WorldWideScience

Sample records for reliable noninvasive technique

  1. Non-invasive dendrochronology of late-medieval objects in Oslo: refinement of a technique and discoveries

    Science.gov (United States)

    Daly, Aoife; Streeton, Noëlle L. W.

    2017-06-01

    A technique for non-invasive dendrochronological analysis of oak was developed for archaeological material, using an industrial CT scanner. Since 2013, this experience has been extended within the scope of the research project `After the Black Death: Painting and Polychrome Sculpture in Norway'. The source material for the project is a collection of late-medieval winged altarpieces, shrines, polychrome sculpture, and fragments from Norwegian churches, which are owned by the Museum of Cultural History, University of Oslo. The majority cannot be sampled, and many are too large to fit into the CT scanner. For these reasons, a combined approach was adopted, utilizing CT scanning where possible, but preceded by an `exposed-wood' imaging technique. Both non-invasive techniques have yielded reliable results, and CT scanning has confirmed the reliability of the imaging technique alone. This paper presents the analytical methods, along with results from two of the 13 objects under investigation. Results for reliable dates and provenances provide new foundations for historical interpretations.

  2. A reliable genetic technique for sex determination of giant panda (Ailuropoda melanoleuca) from non-invasively collected hair samples

    NARCIS (Netherlands)

    Durnin, Matthew E.; Palsboll, Per J.; Ryder, Oliver A.; McCullough, Dale R.

    Extractions from non-invasive hair samples usually yield low amounts of highly degraded DNA. Previously developed mammal molecular sexing methods were not designed with such sub-optimal conditions in mind. We developed a simple and reliable PCR-based sexing method aimed at degraded, low yield DNA

  3. Noninvasive studies of human visual cortex using neuromagnetic techniques

    International Nuclear Information System (INIS)

    Aine, C.J.; George, J.S.; Supek, S.; Maclin, E.L.

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs

  4. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Agnes S. Meidert

    2018-01-01

    Full Text Available Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation or automatically (e.g., by oscillometry. For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.

  5. A simple and noninvasive technique using Bohlers stirrup facilitating management of posterior soft tissue injuries of heel

    Directory of Open Access Journals (Sweden)

    Nikil Jayasheelan

    2014-01-01

    Full Text Available Introduction: Many techniques have been devised to solve the problems associated with posterior soft tissue injuries. A noninvasive technique with plaster of Paris cast mold has been described by Ravishankar. Plaster casting techniques have been associated with problems such as tight cast and cast damage. Invasive techniques using external fixators as described by Berkowitz and Kim using tubular fixators like "kick back stand" and by Kamath using ring Illizarov fixators. The external fixators have their own problems like maintaining them for weeks and pin tract infection. Materials and Methods: We have tried to achieve as noninvasive technique using a Bohler stirrup incorporated with slab for patients with only soft tissue in injury and in a fixator for patients with skeletal injury already on tubular fixators. Results: In all the 12 cases where this method was used, the authors achieved the purpose of protecting the split skin graft in four cases and flap in eight cases. We did not encounter any problems related to this method such as skin maceration, sores including loosening of the frame. Conclusion: It is a simple and noninvasive method, which can be easily and reliably performed to maintain adequate limb elevation and soft tissue protection, which can be done is any hospital setup.

  6. Comparison of non-invasive tear film stability measurement techniques.

    Science.gov (United States)

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  7. Non-invasive dendrochronology of late-medieval objects in Oslo

    DEFF Research Database (Denmark)

    Daly, Aoife; Streeton, Noëlle L.W.

    2017-01-01

    scanner. For these reasons, a combined approach was adopted, utilizing CT scanning where possible, but preceded by an ‘exposed-wood’ imaging technique. Both non-invasive techniques have yielded reliable results, and CT scanning has confirmed the reliability of the imaging technique alone. This paper...... presents the analytical methods, along with results from two of the 13 objects under investigation. Results for reliable dates and provenances provide new foundations for historical interpretations....

  8. The Role of Noninvasive Techniques in Stroke Therapy

    Directory of Open Access Journals (Sweden)

    Daniel Maxwell Bernad

    2008-01-01

    Full Text Available Noninvasive techniques such as functional magnetic resonance imaging (fMRI and transcranial magnetic stimulation (TMS have provided insight into understanding how neural connections are altered in consequence to cerebrovascular injury. The first part of this review will briefly survey some of the methodological issues and limitations related to noninvasive poststroke motor recovery studies. The second section will investigate some of the different neural mechanisms that underlie neurorehabilitation in stroke patients. The third part will explore our current understanding of motor memory processing, describe the neural structures that subserve motor memory consolidation, and discuss the current literature related to memory reconsolidation in healthy adults. Lastly, this paper will suggest the potential therapeutic applications of integrating noninvasive tools with memory consolidation and reconsolidation theories to enhance motor recovery. The overall objective of this work is to demonstrate how noninvasive technologies have been utilized in the multidisciplinary field of clinical behavioral neuroscience and to highlight their potential to be employed as clinical tools to promote individualized motor recovery in stroke patients.

  9. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  10. Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.

    2017-11-01

    The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.

  11. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...... on functional heterogeneity in human skeletal muscle will be presented....

  12. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  13. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo

    2011-01-01

    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  14. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  15. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  16. Non-invasive techniques for determining musculoskeleton body composition

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights

  17. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  18. Objective Assessment of Sunburn and Minimal Erythema Doses: Comparison of Noninvasive In Vivo Measuring Techniques after UVB Irradiation

    Directory of Open Access Journals (Sweden)

    Lo Pei-Yu

    2010-01-01

    Full Text Available Military personnel movement is exposed to solar radiation and sunburn is a major problem which can cause lost workdays and lead to disciplinary action. This study was designed to identify correlation parameters in evaluating in vivo doses and epidermis changes following sunburn inflammation. Several noninvasive bioengineering techniques have made objective evaluations possible. The volar forearms of healthy volunteers ( , 2 areas, 20 mm in diameter, were irradiated with UVB 100 mj/ and 200 mj/ , respectively. The skin changes were recorded by several monitored techniques before and 24 hours after UV exposures. Our results showed that chromameter value provides more reliable information and can be adopted with mathematical model in predicting the minimal erythema dose (MED which showed lower than visual assessment by 10 mj/ (Pearson correlation coefficient . A more objective measure for evaluation of MED was established for photosensitive subjects' prediction and sunburn risks prevention.

  19. Highly reliable TOFD UT Technique

    International Nuclear Information System (INIS)

    Acharya, G.D.; Trivedi, S.A.R.; Pai, K.B.

    2003-01-01

    The high performance of the time of flight diffraction technique (TOFD) with regard to the detection capabilities of weld defects such as crack, slag, lack of fusion has led to a rapidly increasing acceptance of the technique as a pre?service inspection tool. Since the early 1990s TOFD has been applied to several projects, where it replaced the commonly used radiographic testing. The use of TOM lead to major time savings during new build and replacement projects. At the same time the TOFD technique was used as base line inspection, which enables monitoring in the future for critical welds, but also provides documented evidence for life?time. The TOFD technique as the ability to detect and simultaneously size flows of nearly any orientation within the weld and heat affected zone. TOM is recognized as a reliable, proven technique for detection and sizing of defects and proven to be a time saver, resulting in shorter shutdown periods and construction project times. Thus even in cases where inspection price of TOFD per welds is higher, in the end it will result in significantly lower overall costs and improve quality. This paper deals with reliability, economy, acceptance criteria and field experience. It also covers comparative study between radiography technique Vs. TOFD. (Author)

  20. A Reliable, Non-Invasive Approach to Data Center Monitoring and Management

    Directory of Open Access Journals (Sweden)

    Moises Levy

    2017-08-01

    Full Text Available Recent standards, legislation, and best practices point to data center infrastructure management systems to control and monitor data center performance. This work presents an innovative approach to address some of the challenges that currently hinder data center management. It explains how monitoring and management systems should be envisioned and implemented. Key parameters associated with data center infrastructure and information technology equipment can be monitored in real-time across an entire facility using low-cost, low-power wireless sensors. Given the data centers’ mission critical nature, the system must be reliable and deployable through a non-invasive process. The need for the monitoring system is also presented through a feedback control systems perspective, which allows higher levels of automation. The data center monitoring and management system enables data gathering, analysis, and decision-making to improve performance, and to enhance asset utilization.

  1. Objective Assessment of Sunburn and Minimal Erythema Doses: Comparison of Noninvasive In Vivo Measuring Techniques after UVB Irradiation

    Directory of Open Access Journals (Sweden)

    Kuo-Sheng Cheng

    2010-01-01

    Full Text Available Military personnel movement is exposed to solar radiation and sunburn is a major problem which can cause lost workdays and lead to disciplinary action. This study was designed to identify correlation parameters in evaluating in vivo doses and epidermis changes following sunburn inflammation. Several noninvasive bioengineering techniques have made objective evaluations possible. The volar forearms of healthy volunteers (n=20, 2 areas, 20 mm in diameter, were irradiated with UVB 100 mj/cm2 and 200 mj/cm2, respectively. The skin changes were recorded by several monitored techniques before and 24 hours after UV exposures. Our results showed that chromameter a∗ value provides more reliable information and can be adopted with mathematical model in predicting the minimal erythema dose (MED which showed lower than visual assessment by 10 mj/cm2 (Pearson correlation coefficient ℑ=0.758. A more objective measure for evaluation of MED was established for photosensitive subjects' prediction and sunburn risks prevention.

  2. Recent advances in noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    So CF

    2012-06-01

    Full Text Available Chi-Fuk So,1 Kup-Sze Choi,1 Thomas KS Wong,2 Joanne WY Chung2,31Centre for Integrative Digital Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 2Department of Nursing and Health Sciences, Tung Wah College, Hong Kong, 3Department of Health and Physical Education, The Hong Kong Institute of Education, Hong KongAbstract: The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed.Keywords: noninvasive, glucose monitoring, diabetes mellitus, blood glucose measurement

  3. INVASIVE AND NON-INVASIVE TECHNIQUES FOR DETECTING PORTAL HYPERTENSION AND PREDICTING VARICEAL BLEEDING IN CIRRHOSIS: A REVIEW

    Science.gov (United States)

    Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J

    2016-01-01

    Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal and post-sinusoidal causes. As a consequence, several complications (i.e., ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from nonbleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques. PMID:24328372

  4. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques

    International Nuclear Information System (INIS)

    Ding, Yi; Wang, Peng; Goel, Lalit; Billinton, Roy; Karki, Rajesh

    2007-01-01

    This paper presents a technique to evaluate reliability of a restructured power system with a bilateral market. The proposed technique is based on the combination of the reliability network equivalent and pseudo-sequential simulation approaches. The reliability network equivalent techniques have been implemented in the Monte Carlo simulation procedure to reduce the computational burden of the analysis. Pseudo-sequential simulation has been used to increase the computational efficiency of the non-sequential simulation method and to model the chronological aspects of market trading and system operation. Multi-state Markov models for generation and transmission systems are proposed and implemented in the simulation. A new load shedding scheme is proposed during generation inadequacy and network congestion to minimize the load curtailment. The IEEE reliability test system (RTS) is used to illustrate the technique. (author)

  5. Noninvasive external cardiac pacing for thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Feldman, M.D.; Warren, S.E.; Gervino, E.V.

    1988-01-01

    Improvements in noninvasive external cardiac pacing have led to a technique with reliable electrical capture and tolerable patient discomfort. To assess the use of this modality of pacing in combination with thallium scintigraphy as a noninvasive pacing stress test, we applied simultaneous noninvasive cardiac pacing, hemodynamic monitoring, and thallium-201 scintigraphy in 14 patients undergoing cardiac catheterization for chest pain syndromes. Two patients had normal coronary arteries, while the remaining 12 had significant coronary artery disease. Thallium scintigraphic responses to pacing were compared to routine exercise thallium stress testing in nine of these 14 patients. All patients were noninvasively paced to more than 85% of the age-predicted maximum heart rate. Twelve patients demonstrated reversible thallium defects, which corresponded in 11 cases to significant lesions seen on coronary angiography. Of nine patients who underwent both pacing and exercise thallium stress tests, comparable maximal rate-pressure products were achieved. Moreover, thallium imaging at peak pacing and during delayed views did not differ significantly from exercise thallium scintigraphy. A limiting factor associated with the technique was local patient discomfort, which occurred to some degree in all patients. We conclude that noninvasive external cardiac pacing together with thallium scintigraphy is capable of detecting significant coronary artery disease and may be comparable to routine exercise thallium stress testing. This new modality of stress testing could be useful in patients unable to undergo the exercise required for standard exercise tolerance testing, particularly if improvements in the technology can be found to reduce further the local discomfort

  6. Between-day reliability of a method for non-invasive estimation of muscle composition.

    Science.gov (United States)

    Simunič, Boštjan

    2012-08-01

    Tensiomyography is a method for valid and non-invasive estimation of skeletal muscle fibre type composition. The validity of selected temporal tensiomyographic measures has been well established recently; there is, however, no evidence regarding the method's between-day reliability. Therefore it is the aim of this paper to establish the between-day repeatability of tensiomyographic measures in three skeletal muscles. For three consecutive days, 10 healthy male volunteers (mean±SD: age 24.6 ± 3.0 years; height 177.9 ± 3.9 cm; weight 72.4 ± 5.2 kg) were examined in a supine position. Four temporal measures (delay, contraction, sustain, and half-relaxation time) and maximal amplitude were extracted from the displacement-time tensiomyogram. A reliability analysis was performed with calculations of bias, random error, coefficient of variation (CV), standard error of measurement, and intra-class correlation coefficient (ICC) with a 95% confidence interval. An analysis of ICC demonstrated excellent agreement (ICC were over 0.94 in 14 out of 15 tested parameters). However, lower CV was observed in half-relaxation time, presumably because of the specifics of the parameter definition itself. These data indicate that for the three muscles tested, tensiomyographic measurements were reproducible across consecutive test days. Furthermore, we indicated the most possible origin of the lowest reliability detected in half-relaxation time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Objective Assessment of Sunburn and Minimal Erythema Doses: Comparison of Noninvasive In Vivo Measuring Techniques after UVB Irradiation

    Science.gov (United States)

    Huang, Min-Wei; Lo, Pei-Yu; Cheng, Kuo-Sheng

    2010-12-01

    Military personnel movement is exposed to solar radiation and sunburn is a major problem which can cause lost workdays and lead to disciplinary action. This study was designed to identify correlation parameters in evaluating in vivo doses and epidermis changes following sunburn inflammation. Several noninvasive bioengineering techniques have made objective evaluations possible. The volar forearms of healthy volunteers ([InlineEquation not available: see fulltext.]), 2 areas, 20 mm in diameter, were irradiated with UVB 100 mj/[InlineEquation not available: see fulltext.] and 200 mj/[InlineEquation not available: see fulltext.], respectively. The skin changes were recorded by several monitored techniques before and 24 hours after UV exposures. Our results showed that chromameter [InlineEquation not available: see fulltext.] value provides more reliable information and can be adopted with mathematical model in predicting the minimal erythema dose (MED) which showed lower than visual assessment by 10 mj/[InlineEquation not available: see fulltext.] (Pearson correlation coefficient [InlineEquation not available: see fulltext.]). A more objective measure for evaluation of MED was established for photosensitive subjects' prediction and sunburn risks prevention.

