims in Sri Lanka and then turned its attention to Hurricane Katrina relief efforts. Thirty-one 4-H youth participated in a service learning trip to the South with the objectives of helping hurricane victims, learning about new cultures and achieving personal growth during three days of service projects in Louisiana and Mississippi. Their written reflections and other evaluative measures revealed they learned about southern culture, gained a greater appreciation for their lives, gained self confidence and developed a desire to help others more often. The trip was a valuable developmental experience for the youth, and information from the trip could be utilized to create similar experiences based on service learning. This article provides an overview of the trip and describes the evaluation methods used to measure learning and assess personal growth.

  12. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  13. Temporary implantable nitinol device (TIND): a novel, minimally invasive treatment for relief of lower urinary tract symptoms (LUTS) related to benign prostatic hyperplasia (BPH): feasibility, safety and functional results at 1 year of follow-up.

    Science.gov (United States)

    Porpiglia, Francesco; Fiori, Cristian; Bertolo, Riccardo; Garrou, Diletta; Cattaneo, Giovanni; Amparore, Daniele

    2015-08-01

    To report the first clinical experience with a temporary implantable nitinol device (TIND; Medi-Tate(®) ) for the treatment of lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). In all, 32 patients with LUTS were enrolled in this prospective study, which was approved by our Institutional Ethics Committee. Inclusion criteria were: age >50 years, International Prostate Symptom Score (IPSS) of ≥10, maximum urinary flow rate (Qmax ) of ≤12 mL/s, and prostate volume of BPH. TIND implantation is a feasible and safe minimally invasive option for the treatment of BPH-related LUTS. The functional results are encouraging and the treatment significantly improved patient QoL. Further studies are required to assess durability of TIND results and to optimise the indications of such a procedure. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  14. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  15. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  16. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  17. Pipe-to-pipe impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Bampton, M C.C.; Alzheimer, J M; Friley, J R; Simonen, F A

    1985-11-01

    Existing licensing criteria express what damage shall be assumed for various pipe sizes as a consequence of a postulated break in a high energy system. The criteria are contained in Section 3.6.2 of the Standard Review Plan, and the purpose of the program described with this paper is to evaluate the impact criteria by means of a combined experimental and analytical approach. A series of tests has been completed. Evaluation of the test showed a deficiency in the range of test parameters. These deficiencies are being remedied by a second series of tests and a more powerful impact machine. A parallel analysis capability has been developed. This capability has been used to predict the damage for the first test series. The quality of predictions has been improved by tests that establish post-crush and bending relationships. Two outputs are expected from this project: data that may, or may not, necessitate changes to the criteria after appropriate value impact evaluations and an analytic capability for rapidly evaluating the potential for pipe whip damage after a postulated break. These outputs are to be contained in a value-impact document and a program final report. (orig.).

  18. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  19. Shaded relief of Bahia State, Brazil

    Science.gov (United States)

    2000-01-01

    This topographic image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the left side of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging

  20. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  1. A device for taking samples of scale from bore pipes used for collecting groundwater; Dispositivo para la toma de muestras de incrustaciones en tuberias de sondeos en la captacion de aguas subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Rubio, J.; Ruano Magan, P. [Tecnologias y Servicios Agrarios, S. A. (Spain); Gonzalez Yelamos, J. [Universidad Autonoma de Madrid (Spain); Rebollo Ferreiro, L. F. [Universidad de Alcala (Spain)

    2000-07-01

    A study was made of the problem of corrosion/scale in water collection bore pipes, beginning with a review of the existing literature. This led to the conclusion that thorough knowledge of such phenomena requires taking samples from the walls of the pipes and filters to determine the physiocochemical and biological details. A new instrument, based on a previous appliance, has been developed for this purpose. It has a pair of arms and is capable of going down inside the well or bore hole, generally with a video camera attached. It has a cup on the end of each arm that can scrape the wall, catch the sample and protect it with a lid. A prototype has proved to be efficient at obtaining representative samples that can be analysed to determine the corrosion/scale processes. (Author) 9 refs.

  2. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  3. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  4. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  5. Simplified piping analysis methods with inelastic supports

    International Nuclear Information System (INIS)

    Lin, C.W.; Romanko, A.D.

    1986-01-01

    Energy absorbing supports (EAS) which contain x-shaped plates or dampers with heavy viscous fluid can absorb a large amount of energy during vibratory motions. The response of piping systems supported by these types of energy absorbing devices can be markedly reduced as compared with ordinary supports using rigid rods, hangers or snubbers. In this paper, a simple multiple support response spectrum technique is presented, which would allow the energy dissipation nature of the EAS be factored in the piping response calculation. In the meantime, the effect of lower system frequencies due to the reduced support stiffness from local yielding is also included in the analysis. Numerical results obtained show that this technique is more conservative than the time history solution by an acceptable and realistic margin; and it has less than 10 percent of the computation cost

  6. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  7. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  8. 40 CFR 761.247 - Sample site selection for pipe segment removal.

    Science.gov (United States)

    2010-07-01

    ... end of the pipe segment. (3) If the pipe segment is cut with a saw or other mechanical device, take..., take samples from a total of seven segments. (A) Sample the first and last segments removed. (B) Select... total length for purposes of disposal, take samples of each segment that is 1/2 mile distant from the...

  9. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  10. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  11. Waste pipe calculus

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1978-01-01

    A rapid method is presented for calculating transport in a network of one-dimensional flow paths or ''pipes''. The method defines a Green's function for each flow path and prescribes a method of combining these Green's functions to produce an overall Green's function for the flow path network. A unique feature of the method is the use of the Laplace transform of these Green's functions to carry out most of the calculations

  12. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  13. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  14. Remembering reliefs that have disappeared

    International Nuclear Information System (INIS)

    Arnaud, N.

    1998-01-01

    Natural radioactivity can give information about age but also about thermal evolution of rocks. The accumulation of decay products in a material can be disturbed by temperature rising. Over a certain temperature called opening temperature the decay products are migrating due to atomic diffusion. The decay reactions used usually are K 40 /Ar 40 , Sm 143 /Nd 144 , C 14 /N 14 and the successive disintegrations of uranium leading to lead. A method known as thermo-chronology studies these isotopic ratios and links them to temperatures. The application of this method to the understanding of the tectonic slab collision between India and Asia is described and some conclusions about the relief are drawn. (A.C.)

  15. Exercise Based- Pain Relief Program

    DEFF Research Database (Denmark)

    Zadeh, Mahdi Hossein

    in the current study was to use exercise induced- muscle damage followed by ECC as an acute pain model and observe its effects on the sensitivity of the nociceptive system and blood supply in healthy subjects. Then, the effect of a repeated bout of the same exercise as a healthy pain relief strategy......Exercise-based pain management programs are suggested for relieving from musculoskeletal pain; however the pain experienced after unaccustomed, especially eccentric exercise (ECC) alters people´s ability to participate in therapeutic exercises. Subsequent muscle pain after ECC has been shown...... to cause localized pressure pain and hyperalgesia. A prior bout of ECC has been repeatedly reported to produce a protective adaptation known as repeated bout effect (RBE). One of the main scopes of the current project was to investigate the adaptations by which the RBE can be resulted from. The approach...

  16. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  17. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  18. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  19. An antiejection device for an openly gushing well

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Prokopov, O.I.; Shcherban, N.A.

    1982-01-01

    An antiejection device for an openly gushing well is proposed which includes a cap and a branch pipe for outlet of the blow outs. To ensure the capability of capping springs of a gushing well, the branch pipe is made with ports and is installed with a clearance on the casing pipe. The cap is equipped with ribs which are hinged to the branch pipe which has fins with anchors and seals for hermetically sealing the cap.

  20. Development and testing of restraints for nuclear piping systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Skinner, M.S.

    1980-06-01

    As an alternative to current practice of pipe restraint within nuclear power plants it has been proposed to adopt restraints capable of dissipating energy in the piping system. The specific mode of energy dissipation focused upon in these studies is the plastic yielding of steels utilizing relative movement between the pipe and the base of the restraint, a general mechanism which has been proven as reliable in several allied studies. This report discusses the testing of examples of two energy-absorbing devices, the results of this testing and the conclusions drawn. This study concentrated on the specific relevant performance characteristics of hysteretic behavior and degradation with use. The testing consisted of repetitive continuous loadings well into the plastic ranges of the devices in a sinusoidal or random displacement controlled mode

  1. Design of emergency relief system to flare; Projeto de sistemas de alivio de emergencia para tocha

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Joelson de Carvalho [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The relief system has for objective to protect the unit equipment and piping system for high pressures developed during eventual operational upset. As examples of operational upset could mention: human failure (operational mistake - example: inadvertent closure of a block valve), heat exchange tube rupture, utility failure (cooling water, electric power, steam, instrument air) and fire. The relieved products are piping to flare system in order to burn the waste gas. The burned or unburned relieved stream shall be dispersed in order to not to cause damages to the people and the environment. That system should operate automatically without the need of interference of the personnel of the operation. The system is basically constituted of Pressure Safety and Relief Valves (PSVs), piping net, gas-liquid separation vessel, separation vessel residual liquid pump (if necessary) and flare for burning waste gas without liquid. They are necessary also some utilities as fuel gas (to be used as purge gas by flare tip and as fuel gas by pilots in order to guarantee the continuous operation of the flare pilots), electric power, instrument/service air and compressed air or steam (if necessary) to improve the quality of the burns. (author)

  2. Bayesian analysis of heat pipe life test data for reliability demonstration testing

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Martz, H.F.

    1985-01-01

    The demonstration testing duration requirements to establish a quantitative measure of assurance of expected lifetime for heat pipes was determined. The heat pipes are candidate devices for transporting heat generated in a nuclear reactor core to thermoelectric converters for use as a space-based electric power plant. A Bayesian analysis technique is employed, utilizing a limited Delphi survey, and a geometric mean accelerated test criterion involving heat pipe power (P) and temperature (T). Resulting calculations indicate considerable test savings can be achieved by employing the method, but development testing to determine heat pipe failure mechanisms should not be circumvented

  3. Pipe support program at Pickering

    International Nuclear Information System (INIS)

    Sahazizian, L.A.; Jazic, Z.

    1997-01-01

    This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)

  4. Impact of Tax Relief on Public Finance

    Directory of Open Access Journals (Sweden)

    Bikas Egidijus

    2016-12-01

    Full Text Available Tax reliefs are optional, but a very important element of the taxation system. This element is used for different purposes by a country’s government institutions. Tax reliefs are a form of tax expenditure that helps to reduce budget revenues. Tax reliefs influence individual and corporate financial behaviour and can have positive or negative effects on the economic and social factors. In the last few years, expansion of tax relief has attracted worldwide attention because of the fact that, after the global financial crisis, many countries are still suffering from fiscal deficits, and expansion of tax relief has not contributed to solving this problem. Tax reliefs are presupposed to be a fiscal policy tool of significance in various subsystems of public finances. The main aim of this article is to examine the impact of personal income tax reliefs on Lithuanian public finances. To achieve this aim, statistical information was systemized; Monte Carlo method was used to group data by horizontal rows and logical links analysed, which helped to evaluate the influence of tax reliefs on public finances. In the simulations, the Monte Carlo method helped to simulate random samples, which were then examined by adapting the conclusions of the theory of probability and mathematical statistics methods.

  5. Analysis of inservice inspection relief requests

    International Nuclear Information System (INIS)

    Aldrich, D.A.; Cook, J.F.

    1989-08-01

    Nuclear Regulatory Commission (NRC) regulations require inspection (ISI) of boiling or pressurized water-cooled nuclear power plants be performed in accordance with a referenced edition and addenda of Section XI, ''Rules for Inservice Inspection of Nuclear Power Plant components,'' of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. The regulations permit licensees to request relief from the NRC from specific ASME Code requirements that are determined to be impractical for the specific licensee. The NRC evaluates these requests and may grant such relief, but the NRC may also impose alternative or augmented inspections to assure structural reliability. The purpose,of this task was to evaluate the basis for ISI nondestructive examination (NDE) relief requests and to evaluate the effect of proposed ASME Code changes that would reduce the need for such requests or provide for more complete information in relief requests. This report contains the results of an analysis of an ISI relief request data base that has been expanded to include 1195 ISI relief requests versus the 296 relief requests covered in the first report in April 1987, EGG-SD-7430. Also relief requests were added to the data base which came from both first and second 10-year inspection intervals for several facilities. This provided the means to analyze the effect of recently approved ASME Code cases and updated Code requirements, some of which have been published as a result of earlier work on this task

  6. PAIN RELIEF MEDIATED BY IMPLANTABLE DRUG-DELIVERY DEVICES

    NARCIS (Netherlands)

    HOEKSTRA, A

    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering

  7. 49 CFR 179.300-15 - Pressure relief devices.

    Science.gov (United States)

    2010-10-01

    ... TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-15... exceeding that specified in § 179.301. (d) Fusible plugs shall function at a temperature not exceeding 175 °F. and shall be vapor-tight at a temperature of not less than 130 °F. [29 FR 18995, Dec. 29, 1964...

  8. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  9. Dynamic experiments on cracked pipes

    International Nuclear Information System (INIS)

    Petit, M.; Brunet, G.; Buland, P.

    1991-01-01

    In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system

  10. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  11. An acoustic criterion for the whistling of orifices in pipes

    NARCIS (Netherlands)

    Moussou, P.; Testud, Ph.; Auregan, Y.; Hirschberg, A.; Hasegawa, K.; Scarth, D.A.

    2008-01-01

    Whistling due to vortex shedding has been extensively studied in the case of cylinders in cross-flows, of flow separation above cavities and of shear layers with flow impingement feedback. Less attention has been given to pressure drop devices in piping systems, which are known to generate high

  12. High heat flux device of thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo.

    1994-01-01

    The present invention provides an equipments for high heat flux device (divertor) of a thermonuclear device, which absorbs thermal deformation during operation, has a high installation accuracy, and sufficiently withstands for thermal stresses. Namely, a heat sink member is joined to a structural base. Armour tiles are joined on the heat sink member. Cooling pipes are disposed between the heat sink member and the armour tiles. With such a constitution, the heat sink member using a highly heat conductive material having ductility, such as oxygen free copper, the cooling pipes using a material having excellent high temperature resistance and excellent elongation, such as aluminum-dispersed reinforced copper, and the armour tiles are completely joined on the structural base. Therefore, when thermal deformation tends to cause in the high heat flux device such as a divertor, cooling pipes cause no plastic deformation because of their high temperature resistance, but the heat sink member such as a oxygen free copper causes plastic deformation to absorb thermal deformation. As a result, the high heat flux device such as a divertor causes no deformation. (I.S.)