  8. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques

    Science.gov (United States)

    Rosi, F.; Miliani, C.; Clementi, C.; Kahrim, K.; Presciutti, F.; Vagnini, M.; Manuali, V.; Daveri, A.; Cartechini, L.; Brunetti, B. G.; Sgamellotti, A.

    2010-09-01

    A non-invasive study has been carried out on 18 paintings by Alberto Burri (1915-1995), one of Italy’s most important contemporary painters. The study aims to demonstrate the appropriate and suitable use of portable non-invasive instrumentation for the characterization of materials and techniques found in works dating from 1948 to 1975 belonging to the Albizzini Collection. Sampling of any kind has been forbidden, in order to maintain the integrity of the paintings. Furthermore, the material heterogeneity of each single artwork could potentially result in a poorly representative sampling campaign. Therefore, a non-invasive and in situ analytical approach has been deemed mandatory, notwithstanding the complexity of modern materials and challenging data interpretation. It is the non-invasive nature of the study that has allowed for the acquisition of vast spectral data (a total of about 650 spectra including XRF, mid and near FTIR, micro-Raman and UV-vis absorption and emission spectroscopies). In order to better handle and to extrapolate the most meaningful information from these data, a statistical multivariate analysis, namely principal component analysis (PCA), has been applied to the spectral results. In particular, the possibility of combining elemental and molecular information has been explored by uniting XRF and infrared spectra in one PCA dataset. The combination of complementary spectroscopic techniques has allowed for the characterization of both inorganic and organic pigments, extenders, fillers, and binders employed by Alberto Burri.

  9. [Noninvasive total hemoglobin monitoring based on multiwave spectrophotometry in obstetrics and gynecology].

    Science.gov (United States)

    Pyregov, A V; Ovechkin, A Iu; Petrov, S V

    2012-01-01

    Results of prospective randomized comparative research of 2 total hemoglobin estimation methods are presented. There were laboratory tests and continuous noninvasive technique with multiwave spectrophotometry on the Masimo Rainbow SET. Research was carried out in two stages. At the 1st stage (gynecology)--67 patients were included and in second stage (obstetrics)--44 patients during and after Cesarean section. The standard deviation of noninvasive total hemoglobin estimation from absolute values (invasive) was 7.2 and 4.1%, an standard deviation in a sample--5.2 and 2.7 % in gynecologic operations and surgical delivery respectively, that confirms lack of reliable indicators differences. The method of continuous noninvasive total hemoglobin estimation with multiwave spectrophotometry on the Masimo Rainbow SET technology can be recommended for use in obstetrics and gynecology.

  10. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  11. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    Science.gov (United States)

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing

  12. Reliability and comparison of acromion assessment techniques on x-ray and magnetic resonance imaging (reliability of acromion assessment techniques)

    International Nuclear Information System (INIS)

    Viskontas, D.G.; MacDermid, J.C.; Drosdowech, D.S.; Garvin, G.J.; Romano, W.M.; Faber, K.J.

    2005-01-01

    To determine the reliability and correlation of plain radiography and magnetic resonance imaging (MRI) in the assessment of acromion morphology. Materials and Methods: Acromion morphology was assessed using the lateral acromion angle (LAA) and the acromion-humeral interval (AHI). Thirty patients who had x-rays and MRI for impingement syndrome were included. Six blinded observers assessed the acromion morphology subjectively and objectively. Results: Neither acromion assessment technique demonstrated a positive correlation (kappa and intraclass coefficient 0.55) when measured objectively by experienced observers. Conclusion: The LAA and the AHI are both reliable acromion assessment techniques on X-ray and MRI when measured objectively and by experienced observers. (author)

  13. Noninvasive Evaluation of Nerve Conduction in Small Diameter Fibers in the Rat

    OpenAIRE

    Elena G. Zotova; Joseph C. Arezzo

    2013-01-01

    A novel noninvasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9–18 m/s ( axons), as well as in a subgroup of unmyelinated C fibers conducting at ap...

  14. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    Science.gov (United States)

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.

  15. Applicability of Non-Invasive Sampling in Population Genetic Study of Taiwanese Macaques (Macaca cyclopis

    Directory of Open Access Journals (Sweden)

    Jui-Hua Chu

    2006-12-01

    Full Text Available This paper presents a pilot study conducted to test the applicability of non-invasive sampling approach in population genetic studies of Taiwanese macaques (Macaca cyclopis. Monkey feces were collected in the field and used as non-invasive DNA sources. PCR success rates of both microsatellite and mitochondrial DNA markers were examined. When compared with other studies by non-invasive genetic sampling of different mammal species, success rate of microsatellite PCR amplification is low (42.4%, N = 181 while that of mtDNA PCR amplification is acceptable (66.5%, N = 334. The low PCR success rate and poor PCR repeatability of microsatellite alleles due to allelic dropout and false alleles make it difficult to obtain a reliable microsatellite data set. However, the difficulties may be overcome by new techniques.

  16. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT

    OpenAIRE

    Zotova, Elena G.; Arezzo, Joseph C.

    2013-01-01

    A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at ...

  17. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  18. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  19. Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations.

    Science.gov (United States)

    De Ciuceis, Carolina; Agabiti Rosei, Claudia; Caletti, Stefano; Trapletti, Valentina; Coschignano, Maria A; Tiberio, Guido A M; Duse, Sarah; Docchio, Franco; Pasinetti, Simone; Zambonardi, Federica; Semeraro, Francesco; Porteri, Enzo; Solaini, Leonardo; Sansoni, Giovanna; Pileri, Paola; Rossini, Claudia; Mittempergher, Francesco; Portolani, Nazario; Ministrini, Silvia; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2018-05-01

    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography. In the current study, we enrolled 41 controls and patients: 12 normotensive lean controls, 12 essential hypertensive lean patients, nine normotensive obese patients and eight hypertensive obese patients undergoing elective surgery. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance artery structure was assessed by wire micromyography and the media-to-lumen ratio was calculated. WLR of retinal arterioles was obtained by SLDF and adaptive optics. Functional (basal) and structural (total) microvascular density was evaluated by capillaroscopy before and after venous congestion. Our data suggest that adaptive optics has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, as WLR measured with adaptive optics is more closely correlated with the M/L of subcutaneous small arteries (r = 0.84, P < 0.001 vs. r = 0.52, P < 0.05, slopes of the relations: P < 0.01 adaptive optics vs. SLDF). In addition, the reproducibility of the evaluation of the WLR with adaptive optics is

  20. A novel non-invasive diagnostic sampling technique for cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Yasaman Taslimi

    2017-07-01

    Full Text Available Accurate diagnosis of cutaneous leishmaniasis (CL is important for chemotherapy and epidemiological studies. Common approaches for Leishmania detection involve the invasive collection of specimens for direct identification of amastigotes by microscopy and the culturing of promastigotes from infected tissues. Although these techniques are highly specific, they require highly skilled health workers and have the inherent risks of all invasive procedures, such as pain and risk of bacterial and fungal super-infection. Therefore, it is essential to reduce discomfort, potential infection and scarring caused by invasive diagnostic approaches especially for children. In this report, we present a novel non-invasive method, that is painless, rapid and user-friendly, using sequential tape strips for sampling and isolation of DNA from the surface of active and healed skin lesions of CL patients. A total of 119 patients suspected of suffering from cutaneous leishmaniasis with different clinical manifestations were recruited and samples were collected both from their lesions and from uninfected areas. In addition, 15 fungal-infected lesions and 54 areas of healthy skin were examined. The duration of sampling is short (less than one minute and species identification by PCR is highly specific and sensitive. The sequential tape stripping sampling method is a sensitive, non-invasive and cost-effective alternative to traditional diagnostic assays and it is suitable for field studies as well as for use in health care centers.

  1. Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study.

    Science.gov (United States)

    Proença, Martin; Braun, Fabian; Solà, Josep; Thiran, Jean-Philippe; Lemay, Mathieu

    2017-06-01

    Current monitoring modalities for patients with pulmonary hypertension (PH) are limited to invasive solutions. A novel approach for the noninvasive and unsupervised monitoring of pulmonary artery pressure (PAP) in patients with PH was proposed and investigated. The approach was based on the use of electrical impedance tomography (EIT), a noninvasive and safe monitoring technique, and was tested through simulations on a realistic 4D bio-impedance model of the human thorax. Changes in PAP were induced in the model by simulating multiple types of hypertensive conditions. A timing parameter physiologically linked to the PAP via the so-called pulse wave velocity principle was automatically estimated from the EIT data. It was found that changes in PAP could indeed be reliably monitored by EIT, irrespective of the pathophysiological condition that caused them. If confirmed clinically, these findings could open the way for a new generation of noninvasive PAP monitoring solutions for the follow-up of patients with PH.

  2. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  3. State-of-the-art sensor technology in Spain: invasive and non-invasive techniques for monitoring respiratory variables.

    Science.gov (United States)

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.

  4. An alternative noninvasive technique for the treatment of iatrogenic femoral pseudoaneurysms: stethoscope-guided compression.

    Science.gov (United States)

    Korkmaz, Ahmet; Duyuler, Serkan; Kalayci, Süleyman; Türker, Pinar; Sahan, Ekrem; Maden, Orhan; Selçuk, Mehmet Timur

    2013-06-01

    latrogenic femoral pseudoaneurysm is a well-known vascular access site complication. Many invasive and noninvasive techniques have been proposed for the management of this relatively common complication. In this study, we aimed to evaluate efficiency and safety of stethoscope-guided compression as a novel noninvasive technique in the femoral pseudoaneurysm treatment. We prospectively included 29 consecutive patients with the diagnosis of femoral pseudoaneurysm who underwent coronary angiography. Patients with a clinical suspicion of femoral pseudoaneurysm were referred to colour Doppler ultrasound evaluation. The adult (large) side of the stethoscope was used to determine the location where the bruit was best heard. Then compression with the paediatric (small) side of the stethoscope was applied until the bruit could no longer be heard and compression was maintained for at least two sessions. Once the bruit disappeared, a 12-hour bed rest with external elastic compression was advised to the patients, in order to prevent disintegration of newly formed thrombosis. Mean pseudoaneurysm size was 1.7 +/- 0.4 cmx 3.0 +/- 0.9 cm and the mean duration of compression was 36.2 +/- 8.5 minutes.Twenty-six (89.6%) of these 29 patients were successfully treated with stethoscope-guided compression. In 18 patients (62%), the pseuodoaneurysms were successfully closed after 2 sessions of 15-minute compression. No severe complication was observed. Stethoscope-guided compression of femoral pseudoaneurysms is a safe and effective novel technique which requires less equipment and expertise than other contemporary methods.

  5. A noninvasive multimodal technique to monitor brain tumor vascularization

    Science.gov (United States)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  6. A noninvasive multimodal technique to monitor brain tumor vascularization

    International Nuclear Information System (INIS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E

    2007-01-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present

  7. Reliability and validity of non-radiographic methods of thoracic kyphosis measurement: a systematic review.

    Science.gov (United States)

    Barrett, Eva; McCreesh, Karen; Lewis, Jeremy

    2014-02-01

    A wide array of instruments are available for non-invasive thoracic kyphosis measurement. Guidelines for selecting outcome measures for use in clinical and research practice recommend that properties such as validity and reliability are considered. This systematic review reports on the reliability and validity of non-invasive methods for measuring thoracic kyphosis. A systematic search of 11 electronic databases located studies assessing reliability and/or validity of non-invasive thoracic kyphosis measurement techniques. Two independent reviewers used a critical appraisal tool to assess the quality of retrieved studies. Data was extracted by the primary reviewer. The results were synthesized qualitatively using a level of evidence approach. 27 studies satisfied the eligibility criteria and were included in the review. The reliability, validity and both reliability and validity were investigated by sixteen, two and nine studies respectively. 17/27 studies were deemed to be of high quality. In total, 15 methods of thoracic kyphosis were evaluated in retrieved studies. All investigated methods showed high (ICC ≥ .7) to very high (ICC ≥ .9) levels of reliability. The validity of the methods ranged from low to very high. The strongest levels of evidence for reliability exists in support of the Debrunner kyphometer, Spinal Mouse and Flexicurve index, and for validity supports the arcometer and Flexicurve index. Further reliability and validity studies are required to strengthen the level of evidence for the remaining methods of measurement. This should be addressed by future research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  9. Techniques, processes, and measures for software safety and reliability

    International Nuclear Information System (INIS)

    Sparkman, D.

    1992-01-01

    The purpose of this report is to provide a detailed survey of current recommended practices and measurement techniques for the development of reliable and safe software-based systems. This report is intended to assist the United States Nuclear Reaction Regulation (NRR) in determining the importance and maturity of the available techniques and in assessing the relevance of individual standards for application to instrumentation and control systems in nuclear power generating stations. Lawrence Livermore National Laboratory (LLNL) provides technical support for the Instrumentation and Control System Branch (ICSB) of NRRin advanced instrumentation and control systems, distributed digital systems, software reliability, and the application of verificafion and validafion for the development of software

  10. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt

    2015-01-01

    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...... in 8 (57%) of the patients compared to none of the controls (pgroup (p=0.01). Two patients had systolic dysfunction, and one diastolic dysfunction...

  11. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  12. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  13. Why use Finapres or Portapres rather than intra-arterial or intermittent non-invasive techniques of blood pressure measurement?

    NARCIS (Netherlands)

    Langewouters, G. J.; Settels, J. J.; Roelandt, R.; Wesseling, K. H.

    1998-01-01

    In the clinic, blood pressure is measured almost exclusively using non-invasive intermittent techniques, of which the auscultatory (Riva-Rocci/Korotkoff, RRK) and the computerized oscillometric method are most often used. However, both methods only provide a momentary value. In addition, the

  14. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Vishal [Department of Radiology, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Marcu, Laura [Department of Bioengineering, University of California at Davis, Davis, CA 95616 (United States); Karunasiri, Gamani [Department of Physics, Naval Postgraduate School, Monterey, California 93943 (United States)], E-mail: Vsaxena@usc.edu

    2008-11-07

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 {mu}m. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  15. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    International Nuclear Information System (INIS)

    Saxena, Vishal; Marcu, Laura; Karunasiri, Gamani

    2008-01-01

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 μm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  16. ESR technique for noninvasive way to quantify cyclodextrins effect on cell membranes

    International Nuclear Information System (INIS)

    Grammenos, A.; Mouithys-Mickalad, A.; Guelluy, P.H.; Lismont, M.; Piel, G.; Hoebeke, M.

    2010-01-01

    Research highlights: → ESR: a new tool for cyclodextrins study on living cells. → Cholesterol and phospholipid extraction by Rameb in a dose- and time-dependent way. → Extracted phospholipids and cholesterol form stable aggregates. → ESR spectra show that lipid rafts are damaged by Rameb. → Quantification of the cholesterol extraction on cell membranes in a noninvasive way. -- Abstract: A new way to study the action of cyclodextrin was developed to quantify the damage caused on cell membrane and lipid bilayer. The Electron Spin Resonance (ESR) spectroscopy was used to study the action of Randomly methylated-beta-cyclodextrin (Rameb) on living cells (HCT-116). The relative anisotropy observed in ESR spectrum of nitroxide spin probe (5-DSA and cholestane) is directly related to the rotational mobility of the probe, which can be further correlated with the microviscosity. The use of ESR probes clearly shows a close correlation between cholesterol contained in cells and cellular membrane microviscosity. This study also demonstrates the Rameb ability to extract cholesterol and phospholipids in time- and dose-dependent ways. In addition, ESR spectra enabled to establish that cholesterol is extracted from lipid rafts to form stable aggregates. The present work supports that ESR is an easy, reproducible and noninvasive technique to study the effect of cyclodextrins on cell membranes.

  17. Peering beneath the surface: novel imaging techniques to noninvasively select gametes and embryos for ART.

    Science.gov (United States)

    Jasensky, Joshua; Swain, Jason E

    2013-10-01

    Embryo imaging has long been a critical tool for in vitro fertilization laboratories, aiding in morphological assessment of embryos, which remains the primary tool for embryo selection. With the recent emergence of clinically applicable real-time imaging systems to assess embryo morphokinetics, a renewed interest has emerged regarding noninvasive methods to assess gamete and embryo development as a means of inferring quality. Several studies exist that utilize novel imaging techniques to visualize or quantify intracellular components of gametes and embryos with the intent of correlating localization of organelles or molecular constitution with quality or outcome. However, the safety of these approaches varies due to the potential detrimental impact of light exposure or other variables. Along with complexity of equipment and cost, these drawbacks currently limit clinical application of these novel microscopes and imaging techniques. However, as evidenced by clinical incorporation of some real-time imaging devices as well as use of polarized microscopy, some of these imaging approaches may prove to be useful. This review summarizes the existing literature on novel imaging approaches utilized to examine gametes and embryos. Refinement of some of these imaging systems may permit clinical application and serve as a means to offer new, noninvasive selection tools to improve outcomes for various assisted reproductive technology procedures.

  18. Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability?

    Science.gov (United States)

    Pearson, Adam M; Spratt, Kevin F; Genuario, James; McGough, William; Kosman, Katherine; Lurie, Jon; Sengupta, Dilip K

    2011-04-01

    Comparison of intra- and interobserver reliability of digitized manual and computer-assisted intervertebral motion measurements and classification of "instability." To determine if computer-assisted measurement of lumbar intervertebral motion on flexion-extension radiographs improves reliability compared with digitized manual measurements. Many studies have questioned the reliability of manual intervertebral measurements, although few have compared the reliability of computer-assisted and manual measurements on lumbar flexion-extension radiographs. Intervertebral rotation, anterior-posterior (AP) translation, and change in anterior and posterior disc height were measured with a digitized manual technique by three physicians and by three other observers using computer-assisted quantitative motion analysis (QMA) software. Each observer measured 30 sets of digital flexion-extension radiographs (L1-S1) twice. Shrout-Fleiss intraclass correlation coefficients for intra- and interobserver reliabilities were computed. The stability of each level was also classified (instability defined as >4 mm AP translation or 10° rotation), and the intra- and interobserver reliabilities of the two methods were compared using adjusted percent agreement (APA). Intraobserver reliability intraclass correlation coefficients were substantially higher for the QMA technique THAN the digitized manual technique across all measurements: rotation 0.997 versus 0.870, AP translation 0.959 versus 0.557, change in anterior disc height 0.962 versus 0.770, and change in posterior disc height 0.951 versus 0.283. The same pattern was observed for interobserver reliability (rotation 0.962 vs. 0.693, AP translation 0.862 vs. 0.151, change in anterior disc height 0.862 vs. 0.373, and change in posterior disc height 0.730 vs. 0.300). The QMA technique was also more reliable for the classification of "instability." Intraobserver APAs ranged from 87 to 97% for QMA versus 60% to 73% for digitized manual

  19. Noninvasive Hemoglobin Monitoring: A Rapid, Reliable, and Cost-Effective Method Following Total Joint Replacement.

    Science.gov (United States)

    Martin, J Ryan; Camp, Christopher L; Stitz, Amber; Young, Ernest Y; Abdel, Matthew P; Taunton, Michael J; Trousdale, Robert T

    2016-03-02

    Noninvasive hemoglobin (nHgb) monitoring was initially introduced in the intensive care setting as a means of rapidly assessing Hgb values without performing a blood draw. We conducted a prospective analysis to compare reliability, cost, and patient preference between nHgb monitoring and invasive Hgb (iHgb) monitoring performed via a traditional blood draw. We enrolled 100 consecutive patients undergoing primary or revision total hip or total knee arthroplasty. On postoperative day 1, nHgb and iHgb values were obtained within thirty minutes of one another. iHgb and nHgb values, cost, patient satisfaction, and the duration of time required to obtain each reading were recorded. The concordance correlation coefficient (CCC) was utilized to evaluate the agreement of the two Hgb measurement methods. Paired t tests and Wilcoxon signed-rank tests were utilized to compare mean Hgb values, time, and pain for all readings. The mean Hgb values did not differ significantly between the two measurement methods: the mean iHgb value (and standard deviation) was 11.3 ± 1.4 g/dL (range, 8.2 to 14.3 g/dL), and the mean nHgb value was 11.5 ± 1.8 g/dL (range, 7.0 to 16.0 g/dL) (p = 0.11). The CCC between the two Hgb methods was 0.69. One hundred percent of the patients with an nHgb value of ≥ 10.5 g/dL had an iHgb value of >8.0 g/dL. The mean time to obtain an Hgb value was 0.9 minute for the nHgb method and 51.1 minutes for the iHgb method (p measurement, resulting in a savings of $26 per Hgb assessment when the noninvasive method is used. Noninvasive Hgb monitoring was found to be more efficient, less expensive, and preferred by patients compared with iHgb monitoring. Providers could consider screening total joint arthroplasty patients with nHgb monitoring and only order iHgb measurement if the nHgb value is protocol had been applied to the first blood draw in our 100 patients, approximately $2000 would have been saved. Extrapolated to the U.S. total joint arthroplasty practice

  20. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U

    2008-01-01

    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real-time monit......While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  1. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  2. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  3. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    Science.gov (United States)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  4. Improvement of AC motor reliability from technique standardization

    International Nuclear Information System (INIS)

    Muniz, P.R.; Faria, M.D.R.; Mendes, M.P.; Silva, J.N.; Dos Santos, J.D.

    2005-01-01

    The purpose of this paper is to explain the increase of reliability of motors serviced in the Electrical Maintenance Shop of Companhia Siderurgica de Tubarao by standardization of the technique based on Brazilian and International Standards, manufacturer's recommendations and the experience of the maintenance staff. (author)

  5. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  6. Biopsy techniques for intraocular tumors

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2016-01-01

    Full Text Available Biopsy involves the surgical removal of a tissue specimen for histopathologic evaluation. Most intraocular tumors are reliably diagnosed based on the clinical evaluation or with noninvasive diagnostic techniques. However, accurately diagnosing a small percentage of tumors can be challenging. A tissue biopsy is thus needed to establish a definitive diagnosis and plan the requisite treatment. From fine-needle aspiration biopsy (FNAB to surgical excision, all tissue collection techniques have been studied in the literature. Each technique has its indications and limitations. FNAB has been reported to provide for 88-95% reliable and safe ophthalmic tumor diagnosis and has gained popularity for prognostic purposes and providing eye conserving treatment surgeries. The technique and instrumentation for biopsy vary depending upon the tissue involved (retina, choroid, subretinal space, vitreous, and aqueous, suspected diagnosis, size, location, associated retinal detachment, and clarity of the media. The cytopathologist confers a very important role in diagnosis and their assistance plays a key role in managing and planning the treatment for malignancies.

  7. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    Science.gov (United States)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  8. Noninvasive Diagnostic Technique in Stenotic Coronary Atherosclerosis

    Directory of Open Access Journals (Sweden)

    A. Yu. Vasilyev

    2005-01-01

    Full Text Available Objective: to determine the sensitivity and specificity of combined stress echocardiography (EchoCG using dipyri-damole and dobutamine in diagnosing and defining the extent of stenotic coronary lesions in coronary heart disease (CHD in a group of critically ill patients who are unable to perform a physical exercise.Materials and methods: the study included 57 male patients with suspected acute coronary syndrome who underwent stress EchoCG using dipyridamole in high doses in combination with dobutamine, as well as coronary angiography.Results: stress EchoCG could bring up to the diagnostic criteria in all the patients, of whom 9 patients were found at coronary angiography to have no coronary lesion, 34 and 14 patients had one- and many-vessel lesions, respectively. The sensitivity and specificity of combined stress EchoCG were significantly higher than those of EchoCG used in the diagnosis of CHD.Conclusion: stress EchoCG using dipyridamole in combination with dobutamine is a highly informative safe noninvasive technique for diagnosing CHD, its helps to identify patients with atypical acute coronary syndrome and to form a group of patients to be subject to urgent coronarography and angiosurgical intervention. The pattern of segmental contractile disorders at the height of exercise during combined stress Echo-CG makes it possible to define the site of stenotic coronary atherosclerosis with 97.3% sensitivity and to diagnose many-vessel lesion with 100% sensitivity and 100%specificity.

  9. Occlusal overload investigations by noninvasive technology: fluorescence microscopy and en-face optical coherence tomography

    Science.gov (United States)

    Marcauteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Enikö; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-Face Optical coherence tomography (eF-OCT) and fluorescence microscopy (FM) were used for the imaging of several anterior teeth extracted from patients with light active bruxism. We found a characteristic pattern of enamel cracks, that reached the tooth surface. We concluded that the combination of the en-Face OCT and FM is a promising non-invasive alternative technique for reliable monitoring of occlusal overload.

  10. Invasive v non-invasive assessment of the carotid arteries prior to trans-sphenoidal surgery

    International Nuclear Information System (INIS)

    Macpherson, P.; Teasdale, E.; Hadley, D.M.; Teasdale, G.

    1987-01-01

    Imaging studies in 47 patients who were to undergo trans-sphenoidal surgery were analysed with reference to the vascular structures in the parasellar region. The results of cavernous sinography, dynamic contrast enhanced computed tomography (CT) and magnetic resonance imaging (MRI) showed good correlation with each other and with the appearances found at operation. CT and MRI, both non-invasive investigations, are therefore reliable preliminary screening methods for identifying the small proportion of patients on whom other imaging techniques need to be performed. (orig.)

  11. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    Science.gov (United States)

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  12. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    Science.gov (United States)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  13. Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza

    2016-01-01

    The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to pr...

  14. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    International Nuclear Information System (INIS)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-01-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant

  15. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  16. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques

    Science.gov (United States)

    Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron

    2017-11-01

    This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.

  17. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  18. Non-invasive measurements of carboxyhemoglobin and methemoglobin in children with sickle cell disease.

    Science.gov (United States)

    Caboot, Jason B; Jawad, Abbas F; McDonough, Joseph M; Bowdre, Cheryl Y; Arens, Raanan; Marcus, Carole L; Mason, Thornton B A; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L

    2012-08-01

    Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and -0.22% for MetHb. The precision of the measured SpCO was ± 2.1% within a COHb range of 0.4-6.1%, and the precision of the measured SpMet was ± 0.33% within a MetHb range of 0.1-1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. Copyright © 2012 Wiley Periodicals, Inc.

  19. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT.

    Science.gov (United States)

    Zotova, Elena G; Arezzo, Joseph C

    2013-01-01

    A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p <0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p <0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.