  13. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  14. Mechanism for in-pipe inspection; Dispositivo para inspecao de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Gustavo Medeiros; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    The internal inspection of pipes is becoming a routine activity thanks to their importance on transportation of substances such as oil and natural gas. This paper addresses a mechanism capable of working inside pipes of different diameters that may present extreme curves and inclinations. The mechanism is composed of modules with devices that provide adjustable contact with the duct, using wheels on the contact points. The robot moves inside the pipe creating a virtual spindle. For that, two parts are used: the first one, guided along the pipe by a set of wheels, moves parallel to the axis of the pipe; the second part is attached to a motor. The motor rotation forces the mechanism to follow a helical motion, with tilted wheels rotating about the axis of the pipe. Each adjustable contact device works like a lever, pressing the wheel against the pipe. The base of the device can be actively rotated, modifying the angle of the wheel in relation to the pipe (equivalent to the step of the spindle), permitting the motion of the system in both directions, with specific velocity. According to the applied angle, the robot changes the relation between torque and displacement velocity. (author)

  15. Heat pipes. Design and industrial applications

    International Nuclear Information System (INIS)

    Semeria, R.

    1974-01-01

    Heat pipes are thermosiphons with vaporization where we can distinguish a boiler, a condenser, and eventually an adiabatic zone. To insure the returning liquid flow from the condenser to the boiler, surface tension forces, associated with the gravity forces, if need be, are used. For this, the condensing liquid is sucked by a capillary structure, generally situated against the inner wall. The review of the design methods, and particularly the prediction of the maximal performances shows the advantages and limitations of such devices. The main difficulties are technological for the heat pipes with high temperature liquid metals. The thermohydrodynamical limitations are: the maximum power which can be calculated by a balance between the friction forces and the active ones, the maximum heat flux leading to the dry-out of the evaporator, the critical conditions for the start up associated with the sonic conditions in the vapour phase. The description of heat pipes designed for some industrial applications (mainly for space) is given [fr

  16. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    International Nuclear Information System (INIS)

    Watanabe, Shun; Yoneda, Kimitoshi

    2013-01-01

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  17. Shaded relief, color as height, Fiji

    Science.gov (United States)

    2000-01-01

    The Sovereign Democratic Republic of the Fiji Islands, commonly known as Fiji, is an independent nation consisting of some 332 islands surrounding the Koro Sea in the South Pacific Ocean. This topographic image shows Viti Levu, the largest island in the group. With an area of 10,429 square kilometers (about 4000 square miles), it comprises more than half the area of the Fiji Islands. Suva, the capital city, lies on the southeast shore. The Nakauvadra, the rugged mountain range running from north to south, has several peaks rising above 900 meters (about 3000 feet). Mount Tomanivi, in the upper center, is the highest peak at 1324 meters (4341 feet). The distinct circular feature on the north shore is the Tavua Caldera, the remnant of a large shield volcano that was active about 4 million years ago. Gold has been mined on the margin of the caldera since the 1930's. The Nadrau plateau is the low relief highland in the center of the mountain range. The coastal plains in the west, northwest and southeast account for only 15 percent of Viti Levu's area but are the main centers of agriculture and settlement.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations top ink at the highest elevations. This image contains about 1300 meters(4300 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect

  18. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  19. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  20. Cesium heat-pipe thermostat

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.; Song, D.; Sheng, K.; Wu, J. [Changcheng Institute of Metrology and Measurement, 100095, Beijing (China); Yi, X. [China National South Aviation industry CO., LTD., 412002, Hunan (China); Yu, Z. [Dalian Jinzhou Institute of Measurement and Testing, 116100, Liaoning (China)

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 °C to 800 °C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 °C to 0.20 °C. A precise temperature controller is used to ensure the temperature fluctuation within ±0.03 °C. The size of Cs HPT is 380mm×320mm×280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  1. Pipe connection for high pressure and temperature loads

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Paetz, E.; Stach, H.

    1976-01-01

    The patent proposes an inprovement of the clamping device for a pipe joint connecting pipelines which are subject to high pressure and temperature loads, e.g. in a nuclear power plant. This clamping device may be tightened and loosened by remote control. The proposed clamping ring consists of several segments connected with each other by hinge-type guide pins and fishplates. (UWI) [de

  2. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  3. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  4. Pictorial relief for equiluminant images

    Science.gov (United States)

    van Doorn, Andrea J.; de Ridder, Huib; Koenderink, Jan J.

    2005-03-01

    Pictorial relief depends strongly on "cues" in the image. For isoluminant renderings some cues are missing, namely all information that is related to luminance contrast (e.g., shading, atmospheric perspective). It has been suggested that spatial discrimination and especially pictorial space suffer badly in isoluminant conditions. We have investigated the issue through quantitative measurement of pictorial depth-structure under normal and isoluminant conditions. As stimuli we used monochrome halftone photographs, either as such, or "transposed" to Red/Green or Green/Red hue modulations. We used two distinct methods, one to probe pictorial pose (by way of correspondences settings between pictures of an object in different poses), the other to probe pictorial depth (by way of attitude settings of a gauge figure to a perceptual "fit"). In both experiments the depth reconstructions for Red/Green, Green/Red and monochrome conditions were very similar. Moreover, observers performed equally well in Red/Green, Green/Red and monochrome conditions. Thus, the general conclusion is that observers did not do markedly worse with the isoluminant Red/Green and Green/Red transposed images. Whereas the transposed images certainly looked weird, they were easily interpreted. Much of the structure of pictorial space was apparently preserved. Thus the notion that spatial representations are not sustained under isoluminant conditions should be applied with caution.

  5. Burnable gas concentration control device

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Sanada, Takahiro; Kuboniwa, Takao.

    1980-01-01

    Purpose: To provide connecting ports by doubling nitrogen gas injection pipes thereby to secure lengthiness of the device only by providing one nitrogen gas generator. Constitution: Nitrogen gas injection pipes are provided in two lines separately, and attachable and detachable connecting ports for feeding nitrogen gas connectable to a movable type nitrogen gas supply installation for the purpose of backing up the nitrogen gas generator. (Yoshihara, H.)

  6. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  7. Design of the US-CRBRP sodium/water reaction pressure relief system

    International Nuclear Information System (INIS)

    Kruger, G.B.; Murdock, T.B.; Rodwell, E.; Sane, J.O.

    1976-01-01

    Protection against intermediate sodium system overpressure from the sodium/water reaction associated with large leaks within the CRBRP Steam Generators is provided by the sodium/water reaction pressure relief system (SWRPRS). This system consists of rupture disks connected to the intermediate sodium piping adjacent to the inlet to the superheater and outlet from the evaporator modules. The rupture discs relieve into piping that leads to reaction produce separator tanks, which in turn are vented to a centrifugal separator and flare stack arranged to burn hydrogen gas exhausting into the atmosphere. Analyses have been conducted using the TRANSWRAP Computer Code to predict the system pressures and flow rates during the large leak event. Experimental tests to be conducted in the large leak test rig (LLTR) will be used to confirm the analysis techniques used in the design

  8. Impact analyses after pipe rupture

    International Nuclear Information System (INIS)

    Chun, R.C.; Chuang, T.Y.

    1983-01-01

    Two of the French pipe whip experiments are reproduced with the computer code WIPS. The WIPS results are in good agreement with the experimental data and the French computer code TEDEL. This justifies the use of its pipe element in conjunction with its U-bar element in a simplified method of impact analyses

  9. Mechanical Behaviour of Lined Pipe

    NARCIS (Netherlands)

    Hilberink, A.

    2011-01-01

    Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven

  10. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  11. Plasma facing device of thermonuclear device

    International Nuclear Information System (INIS)

    Sumita, Hideo; Ioki, Kimihiro.

    1993-01-01

    The present invention improves integrity of thermal structures of a plasma facing device. That is, in the plasma facing device, an armour block portion from a metal cooling pipe to a carbon material comprises a mixed material of the metal as the constituent material of the cooling pipe and ceramics. Then, the mixing ratio of the composition is changed continuously or stepwise to suppress peakings of remaining stresses upon production and thermal stresses upon exertion of thermal loads. Accordingly, thermal integrity of the structural materials can further be improved. In this case, a satisfactory characteristic can be obtained also by using ceramics instead of carbon for the mixed material, and the characteristic such as heat expansion coefficient is similar to that of the armour tile. (I.S.)

  12. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  13. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  14. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  15. Laparoscopic Adhesiolysis and Relief of Chronic Pelvic Pain

    OpenAIRE

    Nezhat, Farr R.; Crystal, Ruth Ann; Nezhat, Ceana H.; Nezhat, Camran R.

    2000-01-01

    Objective: To evaluate the short- and long-term results of laparoscopic enterolysis in patients with chronic pelvic pain following hysterectomy. Methods: Forty-eight patients were evaluated at time intervals from 2 weeks to 5 years after laparoscopic enterolysis. Patients were asked to rate postoperative relief of their pelvic pain as complete/near complete relief (80-100% pain relief), significant relief (50-80% pain relief), or less than 50% or no pain relief. Results: We found that after 2...

  16. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  17. Filtering algorithm for radial displacement measurements of a dented pipe

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Lukasiewicz, S.A.

    2008-01-01

    Experimental measurements are always affected by some noise and errors caused by inherent inaccuracies and deficiencies of the experimental techniques and measuring devices used. In some fields, such as strain calculations in a dented pipe, the results are very sensitive to the errors. This paper presents a filtering algorithm to remove noise and errors from experimental measurements of radial displacements of a dented pipe. The proposed filter eliminates the errors without harming the measured data. The filtered data can then be used to estimate membrane and bending strains. The method is very effective and easy to use and provides a helpful practical measure for inspection purposes

  18. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  19. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  20. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Sano, Yuji.

    1988-01-01

    Purpose: To easily and reliably detect the consumption of a sputtered cathode in a radioactive gas storage device using ion injection method. Constitution: Inert gases are sealed to the inside of a cathode. As the device is operated, the cathode is consumed and, if it is scraped to some extent, inert gases in the cathode gases are blown out to increase the inner pressure of the device. The pressure elevation is detected by a pressure detector connected with a gas introduction pipe or discharge pipe. Further, since the discharge current in the inside is increased along with the elevation of the pressure, it is possible to detect the increase of the electrical current. In this way, the consumption of the cathode can be recognized by detecting the elevation in the pressure or increase in the current. (Ikeda, J.)

  1. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  2. Shaded Relief of Minnesota Elevation - Color

    Data.gov (United States)

    Minnesota Department of Natural Resources — This file is a product of a shaded relief process on the 30 meter resolution Digital Elevation Model data (dem30im3). This image was created using a custom AML...

  3. Shaded Relief of Minnesota Elevation - Black & White

    Data.gov (United States)

    Minnesota Department of Natural Resources — This file is a product of a shaded relief process on the 30 meter resolution Digital Elevation Model data (dem30im3). This image was created using a custom AML...

  4. Brain Circuits Encoding Reward from Pain Relief.

    Science.gov (United States)

    Navratilova, Edita; Atcherley, Christopher W; Porreca, Frank

    2015-11-01

    Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward-predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging, and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex (ACC), activation of midbrain dopamine neurons, and the release of dopamine in the nucleus accumbens (NAc). Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute or chronic pain.

  5. Non-Drug Pain Relief: Imagery

    Science.gov (United States)

    PATIENT EDUCATION patienteducation.osumc.edu Non-Drug Pain Relief: Imagery Relaxation helps lessen tension. One way to help decrease pain is to use imagery. Imagery is using your imagination to create a ...

  6. Supply Chain Management in Humanitarian Relief Logistics

    National Research Council Canada - National Science Library

    Rodman, William

    2004-01-01

    Hundreds of millions of people are affected by disasters each year. This thesis explores the use of supply chain management techniques to overcome the barriers encountered by logistics managers during humanitarian relief operations...

  7. U.S. Coastal Relief Model - Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  8. U.S. Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  9. Lake Bathymetric DEM Shaded Relief Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — Geo-referenced, shaded relief image of lake bathymetry classified at 5-foot depth intervals. This dataset has a cell resolution of 5 meters (occasionally 10m) as...

  10. The Team Approach to Pain Relief

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues The Team Approach to Pain Relief Past Issues / Fall 2007 ... Roberts is seen here with some of the team members, (left to right) Dr. Berger, Jacques Bolle, ...

  11. Waste pipe calculus extensions

    International Nuclear Information System (INIS)

    O'Connell, W.J.

    1979-01-01

    The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems

  12. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  13. Subsea pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    Balcombe, Mark

    1988-09-22

    The Gulf of Mexico is famous today mainly for the ferocity of its hurricanes. But for anyone in the oil industry, it is also known for the vast array of oil pipelines that criss-cross its stormy waters, and for the large number of pipeline-laying barges which install them. Soon many of these vessels could be steaming to British waters - not to escape the weather, but to cash in on a bonanza of pipe-laying activity which could soon take place offshore northern Europe. The construction of new pipelines off the UK, Norway and Netherlands will, however, present a new range of challenges for pipeline designers and builders. First and foremost is the Piper Alpha platform disaster, which could saddle the UK offshore industry with a Pound 500 million-plus bill for the installation of emergency shutdown valves (ESVs) on existing lines.

  14. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    International Nuclear Information System (INIS)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok

    2016-01-01

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device

  15. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  16. Proactive pressure relief system management of life cycle and ageing in nuclear power plants

    International Nuclear Information System (INIS)

    Kolenc, J.; Ferrar, S.

    2011-01-01

    The last major power nuclear station built in North America was built when the Altair Company introduced the first microcomputer sparking the PC frenzy. It is safe to assume that there have been a great many changes since 1977 on both accounts. As the world's aging nuclear plants continue to be challenged with maintenance and replacement issues (obsolescence), as well making improvements within their facilities, proper pressure relief system management looms as a growing concern. This problem grows more acute as new engineering best practices are promulgated across industries and regulatory standards become more rigorous with much stricter enforcements. Unlike most pieces of operating equipment in a nuclear facility, pressure relief devices demand an extra level of consideration; as they form the 'last line of defense'. Combine the on-going obsolescence issue, with today's ever increasing demands for overall plant and public safety; pressure relief safety management will require increasing 'proactive' efforts to ensure safe facilities. This paper has been written to address some global pressure relief system management issues with respect the worlds aging nuclear facilities. This paper reflects findings we have discovered while conducting engineering pressure relief system audits on various nuclear power stations. It should be noted that these finding are not atypical of similar findings in pressure relief systems in the hydrocarbon processing world. (author)

  17. Fatigue evaluation of socket welded piping in nuclear power plant

    International Nuclear Information System (INIS)

    Vecchio, R.S.

    1996-01-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determine the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date

  18. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  19. Pipe snubber apparatus

    International Nuclear Information System (INIS)

    Banks, E.L.; Dowell, T.P.

    1979-01-01

    Mechanical shock absorbers for restraining portions of a power plant to withstand earthquakes while at the same time providing freedom for movement of those devices which undergo thermal expansion or contraction during use are described. (U.K.)

  20. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility

  1. Determination of the pipe stemming load

    International Nuclear Information System (INIS)

    Cowin, S.C.

    1979-01-01

    A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given

  2. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  3. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  4. Pipe restraints for nuclear power plants

    International Nuclear Information System (INIS)

    Keever, R.E.; Broman, R.; Shevekov, S.