  20. A Novel Analytic Technique for the Service Station Reliability in a Discrete-Time Repairable Queue

    Directory of Open Access Journals (Sweden)

    Renbin Liu

    2013-01-01

    Full Text Available This paper presents a decomposition technique for the service station reliability in a discrete-time repairable GeomX/G/1 queueing system, in which the server takes exhaustive service and multiple adaptive delayed vacation discipline. Using such a novel analytic technique, some important reliability indices and reliability relation equations of the service station are derived. Furthermore, the structures of the service station indices are also found. Finally, special cases and numerical examples validate the derived results and show that our analytic technique is applicable to reliability analysis of some complex discrete-time repairable bulk arrival queueing systems.

  1. Noninvasive experimental determination of the individual kidney filtration fraction by means of a dual-tracer technique. [/sup 131/I and /sup 99m/Tc tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Assailly, J.; Pavel, D.G.; Bader, C.; Chanard, J.; Ryerson, T.W.; Cotard, J.P.; Funck-Brentano, J.L.

    1977-07-01

    A noninvasive method for measurement of the individual kidney filtration fraction (FF) is presented, based on an analysis of the early rise of the kidneys' time-activity curves obtained after simultaneous injection of tubular (/sup 131/I) ortho-iodohippurate and glomerular (Tc-99m DTPA) tracers. The analysis is based on the assumption that an insignificant amount of tracer leaves the kidney during the first few moments following injection. Therefore the kidney activity during this period is directly proportional to the integral of the blood (heart) activity. The dual-tracer technique allows the direct calculation of the ratio of glomerular to tubular clearances, i.e., the FF. In vivo studies were performed on 12 dogs, including normals as well as others with acute ureteral ligation or Benemid-induced tubular blockade. The calculated FF correlated well with the FF obtained from single-shot clearances performed simultaneously. We conclude that the FF can be calculated directly for each kidney, noninvasively, from the early part of the tubular and glomerular time-activity curves by noninvasive external detection.

  2. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly.

    Directory of Open Access Journals (Sweden)

    Jantsje H Pasma

    Full Text Available System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques.In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory, systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID, standard error of measurement (SEM and minimal detectable change (MDC.A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged.This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two

  3. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  4. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques

    Directory of Open Access Journals (Sweden)

    Takashige Yamada

    2018-05-01

    Full Text Available An increasing number of patients require precise intraoperative hemodynamic monitoring due to aging and comorbidities. To prevent undesirable outcomes from intraoperative hypotension or hypoperfusion, appropriate threshold settings are required. These setting can vary widely from patient to patient. Goal-directed therapy techniques allow for flow monitoring as the standard for perioperative fluid management. Based on the concept of personalized medicine, individual assessment and treatment are more advantageous than conventional or uniform interventions. The recent development of minimally and noninvasive monitoring devices make it possible to apply detailed control, tracking, and observation of broad patient populations, all while reducing adverse complications. In this manuscript, we review the monitoring features of each device, together with possible advantages and disadvantages of their use in optimizing patient hemodynamic management.

  5. Verification of intravenous catheter placement by auscultation--a simple, noninvasive technique.

    Science.gov (United States)

    Lehavi, Amit; Rudich, Utay; Schechtman, Moshe; Katz, Yeshayahu Shai

    2014-01-01

    Verification of proper placement of an intravenous catheter may not always be simple. We evaluated the auscultation technique for this purpose. Twenty healthy volunteers were randomized for 18G catheter inserted intravenously either in the right (12) or left arm (8), and subcutaneously in the opposite arm. A standard stethoscope was placed over an area approximately 3 cm proximal to the tip of the catheter in the presumed direction of the vein to grade on a 0-6 scale the murmur heard by rapidly injecting 2 mL of NaCl 0.9% solution. The auscultation was evaluated by a blinded staff anesthesiologist. All 20 intravenous injection were evaluated as flow murmurs, and were graded an average 5.65 (±0.98), whereas all 20 subcutaneous injections were evaluated as either crackles or no sound, and were graded an average 2.00 (±1.38), without negative results. Sensitivity was calculated as 95%. Specificity and Kappa could not be calculated due to an empty false-positive group. Being simple, handy and noninvasive, we recommend to use the auscultation technique for verification of the proper placement of an intravenous catheter when uncertain of its position. Data obtained in our limited sample of healthy subjects need to be confirmed in the clinical setting.

  6. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics.

    Science.gov (United States)

    Alberola-Rubio, J; Prats-Boluda, G; Ye-Lin, Y; Valero, J; Perales, A; Garcia-Casado, J

    2013-12-01

    Non-invasive recording of uterine myoelectric activity (electrohysterogram, EHG) could provide an alternative to monitoring uterine dynamics by systems based on tocodynamometers (TOCO). Laplacian recording of bioelectric signals has been shown to give better spatial resolution and less interference than mono- and bipolar surface recordings. The aim of this work was to study the signal quality obtained from monopolar, bipolar and Laplacian techniques in EHG recordings, as well as to assess their ability to detect uterine contractions. Twenty-two recording sessions were carried out on singleton pregnant women during the active phase of labour. In each session the following simultaneous recordings were obtained: internal uterine pressure (IUP), external tension of abdominal wall (TOCO) and EHG signals (5 monopolar and 4 bipolar recordings, 1 discrete approximation to the Laplacian of the potential and 2 estimates of the Laplacian from two active annular electrodes). The results obtained show that EHG is able to detect a higher number of uterine contractions than TOCO. Laplacian recordings give improved signal quality over monopolar and bipolar techniques, reduce maternal cardiac interference and improve the signal-to-noise ratio. The optimal position for recording EHG was found to be the uterine median axis and the lower centre-right umbilical zone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  8. Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique

    Science.gov (United States)

    2011-01-01

    Background A clinical study was conducted to determine the intra and inter-rater reliability of digital scanning and the neutral suspension casting technique to measure six foot parameters. The neutral suspension casting technique is a commonly utilised method for obtaining a negative impression of the foot prior to orthotic fabrication. Digital scanning offers an alternative to the traditional plaster of Paris techniques. Methods Twenty one healthy participants volunteered to take part in the study. Six casts and six digital scans were obtained from each participant by two raters of differing clinical experience. The foot parameters chosen for investigation were cast length (mm), forefoot width (mm), rearfoot width (mm), medial arch height (mm), lateral arch height (mm) and forefoot to rearfoot alignment (degrees). Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were calculated to determine the intra and inter-rater reliability. Measurement error was assessed through the calculation of the standard error of the measurement (SEM) and smallest real difference (SRD). Results ICC values for all foot parameters using digital scanning ranged between 0.81-0.99 for both intra and inter-rater reliability. For neutral suspension casting technique inter-rater reliability values ranged from 0.57-0.99 and intra-rater reliability values ranging from 0.36-0.99 for rater 1 and 0.49-0.99 for rater 2. Conclusions The findings of this study indicate that digital scanning is a reliable technique, irrespective of clinical experience, with reduced measurement variability in all foot parameters investigated when compared to neutral suspension casting. PMID:21375757

  9. Burn-injured tissue detection for debridement surgery through the combination of non-invasive optical imaging techniques.

    Science.gov (United States)

    Heredia-Juesas, Juan; Thatcher, Jeffrey E; Lu, Yang; Squiers, John J; King, Darlene; Fan, Wensheng; DiMaio, J Michael; Martinez-Lorenzo, Jose A

    2018-04-01

    The process of burn debridement is a challenging technique requiring significant skills to identify the regions that need excision and their appropriate excision depths. In order to assist surgeons, a machine learning tool is being developed to provide a quantitative assessment of burn-injured tissue. This paper presents three non-invasive optical imaging techniques capable of distinguishing four kinds of tissue-healthy skin, viable wound bed, shallow burn, and deep burn-during serial burn debridement in a porcine model. All combinations of these three techniques have been studied through a k-fold cross-validation method. In terms of global performance, the combination of all three techniques significantly improves the classification accuracy with respect to just one technique, from 0.42 up to more than 0.76. Furthermore, a non-linear spatial filtering based on the mode of a small neighborhood has been applied as a post-processing technique, in order to improve the performance of the classification. Using this technique, the global accuracy reaches a value close to 0.78 and, for some particular tissues and combination of techniques, the accuracy improves by 13%.

  10. RELIABILITY OF CERTAIN TESTS FOR EVALUATION OF JUDO TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Slavko Obadov

    2007-05-01

    Full Text Available The sample included 106 judokas. Assessment of the level of mastership of judo techniques was carried out by evaluation of fi ve competent studies. Each subject performed a technique three times and each performance was evaluated by the judges. In order to evaluate measurement of each technique, Cronbach’s coeffi cient of reliability  was calculated. During the procedure the subjects's results were also transformed to factor scores i.e. the results of each performer at the main component of evaluation in the fi ve studies. These factor scores could be used in the subsequent procedure of multivariant statistical analysis.

  11. Non-invasive Blood Glucose Quantification Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Sundararajan JAYAPAL

    2009-02-01

    Full Text Available Diabetes Mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels which result from defects in insulin secretion. It is very important for the diabetics and normal people to have a correct blood glucose level. The HbA1c test is the most preferred test by renowned doctors for glucose quantification. But this test is an invasive one. At present, there are many available techniques for this purpose but these are mostly invasive or minimally non-invasive and most of these are under research. Among the different methods available, the photo acoustic (PA methods provide a reliable solution since the acoustical energy loss is much less compared to the optical or other techniques. Here a novel framework is presented for blood glucose level measurement using a combination of the HbA1c test and a PA method to get an absolutely consistent and precise, non-invasive technique. The setup uses a pulsed laser diode with pulse duration of 5-15 ns and at a repetition rate of 10 Hz as the source. The detector setup is based on the piezoelectric detection. It consists of a ring detector that includes two double ring sensors that are attached to the ring shaped module that can be worn around the finger. The major aim is to detect the photo acoustic signals from the glycated hemoglobin with the least possible error. The proposed monitoring system is designed with extreme consideration to precision and compatibility with the other computing devices. The results obtained in this research have been studied and analyzed by comparing these with those of in-vitro techniques like the HPLC. The comparison has been plotted and it shows a least error. The results also show a positive drive for using this concept as a basis for future extension in quantifying the other blood components.

  12. Clinical application of noninvasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    ZHU Chuanlong

    2015-03-01

    Full Text Available Hepatic fibrosis is the common outcome of chronic liver diseases of various causes. At present, liver biopsy is the “gold standard” for the diagnosis of liver fibrosis, but it has limitations and is invasive, which leads to the development of noninvasive assessment of liver fibrosis. The article mainly introduces the technology and application of noninvasive diagnosis of liver fibrosis from the aspects of clinical manifestation, serology, and radiology. It has pointed out the clinical value of these noninvasive diagnosis techniques, and it discusses the progress in clinical research and its limitations for noninvasive diagnosis of liver fibrosis.

  13. Simple and non-invasive techniques to evaluate the function of CircuLite Synergy.

    Science.gov (United States)

    Mohite, Prashant N; Bowles, Christopher T; Sabashnikov, Anton; Popov, Aron-Frederik; Patil, Nikhil P; Sáez, Diana García; Banner, Nicholas R; Simon, André R

    2014-11-01

    The Synergy CircuLite micropump is a novel partial-support miniature left ventricular assist device that propels 2-3 l/min blood from the left atrium into the right subclavian artery. The ability of currently available investigative modalities to confirm Synergy pump malfunction is limited. The Synergy speed fluctuates periodically (at 10-s intervals) from the baseline to a transient decrease followed by a transient increase (alternating speed algorithm, ASA) with the purpose of changing the blood flow behaviour, thereby reducing thrombogenicity. The aim of this study was to develop a simple non-invasive monitoring technique to assess pump function based on the detection of the ASA in the peripheral microcirculation. Between February 2012 and July 2013, 10 patients with advanced chronic heart failure underwent Synergy implantation at our institution. The pump function was assessed by echocardiography and invasive monitoring according to standard protocols; additionally, the pump speed and power consumption were monitored. During the pump function assessment, the pulse oximeter waveform was recorded from the index fingers of the left and right hand with simultaneous pump auscultation using a stethoscope positioned on the pump (right infra-clavicular pocket). The pulse oximeter waveform was readily detectable from the right and left hand of all study patients. If the Synergy function was normal, there was a significant difference in the morphology of the pulse oximeter waveform from each hand: the ASA algorithm produced a more pronounced variation (giant wave) in the trace from the right hand than from the left. The giant waves invariably coincided with the sound variation associated with the ASA algorithms, which were detected regularly at 10-s intervals. We describe a simple, readily applicable, inexpensive, non-invasive technique that allows evaluation of Synergy pump function and may have diagnostic utility under conditions of suspected pump thrombus

  14. Reliability of horizontal and vertical tube shift techniques in the localisation of supernumerary teeth.

    Science.gov (United States)

    Mallineni, S K; Anthonappa, R P; King, N M

    2016-12-01

    To assess the reliability of the vertical tube shift technique (VTST) and horizontal tube shift technique (HTST) for the localisation of unerupted supernumerary teeth (ST) in the anterior region of the maxilla. A convenience sample of 83 patients who attended a major teaching hospital because of unerupted ST was selected. Only non-syndromic patients with ST and who had complete clinical and radiographic and surgical records were included in the study. Ten examiners independently rated the paired set of radiographs for each technique. Chi-square test, paired t test and kappa statistics were employed to assess the intra- and inter-examiner reliability. Paired sets of 1660 radiographs (830 pairs for each technique) were available for the analysis. The overall sensitivity for VTST and HTST was 80.6 and 72.1% respectively, with slight inter-examiner and good intra-examiner reliability. Statistically significant differences were evident between the two localisation techniques (p HTST in the anterior region of the maxilla.

  15. Noninvasive Positive Pressure Ventilatory Support Begins During Sleep.

    Science.gov (United States)

    Bach, John R

    2017-12-01

    The goal of sleep doctors has been to titrate away apneas and hypopneas using noninvasive ventilation, a term that has become synonymous with continuous positive airway pressure and bilevel positive airway pressure at the lowest effective bilevel settings. It is now time to appreciate noninvasive ventilatory support as an alternative to invasive mechanical ventilation. This article discusses mechanisms of action, two paradigms, and ancillary techniques for noninvasive ventilatory support. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  17. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  18. A comparative evaluation of five human reliability assessment techniques

    International Nuclear Information System (INIS)

    Kirwan, B.

    1988-01-01

    A field experiment was undertaken to evaluate the accuracy, usefulness, and resources requirements of five human reliability quantification techniques (Techniques for Human Error Rate Prediction (THERP); Paired Comparisons, Human Error Assessment and Reduction Technique (HEART), Success Liklihood Index Method (SLIM)-Multi Attribute Utility Decomposition (MAUD), and Absolute Probability Judgement). This was achieved by assessing technique predictions against a set of known human error probabilities, and by comparing their predictions on a set of five realistic Probabilisitc Risk Assessment (PRA) human error. On a combined measure of accuracy THERP and Absolute Probability Judgement performed best, whilst HEART showed indications of accuracy and was lower in resources usage than other techniques. HEART and THERP both appear to benefit from using trained assessors in order to obtain the best results. SLIM and Paired Comparisons require further research on achieving a robust calibration relationship between their scale values and absolute probabilities. (author)

  19. Reliability and criterion validity of an observation protocol for working technique assessments in cash register work.

    Science.gov (United States)

    Palm, Peter; Josephson, Malin; Mathiassen, Svend Erik; Kjellberg, Katarina

    2016-06-01

    We evaluated the intra- and inter-observer reliability and criterion validity of an observation protocol, developed in an iterative process involving practicing ergonomists, for assessment of working technique during cash register work for the purpose of preventing upper extremity symptoms. Two ergonomists independently assessed 17 15-min videos of cash register work on two occasions each, as a basis for examining reliability. Criterion validity was assessed by comparing these assessments with meticulous video-based analyses by researchers. Intra-observer reliability was acceptable (i.e. proportional agreement >0.7 and kappa >0.4) for 10/10 questions. Inter-observer reliability was acceptable for only 3/10 questions. An acceptable inter-observer reliability combined with an acceptable criterion validity was obtained only for one working technique aspect, 'Quality of movements'. Thus, major elements of the cashiers' working technique could not be assessed with an acceptable accuracy from short periods of observations by one observer, such as often desired by practitioners. Practitioner Summary: We examined an observation protocol for assessing working technique in cash register work. It was feasible in use, but inter-observer reliability and criterion validity were generally not acceptable when working technique aspects were assessed from short periods of work. We recommend the protocol to be used for educational purposes only.

  20. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique.

    Science.gov (United States)

    Onuki, Yoshinori; Jacobs, Igor; Artemov, Dmitri; Kato, Yoshinori

    2010-09-01

    A direct evaluation of the in vivo release profile of drugs from carriers is a clinical demand in drug delivery systems, because drug release characterized in vitro correlates poorly with in vivo release. The purpose of this study is to demonstrate the in vivo applicability of the dual MR contrast technique as a useful tool for noninvasive monitoring of the stability and the release profile of drug carriers, by visualizing in vivo release of the encapsulated surrogate MR contrast agent from carriers and its subsequent intratumoral distribution profile. The important aspect of this technique is that it incorporates both positive and negative contrast agents within a single carrier. GdDTPA, superparamagnetic iron oxide nanoparticles, and 5-fluorouracil were encapsulated in nano- and microspheres composed of poly(D,L-lactide-co-glycolide), which was used as a model carrier. In vivo studies were performed with orthotopic xenograft of human breast cancer. The MR-based technique demonstrated here has enabled visualization of the delivery of carriers, and release and intratumoral distribution of the encapsulated positive contrast agent. This study demonstrated proof-of-principle results for the noninvasive monitoring of in vivo release and distribution profiles of MR contrast agents, and thus, this technique will make a great contribution to the field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. A non-invasive, quantitative study of broadband spectral responses in human visual cortex.

    Directory of Open Access Journals (Sweden)

    Eline R Kupers

    Full Text Available Currently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI and subthreshold neuronal synchrony (oscillations and event-related potentials. In contrast, invasive methods-microelectrode recordings and electrocorticography (ECoG-have recently measured broadband power elevation in field potentials (~50-200 Hz as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG. Extracranial measurements like MEG and EEG have multiple global noise sources and relatively low signal-to-noise ratios; moreover high frequency artifacts from eye movements can be confounded with stimulus design and mistaken for signals originating from brain activity. For these reasons, we developed an automated denoising technique that helps reveal the broadband signal of interest. Subjects viewed 12-Hz contrast-reversing patterns in the left, right, or bilateral visual field. Sensor time series were separated into evoked (12-Hz amplitude and broadband components (60-150 Hz. In all subjects, denoised broadband responses were reliably measured in sensors over occipital cortex, even in trials without microsaccades. The broadband pattern was stimulus-dependent, with greater power contralateral to the stimulus. Because we obtain reliable broadband estimates with short experiments (~20 minutes, and with sufficient signal-to-noise to distinguish responses to different stimuli, we conclude that MEG broadband signals, denoised with our method, offer a practical, non-invasive means for characterizing spike-rate-dependent neural activity for addressing scientific questions about human brain function.

  2. Reliability of the Superimposed-Burst Technique in Patients With Patellofemoral Pain: A Technical Report.

    Science.gov (United States)

    Norte, Grant E; Frye, Jamie L; Hart, Joseph M

    2015-11-01

    The superimposed-burst (SIB) technique is commonly used to quantify central activation failure after knee-joint injury, but its reliability has not been established in pathologic cohorts. To assess within-session and between-sessions reliability of the SIB technique in patients with patellofemoral pain. Descriptive laboratory study. University laboratory. A total of 10 patients with self-reported patellofemoral pain (1 man, 9 women; age = 24.1 ± 3.8 years, height = 167.8 ± 15.2 cm, mass = 71.6 ± 17.5 kg) and 10 healthy control participants (3 men, 7 women; age = 27.4 ± 5.0 years, height = 173.5 ± 9.9 cm, mass = 78.2 ± 16.5 kg) volunteered. Participants were assessed at 6 intervals spanning 21 days. Intraclass correlation coefficients (ICCs [3,3]) were used to assess reliability. Quadriceps central activation ratio, knee-extension maximal voluntary isometric contraction force, and SIB force. The quadriceps central activation ratio was highly reliable within session (ICC [3,3] = 0.97) and between sessions through day 21 (ICC [3,3] = 0.90-0.95). Acceptable reliability of knee extension (ICC [3,3] = 0.75-0.91) and SIB force (ICC [3,3] = 0.77-0.89) was observed through day 21. The SIB technique was reliable for clinical research up to 21 days in patients with patellofemoral pain.

  3. Techniques to maximize software reliability in radiation fields

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1986-01-01

    Microprocessor system failures due to memory corruption by single event upsets (SEUs) and/or latch-up in RAM or ROM memory are common in environments where there is high radiation flux. Traditional methods to harden microcomputer systems against SEUs and memory latch-up have usually involved expensive large scale hardware redundancy. Such systems offer higher reliability, but they tend to be more complex and non-standard. At the Space Astronomy Laboratory the authors have developed general programming techniques for producing software which is resistant to such memory failures. These techniques, which may be applied to standard off-the-shelf hardware, as well as custom designs, include an implementation of Maximally Redundant Software (MRS) model, error detection algorithms and memory verification and management

  4. Noninvasive neuromodulation in cluster headache

    DEFF Research Database (Denmark)

    Láinez, Miguel J A; Jensen, Rigmor

    2015-01-01

    PURPOSE OF REVIEW: Neuromodulation is an alternative in the management of medically intractable cluster headache patients. Most of the techniques are invasive, but in the last 2 years, some studies using a noninvasive device have been presented. The objective of this article is to review the data...... using this approach. RECENT FINDINGS: Techniques as occipital nerve stimulation or sphenopalatine ganglion stimulation are recommended as first-line therapy in refractory cluster patients, but they are invasive and maybe associated with complications. Noninvasive vagal nerve stimulation with an external...... device has been tried in cluster patients. Results from clinical practice and a single randomized clinical trial have been presented showing a reduction of the number of cluster attacks/week in the patients treated with the device. The rate of adverse events was low and most of them were mild. SUMMARY...

  5. Noninvasive dentistry: a dream or reality?

    Science.gov (United States)

    Clarkson, B H; Exterkate, R A M

    2015-01-01

    Various caries prevention and repair strategies are reviewed in this article ranging from the use of fluoride to nanohydroxyapatite particles. Several of the strategies which combine fluoride and calcium and phosphate treatments have both in vitro and in vivo data showing them to be efficacious if the surface integrity of the lesion is not breached. Once this has occurred, the rationale for cutting off the nutrient supplies to the pathogenic bacteria without the removal of the infected dentine, a noninvasive restorative technique, is discussed using existing clinical studies as examples. Finally two novel noninvasive restorative techniques using fluorohydroxyapatite crystals are described. The need for clinical data in support of emerging caries-preventive and restorative strategies is emphasized. 2015 S. Karger AG, Basel

  6. Effects of non-invasive neurostimulation on craving: a meta-analysis

    NARCIS (Netherlands)

    Jansen, Jochem M.; Daams, Joost G.; Koeter, Maarten W. J.; Veltman, Dick J.; van den Brink, Wim; Goudriaan, Anna E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  7. Effects of non-invasive neurostimulation on craving: A meta-analysis

    NARCIS (Netherlands)

    Jansen, J.M.; Daams, J.G.; Koeter, M.W.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  8. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  9. Noninvasive Urodynamic Evaluation

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available The longevity of the world's population is increasing, and among male patients, complaints of lower urinary tract symptoms (LUTS are growing. Testing to diagnose LUTS and to differentiate between the various causes should be quick, easy, cheap, specific, not too bothersome for the patient, and noninvasive or minimally so. Urodynamic evaluation is the gold standard for diagnosing bladder outlet obstruction (BOO but presents some inconveniences such as embarrassment, pain, and dysuria; furthermore, 19% of cases experience urinary retention, macroscopic hematuria, or urinary tract infection. A greater number of resources in the diagnostic armamentarium could increase the opportunity for selecting less invasive tests. A number of groups have risen to this challenge and have formulated and developed ideas and technologies to improve noninvasive methods to diagnosis BOO. These techniques start with flowmetry, an increase in the interest of ultrasound, and finally the performance of urodynamic evaluation without a urethral catheter. Flowmetry is not sufficient for confirming a diagnosis of BOO. Ultrasound of the prostate and the bladder can help to assess BOO noninvasively in all men and can be useful for evaluating the value of BOO at assessment and during treatment of benign prostatic hyperplasia patients in the future. The great advantages of noninvasive urodynamics are as follows: minimal discomfort, minimal risk of urinary tract infection, and low cost. This method can be repeated many times, permitting the evaluation of obstruction during clinical treatment. A urethral connector should be used to diagnose BOO, in evaluation for surgery, and in screening for treatment. In the future, noninvasive urodynamics can be used to identify patients with BOO to initiate early medical treatment and evaluate the results. This approach permits the possibility of performing surgery before detrusor damage occurs.

  10. Reliability of quantitative echocardiography in adult sheep and goats

    Directory of Open Access Journals (Sweden)

    Hallowell Gayle D

    2012-09-01

    Full Text Available Abstract Background Echocardiography is a non-invasive method for assessment of the ovine and caprine heart. Complete reference ranges for cardiac dimensions and time indices for both species are not currently available and reliability of these measurements has not been evaluated. The objectives for this study are to report reliability, normal cardiac dimensions and time indices in a large group of adult sheep and goats. Fifty-one adult sheep and forty adult goats were recruited. Full echocardiographic examinations were performed in the standing unsedated animal. All animals underwent echocardiography four times in a 72-hour period. Echocardiography was performed three times by one author and once by another. Images were stored and measured offline. Technique and measurement repeatability and reproducibility and any differences due to animal or day were evaluated. Reference ranges (mean ± 2 standard deviations were calculated for both species. Results Majority of the images obtained were of good to excellent quality. Image acquisition was straightforward with 5.4% of animals demonstrating a small scanning window. Reliability was excellent for majority of dimensions and time indices. There was less variation in repeatability when compared with reproducibility and differences were greater for technique than for measurements. Dimensions that were less reliable included those for right ventricular diameter and left ventricular free wall. There were many differences in cardiac dimensions between sheep and goats. Conclusions This study has demonstrated that specific reference ranges are required for these two species. Repeatability and reproducibility were excellent for the majority of cardiac dimensions and time indices suggesting that this technique is reliable and valuable for examination of clinical cases over time and for longitudinal research studies.

  11. Semiotics of lesions of the cerebral venous collectors on application of noninvasive techniques of x-ray diagnosis

    International Nuclear Information System (INIS)

    Semenov, S.E.; Abalmasov, V.G.

    2001-01-01

    The study included application of a complex of the noninvasive diagnostic techniques such as MR tomography, MR venography, duplex scanning of the internal jugular veins, and transcranial Doppler sonography. The authors provide a detailed description of the semiotics of the MR signs of cerebral venous collector lesion in patients with thrombosis, extravasal compression, aneurysms, and development anomalies. Present the quantitative ultrasound parameters of hemodynamics in the efferent vessels of the brain accessible to inspections describe the effect of spontaneous echo-opacification in the internal jugular veins, which is assumed to be a predictor of thrombosis. Intravenous injection of magnevist resulted in an appreciable refinement of visualization of small dural sinuses at MR venography thereby allowing for the diagnosis of their thrombosis. It is suggested that the use of the entire complex of the X-ray modalities under consideration may lead to a more complete and noninvasive evaluation of the nature of cerebral venous insufficiency and of the degree of hemodynamic significance. Moreover, this will make it possible to outline approaches to therapeutic or surgical correction of the disease [ru

  12. [Semiotics of lesions of the cerebral venous collectors on application of noninvasive techniques of x-ray diagnosis].