    1976-01-01

    A pipe restraint for nuclear power plants in which a support member is anchored on supporting surface is described. Formed in the support member is a semicylindrical wall. Seated on the semicylindrical wall is a ring-shaped pipe restrainer that has an inner cylindrical wall. The inner cylindrical wall of the pipe restrainer encircles the pressurized pipe. In a modification of the pipe restraint, an arched-shaped pipe restrainer is disposed to overlie a pressurized pipe. The ends of the arch-shaped pipe restrainer are fixed to support members, which are anchored in concrete or to a supporting surface. A strap depends from the arch-shaped pipe restrainer. The pressurized pipe is supported by the depending strap

  5. B Plant process piping replacement feasibility study

    International Nuclear Information System (INIS)

    Howden, G.F.

    1996-01-01

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace

  6. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  7. Dynamic load in suppression pool during BWR main steam safety relief valve actuation

    International Nuclear Information System (INIS)

    Tsukada, Hiroshi; Yamaguchi, Hirokatsu; Morita, Terumichi

    1979-01-01

    BWRs are so designed that the exhaust steam from main steam safety relief valves is led to pressure suppression pools, and the steam is condensed in pool water, but at this time, dynamic load seems to arise in the pool water. In Tokai No. 2 Power Station, a Mark-2 containment vessel was adopted to improve the reliability as much as possible and to obtain the design with margin. In this report, the result of actual machine test in Tokai No. 2 Power Station and the method of reducing the load are described. When a relief valve works, the discharge of water in exhaust pipes into a suppression pool, the exhaust of air in exhaust pipes and repeated expansion and contraction of bubbles in pool water, and the exhaust of steam and condensation occur. As for the construction of the suppression pool in Tokai No. 2 Power Station, cross-shaped quencher and the structure with jet deflector were installed. The test plan and the test result with an actual machine are reported. The soundness of the Mark-2 containment vessel and the structures in the pool was proved. The differential pressure acting on the structures was negligibly small. The measured pulsating pressure was in the range from 0.84 to -0.39 kg/cm 2 . (Kako, I.)

  8. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  9. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  10. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  11. Fresh fuel pre-heating device in reactor facility

    International Nuclear Information System (INIS)

    Samejima, Asakuni.

    1988-01-01

    Purpose: To simplify the structure of a fresh nuclear fuel pre-heating device and improve the reliability to gas supply. Constitution: Fresh fuels taken out from a fresh fuel stredge rack and contained in a fuel strage pipe of a fuel transportation cask are pre-heated at the pre-stage of transfer by sending heating gases from the outside. Gas outlet pipes of the device are led out from the lower portion of the strage pipe, disposed side by side at the top of the strage pipe and opened upwardly. Further, gas supply pipes are connected to the inside of a movable guiding cylinder on the side of the floor surface and the opening end of return pipes are opposed to the exit opening end of the strage pipe. In such a constitution, a gas recycling loop can be formed between the strage pipe and the gas heating device by way of the movable guiding cylinder only by the operation of combining the fuel strage pipe of the transportation cask and the movable guiding pipe disposed on the side of the floor surface. Thus, the coupling structure is facilitated, the connection operation can surely be conducted to improve the reliability as compared with the conventional case. (Horiuchi, T.)

  12. Bali, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    The volcanic nature of the island of Bali is evident in this shaded relief image generated with data from the Shuttle Radar Topography Mission (SRTM).Bali, along with several smaller islands, make up one of the 27 Provinces of Indonesia. It lies over a major subduction zone where the Indo-Australian tectonic plate collides with the Sunda plate, creating one of the most volcanically active regions on the planet.The most significant feature on Bali is Gunung Agung, the symmetric, conical mountain at the right-center of the image. This 'stratovolcano,' 3,148 meters (10,308 feet) high, is held sacred in Balinese culture, and last erupted in 1963 after being dormant and thought inactive for 120 years. This violent event resulted in over 1,000 deaths, and coincided with a purification ceremony called Eka Dasa Rudra, meant to restore the balance between nature and man. This most important Balinese rite is held only once per century, and the almost exact correspondence between the beginning of the ceremony and the eruption is though to have great religious significance.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot

  13. Colored Height and Shaded Relief, Kamchatka Peninsula

    Science.gov (United States)

    2002-01-01

    Russia's Kamchatka Peninsula, lying between the Sea of Okhotsk to the west and the Bering Sea and Pacific Ocean to the east, is one of the most active volcanic regions along the Pacific Ring of Fire. It covers an area about the size of Colorado but contains more than 100 volcanoes stretching across the 1000-kilometer-long (620-mile-long) land mass. A dozen or more of these have active vents, with the youngest located along the eastern half of the peninsula. This color-coded shaded relief image, generated with data from the Shuttle Radar Topography Mission (SRTM), shows Kamchatka's volcanic nature to dramatic effect.Kliuchevskoi, one of the most active and renowned volcanoes in the world, dominates the main cluster of volcanoes called the Kliuchi group, visible as a circular feature in the center-right of the image. The two other main volcanic ranges lie along northeast-southwest lines, with the older, less active range occupying the center and western half of Kamchatka. The younger, more active belt begins at the southernmost point of the peninsula and continues upward along the Pacific coastline.Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction, so northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations.The Shuttle Radar Topography Mission flew aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (200

  14. Sinai Peninsula, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    The Sinai Peninsula, located between Africa and Asia, is a result of those two continents pulling apart from each other. Earth's crust is cracking, stretching, and lowering along the two northern branches of the Red Sea, namely the Gulf of Suez, seen here on the west (left), and the Gulf of Aqaba, seen to the east (right). This color-coded shaded relief image shows the triangular nature of the peninsula, with the coast of the Mediterranean Sea forming the northern side of the triangle. The Suez Canal can be seen as the narrow vertical blue line in the upper left connecting the Red Sea to the Mediterranean. The peninsula is divided into three distinct parts; the northern region consisting chiefly of sandstone, plains and hills, the central area dominated by the Tih Plateau, and the mountainous southern region where towering peaks abound. Much of the Sinai is deeply dissected by river valleys, or wadis, that eroded during an earlier geologic period and break the surface of the plateau into a series of detached massifs with a few scattered oases. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed

  15. Ireland, Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency

  16. Development of the method to measure vibrational stress of small-bore piping with contactless displacement sensor. Accuracy confirmation by vibrational experiment using branch pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo

    2013-01-01

    In nuclear power plants, vibrational stress of piping is measured to prevent its fatigue failures. Easier handling and more efficient performance is desirable for the measurement of vibrational stress. The authors have proposed a method to measure vibrational stress using optical contactless displacement sensors, and have developed a device based on the method. In addition, they downsized the device and improved the method to allow its use for measurements even in narrow spaces in the plants. In this study, vibrational experiment using branch pipes and the device was conducted to confirm the measurement accuracy of the improved method. It was found that the improved method have sufficient accuracy for screening to evaluate the vibrational stress. It was also found that this measurement method was thought to be susceptible to the vibration of main pipe. So a technique was proposed to improve the accuracy of the measurement in this paper. (author)

  17. Optimal Laser Phototherapy Parameters for Pain Relief.

    Science.gov (United States)

    Kate, Rohit J; Rubatt, Sarah; Enwemeka, Chukuka S; Huddleston, Wendy E

    2018-03-27

    Studies on laser phototherapy for pain relief have used parameters that vary widely and have reported varying outcomes. The purpose of this study was to determine the optimal parameter ranges of laser phototherapy for pain relief by analyzing data aggregated from existing primary literature. Original studies were gathered from available sources and were screened to meet the pre-established inclusion criteria. The included articles were then subjected to meta-analysis using Cohen's d statistic for determining treatment effect size. From these studies, ranges of the reported parameters that always resulted into large effect sizes were determined. These optimal ranges were evaluated for their accuracy using leave-one-article-out cross-validation procedure. A total of 96 articles met the inclusion criteria for meta-analysis and yielded 232 effect sizes. The average effect size was highly significant: d = +1.36 (confidence interval [95% CI] = 1.04-1.68). Among all the parameters, total energy was found to have the greatest effect on pain relief and had the most prominent optimal ranges of 120-162 and 15.36-20.16 J, which always resulted in large effect sizes. The cross-validation accuracy of the optimal ranges for total energy was 68.57% (95% CI = 53.19-83.97). Fewer and less-prominent optimal ranges were obtained for the energy density and duration parameters. None of the remaining parameters was found to be independently related to pain relief outcomes. The findings of meta-analysis indicate that laser phototherapy is highly effective for pain relief. Based on the analysis of parameters, total energy can be optimized to yield the largest effect on pain relief.

  18. Development of laser cladding technology for maintenance of pipe wall thinning

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi

    2011-01-01

    We are developing the laser welding and cladding device for the maintenance of heat exchanger pipes. In the case of flow accelerated corrosion where pipe wall thinning occurred after a long time operation, laser cladding is mostly expected. A laser processing head was proposed in order to access the pipe wall. A composite-type optical fiber scope was used for real time observation and laser processing. An air-cooled compact fiber laser was used for spot heating. We present the concept of the laser cladding device which have the following features: 1) Wire feeding modules, 2) Module capable of laser irradiation in the vertical heat exchanger pipe, 3) Assist gas injection module. (author)

  19. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  20. Heat pipe cooling of power processing magnetics

    Science.gov (United States)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  1. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  2. State-of-the-Art Report on the Piping and Instrumentation Design of RHRS in the Commercial NPPs

    International Nuclear Information System (INIS)

    Lee, Jun; Park, C. T.; Kim, Y. I.; Kim, S. H.; Choi, B. S.; Yoon, Ju Hyeon

    2004-12-01

    The objective of the study is for system designers to understand the technical state of the piping and instrumentation design of RHRS (or SCS) in the commercial nuclear power plants, thus to design more uncomplicated and advanced system. In this study, we have reviewed the design requirements and the technical state of piping and instrumentation design. Firstly we have reviewed the design requirements, including functional, isolation, pressure relief, pump protection, test requirements, etc.. Especially we have separately reviewed the design requirements of the low temperature overpressure, including ASME code requirements. Also we have reviewed the technical state of piping and instrumentation design, including piping design, PAMS design, ESFAS design, relief valve design, and instrument/valve/pump control design. In the piping design, the technical state of design has been investigated classified by the five regions, which have a little different design features, from the RCS suction line to the LPSI header line. Commonly, the P and ID is the design output which the related design requirements of the system have been all applied, also the operations for in-service inspection, heat-up/normal/cool-down, and emergency have been all considered. If we can understand well the design bases and its meanings of the P and ID, it would be helpful for us to design more uncomplicated and advanced system

  3. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  4. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    Highlights: • Thermal performances and operation limits of hybrid heat pipe were experimentally studied. • Models for predicting the operation limit of the hybrid heat pipe was developed. • Non-condensable gas affected heat transfer characteristics of the hybrid heat pipe. - Abstract: In this paper, a hybrid heat pipe is proposed for use in advanced nuclear power plants as a passive heat transfer device. The hybrid heat pipe combines the functions of a heat pipe and a control rod to simultaneously remove the decay heat generated from the core and shutdown the reactor under accident conditions. Thus, the hybrid heat pipe contains a neutron absorber in the evaporator section, which corresponds to the core of the reactor pressure vessel. The presence of the neutron absorber material leads to differences in the heated diameter and hydraulic diameter of the heat pipe. The cross-sectional areas of the vapor paths through the evaporator, adiabatic, and condenser sections are also different. The hybrid heat pipe must operate in a high-temperature, high-pressure environment to remove the decay heat. In other words, the operating pressure must be higher than those of the commercially available thermosyphons. Hence, the thermal performances, including operation limit of the hybrid heat pipe, were experimentally studied in the operating pressure range of 0.2–20 bar. The operating pressure of the hybrid heat pipe was controlled by charging the non-condensable gas which is unused method to achieve the high saturation pressure in conventional thermosyphons. The effect of operating pressure on evaporation heat transfer was negligible, while condensation heat transfer was affected by the amount of non-condensable gas in the test section. The operation limit of the hybrid heat pipe increased with the operating pressure. Maximum heat removal capacity of the hybrid heat pipe was up to 6 kW which is meaningful value as a passive decay heat removal device in the nuclear power

  5. Advanced concepts, analysis approaches and criteria for nuclear piping system design

    International Nuclear Information System (INIS)

    Tang, H.T.; Tagart, S.W. Jr.; Tang, Y.K.

    1992-01-01

    Recent research in piping system design and analysis has resulted in advancements on damping values, independent support motion (ISM), static coefficient method, simplified inelastic method and ASME code criteria changes. In the support area, passive type of supports such as energy-absorbing device and gap stopper have been developed. These advancements provide bases for improved and cost-effective design of future nuclear piping systems. (author)

  6. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  7. Status of high-temperature heat-pipe technology

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1982-01-01

    This paper discusses the application of heat pipes to nuclear reactor space power systems. Characteristics of the device that favor such an application are described and recent results of current technology development programs are presented. Research areas that will need to be addressed in demonstrating that adequate lifetimes can be achieved with evaporation/condensation cycles operating at high temperatures in a reactor environment are also discussed

  8. Pipe line construction for reactor containment buildings

    International Nuclear Information System (INIS)

    Aoki, Masataka; Yoshinaga, Toshiaki

    1978-01-01

    Purpose: To prevent the missile phenomenon caused by broken fragments due to pipe whip phenomenon in a portion of pipe lines connected to a reactor containment from prevailing to other portions. Constitution: Various pipe lines connected to the pressure vessel are disposed at the outside of the containments and they are surrounded with a plurality of protection partition walls respectively independent from each other. This can eliminate the effect of missile phenomena upon pipe rupture from prevailing to the pipe lines and instruments. Furthermore this can afford sufficient spaces for the pipe lines, as well as for earthquake-proof supports. (Horiuchi, T.)

  9. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)

  10. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  11. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  12. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  13. 24 CFR 965.508 - Individual relief.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Individual relief. 965.508 Section 965.508 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Resident Allowances for Utilities § 965.508 Individual...

  14. Emergency networking: famine relief in ant colonies

    NARCIS (Netherlands)

    Sendova-Franks, A.B.; Hayward, R.; Wulf, B.; Klimek, T.; James, R.; Planque, R.; Britton, N.F.; Franks, N.R.

    2009-01-01

    Resource distribution is fundamental to social organization, but it poses a dilemma. How to facilitate the spread of useful resources but restrict harmful substances? This dilemma reaches a zenith in famine relief. Survival depends on distributing food fast but that could increase vulnerability to

  15. 32 CFR 516.19 - Injunctive relief.

    Science.gov (United States)

    2010-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Reporting Legal Proceedings to HQDA § 516.19 Injunctive relief. (a) General. Plaintiffs...). Because these actions can quickly impede military functions, immediate and decisive action must be taken...

  16. 78 FR 19136 - Emergency Relief Program

    Science.gov (United States)

    2013-03-29

    ... issuing this interim final rule in order to comply with the Disaster Relief Appropriations Act of 2013... FTA-2013-0004. All electronic submissions must be made to the U.S. Government electronic site at http... operating costs in the event of a catastrophic event, such as a natural disaster, that affects a wide area...