    Science.gov (United States)

    Semenov, S; Abalmasov, V

    2001-01-01

    The study included application of a complex of the noninvasive diagnostic techniques such as MR tomography, MR venography, duplex scanning of the internal jugular veins, and transcranial Doppler sonography. The authors provide a detailed description of the semiotics of the MR signs of cerebral venous collector lesion in patients with thrombosis, extravasal compression, aneurysms, and developmental anomalies. Present the quantitative ultrasound parameters of hemodynamics in the efferent vessels of the brain accessible to inspections describe the effect of spontaneous echo-opacification in the internal jugular veins, which is assumed to be a predictor of thrombosis. Intravenous injection of magnevist resulted in an appreciable refinement of visualization of small dural sinuses at MR venography thereby allowing for the diagnosis of their thrombosis. It is suggested that the use of the entire complex of the x-ray modalities under consideration may lead to a more complete and noninvasive evaluation of the nature of cerebral venous insufficiency and of the degree of hemodynamic significance. Moreover, this will make it possible to outline approaches to therapeutic or surgical correction of the disease.

  13. Noninvasive physiologic assessment of coronary stenoses using cardiac CT.

    Science.gov (United States)

    Xu, Lei; Sun, Zhonghua; Fan, Zhanming

    2015-01-01

    Coronary CT angiography (CCTA) has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD). CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive "one-stop-shop" diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT), and transluminal attenuation gradient (TAG), CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.

  14. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  15. Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma.

    Science.gov (United States)

    Lim, Ji Hyae; Kim, Mee Jin; Kim, Shin Young; Kim, Hye Ok; Song, Mee Jin; Kim, Min Hyoung; Park, So Yeon; Yang, Jae Hyug; Ryu, Hyun Mee

    2011-02-01

    To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.

  16. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  17. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    Science.gov (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  18. Noninvasive Physiologic Assessment of Coronary Stenoses Using Cardiac CT

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2015-01-01

    Full Text Available Coronary CT angiography (CCTA has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD. CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive “one-stop-shop” diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT, and transluminal attenuation gradient (TAG, CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.

  19. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  1. System safety and reliability using object-oriented programming techniques

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Koen, B.V.

    1987-01-01

    Direct evaluation fault tree codes have been written in recursive, list-processing computer languages such as PL/1 (PATREC-I) and LISP (PATREC-L). The pattern-matching strategy implemented in these codes has been used extensively in France to evaluate system reliability. Recent reviews of the risk management process suggest that a data base containing plant-specific information be integrated with a package of codes used for probabilistic risk assessment (PRA) to alleviate some of the difficulties that make a PRA so costly and time-intensive. A new programming paradigm, object-oriented programming, is uniquely suited for the development of such a software system. A knowledge base and fault tree evaluation algorithm, based on previous experience with PATREC-L, have been implemented using object-oriented techniques, resulting in a reliability assessment environment that is easy to develop, modify, and extend

  2. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  3. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  4. Elastography methods for the non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A

    2018-02-01

    The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.

  5. Noninvasive Hemodynamic Measurements During Neurosurgical Procedures in Sitting Position.

    Science.gov (United States)

    Schramm, Patrick; Tzanova, Irene; Gööck, Tilman; Hagen, Frank; Schmidtmann, Irene; Engelhard, Kristin; Pestel, Gunther

    2017-07-01

    Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.

  6. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  7. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  8. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  9. Application of modern reliability database techniques to military system data

    International Nuclear Information System (INIS)

    Bunea, Cornel; Mazzuchi, Thomas A.; Sarkani, Shahram; Chang, H.-C.

    2008-01-01

    This paper focuses on analysis techniques of modern reliability databases, with an application to military system data. The analysis of military system data base consists of the following steps: clean the data and perform operation on it in order to obtain good estimators; present simple plots of data; analyze the data with statistical and probabilistic methods. Each step is dealt with separately and the main results are presented. Competing risks theory is advocated as the mathematical support for the analysis. The general framework of competing risks theory is presented together with simple independent and dependent competing risks models available in literature. These models are used to identify the reliability and maintenance indicators required by the operating personnel. Model selection is based on graphical interpretation of plotted data

  10. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2011-03-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.

  11. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  12. Quantitative evaluation of myocardial perfusion and heart function using a non-invasive double isotope technique

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W H; Doll, J; Georgi, P [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin; Tillmanns, H [Heidelberg Univ. (Germany, F.R.). Innere Medizin 3

    1976-11-01

    This paper describes a non-invasive double nuclide technique for the simultaneous measurement of minimal cardiac transit times (MTT) and regional 'myocardial appearance times' (MAT) using gamma camera and computer. MAT is defined as the time lag between the appearance of an indicator with myocardial affinity in the aortic root and its extraction in the myocardial cells. The extraction can be identified as an increase of the ratio between the count rates of the two nuclides e.g. /sup 201/Tl-chloride and sup(113m)In DTPA. The clinical evaluation of this method allows the following conclusions: 1) MAT, determined over several circumscript myocardial regions permits the qualitative diagnosis of a coronary artery disease with high confidence. 2) Indices of nutritive myocardial blood flow (INF), derived by MAT using several representative areas of myocardium, show a definite correlation to the degree of coronary artery disease. In addition to the localization of infarction and the determination of infarct size, the technique described promises a quantitative evaluation of the regional myocardial perfusion. Simultaneously measured MTT help to assess segmental cardiac performance.

  13. Towards non-invasive diagnostic techniques for early detection of acute renal transplant rejection: A review

    Directory of Open Access Journals (Sweden)

    Elizabeth Hollis

    2017-03-01

    Full Text Available The kidney is a very important complicated filtering organ of the body. When the kidney reaches stage 5 chronic kidney disease, end stage renal failure, the preeminent therapy is renal transplantation. Although it is the best form of treatment, lack of kidney donors is still challenging. Therefore, all efforts should be employed to prolong the survival rate of the transplanted kidney. However, graft dysfunction (e.g., acute rejection is one of the serious barriers to long term kidney transplant survival. Currently, graft dysfunction’s gold standard of diagnosis is renal biopsy. Although renal biopsy is helpful, it is not preferred due to its invasive nature, high morbidity rates, and expensiveness. Therefore, noninvasive imaging techniques have become the subject of extensive research and interest, giving a strong promise to replace, or at least to decrease, biopsy usage in diagnosing graft dysfunction. This survey will discuss not only the current diagnosis and treatment of graft dysfunction but also the state-of-the-art imaging techniques in detecting acute renal transplant rejection.

  14. Reliability Evaluation Methodologies of Fault Tolerant Techniques of Digital I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Seong, Poong Hyun; Lee, Seung Jun

    2011-01-01

    Since the reactor protection system was replaced from analog to digital, digital reactor protection system has 4 redundant channels and each channel has several modules. It is necessary for various fault tolerant techniques to improve availability and reliability due to using complex components in DPPS. To use the digital system, it is necessary to improve the reliability and availability of a system through fault-tolerant techniques. Several researches make an effort to effects of fault tolerant techniques. However, the effects of fault tolerant techniques have not been properly considered yet in most fault tree models. Various fault-tolerant techniques, which used in digital system in NPPs, should reflect in fault tree analysis for getting lower system unavailability and more reliable PSA. When fault-tolerant techniques are modeled in fault tree, categorizing the module to detect by each fault tolerant techniques, fault coverage, detection period and the fault recovery should be considered. Further work will concentrate on various aspects for fault tree modeling. We will find other important factors, and found a new theory to construct the fault tree model

  15. Reliability analysis of a phaser measurement unit using a generalized fuzzy lambda-tau(GFLT) technique.

    Science.gov (United States)

    Komal

    2018-05-01

    Nowadays power consumption is increasing day-by-day. To fulfill failure free power requirement, planning and implementation of an effective and reliable power management system is essential. Phasor measurement unit(PMU) is one of the key device in wide area measurement and control systems. The reliable performance of PMU assures failure free power supply for any power system. So, the purpose of the present study is to analyse the reliability of a PMU used for controllability and observability of power systems utilizing available uncertain data. In this paper, a generalized fuzzy lambda-tau (GFLT) technique has been proposed for this purpose. In GFLT, system components' uncertain failure and repair rates are fuzzified using fuzzy numbers having different shapes such as triangular, normal, cauchy, sharp gamma and trapezoidal. To select a suitable fuzzy number for quantifying data uncertainty, system experts' opinion have been considered. The GFLT technique applies fault tree, lambda-tau method, fuzzified data using different membership functions, alpha-cut based fuzzy arithmetic operations to compute some important reliability indices. Furthermore, in this study ranking of critical components of the system using RAM-Index and sensitivity analysis have also been performed. The developed technique may be helpful to improve system performance significantly and can be applied to analyse fuzzy reliability of other engineering systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Reliability of system identification techniques to assess standing balance in healthy elderly

    NARCIS (Netherlands)

    Pasma, Jantsje H.; Engelhart, Denise; Maier, Andrea B.; Aarts, Ronald G.K.M.; Van Gerven, Joop M.A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G.M.; Van Kooij, Herman Der

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system

  17. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    NARCIS (Netherlands)

    Pasma, J.H.; Engelhart, D.; Maier, A.B.; Aarts, R.G.K.M.; Van Gerven, J.M.A.; Arendzen, J.H.; Schouten, A.C.; Meskers, C.G.M.; Van der Kooij, H.

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system

  18. DWI-MRI: Single, Informative, and Noninvasive Technique for Prostate Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Elhousseiny I. Ibrahiem

    2012-01-01

    Full Text Available Aim. To evaluate diffusion weighted image-MRI (DWI as a single diagnostic noninvasive MRI technique for prostate cancer (PCa diagnosis. Material and Methods. A prospective study was conducted between July 2008 and July 2009. Candidates patients were equal or more than 40 years old, with suspicious digital rectal examination (more than clinical T2 or PSA >4 ng/mL. Informed consent was signed. DWI-MRI was performed at 1.5 T with a body coil combined with a spine coil in consecutive 100 cases. The histopathology of biopsies has been used as reference standard. Two examiners were evaluating MRI and TRUS, both of them were blinded regarding pathological findings. Accuracy, specificity, and sensitivity were statistically analyzed. Results. Based on pathological diagnosis: group A (cancerous; 75 cases and group B (non-cancerous; 25 cases. Mean age was 65.3 and 62.8 years in groups A and B, respectively. Mean PSA was 30.7 and 9.2 ng/mL in groups A and B, respectively. Sensitivity of DWI was 58.3% while specificity was 83.8%. Accuracy of lesion detection was 52.4–77.8% (<0.05. Moreover, DWI at ADC value 1.2×10−3 mL/sec could determine 82.4% of true positive cases (<0.05. ADC values were lower with Gleason score ≥7 (<0.05. Conclusion. DWI could represent a non invasive single diagnostic tool not only in detection and localization but also in prediction of Gleason score whenever DWI is used prior to invasive TRUS biopsy. Furthermore, targeted single biopsy could be planned after DWI to minimize patient morbidity by invasive techniques.

  19. Suprahyoid Muscle Complex: A Reliable Neural Assessment Tool For Dysphagia?

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    be a non-invasive reliable neural assessment tool for patients with dysphagia. Objective: To investigate the possibility of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy...

  20. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers

    Science.gov (United States)

    Proença, Martin; Adler, Andy; Riedel, Thomas; Thiran, Jean-Philippe; Solà, Josep

    2018-01-01

    Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of −1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations. PMID:29373611

  1. Techniques for developing reliable and functional materials control and accounting software

    International Nuclear Information System (INIS)

    Barlich, G.

    1988-01-01

    The media has increasingly focused on failures of computer systems resulting in financial, material, and other losses and on systems failing to function as advertised. Unfortunately, such failures with equally disturbing losses are possible in computer systems providing materials control and accounting (MCandA) functions. Major improvements in the reliability and correctness of systems are possible with disciplined design and development techniques applied during software development. This paper describes some of the techniques used in the Safeguard Systems Group at Los Alamos National Laboratory for various MCandA systems

  2. An In vitro evaluation of the reliability of QR code denture labeling technique.

    Science.gov (United States)

    Poovannan, Sindhu; Jain, Ashish R; Krishnan, Cakku Jalliah Venkata; Chandran, Chitraa R

    2016-01-01

    Positive identification of the dead after accidents and disasters through labeled dentures plays a key role in forensic scenario. A number of denture labeling methods are available, and studies evaluating their reliability under drastic conditions are vital. This study was conducted to evaluate the reliability of QR (Quick Response) Code labeled at various depths in heat-cured acrylic blocks after acid treatment, heat treatment (burns), and fracture in forensics. It was an in vitro study. This study included 160 specimens of heat-cured acrylic blocks (1.8 cm × 1.8 cm) and these were divided into 4 groups (40 samples per group). QR Codes were incorporated in the samples using clear acrylic sheet and they were assessed for reliability under various depths, acid, heat, and fracture. Data were analyzed using Chi-square test, test of proportion. The QR Code inclusion technique was reliable under various depths of acrylic sheet, acid (sulfuric acid 99%, hydrochloric acid 40%) and heat (up to 370°C). Results were variable with fracture of QR Code labeled acrylic blocks. Within the limitations of the study, by analyzing the results, it was clearly indicated that the QR Code technique was reliable under various depths of acrylic sheet, acid, and heat (370°C). Effectiveness varied in fracture and depended on the level of distortion. This study thus suggests that QR Code is an effective and simpler denture labeling method.

  3. Reliability of salivary testosterone measurements in diagnosis of Polycystic Ovarian Syndrome

    Directory of Open Access Journals (Sweden)

    Omnia Youssef

    2010-07-01

    Conclusion: Determination of salivary testosterone is a reliable method to detect changes in the concentration of available biologically active testosterone in the serum. Salivary testosterone provides a sensitive, simple, reliable, non-invasive and uncomplicated diagnostic approach for PCOS.