  17. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  18. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  19. Nasal Filters For Relief From Atopic Dermatitis Caused by Inhalants

    Directory of Open Access Journals (Sweden)

    J S Pasricha

    1989-01-01

    Full Text Available Nasal filter is a simple device consisting of a net mounted in a frame made to fit inside the nostrils. These filters thus are not visible from outside. If a person uses the nasal filters the .u particulate material from the air that the person breathes gets removed and in case the person is allergic to an inhalant antigen, he stops having the allergic symptoms. We tried nasal filters on two females patients aged 32 and 7 years respectively, having topics dermatitis the age of I year, caused by an inhalant (indicated by seasonal aggravations, and spontaneous recovery during brief visits to other towns. Unrig a follow-up of 2 1/2 and 2 years respectively, both the patients experienced almost 80-90% relief from the dermatitis and required only animal treatment.

  20. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  1. Reactor protection device

    Energy Technology Data Exchange (ETDEWEB)

    Shida, T; Hirose, M

    1977-01-19

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by the r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded.

  2. Reactor protection device

    International Nuclear Information System (INIS)

    Shida, Toichi; Hirose, Masao.

    1977-01-01

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to thereby lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded. (Yoshino, M.)

  3. Laser working device

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi; Terakado, Takuya; Kondo, Mitsunori; Munakata, Tadashi; Makino, Yoshinobu; Honda, Keizo.

    1995-01-01

    A transmission pipe transmits laser beams along an axis thereof, and is inserted at the top end to a pipeline to be fabricated. A flat mirror is secured to the top end of the transmission pipe, and laser beams are reflected by the mirror, passed through a fabrication nozzle and focused to a fabrication point in the pipeline to be fabricated. A lens-type light focusing system is guided to the fabrication point by a plurality of rollers rotatable in the axial direction disposed in circumferential direction each at an equal pitch at the outer circumference of the transmission pipe. A centering mechanism is disposed for keeping the transmission pipe coaxially with the pipeline to be fabricated. Further, there are also disposed a mirror-type light focusing optical system for focusing light by a paraboloidal mirror and a spherical vehicle rotatable in all directions. A laser fabrication device can be reduced in the size, and it can be used in a high temperature and highly radioactive circumstance. (N.H.)

  4. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  5. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  6. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  7. Research program plan: piping. Volume 3

    International Nuclear Information System (INIS)

    Vagins, M.; Strosnider, J.

    1985-07-01

    Regulatory issues related to piping can be divided into the three areas of pipe cracking, postulated design basis pipe breaks, and design of piping for seismic and other dynamic loads. The first two of these issues are in the domain of the Materials Engineering Branch (MEBR), while the last of the three issues is the responsibility of the Mechanical/Structural Engineering Branch. This volume of the MEBR Research Plan defines the critical aspects of the pipe cracking and postulated design basis pipe break issues and identifies those research efforts and results necessary for their resolution. In general, the objectives of the MERB Piping Research Program are to provide experimentally validated analytic techniques and appropriate material properties characterization methods and data to support regulatory activities related to evaluating and ensuring piping integrity

  8. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  9. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  10. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  11. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  12. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  13. Laboratory exercises on oscillation modes of pipes

    Science.gov (United States)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  14. Evaluation of pain relief sufficiency using the Cumulative Analgesic Consumption Score (CACS) and its modification (MACS).

    Science.gov (United States)

    Frank, Alexander Harald Ralf; Groene, Philipp; von Ehrlich-Treuenstätt, Viktor; Heiliger, Christian; Werner, Jens; Karcz, Konrad

    2017-12-01

    Postoperative pain is one of the major complications in general and bariatric surgery, associated with ongoing problems such as ileus, pneumonia and prolonged mobilization. In this study, patients undergoing bariatric surgery were analyzed according to their postoperative pain relief regime. In one group patients were treated with a patient-controlled analgesia (PCA) device, while the other group was treated with oral and intravenous analgesic medication. The aim of this study was to analyze which postoperative pain relief therapy would be more appropriate. We chose the Cumulative Analgesic Consumption Score (CACS) and Numeric Rating Scale (NRS) for pain measurement. For better comparison, we performed a modification of CACS according to PCA treatment. We observed better pain relief in the PCA group. Furthermore, we observed an advantage of treatment with laxatives in patients treated with PCA. In conclusion, PCA devices are appropriate instruments for postoperative pain relief in bariatric patients. CACS is a practical tool for postoperative pain measurement, describing individual pain sensation more objectively, although holding further potential in modification.

  15. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  16. South America, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    This image of South America was generated with data from the Shuttle Radar Topography Mission (SRTM). For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south but variable east-west), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the South American continent is readily apparent.Topographic relief in South America is dominated by the Andes Mountains, which extend all along the Pacific Coast. These mountains are created primarily by the convergence of the Nazca and South American tectonic plates. The Nazca Plate, which underlies the eastern Pacific Ocean, slides under western South America resulting in crustal thickening, uplift, and volcanism. Another zone of plate convergence occurs along the northwestern coast of South America where the Caribbean Plate also slides under the South American Plate and forms the northeastern extension of the Andes Mountains.East of the Andes, much of northern South America drains into the Amazon River, the world's largest river in terms of both watershed area and flow volume. Topographic relief is very low in much of the Amazon Basin but SRTM data provide an excellent detailed look at the basin's three-dimensional drainage pattern, including the geologic structural trough (syncline) that hosts the eastern river channel.North of the Amazon, the Guiana Highlands commonly stand in sharp contrast to the surrounding lowlands, indeed hosting the world's tallest waterfall, Angel Falls (979 meters or 3212 feet). Folded and fractured bedrock structures are distinctive in the topographic pattern.South of the Amazon, the Brazilian Highlands show a mix of landforms, including some broad areas of consistent topographic patterns that indicate the

  17. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  18. Apparatus for measuring total flow in pipes

    International Nuclear Information System (INIS)

    Matthews, H.

    1986-01-01

    To obtain a sample representative of the total flow in a pipe over a given period a Pitot tube is located in the pipe and connected to a collector outside the pipe. The collector is pressurised to a pressure substantially equal to the static head of the flow in the pipe via a line. Liquid is discharged from a collector to a container which is vented to atmosphere. (author)

  19. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  20. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  1. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  2. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  3. Medications for Pain Relief during Labor and Delivery

    Science.gov (United States)

    ... FAQ086 LABOR, DELIVERY, AND POSTPARTUM CARE Medications for Pain Relief During Labor and Delivery • What types of medications for pain relief are used during labor and delivery? • What are ...

  4. Mechanical Designs for Relief Valves for Cryogenic Apparatuses and Installations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    There are also pressure relief valves with warm seat available on which the set pressure is based on an adjustment of forces by permanent magnets. Pressure vessel rules allows also the choice for an active triggered pressure relief valve (Cont...

  5. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  6. 49 CFR 195.424 - Pipe movement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipe movement. 195.424 Section 195.424... PIPELINE Operation and Maintenance § 195.424 Pipe movement. (a) No operator may move any line pipe, unless... in the line section involved are joined by welding unless— (1) Movement when the pipeline does not...

  7. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  8. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report contains schematic drawings for the pipe fittings for the Hanford waste tanks. Included are the modifications to the W-025 trench number-sign 31 leachate loadout piping, and also the modifications to the tanker trailers. The piping was modified to prevent spillage to the environment. The tankers were modified for loading and unloading purposes

  9. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  10. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  11. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  12. Olduvai Gorge, Shaded Relief and Colored Height

    Science.gov (United States)

    2004-01-01

    Three striking and important areas of Tanzania in eastern Africa are shown in this color-coded shaded relief image from the Shuttle Radar Topography Mission. The largest circular feature in the center right is the caldera, or central crater, of the extinct volcano Ngorongoro. It is surrounded by a number of smaller volcanoes, all associated with the Great Rift Valley, a geologic fault system that extends for about 4,830 kilometers (2,995 miles) from Syria to central Mozambique. Ngorongoro's caldera is 22.5 kilometers (14 miles) across at its widest point and is 610 meters (2,000 feet) deep. Its floor is very level, holding a lake fed by streams running down the caldera wall. It is part of the Ngorongoro Conservation Area and is home to over 75,000 animals. The lakes south of the crater are Lake Eyasi and Lake Manyara, also part of the conservation area. The relatively smooth region in the upper left of the image is the Serengeti National Park, the largest in Tanzania. The park encompasses the main part of the Serengeti ecosystem, supporting the greatest remaining concentration of plains game in Africa including more than 3,000,000 large mammals. The animals roam the park freely and in the spectacular migrations, huge herds of wild animals move to other areas of the park in search of greener grazing grounds (requiring over 4,000 tons of grass each day) and water. The faint, nearly horizontal line near the center of the image is Olduvai Gorge, made famous by the discovery of remains of the earliest humans to exist. Between 1.9 and 1.2 million years ago a salt lake occupied this area, followed by the appearance of fresh water streams and small ponds. Exposed deposits show rich fossil fauna, many hominid remains and items belonging to one of the oldest stone tool technologies, called Olduwan. The time span of the objects recovered dates from 2,100,000 to 15,000 years ago. Two visualization methods were combined to produce the image: shading and color coding of

  13. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  14. Spinning pipe gas lens revisited

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-01-01

    Full Text Available The graded index (GRIN-like) medium generated by gas inside a heated steel pipe when rotated about its longitudinal axis has the ability to focus a laser beam. While the effective focal length of such a system has previously been studied...

  15. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  16. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  17. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  18. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  19. Pipe Leak Detection Technology Development

    Science.gov (United States)

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  20. Late-Cenozoic relief evolution under evolving climate: A review

    OpenAIRE

    Champagnac Jean Daniel; Valla Pierre G.; Herman Frédéric

    2014-01-01

    The present review paper is an attempt to summarize quantitative evidence of Late Cenozoic changes in topographic relief. Different meanings of the word "relief" as it is commonly used and detail the metrics used to quantify it. We then specify methodological tools used to quantify relief change (primarily low temperature thermochronometry and terrestrial cosmogenic nuclides) and analyze published evidence for different regions.Our review first shows that relief changes and rates of changes a...

  1. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  2. Crisis Communication Practices at an International Relief Agency

    Science.gov (United States)

    Genova, Gina L.

    2006-01-01

    When a disaster strikes, the affected population relies upon the swift response and aid rendered by relief organizations such as the California-based Direct Relief International. Since 1948, Direct Relief's mission has been to provide essential material resources to locally run health programs in areas affected by natural disasters, wars, and…

  3. 48 CFR 252.229-7001 - Tax relief.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Tax relief. 252.229-7001... Clauses 252.229-7001 Tax relief. As prescribed in 229.402-70(a), use the following clause: Tax Relief (JUN 1997) (a) Prices set forth in this contract are exclusive of all taxes and duties from which the United...

  4. 19 CFR 210.52 - Motions for temporary relief.

    Science.gov (United States)

    2010-04-01

    ....52 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Temporary Relief § 210.52 Motions for temporary relief... issuance of temporary relief, the Commission will be guided by practice under Rule 65 of the Federal Rules...

  5. Photobiomodulation: Implications for Anesthesia and Pain Relief.

    Science.gov (United States)

    Chow, Roberta T; Armati, Patricia J

    2016-12-01

    This review examines the evidence of neural inhibition as a mechanism underlying pain relief and anesthetic effect of photobiomodulation (PBM). PBM for pain relief has also been used for more than 30 years; however, the mechanism of its effectiveness has not been well understood. We review electrophysiological studies in humans and animal models and cell culture studies to examine neural responses to PBM. Evidence shows that PBM can inhibit nerve function in vivo, in situ, ex vivo, and in culture. Animal studies using noxious stimuli indicate nociceptor-specific inhibition with other studies providing direct evidence of local conduction block, leading to inhibited translation of pain centrally. Evidence of PBM-disrupted neuronal physiology affecting axonal flow, cytoskeleton organization, and decreased ATP is also presented. PBM changes are reversible with no side effects or nerve damage. This review provides strong evidence in neuroscience identifying inhibition of neural function as a mechanism for the clinical application of PBM in pain and anesthesia.

  6. Coordinating Robot Teams for Disaster Relief

    Science.gov (United States)

    2015-05-01

    eventually guide vehicles in cooperation with its Operator(s), but in this paper we assume static mission goals, a fixed number of vehicles, and a...is tedious and error prone. Kress-Gazit et al. (2009) instead synthesize an FSA from an LTL specification using a game theory approach (Bloem et al...helping an Operator coordinate a team of vehicles in Disaster Relief. Acknowledgements Thanks to OSD ASD (R&E) for sponsoring this research. The

  7. Relief Evolution in Tectonically Active Mountain Ranges

    Science.gov (United States)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  8. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  9. Remote mechanized equipment for the repair and replacement of boiling water reactor recirculation loop piping

    International Nuclear Information System (INIS)

    Mauser, D.; Busch, D.F.

    1983-01-01

    Equipment has been assembled for the remote repair or replacement of boiling water reactor nuclear plant piping in the diameter range of 4 to 28 inches (10-71 cm). The objectives of this program were to produce high-quality pipe welds, reduce plant downtime, and reduce man-rem exposure. The repair strategy was to permit repair personnel to install and check out the repair subsystems and then leave the radiation zone allowing the operations to be conducted at a distance of up to 300 feet (91 m) from the operator. The complete repair system comprises subsystems for pipe severing, dimensional gaging, joint preparation, counterboring, welding, postweld nondestructive inspection (conceptual design), and audio, electronic, and visual monitoring of all operations. Components for all subsystems, excluding those for postweld nondestructive inspection, were purchased and modified as needed for integration into the repair system. Subsystems were designed for two sizes of Type 304 stainless steelpipe. For smaller, 12-inch-diameter (30.5 cm) pipe, severing is accomplished by a power hack saw and joint preparation and counterboring by an internally mounted lathe. The 22-inch-diameter (56 cm) pipe is severed, prepared, and counterbored using an externally mounted, single-point machining device. Dimensional gaging is performed to characterize the pipe geometry relative to a fixed external reference surface, allowing the placement of the joint preparation and the counterbore to be optimized. For both pipe sizes, a track-mounted gas tungsten-arc welding head with filler wire feed is used

  10. Water curative treatment device

    International Nuclear Information System (INIS)

    Fridrihsons, J.

    2011-01-01

    The device is made of two water containers (water that is intended to be activated) which are connected with a glass pipe in lower parts. In these containers disinfectant ultraviolet radiance “U” type luminescent light bulbs are placed which are connected to a mono-phase electrical power network from the shell surface spiral steel wire electrodes through a voltage duplicator. In water such harmless chemical composition coagulator is placed which automatically in the lower part of the connecting glass pipe creates residue hydra-gate that separates fractions of anion and cation. The lower parts of the containers are equipped with coal filter taps; mixing the anion and cation in equal proportions allows collecting single fractions of activated water selectively and gain drinking water which is refined from residues and processed antibacterially. (author)

  11. Reactor shutdown device

    International Nuclear Information System (INIS)

    Inoue, Toyokazu.

    1982-01-01

    Purpose: To obtain a highly reliable reactor shutdown device capable of checking its function irrespective of the state whether shutdown or operation in a gas-cooled type reactor. Constitution: A hopper is disposed above a guide tube inserted into the reactor core and particulate neutron absorbers are contained in the hopper. An opening for falling particles is disposed to the bottom of the hopper in opposition to the upper end of the guide pipe and the opening is closed by a plug suspended by way of a weld line so as to be capable of dropping. A power source for supplying electrical current to the weld line is disposed. Accordingly, if the current is supplied to the weld line, the line is cut by welding to fall the plug so that the neutron-absorbing particles fall from the opening into the guide pipe to shutdown the reactor, whereby high reliability is obtained for the operation. (Seki, T.)

  12. Theoretical and experimental study on dynamic responses of piping systems with combined dampers

    International Nuclear Information System (INIS)

    Gershtein, M.; Fridman, Ya.; Perelmiter, A.

    1996-01-01

    Vibrations of pipelines transporting fluids, gases, and granular materials are excited by the air flow, internal pressure pulsation, or seismic ground motion. The susceptibility of oil and gas pipelines to seismic damage has been demonstrated in earthquakes everywhere around the world. Devices for above-ground pipelines and piping systems vibration suppression with combination of dry friction and viscous energy dissipation are developed by AVIBRA, Shear deformation of viscous-elastic material in these devices occurs prior to interfacial slip. The way to account this phenomenon is to model the damper as an elastic-viscous element in series with an ideal Coulomb dry friction element. The harmonic balance method was applied to obtain an equivalent viscous damping constant for a combined damper. Iteration process was used to predict a dynamic response of a piping system with combined dampers subjected to sinusoidal excitation. Every iteration step was based on ANSYS procedures. Time integration of systems with hysteretic friction models presents computational difficulties. Some examples of dynamic responses of piping systems were analyzed by a time integration procedure for finite-element models. Combined dry friction-viscous dissipation dampers were tested on a piping model under harmonic excitation. It was clarified that combined dampers are very effective to reduce dynamic response. The seismic response of the piping system with combined dampers was calculated using time history finite-element analysis. The excellent effectiveness of AVIBRA combined dampers for aseismic design and retrofitting of pipelines and piping systems was confirmed by the analysis

  13. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A [Dassault Aviation, 92 - Saint Cloud (France)

    1997-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  14. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)

    1996-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  15. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  16. Augmented reality application for training in pipe defects ultrasonic investigation

    Directory of Open Access Journals (Sweden)

    Amza Cătălin Gheorghe

    2017-01-01

    Full Text Available The paper presents the development process of an Augmented Reality (AR application used for training operators in using ultrasonic equipment for non-destructive testing (NDT of pipework. The application provides workers useful information regarding the process steps, the main components of ultrasonic equipment and the proper modality of placing, aligning and moving it on pipe and weld. Using tablet or mobile phone device, an operator can see on screen written details and images on standardized working method, thus offering assistance during the training process. Allowing 3D augmented visualization of ultrasonic equipment overlaid on the real-world environment consisting in pipes and welds, the AR application makes the NDT process easier to understand and learn, as the initial evaluation results showed.

  17. Development of a Soundproof Device for 950 Watt rated Portable ...

    African Journals Online (AJOL)

    Dr. N.A Musa

    ABSTRACT: The noise emanating from generators has adverse effects on ... soundproof device was carried out, and the sound pressure level of the ... Heat resistance rubber pipe and. 8. ... attached to the exhaust of the generator, respectively.

  18. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  19. Development of LBB Piping Evaluation Diagram for APR 1000 Main Steam Line Piping

    International Nuclear Information System (INIS)

    Yang, J. S.; Jeong, I. L.; Park, C. Y.; Bai, S. Y.

    2010-01-01

    This paper presents the piping evaluation diagram (PED) to assess the applicability of Leak-Before- Break(LBB) for APR 1000 main steam line piping. LBB-PED of APR 1000 main steam line piping is independent of its piping geometry and has a function of the loads applied in piping system. Also, in order to evaluate LBB applicability during construction process with only the comparative evaluation of material properties between actually used and expected, the expected changes of material properties are considered in the LBB-PED. The LBB-PED, therefore, can be used for quick LBB evaluation of APR 1000 main steam line piping of both design and construction

  20. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...... demonstrated that this method offers good starting values for a Newton-Raphson iteration....

  1. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  2. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  3. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit

  4. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  5. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  6. Evaluation of temporary non-code repairs in safety class 3 piping systems

    International Nuclear Information System (INIS)

    Godha, P.C.; Kupinski, M.; Azevedo, N.F.

    1996-01-01

    Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference

  7. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1981-01-01

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  8. LOFT pressurizer safety: relief valve reliability

    International Nuclear Information System (INIS)

    Brown, E.S.

    1978-01-01

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice

  9. LOFT pressurizer safety: relief valve reliability

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.

    1978-01-18

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice.

  10. Pain relief in labour: tramadol versus pentazocine

    OpenAIRE

    Kavita Chandnani; H. B. Sainee

    2013-01-01

    Background: The present study was undertaken to compare the effect of 100 mg intramuscular tramadol to 30 mg intramuscular Pentazocine for labour analgesia. Methods: A total of 60 cases with 37-40 weeks pregnancy in labour, without any foetal or maternal complications were selected. Out of them Inj. Tramadol was given to 30 cases while rest of the 30 patients received injection Pentazocine. Results: In Tramadol group pain relief was observed in 80% cases, effect started as early as 7-8 min an...

  11. Targinact--opioid pain relief without constipation?

    Science.gov (United States)

    2010-12-01

    Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.

  12. [Body integrity identity disorder, relief after amputation].

    Science.gov (United States)

    Blom, R M; Braam, A W; de Boer-Kreeft, N; Sonnen, M P A M

    2014-01-01

    Body integrity identity disorder (BIID) is a rare condition in which a person, for no apparent physical reason, is tormented by the experience that a body-part, such as a limb, does not really belong to the body. Patients experience an intense desire for the limb to be amputated (a 'desire' formerly referred to as 'apotemnophilia'). We report on a 58-year-old male patient with BIID who froze one of his legs so that he could amputate it himself. A surgeon ultimately intervened and amputated the leg professionally. The patient was extremely relieved and was still experiencing relief at a follow-up three years later.

  13. Device for borating the primary circuit of a water-cooled nuclear reactor plant

    International Nuclear Information System (INIS)

    Stiefel, M.

    1985-01-01

    The extraction pipes for the boric acid and deionisation container are each connected to a pipe which can be shut off behind the pump. Measures for checking the contents of the container are provided in the extraction pipes and/or in the pipes leading to the containers. Faults can therefore be recognised in good time. The degree of availability is increased and the number of necessary redundant devices is reduced. The extraction pipe of the boric acid container has a rotary displacement pump. (HP) [de

  14. Analytical studies of blowdown thrust force and dynamic response of pipe at pipe rupture accident

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki

    1985-01-01

    The motion of a pipe due to blowdown thrust when the pipe broke is called pipe whip. In LWR power plants, by installing restraints, the motion of a pipe when it broke is suppressed, so that the damage does not spread to neighboring equipment by pipe whip. When the pipe whip of a piping system in a LWR power plant is analyzed, blowdown thrust and the dynamic response of a pipe-restraint system are calculated with a computer. The blowdown thrust can be calculated by using such physical quantities as the pressure, flow velocity, density and so on in the system at the time of blowdown, obtained by the thermal-fluid analysis code at LOCA. The dynamic response of a piping-restraint system can be determined by the stress analysis code using finite element method taking the blowdown thrust as an external force acting on the piping. In this study, the validity of the analysis techniques was verified by comparing with the experimental results of the measurement of blowdown thrust and the pipe whip of a piping-restraint system, carried out in the Japan Atomic Energy Research Institute. Also the simplified analysis method to give the maximum strain on a pipe surface is presented. (Kako, I.)

  15. Pain relief by Cyberknife radiosurgery for spinal metastasis.

    Science.gov (United States)

    Lee, Sunyoung; Chun, Mison

    2012-01-01

    To report pain relief effect in patients with spinal metastases treated with Cyberknife® and to analyze the factors associated with pain relapse after initial pain relief. We retrospectively analyzed patients with spinal metastasis treated with stereotactic body radiosurgery between April 2007 and June 2009. A total of 57 patients with 73 lesions were available for analysis with a median follow-up of 6.8 months (range, 1-30). Pain was assessed by a verbal/visual analogue scale at each visit: from 0 to 10. Pain relief was defined as a decrease of at least three levels of the pain score without an increase in analgesic use. Complete relief was defined as no analgesics or a score 0 or 1. Pain relief was achieved in 88% of the lesions, with complete relief in 51% within 7 days from the start of radiosurgery. The median duration of pain relief was 3.2 months (range, 1-30). Pain reappeared in 16 patients (27%). Spinal cord compression (P = 0.001) and performance status (P = 0.01) were predictive of pain relapse by multivariate Cox analysis. All 6 patients treated with solitary spinal metastasis experienced pain relief; 5 of them were alive without evidence of disease at a median of 16 months (range, 7-30). As previous studies have shown, our study confirms that pain relief with spinal radiosurgery is around 90%. In particular, long-term pain relief and disease control was observed in patients with solitary spinal metastasis.

  16. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Science.gov (United States)

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  18. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  19. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  20. Iraq's Debt Relief: Procedure and Potential Implications for International Debt Relief

    National Research Council Canada - National Science Library

    Weiss, Martin A

    2009-01-01

    .... Reducing this debt to a sustainable level has been a priority of the U.S. government. Since 2003, debt relief negotiations have taken place in a variety of fora and led to the cancellation of a significant amount of Iraq's external debt...

  1. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be...

  2. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  3. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  4. Leak before break piping evaluation diagram

    International Nuclear Information System (INIS)

    Fabi, R.J.; Peck, D.A.

    1994-01-01

    Traditionally Leak Before Break (LBB) has been applied to the evaluation of piping in existing nuclear plants. This paper presents a simple method for evaluating piping systems for LBB during the design process. This method produces a piping evaluation diagram (PED) which defines the LBB requirements to the piping designer for use during the design process. Several sets of LBB analyses are performed for each different pipe size and material considered in the LBB application. The results of this method are independent of the actual pipe routing. Two complete LBB evaluations are performed to determine the maximum allowable stability load, one evaluation for a low normal operating load, and the other evaluation for a high normal operating load. These normal operating loads span the typical loads for the particular system being evaluated. In developing the allowable loads, the appropriate LBB margins are included in the PED preparation. The resulting LBB solutions are plotted as a set of allowable curves for the maximum design basis load, such is the seismic load versus the normal operating load. Since the required margins are already accounted for in the LBB PED, the piping designer can use the diagram directly with the results of the piping analysis and determine immediately if the current piping arrangement passes LBB. Since the LBB PED is independent of pipe routing, changes to the piping system can be evaluated using the existing PED. For a particular application, all that remains is to confirm that the actual materials and pipe sizes assumed in creating the particular design are built into the plant

  5. Experimental analytical study on heat pipes

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Liu, C.Y.; Murcia, N.

    1981-01-01

    An analytical model is developed for optimizing the thickness distribution of the porous material in heat pipes. The method was used to calculate, design and construct heat pipes with internal geometrical changes. Ordinary pipes are also constructed and tested together with the modified ones. The results showed that modified tubes are superior in performance and that the analytical model can predict their performance to within 1.5% precision. (Author) [pt

  6. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  7. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery

    International Nuclear Information System (INIS)

    Tran, Thanh-Ha; Harmand, Souad; Desmet, Bernard; Filangi, Sebastien

    2014-01-01

    In this paper, the use of flat heat pipe as an effective and low-energy device to mitigate the temperature of a battery module designed for a HEV application was investigated. For this purpose, nominal heat flux generated by a battery module was reproduced and applied to a flat heat pipe cooling system. The thermal performance of the flat heat pipe cooling system was compared with that of a conventional heat sink under various cooling conditions and under several inclined positions. The results show that adding heat pipe reduced the thermal resistance of a common heat sink of 30% under natural convection and 20% under low air velocity cooling. Consequently, the cell temperature was kept below 50 °C, which cannot be achieved using heat sink. According to the space allocated for the battery pack in the vehicle, flat heat pipe can be used in vertical or horizontal position. Furthermore, flat heat pipe works efficiently under different grade road conditions. The transient behaviour of the flat heat pipe was also studied under high frequency and large amplitude variable input power. The flat heat pipe was found to handle more efficiently instant increases of the heat flux than the conventional heat sink. -- Highlights: • Constant heat flux was applied to a flat heat pipe cooling system. • Its thermal performance was compared with that of a heat sink under several cooling conditions. • The influence of the inclination was evaluated. • The heat pipe transient behaviour was also studied under variable input power. • Heat pipe was found to be an effective and low-energy solution for HEV/EV battery cooling

  8. Pressurized Hybrid Heat Pipe for Passive IN-Core Cooling System (PINCs) in Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-05-15

    The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.

  9. Piping reliability improvement through passive seismic supports

    International Nuclear Information System (INIS)

    Baltus, R.; Rubbers, A.

    1999-01-01

    The nuclear plants designed in the 1970's were equipped with large quantities of snubbers in auxiliary piping systems. The experience revealed a poor performance of snubbers during periodic inspection, while non-nuclear facility piping survived through strong earthquakes. Consequently, seismic design rules evolved towards more realistic criteria and passive dynamic supports were developed to reduce snubber quantities. These solutions improve the pipe reliability during normal operation while reducing the radiation exposure in a sample line is presented with the impact on pipe stresses compared to the results obtained with passive supports named Limit Stops. (author)

  10. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  11. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  12. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available ; and (II) the aberrations introduced to the laser are a function of the distance from the edge of the pipe, as well as the speed of the pipe spin- ning. This is because of the turbulence near the pipe wall. The speed of the pipe will be used...- merically. This work forms the basis for an extended study of the dynamics of beam propa- gation through turbulent systems, and in particular, the following aspects will be explored in future work: (I) Using the recent advances in lasers beam propagation...

  13. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  14. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  15. Asymptotic scalings of developing curved pipe flow

    Science.gov (United States)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  16. Experimental Analysis of the Effects of Inclination Angle and Working Fluid Amount on the Performance of a Heat Pipe

    Science.gov (United States)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2016-11-01

    Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.

  17. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    International Nuclear Information System (INIS)

    Praveen Kumar; Jangid, R.S.; Reddy, G.R.

    2013-01-01

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems

  18. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, E-mail: praveen@barc.gov.in [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-05-15

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems.

  19. Increasing the Useful Life of Quench Reliefs with Inconel Bellows

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W. M. [Fermilab

    1999-01-01

    Reliable quench relief valves are an important part of superconducting magnet systems. Fermilab developed bellows-actuated cryogenic quench reliefs which have been in use since the early l 980's. The original design uses a stainless steel bellows. A high frequency, low amplitude vibration during relieving events has resulted in fatigue failures in the original design. To take advantage of the improved resistance to fatigue of Inconel, a nickel-chromium alloy, reliefs using Inconel 625 bellows were made. Design, development, and testing of the new version reliefs will be discussed. Tests show that relief valve lifetimes using Inconel bellows are more than five times greater than when using the original stainless steel bellows. Inconel bellows show great promise in increasing the lifetime of quench relief valves, and thus the reliability of accelerator cryogenic systems.

  20. A mass-spring-damper model of a pulsating heat pipe with asymmetric filling

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; van Steenhoven, A.A.; Tadrist, L.; Graur, I.