  4. Noninvasive Body Contouring: A Male Perspective.

    Science.gov (United States)

    Wat, Heidi; Wu, Douglas C; Goldman, Mitchel P

    2018-01-01

    Noninvasive body contouring is an attractive therapeutic modality to enhance the ideal male physique. Men place higher value on enhancing a well-defined, strong, masculine jawline and developing a V-shaped taper through the upper body. An understanding of the body contour men strive for allows the treating physician to focus on areas that are of most concern to men, thus enhancing patient experience and satisfaction. This article discusses noninvasive body contouring techniques, taking into account the unique aesthetic concerns of the male patient by combining an analysis of the existing literature with our own clinical experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Interactive reliability assessment using an integrated reliability data bank

    International Nuclear Information System (INIS)

    Allan, R.N.; Whitehead, A.M.

    1986-01-01

    The logical structure, techniques and practical application of a computer-aided technique based on a microcomputer using floppy disc Random Access Files is described. This interactive computational technique is efficient if the reliability prediction program is coupled directly to a relevant source of data to create an integrated reliability assessment/reliability data bank system. (DG)

  6. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  7. Criteria to evaluate bone mineralization in cattle. II. Noninvasive techniques

    International Nuclear Information System (INIS)

    Williams, S.N.; McDowell, L.R.; Lawrence, L.A.; Wilkinson, N.S.; Ferguson, P.W.; Warnick, A.C.

    1991-01-01

    An experiment was conducted to evaluate the capabilities of dual photon absorptiometry (PA), radiographic photometry (RP), and ultrasound (U) to estimate bone mineral content (BMC) and bone strength of a group of bovine third metacarpals (McIII). Metacarpals were chosen for evaluating BMC and bone strength because of their accessibility and susceptibility to biomechanical stress. The right and left McIII of 14 Angus heifers (24 to 32 mo of age) were collected at slaughter and all soft tissues (including periosteum) were removed. The BMC was estimated at both the midpoint and 3 cm proximal to the midpoint on the McIII diaphysis. Metacarpals then were tested by three-point bending to determine breaking load (BL) and breaking strength (BS). Bones were reassembled and two 2-cm sections were removed, one at the midpoint and one 1 cm proximal to the midpoint section. Sections then were ashed and ash content was expressed as grams per 2-cm slice and defined as BMC. Correlation coefficients (r) between BMC vs PA, RP, and U were .908 (P < .0001), .967 (P < .0001), and .565 (P < .0001), respectively; r values between BS vs PA, RP, and U were .406 (P < 05), .429 (P < .05), and .499 (P < .01), respectively, and r values between BL vs PA, RP, and U were .870 (P < .0001), .865 (P < .0001), and .588 (P < .001), respectively. These data indicate that noninvasive techniques are useful in predicting BMC and BL in the bovine

  8. Applying of Reliability Techniques and Expert Systems in Management of Radioactive Accidents

    International Nuclear Information System (INIS)

    Aldaihan, S.; Alhbaib, A.; Alrushudi, S.; Karazaitri, C.

    1998-01-01

    Accidents including radioactive exposure have variety of nature and size. This makes such accidents complex situations to be handled by radiation protection agencies or any responsible authority. The situations becomes worse with introducing advanced technology with high complexity that provide operator huge information about system working on. This paper discusses the application of reliability techniques in radioactive risk management. Event tree technique from nuclear field is described as well as two other techniques from nonnuclear fields, Hazard and Operability and Quality Function Deployment. The objective is to show the importance and the applicability of these techniques in radiation risk management. Finally, Expert Systems in the field of accidents management are explored and classified upon their applications

  9. Reliability techniques and Coupled BEM/FEM for interaction pile-soil

    Directory of Open Access Journals (Sweden)

    Ahmed SAHLI

    2017-06-01

    Full Text Available This paper deals with the development of a computational code for the modelling and verification of safety in relation to limit states of piles found in foundations of current structures. To this end, it makes use of reliability techniques for the probabilistic analysis of piles modelled with the finite element method (FEM coupled to the boundary element method (BEM. The soil is modelled with the BEM employing Mindlin's fundamental solutions, suitable for the consideration of a three-dimensional infinite half-space. The piles are modelled as bar elements with the MEF, each of which is represented in the BEM as a loading line. The finite element of the employed bar has four nodes and fourteen nodal parameters, three of which are displacements for each node plus two rotations for the top node. The slipping of the piles in relation to the mass is carried out using adhesion models to define the evolution of the shaft tensions during the transfer of load to the soil. The reliability analysis is based on three methods: first order second moment (FOSM, first order reliability method and Monte Carlo method.

  10. Invasive and noninvasive dental analgesia techniques.

    Science.gov (United States)

    Estafan, D J

    1998-01-01

    Although needle-administered local anesthesia has been an essential tool of modern dentistry, it has also been responsible for many patients' fears of dental visits. Several new techniques have recently evolved that may offer viable alternatives. Two of these operate via electronic mechanisms that interfere with pain signals, two others involve transmucosal modes of administration, and a fifth technique involves an intraosseous pathway for anesthesia administration. Each of these techniques has different indications for dental procedures, but none is intended to replace needle administration in dentistry. This overview highlights the salient features of these alternative dental anesthesia techniques.

  11. A New Quantitative Method for the Non-Invasive Documentation of Morphological Damage in Paintings Using RTI Surface Normals

    Directory of Open Access Journals (Sweden)

    Marcello Manfredi

    2014-07-01

    Full Text Available In this paper we propose a reliable surface imaging method for the non-invasive detection of morphological changes in paintings. Usually, the evaluation and quantification of changes and defects results mostly from an optical and subjective assessment, through the comparison of the previous and subsequent state of conservation and by means of condition reports. Using quantitative Reflectance Transformation Imaging (RTI we obtain detailed information on the geometry and morphology of the painting surface with a fast, precise and non-invasive method. Accurate and quantitative measurements of deterioration were acquired after the painting experienced artificial damage. Morphological changes were documented using normal vector images while the intensity map succeeded in highlighting, quantifying and describing the physical changes. We estimate that the technique can detect a morphological damage slightly smaller than 0.3 mm, which would be difficult to detect with the eye, considering the painting size. This non-invasive tool could be very useful, for example, to examine paintings and artwork before they travel on loan or during a restoration. The method lends itself to automated analysis of large images and datasets. Quantitative RTI thus eases the transition of extending human vision into the realm of measuring change over time.

  12. Korean round-robin result for new international program to assess the reliability of emerging nondestructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kim, Jin Gyum; Kang, Sung Sik; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2017-04-15

    The Korea Institute of Nuclear Safety, as a representative organization of Korea, in February 2012 participated in an international Program to Assess the Reliability of Emerging Nondestructive Techniques initiated by the U.S. Nuclear Regulatory Commission. The goal of the Program to Assess the Reliability of Emerging Nondestructive Techniques is to investigate the performance of emerging and prospective novel nondestructive techniques to find flaws in nickel-alloy welds and base materials. In this article, Korean round-robin test results were evaluated with respect to the test blocks and various nondestructive examination techniques. The test blocks were prepared to simulate large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds in nuclear power plants. Also, lessons learned from the Korean round-robin test were summarized and discussed.

  13. Approximate multi-state reliability expressions using a new machine learning technique

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Muselli, Marco

    2005-01-01

    The machine-learning-based methodology, previously proposed by the authors for approximating binary reliability expressions, is now extended to develop a new algorithm, based on the procedure of Hamming Clustering, which is capable to deal with multi-state systems and any success criterion. The proposed technique is presented in details and verified on literature cases: experiment results show that the new algorithm yields excellent predictions

  14. Optimizing the design and operation of reactor emergency systems using reliability analysis techniques

    International Nuclear Information System (INIS)

    Snaith, E.R.

    1975-01-01

    Following a reactor trip various reactor emergency systems, e.g. essential power supplies, emergency core cooling and boiler feed water arrangements are required to operate with a high degree of reliability. These systems must therefore be critically assessed to confirm their capability of operation and determine their reliability of performance. The use of probability analysis techniques enables the potential operating reliability of the systems to be calculated and this can then be compared with the overall reliability requirements. However, a system reliability analysis does much more than calculate an overall reliability value for the system. It establishes the reliability of all parts of the system and thus identifies the most sensitive areas of unreliability. This indicates the areas where any required improvements should be made and enables the overall systems' designs and modes of operation to be optimized, to meet the system and hence the overall reactor safety criteria. This paper gives specific examples of sensitive areas of unreliability that were identified as a result of a reliability analysis that was carried out on a reactor emergency core cooling system. Details are given of modifications to design and operation that were implemented with a resulting improvement in reliability of various reactor sub-systems. The report concludes that an initial calculation of system reliability should represent only the beginning of continuing process of system assessment. Data on equipment and system performance, particularly in those areas shown to be sensitive in their effect on the overall nuclear power plant reliability, should be collected and processed to give reliability data. These data should then be applied in further probabilistic analyses and the results correlated with the original analysis. This will demonstrate whether the required and the originally predicted system reliability is likely to be achieved, in the light of the actual history to date of

  15. Non-invasive techniques for revealing the palette of the Romantic painter Francesco Hayez

    Science.gov (United States)

    Rampazzi, Laura; Brunello, Valentina; Corti, Cristina; Lissoni, Elena

    2017-04-01

    This paper describes the first systematic analysis of the palette of Francesco Hayez, one of the most outstanding artists of European Romanticism, whose painting technique has never been extensively investigated despite the plethora of artistic studies. He lived in a particular moment in the history of painting, as in the first half of the 19th century many synthetic pigments were available, also in tin tubes, but traditional materials were still used. Sixteen paintings on canvas and on panels, created between 1823 and 1868, were analyzed in situ through non-invasive techniques (infrared reflectography and infrared reflection spectroscopy). Imaging investigation provided clues on painting technique, revealing some cases of pentimenti and underdrawings. A preliminary survey was carried out on a hundred pure pigments used up to the 19th century and on new synthetic colours, in order to attain reference spectra for the interpretation of painting spectra. The portable infrared instrument provided insight into Hayez's painting materials, identifying barite, ivory black, lead-tin yellow, Naples yellow, ochres, Prussian blue, and white lead. The pigments were often blended, to obtain a unique fabric appearance or to attain cold shades. The results pointed to a siccative oil as a binder, mixed with white lead so that it could act as a catalyzer in polymerization reactions, and in some cases with a proteinaceous binder and resins. The preparation was made with gypsum and white lead mixed with a siccative oil. The results showed that the artist used a typical traditional palette, throughout his career, in order to lead to brilliant colours and with long-term stability. Anyway, the possible presence of cobalt blue in a few paintings suggests that Hayez had probably started testing the new colours, since the second decade of 19th century.

  16. Noninvasive imaging of experimental lung fibrosis.

    Science.gov (United States)

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  17. Targeted, noninvasive blockade of cortical neuronal activity

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret

    2015-11-01

    Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.

  18. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    Science.gov (United States)

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.

    Science.gov (United States)

    Zhang, Xuewei; Yu, Peiqiang

    2014-07-02

    Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (pprocessing by dry heating. The moisture heating increased (p0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.

  20. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  1. A study on maintenance reliability allocation of urban transit brake system using hybrid neuro-genetic technique

    International Nuclear Information System (INIS)

    Bae, Chul Ho; Kim, Hyun Jun; Lee, Jung Hwan; Suh, Myung Won; Chu, Yul

    2007-01-01

    For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. In this paper, the concept of system reliability introduces and optimizes as the key of reasonable maintenance strategies. This study aims at optimizing component's reliability that satisfies the target reliability of brake system in the urban transit. First of all, constructed reliability evaluation system is used to predict and analyze reliability. This data is used for the optimization. To identify component reliability in a system, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between component reliability (input) and system reliability (output) of a structural system. The inverse problem can be formulated by using neural network. Genetic algorithm is used to find the minimum square error. Finally, this paper presents reasonable maintenance cycle of urban transit brake system by using optimal system reliability

  2. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    Science.gov (United States)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  3. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Howell, Kate; Torrico, Damir D; Dunshea, Frank R

    2018-03-05

    Traditional sensory tests rely on conscious and self-reported responses from participants. The integration of non-invasive biometric techniques, such as heart rate, body temperature, brainwaves and facial expressions can gather more information from consumers while tasting a product. The main objectives of this study were i) to assess significant differences between beers for all conscious and unconscious responses, ii) to find significant correlations among the different variables from the conscious and unconscious responses and iii) to develop a model to classify beers according to liking using only the unconscious responses. For this study, an integrated camera system with video and infrared thermal imagery (IRTI), coupled with a novel computer application was used. Videos and IRTI were automatically obtained while tasting nine beers to extract biometrics (heart rate, temperature and facial expressions) using computer vision analysis. Additionally, an EEG mobile headset was used to obtain brainwave signals during beer consumption. Consumers assessed foam, color, aroma, mouthfeel, taste, flavor and overall acceptability of beers using a 9-point hedonic scale with results showing a higher acceptability for beers with higher foamability and lower bitterness. i) There were non-significant differences among beers for the emotional and physiological responses, however, significant differences were found for the cognitive and self-reported responses. ii) Results from principal component analysis explained 65% of total data variability and, along with the covariance matrix (p sensory responses of participants and the biometric data obtained. There was a negative correlation between body temperature and liking of foam height and stability, and a positive correlation between theta signals and bitterness. iii) Artificial neural networks were used to develop three models with high accuracy to classify beers according to level of liking (low and high) of three sensory

  4. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  5. Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.

    Science.gov (United States)

    Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin

    2018-02-26

    This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.

  6. Emerging non-invasive Raman methods in process control and forensic applications.

    Science.gov (United States)

    Macleod, Neil A; Matousek, Pavel

    2008-10-01

    This article reviews emerging Raman techniques (Spatially Offset and Transmission Raman Spectroscopy) for non-invasive, sub-surface probing in process control and forensic applications. New capabilities offered by these methods are discussed and several application examples are given including the non-invasive detection of counterfeit drugs through blister packs and opaque plastic bottles and the rapid quantitative analysis of the bulk content of pharmaceutical tablets and capsules without sub-sampling.