    2014-01-01

    A pulsating heat pipe (PHP) is a device that transfers heat from a hot spot to a cold side by oscillating liquid slugs and vapor plugs. Its working principle is based on interplay between convective heat transfer, evaporation of the liquid at the hot side and condensation of the vapor at the cold

  1. Heat pipes. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The bibliography contains citations concerning the theory, design, fabrication, testing, and operation of heat pipes. Applications include heat rejection devices in spacecraft, use in passive solar heating systems and warm air furnaces, and electronic circuit cooling. Heat recovery operations, and materials considerations are also discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Analytical study of residual stress improvement method, delta-T process for small-diameter pipe

    International Nuclear Information System (INIS)

    Tsuruki, Masaki; Aoike, Satoru; Okido, Shinobu; Fukuda, Yuka; Oritani, Naohiko

    2012-01-01

    In order to prevent initiation of stress corrosion cracking (SCC) at the inner surface of the butt-weld region of a small-diameter pipe, a residual stress improvement process called delta-T process has been developed. During delta-T process, the outer surface of pipe is heated by an external device and the inner surface is rapidly cooled by flashing water. The large thermal stress due to temperature difference between outer and inner surface could improve tensile stress to compressive one at inner surface. In this paper, the thermal elasto-plastic finite element analysis (FEA) was conducted to clarify the mechanism of delta-T process for piping system with 50A schedule 80 in nominal pipe size. The FEA results showed good agreements with experimentally measurements of temperature and residual stress in delta-T process. In addition, the management criterion to verify the application of delta-T process to piping system by measurement of temperature at outer surface of pipe was discussed by various parametric numerical analyses. (author)

  3. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  4. A leak-before-break strategy for CANDU primary piping systems

    International Nuclear Information System (INIS)

    Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.

    1986-01-01

    Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)

  5. Experimental Study on Pipe Sections against Impact Loading

    Directory of Open Access Journals (Sweden)

    Engin GÜCÜYEN

    2018-02-01

    Full Text Available Pipelines are significant structural systems that transfer necessary materials from one place to another. They are under the effect of static and dynamic loads during their service lives. Investigations have become important to determine the effects of sudden dynamic loads with technological developments. Researchers study the mechanical properties of different materials and structural members under dynamic effects such as earthquake, wind, blast, rock falling and vehicle crushing. For this purpose, different test setups have been developed to investigate the behaviour of test members. In this study, galvanized and water filled galvanized pipe sections having three different diameter values are produced in a laboratory to perform tests under impact loading. The behaviour of the pipes is determined by free falling test apparatus. In addition, measurement devices as accelerometer, dynamic force sensor, lvdt, and data logger are used in the experimental program. So, acceleration, impact force, and displacement values are obtained during the tests. Besides, damage developments of the pipes are also observed to determine the impact resistances of test members. The results are compared to each other and it is stated that while acceleration and impact force values decrease, displacement values increase as the test members approach to collapse damage situation.

  6. Research on pipe welding information management system basedon RFID

    Directory of Open Access Journals (Sweden)

    Liu Xun

    2016-01-01

    Full Text Available This paper introduces the construction background, construction target and construction principle of the pipe welding management system based on RFID. Then, describes the specific requirements of the system. The basic principle and key technology of the system are introduced. The structure of the system (including the system design, the selections of handheld devices and high frequency passive RFID tags is described .Then the system management software designs (including software structure, the main functions of the management center system and the main functions of the handheld detection system are described in detail. Finally, the management system is implemented, and it is deployed to several Gas Co, which has chieved good results.

  7. Stress analysis of piping systems and piping supports. Documentation

    International Nuclear Information System (INIS)

    Rusitschka, Erwin

    1999-01-01

    The presentation is focused on the Computer Aided Tools and Methods used by Siemens/KWU in the engineering activities for Nuclear Power Plant Design and Service. In the multi-disciplinary environment, KWU has developed specific tools to support As-Built Documentation as well as Service Activities. A special application based on Close Range Photogrammetry (PHOCAS) has been developed to support revamp planning even in a high level radiation environment. It comprises three completely inter-compatible expansion modules - Photo Catalog, Photo Database and 3D-Model - to generate objects which offer progressively more utilization and analysis options. To support the outage planning of NPP/CAD-based tools have been developed. The presentation gives also an overview of the broad range of skills and references in: Plant Layout and Design using 3D-CAD-Tools; evaluation of Earthquake Safety (Seismic Screening); Revamps in Existing Plants; Inter-disciplinary coordination of project engineering and execution fields; Consulting and Assistance; Conceptual Studies; Stress Analysis of Piping Systems and Piping Supports; Documentation; Training and Supports in CAD-Design, etc. All activities are performed to the greatest extent possible using proven data-processing tools. (author)

  8. This is not a Pipe

    DEFF Research Database (Denmark)

    Just, Sine Nørholm

    2016-01-01

    or unwilling to listen to, let alone engage with, emotionally guided bottom-up participation. Using an illustrative case of a Danish public debate over an alleged ban on liquorice pipes, this article argues that the disconnect between invitation and participation may be explained by the fact...... that representatives of (national and European) political institutions tend to rely on a simplified version of deliberative democracy. This implies privileging rational truth claims at the expense of emotional truthfulness. Connecting invitation and participation, it is argued, requires a reconciliation of rationality...

  9. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  10. Doubling Your Payoff: Winning Pain Relief Engages Endogenous Pain Inhibition

    Science.gov (United States)

    Becker, Susanne; Gandhi, Wiebke; Kwan, Saskia; Ahmed, Alysha-Karima; Schweinhardt, Petra

    2015-01-01

    When in pain, pain relief is much sought after, particularly for individuals with chronic pain. In analogy to augmentation of the hedonic experience ("liking") of a reward by the motivation to obtain a reward ("wanting"), the seeking of pain relief in a motivated state might increase the experience of pain relief when obtained. We tested this hypothesis in a psychophysical experiment in healthy human subjects, by assessing potential pain-inhibitory effects of pain relief "won" in a wheel of fortune game compared with pain relief without winning, exploiting the fact that the mere chance of winning induces a motivated state. The results show pain-inhibitory effects of pain relief obtained by winning in behaviorally assessed pain perception and ratings of pain intensity. Further, the higher participants scored on the personality trait novelty seeking, the more pain inhibition was induced. These results provide evidence that pain relief, when obtained in a motivated state, engages endogenous pain-inhibitory systems beyond the pain reduction that underlies the relief in the first place. Consequently, such pain relief might be used to improve behavioral pain therapy, inducing a positive, perhaps self-amplifying feedback loop of reduced pain and improved functionality.

  11. Sharing Information among Various Organizations in Relief Efforts

    National Research Council Canada - National Science Library

    Costur, Gurkan

    2005-01-01

    .... An analysis is presented of the December 2004 Indian Ocean tsunami relief effort; specifically, how different organizations such as the military, United Nations, and non-governmental organizations...

  12. Sandy PMO Disaster Relief Appropriations Act of 2013 Financial Data

    Data.gov (United States)

    Department of Homeland Security — Sandy PMO: Disaster Relief Appropriations Act of 2013 (Sandy Supplemental Bill) Financial Data. This is the Sandy Supplemental Quarterly Financial Datasets that are...

  13. Image mosaicing for automated pipe scanning

    International Nuclear Information System (INIS)

    Summan, Rahul; Dobie, Gordon; Guarato, Francesco; MacLeod, Charles; Marshall, Stephen; Pierce, Gareth; Forrester, Cailean; Bolton, Gary

    2015-01-01

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice

  14. Image mosaicing for automated pipe scanning

    Energy Technology Data Exchange (ETDEWEB)

    Summan, Rahul, E-mail: rahul.summan@strath.ac.uk; Dobie, Gordon, E-mail: rahul.summan@strath.ac.uk; Guarato, Francesco, E-mail: rahul.summan@strath.ac.uk; MacLeod, Charles, E-mail: rahul.summan@strath.ac.uk; Marshall, Stephen, E-mail: rahul.summan@strath.ac.uk; Pierce, Gareth [Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Forrester, Cailean [Inspectahire Instrument Company Ltd, Units 10 -12 Whitemyres Business Centre, Whitemyres Avenue, Aberdeen, AB16 6HQ (United Kingdom); Bolton, Gary [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice.

  15. Determination of the acoustic damping characteristics of an annular tail pipe

    OpenAIRE

    Boonen, Rene; Sas, Paul; Van den Bulck, Eric

    2010-01-01

    A damping device, consisting of an annular tail-pipe, has been developed. It is applicable in situations wherein acoustic damping is required in combination with low flow resistance. Examples are ventilation systems, turbo- engines, intake and exhaust systems for internal combustion engines. The device consists of a central tube surrounded by a narrow slit. The central tube has an acoustic mass which impedance increases with frequency. When the frequency has been increased sufficiently, a con...

  16. Mechanical Property Characteristics of Butt-Fusion Joint of High Density Polyethylene Pipe for NPP Safety Class Application

    International Nuclear Information System (INIS)

    Oh, Youngjin; Kim, Kyoungsu; Lee, Seunggun; Park, Heungbae; Yu, Jeongho; Kim, Jongsung; Kim, Jeonghyun; Jang, Changheui; Choi, Sunwoong

    2013-01-01

    Several NPPs in United States replaced parts of sea water or raw water system pipes to HDPE (high density polyethylene) pipes, which have outstanding resistance for oxidation and seismic loading. ASME B and PV code committee developed Code Case N-755, which describes rules for the construction of Safety Class 3 polyethylene pressure piping components. Several NPP's in US proposed relief requests in order to apply Code Case N-755. Although US NRC permitted using Code Case N-755 and HDPE materials for Class 3 buried piping, their permission was limited to only 10 years because of several concerns for material performance of HDPE. US NRC's major concerns are about material properties and the quality of fusion zone of HDPE. In this study, material property tests for HDPE fusion zone are conducted with varying standard fusion procedures. Mechanical property tests for fused material for HDPE pipes were conducted. Fused material shows lower toughness than base material and fused material of lower fusion pressure shows higher toughness than that of higher fusion pressure

  17. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 4. Evaluation of other loads and load combinations

    International Nuclear Information System (INIS)

    1984-12-01

    Six topical areas were covered by the Task Group on Other Dynamic Loads and Load Combinations as described below: Event Combinations - dealing with the potential simultaneous occurrence of earthquakes, pipe ruptures, and water hammer events in the piping design basis; Response Combinations - dealing with multiply supported piping with independent inputs, the sequence of combinations between spacial and modal components of response, and the treatment of high frequency modes in combination with low frequency modal responses; Stress Limits/Dynamic Allowables - dealing with inelastic allowables for piping and strain rate effects; Water Hammer Loadings - dealing with code and design specifications for these loadings and procedures for identifying potential water hammer that could affect safety; Relief Valve Opening and Closing Loads - dealing with the adequacy of analytical tools for predicting the effects of these events and, in addition, with estimating effective cycles for fatigue evaluations; and Piping Vibration Loads - dealing with evaluation procedures for estimating other than seismic vibratory loads, the need to consider reciprocating and rotary equipment vibratory loads, and high frequency vibratory loads. NRC staff recommendations or regulatory changes and additional study appear in this report

  18. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  19. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  20. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  1. Overview of Loop Heat Pipe Operation

    Science.gov (United States)

    Ku, Jentung

    1999-01-01

    Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and

  2. Automated discovery of safety and efficacy concerns for joint & muscle pain relief treatments from online reviews.

    Science.gov (United States)

    Adams, David Z; Gruss, Richard; Abrahams, Alan S

    2017-04-01

    Product issues can cost companies millions in lawsuits and have devastating effects on a firm's sales, image and goodwill, especially in the era of social media. The ability for a system to detect the presence of safety and efficacy (S&E) concerns early on could not only protect consumers from injuries due to safety hazards, but could also mitigate financial damage to the manufacturer. Prior studies in the field of automated defect discovery have found industry-specific techniques appropriate to the automotive, consumer electronics, home appliance, and toy industries, but have not investigated pain relief medicines and medical devices. In this study, we focus specifically on automated discovery of S&E concerns in over-the-counter (OTC) joint and muscle pain relief remedies and devices. We select a dataset of over 32,000 records for three categories of Joint & Muscle Pain Relief treatments from Amazon's online product reviews, and train "smoke word" dictionaries which we use to score holdout reviews, for the presence of safety and efficacy issues. We also score using conventional sentiment analysis techniques. Compared to traditional sentiment analysis techniques, we found that smoke term dictionaries were better suited to detect product concerns from online consumer reviews, and significantly outperformed the sentiment analysis techniques in uncovering both efficacy and safety concerns, across all product subcategories. Our research can be applied to the healthcare and pharmaceutical industry in order to detect safety and efficacy concerns, reducing risks that consumers face using these products. These findings can be highly beneficial to improving quality assurance and management in joint and muscle pain relief. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  4. Piping reliability model development, validation and its applications to light water reactor piping

    International Nuclear Information System (INIS)

    Woo, H.H.

    1983-01-01

    A brief description is provided of a three-year effort undertaken by the Lawrence Livermore National Laboratory for the piping reliability project. The ultimate goal of this project is to provide guidance for nuclear piping design so that high-reliability piping systems can be built. Based on the results studied so far, it is concluded that the reliability approach can undoubtedly help in understanding not only how to assess and improve the safety of the piping systems but also how to design more reliable piping systems

  5. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  6. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  7. Environmental relief effects through nanotechnological processes and products; Entlastungseffekte fuer die Umwelt durch nanotechnische Verfahren und Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeldt, Michael; Gleich, Armin von [Bremen Univ. (Germany). Fachgebiet Technikgestaltung und Technologieentwicklung, FB Produktionstechnik; Petschow, Ulrich; Pade, Christian; Sprenger, Rolf-Ulrich [Institut fuer oekologische Wirtschaftsforschung gGmbH, Berlin (Germany). FB Umweltoekonomie und -politik

    2010-06-15

    The top priority of the research project ''Environmental Relief Effects through Nanotechnological Processes and Products'' was to identify and quantify, to the extent possible and by means of selected examples, the environmental and sustainability opportunities and risks associated with this rapidly developing line of technology. Environmental relief potentials are understood here to include not only environmental engineering in the narrower sense (end-of-pipe technologies), but also and specifically process, production, and product-integrated environmental protection. The project consisted of four stages: 1. Analysis of products and processes already on the market or soon to be made available and application 2. Examination and initial qualitative assessment of each of the products and processes with respect to its potential for environmental relief (or burden, as the case may be) 3. In-depth life cycle analysis and assessment of four selected processes or products as compared to conventional processes or products (Manufacture of solderable surface finishes on printed circuit boards, MW carbon nanotube application for foils in the semiconductor industry, Lithium batteries for energy, storage, Ultradur {sup registered} High Speed plastic) 4. An appraisal of nanotechnology employment effects. (orig.)

  8. Tweed Extinct Volcano, Australia, Stereo Pair of SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Australia is the only continent without any current volcanic activity, but it hosts one of the world's largest extinct volcanoes, the Tweed Volcano. Rock dating methods indicate that eruptions here lasted about three million years, ending about 20 million years ago. Twenty million years of erosion has left this landform deeply eroded yet very recognizable, appearing as a caldera with a central peak. The central peak is not an old remnant landform but is instead the erosional stub of the volcanic neck (the central pipe that carried the magma upward). It is surrounded by ring dikes, which are circular sheets of magma that solidified and now form erosion-resistant ridges. The central peak is named Mount Warning. Topography plays a central role in envisioning the volcano at its climax and in deciphering the landscape evolution that has occurred since then. Low-relief uplands interspersed between deeply eroded canyons form a radial pattern that clearly defines the shape and extent of the original volcanic dome. Erosion is most extensive on the eastern side because the eroding streams drained directly to the ocean and therefore had the steepest gradients. This asymmetry of erosion has been extreme enough that the volcano has been hollowed out by the east-flowing drainage, forming an 'erosional caldera'. Calderas usually form as the result of collapse where magmas retreat within an active volcano. If collapse occurred here, erosion may have removed the evidence, but it produced a similar landform itself. Three visualization methods were combined to produce this image: shading, color coding, and synthetic stereoscopy. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest

  9. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  10. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  11. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping and... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  12. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe...

  13. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is...

  14. 46 CFR 182.455 - Fuel piping.

    Science.gov (United States)

    2010-10-01

    ... system is of nickel-copper or copper-nickel. When making tube connections, the tubing must be cut square...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the...

  15. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  16. Pipe failure probability - the Thomas paper revisited

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    2000-01-01

    Almost twenty years ago, in Volume 2 of Reliability Engineering (the predecessor of Reliability Engineering and System Safety), a paper by H. M. Thomas of Rolls Royce and Associates Ltd. presented a generalized approach to the estimation of piping and vessel failure probability. The 'Thomas-approach' used insights from actual failure statistics to calculate the probability of leakage and conditional probability of rupture given leakage. It was intended for practitioners without access to data on the service experience with piping and piping system components. This article revisits the Thomas paper by drawing on insights from development of a new database on piping failures in commercial nuclear power plants worldwide (SKI-PIPE). Partially sponsored by the Swedish Nuclear Power Inspectorate (SKI), the R and D leading up to this note was performed during 1994-1999. Motivated by data requirements of reliability analysis and probabilistic safety assessment (PSA), the new database supports statistical analysis of piping failure data. Against the background of this database development program, the article reviews the applicability of the 'Thomas approach' in applied risk and reliability analysis. It addresses the question whether a new and expanded database on the service experience with piping systems would alter the original piping reliability correlation as suggested by H. M. Thomas

  17. Laser-GMA Hybrid Pipe Welding System

    Science.gov (United States)

    2007-11-01

    Investigation of varying laser power. The welded pipe is shown, with close -ups of the rootside reinforcement and macro sections...68 Figure 44. Investigation of varying laser stand-off. The welded pipe is shown, along with close -ups of backside...conventional beveled joints. With appropriate joint configuration and preparation, deep keyhole penetration provided by the laser and additional filler

  18. Heat Pipes Reduce Engine-Exhaust Emissions

    Science.gov (United States)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  19. Water driven turbine/brush pipe cleaner

    Science.gov (United States)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  20. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  1. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  2. CAPD Software Development for Automatic Piping System Design: Checking Piping Pocket, Checking Valve Level and Flexibility

    International Nuclear Information System (INIS)

    Ari Satmoko; Edi Karyanta; Dedy Haryanto; Abdul Hafid; Sudarno; Kussigit Santosa; Pinitoyo, A.; Demon Handoyo

    2003-01-01

    One of several steps in industrial plant construction is preparing piping layout drawing. In this drawing, pipe and all other pieces such as instrumentation, equipment, structure should be modeled A software called CAPD was developed to replace and to behave as piping drafter or designer. CAPD was successfully developed by adding both subprogram CHKUPIPE and CHKMANV. The first subprogram can check and gives warning if there is piping pocket in the piping system. The second can identify valve position and then check whether valve can be handled by operator hand The main program CAPD was also successfully modified in order to be capable in limiting the maximum length of straight pipe. By limiting the length, piping flexibility can be increased. (author)

  3. Secondary pipe rupture at Mihama unit 3

    International Nuclear Information System (INIS)

    Hajime Ito; Takehiko Sera

    2005-01-01

    The secondary system pipe rupture occurred on August 9, 2004, while Mihama unit 3 was operating at the rated thermal power. The rupture took place on the condensate line-A piping between the No.4 LP heater and the deaerator, downstream of an orifice used for measuring the condensate flux. The pipe is made of carbon steel, and normally has 558.8 mm diameter and 10 mm thickness. The pipe wall had thinned to 0.4 mm at the point of minimum thickness. It is estimated that the disturbed flow of water downstream of the orifice caused erosion/corrosion and developed wall thinning, leading to a rupture at the thinnest section under internal pressure, about 1MPa. Observation of the pipe internal surface revealed a scale-like pattern typical in this kind of phenomenon. Eleven workers who were preparing for an annual outage that was to start from August 14 suffered burn injuries, of who five died. Since around 1975, we, Kansai Electric, have been checking pipe wall thickness while focusing on the thinning of carbon steel piping in the secondary system. Summarizing the results from such investigation and reviewing the latest technical knowledge including operating experience from overseas utilities, we compiled the pipe thickness management guideline for PWR secondary pipes, 1990. The pipe section that ruptured at the Mihama unit 3 should have been included within the inspection scopes according to the guideline but was not registered on the inspection list. It had not been corrected for almost thirty years. As the result, this pipe section had not been inspected even once since the beginning of the plant operation, 1976. It seems that the quality assurance and maintenance management had not functioned well regarding the secondary system piping management, although we were responsible for the safety of nuclear power plants as licensee. We will review the secondary system inspection procedure and also improve the pipe thickness management guideline. And also, we would replace

  4. Spill containment devices and their installation

    International Nuclear Information System (INIS)

    Sunderhaus, C.A.; Butterfield, E.J.; Kesterman, J.E.; Lamping, F.G.

    1993-01-01

    A spill containment device adapted for mounting on the upper end the riser pipe of an underground storage tank for liquid fuel, or other hazardous liquids, said device is described comprising a container adapted for rigid, sealed connection with a riser pipe, and having an upper access opening, and lid means for sealingly closing the upper access opening, said container being characterized in that it is compositely formed and comprises a base member having means for rigidly connecting it with the riser pipe, a shell like body member rigidly and sealingly joined to the base member, and an upper member rigidly and sealingly joined to the body member and defining the upper access opening of the container

  5. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  6. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  7. IPIRG programs - advances in pipe fracture technology

    International Nuclear Information System (INIS)

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-01-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) open-quotes Realclose quotes piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program

  8. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  9. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  10. Pipe supports and anchors - LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1983-06-01

    Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed

  11. Solar heat-pipe wick modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C.E.

    1999-07-01

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimental work, the author has demonstrated that a heat pipe receiver can significantly improve system performance over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement, yet it can more than double the performance of the wick. In this study, the author developed a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  12. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  13. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  14. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  15. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  16. Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings

    International Nuclear Information System (INIS)

    Kostarev, V.V.; Bercovsky, A.M.; Kireev, O.B.; Vasiliev, P.S.

    1993-01-01

    The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)

  17. Development and design of a UF{sub 6} gas pressure meter for 42 mm pipes

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF{sub 6}-gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.).

  18. Application of mathematical model for high viscous damper to dynamic analysis of NPP pipings

    Energy Technology Data Exchange (ETDEWEB)

    Kostarev, V V; Bercovsky, A M; Kireev, O B; Vasiliev, P S [CKTI VIBROSEISM (CVS), St. Petersburg (Russian Federation)

    1993-07-01

    The problems of dynamic analysis of Nuclear Power Plants (NPP) piping systems are considered in the paper. The special calculation program for PC has been developed that enables to estimate the seismic margin for any piping system with different antiseismic devices having nonlinear characteristics. The calculated comparison has been done for two antiseismic supports that are widely used now, namely: a High Viscous Damper (HVD) and a Seismic Stop Support (SSS) with the application, as an example, to the well known pipeline BM3 (USNRC). (author)

  19. Development and design of a UF6 gas pressure meter for 42 mm pipes

    International Nuclear Information System (INIS)

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF 6 -gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.)

  20. Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels

    2009-01-01

    . This is relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe......Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation...

  1. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  2. Reward, motivation and emotion of pain and its relief

    Science.gov (United States)

    Porreca, Frank; Navratilova, Edita

    2016-01-01

    The experience of pain depends on interpretation of context and past experience that guide the choice of an immediate behavioral response and influence future decisions of actions to avoid harm. The aversive qualities of pain underlie its physiological role in learning and motivation. In this review, we highlight findings from human and animal investigations that suggest that both pain, and the relief of pain, are complex emotions that are comprised of feelings and their motivational consequences. Relief of aversive states, including pain, is rewarding. How relief of pain aversiveness occurs is not well understood. Termination of aversive states can directly provide relief as well as reinforce behaviors that result in avoidance of pain. Emerging preclinical data also suggests that relief may elicit a positive hedonic value that results from activation of neural cortical and mesolimbic brain circuits that may also motivate behavior. Brain circuits mediating the reward of pain relief, as well as relief-induced motivation are significantly impacted as pain becomes chronic. In chronic pain states, the negative motivational value of nociception may be increased while the value of the reward of pain relief may decrease. As a consequence, the impact of pain on these ancient, and conserved brain limbic circuits suggest a path forward for discovery of new pain therapies. PMID:28106670

  3. 30 CFR 203.53 - What relief will MMS grant?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What relief will MMS grant? 203.53 Section 203.53 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE...-Life Leases § 203.53 What relief will MMS grant? (a) If we approve your application and you meet...

  4. Bas-Relief Modeling from Normal Images with Intuitive Styles.

    Science.gov (United States)

    Ji, Zhongping; Ma, Weiyin; Sun, Xianfang

    2014-05-01

    Traditional 3D model-based bas-relief modeling methods are often limited to model-dependent and monotonic relief styles. This paper presents a novel method for digital bas-relief modeling with intuitive style control. Given a composite normal image, the problem discussed in this paper involves generating a discontinuity-free depth field with high compression of depth data while preserving or even enhancing fine details. In our framework, several layers of normal images are composed into a single normal image. The original normal image on each layer is usually generated from 3D models or through other techniques as described in this paper. The bas-relief style is controlled by choosing a parameter and setting a targeted height for them. Bas-relief modeling and stylization are achieved simultaneously by solving a sparse linear system. Different from previous work, our method can be used to freely design bas-reliefs in normal image space instead of in object space, which makes it possible to use any popular image editing tools for bas-relief modeling. Experiments with a wide range of 3D models and scenes show that our method can effectively generate digital bas-reliefs.

  5. Donation to disaster relief campaigns: underlying social cognitive factors exposed

    NARCIS (Netherlands)

    Oosterhof, Liesbeth; Heuvelman, A.; Peters, O.

    2009-01-01

    number of very serious natural disasters have put an enormous pressure on relief organizations in the last few years. The present study exposes underlying social cognitive factors for donation to relief campaigns. A causal model was constructed, based on social cognitive theory, research on

  6. 46 CFR 154.801 - Pressure relief systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure relief systems. 154.801 Section 154.801 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Vent Systems § 154.801 Pressure relief systems. (a) Each cargo tank that has a volume of 20m3 (706 ft.3...

  7. 47 CFR 52.19 - Area code relief.

    Science.gov (United States)

    2010-10-01

    ... meetings to which the telecommunications industry and the public are invited on area code relief for a... 47 Telecommunication 3 2010-10-01 2010-10-01 false Area code relief. 52.19 Section 52.19 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) NUMBERING...

  8. San Gabriel Mountains, California, Shaded relief, color as height

    Science.gov (United States)

    2000-01-01

    This topographic image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  9. Transcutaneous electrical nerve stimulation (TENS) for pain relief in labour.

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2009-04-15

    Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. The TENS unit is frequently operated by women, which may increase sense of control in labour. To assess the effects of TENS on pain in labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (November 2008). Randomised controlled trials comparing women receiving TENS for pain relief in labour versus routine care, alternative pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. The search identified 25 studies; we excluded six and included 19 studies including 1671 women. Fifteen examined TENS applied to the back, two to acupuncture points and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (risk ratio 0.41, 95% confidence interval 0.32 to 0.55). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No adverse events were reported. There is only limited evidence that TENS reduces pain in labour and it does not seem to have any impact (either positive or

  10. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  11. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  12. Nuclear reactor monitoring device

    International Nuclear Information System (INIS)

    Mihashi, Ishi; Honma, Hitoshi.

    1993-01-01

    The monitoring device of the present invention comprises a reactor core/reactor system data measuring and controlling device, a radioactivity concentration calculation device for activated coolants for calculating a radioactivity concentration of activated coolants in a main steam and reactor water by using an appropriate physical model, a radioactivity concentration correlation and comparison device for activated coolants for comparing correlationship with a radiation dose and an abnormality alarm device. Since radioactivity of activated primary coolants is monitored at each of positions in the reactor system and occurrence of leakage and the amount thereof from a primary circuit to a secondary circuit is monitored if the reactor has secondary circuit, integrity of the reactor system can be ensured and an abnormality can be detected rapidly. Further, radioactivity concentration of activated primary circuit coolants, represented by 16 N or 15 C, is always monitored at each of positions of PWR primary circuits. When a heat transfer pipe is ruptured in a steam generator, leakage of primary circuit coolants is detected rapidly, as well as the amount of the leakage can be informed. (N.H.)

  13. Pressure releasing device for reactor container

    International Nuclear Information System (INIS)

    Takeda, Mika.

    1994-01-01

    In the present invention, dose rate to public caused by radioactive rare gases can be decreased. That is, a reactor container contains a reactor pressure vessel incorporating a reactor core. There are disposed a pressure releasing system for releasing the pressure in the reactor pressure vessel to the outside, and a burning device for burning gases released from the pressure releasing system. An exhaustion pipe is disposed to the pressure releasing system. A burning device is disposed to the exhaustion pipe. It is effective to dispose a ventilation port at a portion of the exhaustion pipe upstream of the burning device. In addition, the burning device may preferably be disposed in a multi-stage in the axial direction of the exhaustion pipe. With such procedures, hydrogen in gases discharged along with the release of the pressure in the container is burned. Buoyancy is caused to the exhaustion gases by heat energy upon burning. Since the exhaustion gases can reach a higher level by the buoyancy, the dose rate due to the rare gases can be reduced. (I.S.)

  14. Heat pipes for temperature control

    International Nuclear Information System (INIS)

    Groll, M.

    1978-01-01

    Heat pipes have known for years as effective constructional elements for temperature control. With the aid of special techniques (gas, liquid, steam, and voltage control), special operating characteristics can be obtained, e.g. variable heat conduction or diode behaviour. Their main field of application is in spacecraft technology and in nuclear technology in the isothermalisation of irradiation capsules. The different control techniques are presented and critically evaluated on the basis of characteristic properties like heat transfer capacity, volume and mass requirements, complexity of structure and production, reliability, and temperature control characteristics. Advantages and shortcomings of the different concepts are derived and compared. The state of the art of these control techniques is established on the basis of four development levels. Finally, the necessity and direction of further R + D activities are discussed, and suggestions are made for further work. (orig./HP) [de

  15. Destabilizing turbulence in pipe flow

    Science.gov (United States)

    Kühnen, Jakob; Song, Baofang; Scarselli, Davide; Budanur, Nazmi Burak; Riedl, Michael; Willis, Ashley P.; Avila, Marc; Hof, Björn

    2018-04-01

    Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities1-3, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism4,5 measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.

  16. Pipe rupture test results: 4-inch pipe whip tests under PWR LOCA conditions

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Ueda, Shuzo; Isozaki, Toshikuni; Kato, Rokuro; Kurihara, Ryoichi; Yano, Toshikazu; Miyazono, Shohachiro

    1982-09-01

    This report summarizes the results of 4-inch pipe whip tests (RUN No. 5506, 5507, 5508 and 5604) under the PWR LOCA conditions. The dynamic behaviors of the test pipe and restraints were studied in the tests. In the tests, the gap between the test pipe and the restraints was kept at the constant value of 8.85 mm and the overhang length was varied from 250 mm to 650 mm. The dynamic behaviors of the test pipe and the restraint were made clear by the outputs of strain gages and the measurements of residual deformations. The data of water hammer in subcooled water were also obtained by the pressure transducers mounted on the test pipe. The main conclusions obtained from the tests are as follows. (1) The whipping of pipe can be prevented more effectively as the overhang length becomes shorter. (2) The load acting on the restraint-support structure becomes larger as the overhang length becomes shorter. (3) The restraint farther from the break location does not limit the pipe movement except for the first impact when the overhang length is long. (4) The ultimate moment M sub(u) of the pipe at the restraint location can be used to predict the plastic collapse of the whipping pipe. (5) The restraints slide along the pipe axis and are subjected to bending moment, when the overhang length is long. (author)

  17. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  18. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  19. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  20. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  1. Heat pipes to reduce engine exhaust emissions

    Science.gov (United States)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  2. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  3. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  4. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  5. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  6. Structural integrity assessment of piping components

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Chattopadhyay, J.

    2008-01-01

    Integrity assessment of piping components is very essential for safe and reliable operation of power plants. Over the last several decades, considerable work has been done throughout the world to develop a methodology for integrity assessment of pipes and elbows, appropriate for the material involved. However, there is scope of further development/improvement of issues, particularly for pipe bends, that are important for accurate integrity assessment of piping. Considering this aspect, a comprehensive Component Integrity Test Program was initiated in 1998 at Bhabha Atomic Research Centre (BARC), India. In this program, both theoretical and experimental investigations were undertaken to address various issues related to the integrity assessment of pipes and elbows. Under the experimental investigations, fracture mechanics tests have been conducted on pipes and elbows of 200-400 mm nominal bore (NB) diameter with various crack configurations and sizes under different loading conditions. Tests on small tensile and three point bend specimens, machined from the tested pipes, have also been done to evaluate the actual stress-strain and fracture resistance properties of pipe/elbow material. The load-deflection curve and crack initiation loads predicted by non-linear finite element analysis matched well with the experimental results. The theoretical collapse moments of throughwall circumferentially cracked elbows, predicted by the recently developed equations, are found to be closer to the test data compared to the other existing equations. The role of stress triaxialities ahead of crack tip is also shown in the transferability of J-Resistance curve from specimen to component. The cyclic loading and system compliance effect on the load carrying capacity of piping components are investigated and new recommendations are made. (author)

  7. Response of buried pipes to missile impact

    International Nuclear Information System (INIS)

    Vardanega, C.; Cremonini, M.G.; Mirone, M.; Luciani, A.

    1989-01-01

    This paper presents the methodology and results of the analyses carried out to determine an effective layout and the dynamic response of safety related cooling water pipes, buried in backfill, for the Alto Lazio Nuclear Power Plant in Italy, subjected to missile impact loading at the backfill surface. The pipes are composed of a steel plate encased in two layers of high-quality reinforced concrete. The methodology comprises three steps. The first step is the definition of the 'free-field' dynamic response of the backfill soil, not considering the presence of the pipes, through a dynamic finite element direct integration analysis utilizing an axisymmetric model. The second step is the pipe-soil interaction analysis, which is conducted by utilizing the soil displacement and stress time-histories obtained in the previous steps. Soil stress time-histories, combined with the geostatic and other operational stresses (such as those due to temperature and pressure), are used to obtain the actions in the pipe walls due to ring type deformation. For the third step, the analysis of the beam type response, a lumped parameter model is developed which accounts for the soil stiffness, the pipe characteristics and the position of the pipe with respect to the impact area. In addition, the effect of the presence of large concrete structures, such as tunnels, between the ground surface and the pipe is evaluated. The results of the structural analyses lead to defining the required steel thickness and also allow the choice of appropriate embedment depth and layout of redundant lines. The final results of the analysis is not only the strength verification of the pipe section, but also the definition of an effective layout of the lines in terms of position, depth, steel thickness and joint design. (orig.)

  8. Pain relief by touch: a quantitative approach.

    Science.gov (United States)

    Mancini, Flavia; Nash, Thomas; Iannetti, Gian Domenico; Haggard, Patrick

    2014-03-01

    Pain relief by touch has been studied for decades in pain neuroscience. Human perceptual studies revealed analgesic effects of segmental tactile stimulation, as compared to extrasegmental touch. However, the spatial organisation of touch-pain interactions within a single human dermatome has not been investigated yet. In 2 experiments we tested whether, how, and where within a dermatome touch modulates the perception of laser-evoked pain. We measured pain perception using intensity ratings, qualitative descriptors, and signal detection measures of sensitivity and response bias. Touch concurrent with laser pulses produced a significant analgesia, and reduced the sensitivity in detecting the energy of laser stimulation, implying a functional loss of information within the ascending Aδ pathway. Touch also produced a bias to judge laser stimuli as less painful. This bias decreased linearly when the distance between the laser and tactile stimuli increased. Thus, our study provides evidence for a spatial organisation of intrasegmental touch-pain interactions. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Evaluation of reward from pain relief

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; King, Tamara; Porreca, Frank

    2014-01-01

    The human experience of pain is multidimensional and comprises sensory, affective, and cognitive dimensions. Preclinical assessment of pain has been largely focused on the sensory features that contribute to nociception. The affective (aversive) qualities of pain are clinically significant but have received relatively less mechanistic investigation in preclinical models. Recently, operant behaviors such as conditioned place preference, avoidance, escape from noxious stimulus, and analgesic drug self-administration have been used in rodents to evaluate affective aspects of pain. An important advance of such operant behaviors is that these approaches may allow the detection and mechanistic investigation of spontaneous neuropathic or ongoing inflammatory/nociceptive (i.e., nonevoked) pain that is otherwise difficult to assess in nonverbal animals. Operant measures may allow the identification of mechanisms that contribute differentially to reflexive hypersensitivity or to pain affect and may inform the decision to progress novel mechanisms to clinical trials for pain therapy. Additionally, operant behaviors may allow investigation of the poorly understood mechanisms and neural circuits underlying motivational aspects of pain and the reward of pain relief. PMID:23496247

  10. Technology and Information Sharing in Disaster Relief.

    Science.gov (United States)

    Bjerge, Benedikte; Clark, Nathan; Fisker, Peter; Raju, Emmanuel

    2016-01-01

    This paper seeks to examine the extent to which technological advances can enhance inter-organizational information sharing in disaster relief. Our case is the Virtual OSOCC (On-Site Operations Coordination Centre) which is a part of the Global Disaster Alert and Coordination System (GDACS) under the United Nations Office for Coordination of Humanitarian Affairs (UN OCHA). The online platform, which has been developing for more than a decade, provides a unique insight into coordination behaviour among disaster management agencies and individual actors. We build our study on the analysis of a complete database of user interaction including more than 20,000 users and 11,000 comments spread across approximately 300 disaster events. Controlling for types and severities of the events, location-specific vulnerabilities, and the overall trends, we find that the introduction of new features have led to increases in user activity. We supplement the data-driven approach with evidence from semi-structured interviews with administrators and key users, as well as a survey among all users specifically designed to capture and assess the elements highlighted by both interviews and data analysis.

  11. Influence of relief on permanent preservation areas.

    Science.gov (United States)

    Dos Santos, Alexandre Rosa; Chimalli, Tessa; Peluzio, João Batista Esteves; da Silva, Aderbal Gomes; Dos Santos, Gleissy Mary Amaral Dino Alves; Lorenzon, Alexandre Simões; Teixeira, Thaisa Ribeiro; de Castro, Nero Lemos Martins; Soares Ribeiro, Carlos Antonio Alvares

    2016-01-15

    Many countries have environmental legislation to protecting natural resources on private property. In Brazil, the Brazilian Forestry Code determines specific areas to maintain with natural vegetation cover, known as areas of permanent preservation (APP). Currently, there are few studies that relate topographic variables on APP. In this context, we sought to evaluate the influence of relief on the conservation of areas of permanent preservation (APP) in the areas surrounding Caparaó National Park, Brazil. By using the chi-squared statistical test, we verified that the presence of forest cover is closely associated with altitude. The classes of APP in better conservation status are slopes in addition to hilltops and mountains, whereas APP streams and springs are among the areas most affected by human activities. The most deforested areas are located at altitudes below 1100.00 m and on slopes less than 45°. All orientations of the sides were significant for APP conservation status, with the southern, southeastern, and southwestern sides showing the lower degrees of impact. The methodology can be adjusted to environmental legislation to other countries.

  12. Technology and Information Sharing in Disaster Relief.

    Directory of Open Access Journals (Sweden)

    Benedikte Bjerge

    Full Text Available This paper seeks to examine the extent to which technological advances can enhance inter-organizational information sharing in disaster relief. Our case is the Virtual OSOCC (On-Site Operations Coordination Centre which is a part of the Global Disaster Alert and Coordination System (GDACS under the United Nations Office for Coordination of Humanitarian Affairs (UN OCHA. The online platform, which has been developing for more than a decade, provides a unique insight into coordination behaviour among disaster management agencies and individual actors. We build our study on the analysis of a complete database of user interaction including more than 20,000 users and 11,000 comments spread across approximately 300 disaster events. Controlling for types and severities of the events, location-specific vulnerabilities, and the overall trends, we find that the introduction of new features have led to increases in user activity. We supplement the data-driven approach with evidence from semi-structured interviews with administrators and key users, as well as a survey among all users specifically designed to capture and assess the elements highlighted by both interviews and data analysis.

  13. A new method to butt weld pipes with laser at different angles

    International Nuclear Information System (INIS)

    Gualini, M.M.S.

    1999-01-01

    Laser butt welding of pipes at different angles may be cumbersome and may require very expensive tooling. The pipe size may not allow using the laser for large volume throughputs. We propose a rotary optical head composed by an adjustable focus lens system and two reflecting mirrors. The laser beam is bent at 90 deg. C. so that weld can be performed inwards outwards. The optic head design compensates the rotary backlash and vibrations, like a penta prism thus ensuring a perfect follow up of the weld track. The optic head can be inclined at 45 deg. C. to laser butt weld pipe each other at 90 deg. C. In this case the laser beam focus position is computer controlled in order to keep the focus point always on the elliptical weld profile. The paper covers theoretical and practical aspects of the proposed device. (author)

  14. Thermal resistance of aluminum gravity heaГІ pipe with threaded capillary structure

    Directory of Open Access Journals (Sweden)

    Nikolaenko Yu. E.

    2017-10-01

    Full Text Available The results of an experimental study of the thermal resistance of an aluminum gravitational heat pipe with isobutane (R600a as a working fluid under conditions of heat removal of natural air convection are presented. Comparison of the thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure and the thermal resistance of an aluminum thermosyphon of the same size, having a smooth surface of the body in the evaporation zone, is given. It is shown that in the range of values of the input heat flux from 5 to 50 W the thermal resistance of the gravitational heat pipe is substantially lower than the thermal resistance of the thermosiphon. The studies were conducted both without the use of additional radiators in the condensation zone of heat transfer devices, and with the use of one, two and three radiators.

  15. Design and implementation of cooling system for beam pipe of BESIII

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Dong Sujun

    2008-01-01

    Cooling system for beam pipe is designed, based on the properties of structure, the surrounding and the required temperature of beam pipe in BESIII. The main devices are double for spare parts, and Siemens program logic control is used in the cooling system, which realize the reliability of the equipment and assure the system long time running. OPC is used to communicate between Upper computer and program logic control as the third-party communication protocol, which resolve the problem of communication for complex multi-station, the upper computer assist the program logic control to detect and control the equipment. The cooling system have reasonable structure, comprehensive function, good precision; it can take away the heat from inner wall of beam pipe in time, and control the temperature on inner wall and outer wall in the required range. (authors)

  16. Crygenic performance of a superfluid helium relief valve for the LHC superconducting magnets

    International Nuclear Information System (INIS)

    Danielsson, H.; Ferlin, G.; Luguet, C.

    1996-01-01

    The high-field superconducting magnets of the Large Hadron Collider (LHC) project at CERN will operate below 1.9 K in static baths of pressurized helium II. In case of resistive transition (open-quotes quenchclose quotes), the resulting pressure rise in the cryostats must be limited to below their 2 MPa design pressure. This is achieved by discharging helium at high flow-rates into a cold recovery header, normally maintained at 20 K. For this purpose, the authors have designed, built and tested a cryogenic quench relief valve with a nominal diameter of 50 mm and an opening time of below 0.1 s. The valve, which can be opened on an external trigger, also acts as a relief device actuated by the upstream pressure when it exceeds 0.4 MPa. In normal operation, the closed poppet must be helium-tight, for hydraulic and thermal separation of the magnet baths from the recovery header. Following mechanical qualification tests under vacuum, the authors have mounted the relief valve in a dedicated cryogenic measuring bench, in order to perform precision thermal measurements with pressurized helium II

  17. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  18. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  19. Forensic characterization of HDPE pipes by DSC.

    Science.gov (United States)

    Sajwan, Madhuri; Aggarwal, Saroj; Singh, R B

    2008-03-05

    The melting behavior of 28 high density polyethylene (HDPE) pipe samples manufactured and supplied by 13 different manufacturers in India was examined by 'differential scanning calorimetry (DSC)' to find out if this parameter could be used in differentiating between these HDPE pipe samples which are chemically the same and being manufactured by different manufacturer. The results indicate that the melting temperature may serve as the useful criteria for differentiating HDPE (i) pipe samples from different sources and (ii) samples of different diameter from the same source.

  20. Vacuum pipe for e+e- interactions

    International Nuclear Information System (INIS)

    Hoard, C.T.

    1982-10-01

    The design, fabrication and testing of the beryllium vacuum chamber within the Mark II detector at SLAC is described. The Be chamber encloses one interaction point of the PEP circulating ring and is a part of its beam pipe. The Be chamber is captured within the Secondary Vertex Detector (SVD), a drift chamber, which is in turn centered in the Mark II drift chamber. Both ends of the beryllium pipe are brazed to aluminum/stainless transitions for connection to stainless steel bellows. A concentric radiation-screen liner of titanium foil runs the full length of the beryllium pipe