  7. Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.

    Science.gov (United States)

    Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki

    2012-11-01

    The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.

  8. Noninvasive method for the calibration of the peak voltage (kVp) meters

    International Nuclear Information System (INIS)

    Macedo, E.M.; Navarro, M.V.T.; Pereira, L.; Garcia, I.F.M.; Navarro, V.C.C.

    2015-01-01

    Quality control in diagnostic radiology is one of the mechanisms that minimize radiation exposure, and the measurement of tube voltage is one of the main test in these procedures. So, the calibration of non-invasive tube voltage meters is essential to maintain the metrological reliability of quality control tests. Thus, this work describes the implementation of the calibration methodology of the quantity tube peak voltage by the substitution method, using non-invasive standard meter, at LABPROSAUD-IFBA. The results showed great performance and when compared with calibrations by invasive methods, showed maximum difference of 4%, contemplated in the uncertainty ranges of the calibrations. (author)

  9. Regional cerebral blood flow measurements using noninvasive 133Xe clearance method in children

    International Nuclear Information System (INIS)

    Nishimoto, Hiroshi; Maeda, Koji; Kagawa, Yukihide; Morozumi, Kunihiko; Hashimoto, Manami; Tsubokawa, Takashi.

    1985-01-01

    The noninvasive 133-Xe clearance method of estimating rCBF has been widely used in adult clinical studies. It is safe, noninvasive and reproducible, and has provided valuable insight into adult cerebrovascular pathophysiology. However, in children, this technique has not been used to measure rCBF for some fundamental problems. This study was performed to clarify these fundamental problems for applications of noninvasive 133-Xe clearance technique to children. The results showed that three fundamental problems concerning; (1) volume of dead spaces in airway circuits of the system, (2) increasing of look-through phenomenon and (3) correction methods for recirculated 133-Xe and airway artifacts to estimate rCBF are important for applications to children. These problems should be improved to measure as correct rCBF in children as in adults. (author)

  10. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk

    2009-02-01

    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  11. Noninvasive radioisotopic technique for detection of platelet deposition in mitral valve prostheses and quantitation of visceral microembolism in dogs

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Fuster, V.; Rao, S.A.; Forshaw, P.L.; Kaye, M.P.

    1983-01-01

    A noninvasive technique has been developed in the dog model for imaging, with a gamma camera, the platelet deposition on Bjoerk-Shiley mitral valve prostheses early postoperatively. At 25 hours after implantation of the prosthesis and 24 hours after intravenous administration of 400 to 500 microCi of platelets labeled with indium-111, the platelet deposition in the sewing ring and perivalvular cardiac tissue can be clearly delineated in a scintiphotograph. An in vitro technique was also developed for quantitation of visceral microemboli in brain, lungs, kidneys, and other tissues. Biodistribution of the labeled platelets was quantitated, and the tissue/blood radioactivity ratio was determined in 22 dogs in four groups: unoperated normal dogs, sham-operated dogs, prosthesis-implanted dogs, and prosthesis-implanted dogs treated with dipyridamole before and aspirin and dipyridamole immediately after operation. Fifteen to 20% of total platelets were consumed as a consequence of the surgical procedure. On quantitation, we found that platelet deposition on the components of the prostheses was significantly reduced in prosthesis-implanted animals treated with dipyridamole and aspirin when compared with prosthesis-implanted, untreated dogs. All prosthesis-implanted animals considered together had a twofold to fourfold increase in tissue/blood radioactivity ratio in comparison with unoperated and sham-operated animals, an indication that the viscera work as filters and trap platelet microemboli that are presumably produced in the region of the mitral valve prostheses. In the dog model, indium-111-labeled platelets thus provide a sensitive marker for noninvasive imaging of platelet deposition on mechanical mitral valve prostheses, in vitro evaluation of platelet microembolism in viscera, in vitro quantitation of surgical consumption of platelets, and evaluation of platelet-inhibitor drugs

  12. Noninvasive coronary angioscopy using electron beam computed tomography and multidetector computed tomography

    NARCIS (Netherlands)

    van Ooijen, PMA; Nieman, K; de Feyter, PJ; Oudkerk, M

    2002-01-01

    With the advent of noninvasive coronary imaging techniques like multidetector computed tomography and electron beam computed tomography, new representation methods such as intracoronary visualization. have been introduced. We explore the possibilities of these novel visualization techniques and

  13. Non-invasive techniques for the measurement of extraction fraction and permeability surface area product of 99Tcm DTPA in the human forearm

    International Nuclear Information System (INIS)

    Bell, S.D.; Peters, A.M.; Myers, M.J.

    1992-01-01

    Only a very limited number of clinical studies have been reported on the measurement of endothelial permeability to hydrophilic solutes (molecular weight 99 Tc m DTPA, are perfusion-dependent as well as diffusion-dependent. The authors describe non-invasive techniques for measurement of clearance and extraction fraction of 99 Tc m DTPA into the extravascular space of the resting forearm using a scintillation probe, from which we then calculated permeability surface area (PS) product. Their values for extraction fraction of about 0.5 and for PS product of about 3 ml per minute per 100 ml tissue are comparable to values reported in the literature for resting skeletal muscle using more invasive techniques. (author)

  14. A Conservative Method for Treating Severely Displaced Pediatric Mandibular Fractures: An Effective Alternative Technique

    OpenAIRE

    Sahand Samieirad; Saeedeh khajehahmadi; Elahe Tohidi; Meysam Pakravan

    2016-01-01

    Pediatric mandibular fractures have been successfully managed in various ways. The use of a lingual splint is an option. This article presents a 4-year old boy who was treated by an alternative conservative method with a combination of an arch bar plus a lingual splint, circum-mandibular wiring and IMF for the reduction, stabilization and fixation of a severely displaced bilateral man‌dibular body fracture. This technique is a reliable, noninvasive procedure; it also limits the discomfort and...

  15. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  16. A noninvasive method for in situ determination of mating success in female American lobsters (Homarus americanus).

    Science.gov (United States)

    Goldstein, Jason S; Pugh, Tracy L; Dubofsky, Elizabeth A; Lavalli, Kari L; Clancy, Michael; Watson, Winsor H

    2014-02-07

    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations.

  17. Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis

    OpenAIRE

    van Werven, J.R.

    2011-01-01

    MR spectroscopy is a noninvasive technique to quantify hepatic steatosis. MR spectroscopy provides information about the chemical composition of tissues in a spectrum. Hepatic steatosis is characterized by accumulation of fat in the liver. The prevalence of hepatic steatosis is increasing due to its relation with obesity and insulin resistance in non-alcoholic fatty liver disease. This thesis describes the applications of MR spectroscopy (primarily on 3T) for noninvasive assessment of hepatic...

  18. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  19. Noninvasive Brain Stimulation in Pediatric ADHD: A Review

    Science.gov (United States)

    Rubio, Belen; Boes, Aaron D.; Laganiere, Simon; Rotenberg, Alexander; Jeurissen, Danique; Pascual-Leone, Alvaro

    2015-01-01

    Attention-deficit hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in the pediatric population. The clinical management of ADHD is currently limited by a lack of reliable diagnostic biomarkers and inadequate therapy for a minority of patients that do not respond to standard pharmacotherapy. There is optimism that noninvasive brain stimulation may help to address these limitations. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two methods of noninvasive brain stimulation that modulate cortical excitability and brain network activity. TMS can be used diagnostically to probe cortical neurophysiology, while daily use of repetitive TMS or tDCS can induce long-lasting and potentially therapeutic changes in targeted networks. In this review we highlight research showing the potential diagnostic and therapeutic applications of TMS and tDCS in pediatric ADHD. We also discuss the safety and ethics of using these tools in the pediatric population. PMID:26661481

  20. Designing high availability systems DFSS and classical reliability techniques with practical real life examples

    CERN Document Server

    Taylor, Zachary

    2014-01-01

    A practical, step-by-step guide to designing world-class, high availability systems using both classical and DFSS reliability techniques Whether designing telecom, aerospace, automotive, medical, financial, or public safety systems, every engineer aims for the utmost reliability and availability in the systems he, or she, designs. But between the dream of world-class performance and reality falls the shadow of complexities that can bedevil even the most rigorous design process. While there are an array of robust predictive engineering tools, there has been no single-source guide to understan

  1. Gastrointestinal passage of [125I]Na and blood clearance of 125I-labelled bacteria recorded with a simple non-invasive technique

    International Nuclear Information System (INIS)

    Sundqvist, T.; Skogh, T.

    1982-01-01

    To measure blood concentrations of radiolabelled particles or substances, blood sampling is generally required. The kinetics of radioactivity variations in the blood can be studied by blood sampling from each individual or experimental animal. Alternatively blood samples can be taken from different individuals at different time points. With either of these methods it is difficult to predict the optimal time points for blood sampling, and important information can easily be missed, especially in rapid processes. In this study a simple non-invasive technique for continuous recording of blood radioactivity concentrations in mice is presented. (Auth.)

  2. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñ ez, Natalia Maria; Shabala, Lana; Gehring, Christoph A; Shabala, Sergey Nikolayevich

    2013-01-01

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  3. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñez, Natalia Maria

    2013-09-03

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  4. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  5. Magnetic fields in noninvasive brain stimulation.

    Science.gov (United States)

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  6. Human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1987-01-01

    Concepts and techniques of human reliability have been developed and are used mostly in probabilistic risk assessment. For this, the major application of human reliability assessment has been to identify the human errors which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. Some of the major issues within human reliability studies are reviewed and it is shown how these are applied to the assessment of human failures in systems. This is done under the following headings; models of human performance used in human reliability assessment, the nature of human error, classification of errors in man-machine systems, practical aspects, human reliability modelling in complex situations, quantification and examination of human reliability, judgement based approaches, holistic techniques and decision analytic approaches. (UK)

  7. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  8. Bridging the gaps between non-invasive genetic sampling and population parameter estimation

    Science.gov (United States)

    Francesca Marucco; Luigi Boitani; Daniel H. Pletscher; Michael K. Schwartz

    2011-01-01

    Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for capture­recapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however,...

  9. Research on application of technique for analyzing system reliability, GO-FLOW

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Fukuto, Junji; Sugasawa, Shinobu; Mitomo, Nobuo; Miyazaki, Keiko; Hirao, Yoshihiro; Kobayashi, Michiyuki

    1997-01-01

    As the method of evaluation, probabilistic safety assessment (PSA) has been introduced in nuclear power field, and began to play important role in plant design and safety examination. In the Ship Research Institute, as the technique for analyzing system reliability which takes the main part of PSA, the research on developing the GO-FLOW technique which has various advanced functions has been carried out. In this research, the functions of the GO-FLOW technique are improved, and the function of the dynamic behavior analysis for systems and the analysis function for the combination of the physical behavior of systems and the change of probabilistic events are developed, further, the function of extracting main accident sequence by utilizing the GO-FLOW technique is prepared. As for the analysis of dynamic behavior, the sample problem on hold-up tank was investigated. As to the extraction of main accident sequence, the fundamental part of the function of event tree analysis was consolidated, and the function of setting branching probability was given. As to the indication of plant behavior, the simulator for improved marine reactor MRX was developed. (K.I.)

  10. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    Science.gov (United States)

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines.

  11. Probabilistic risk assessment course documentation. Volume 5. System reliability and analysis techniques Session D - quantification

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the probabilistic quantification of accident sequences and the link between accident sequences and consequences. Other sessions in this series focus on the quantification of system reliability and the development of event trees and fault trees. This course takes the viewpoint that event tree sequences or combinations of system failures and success are available and that Boolean equations for system fault trees have been developed and are available. 93 figs., 11 tabs

  12. Risk and reliability analyses (LURI) and expert judgement techniques

    International Nuclear Information System (INIS)

    Pyy, P.; Pulkkinen, U.

    1998-01-01

    Probabilistic safety analysis (PSA) is currently used as a regulatory licensing tool in risk informed and plant performance based regulation. More often also utility safety improvements are based on PSA calculations as one criterion. PSA attempts to comprehensively identify all important risk contributors, compare them with each other, assess the safety level and suggest improvements based on its findings. The strength of PSA is that it is capable to provide decision makers with numerical estimates of risks. This makes decision making easier than the comparison of purely qualitative results. PSA is the only comprehensive tool that compactly attempts to include all the important risk contributors in its scope. Despite the demonstrated strengths of PSA, there are some features that have reduced its uses. For example, the PSA scope has been limited to the power operation and process internal events (transients and LOCAs). Only lately, areas such as shutdown, external events and severe accidents have been included in PSA models in many countries. Problems related to modelling are, e.g., that rather static fault and event tree models are commonly used in PSA to model dynamic event sequences. Even if a valid model may be generated, there may not be any other data sources to be used than expert judgement. Furthermore, there are a variety of different techniques for human reliability assessment (HRA) giving varying results. In the project Reliability and Risk Analyses (LURI) these limitations and shortcomings have been studied. In the decision making area, case studies on the application of decision analysis and a doctoral thesis have been published. Further, practical aid has been given to utilities and regulatory decision making. Model uncertainty effect on PSA results has been demonstrated by two case studies. Human reliability has been studied both in the integrated safety analysis study and in the study of maintenance originated NPP component faults based on the

  13. Noninvasive measurement of an index of renal blood flow

    International Nuclear Information System (INIS)

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  14. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers

    Science.gov (United States)

    Litvinova, Karina S.; Rafailov, Ilya E.; Dunaev, Andrey V.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2017-11-01

    For over half a century, laser technology has undergone a technological revolution. These technologies, particularly semiconductor lasers, are employed in a myriad of fields. Optical medical diagnostics, one of the emerging areas of laser application, are on the forefront of application around the world. Optical methods of non- or minimally invasive bio-tissue investigation offer significant advantages over alternative methods, including rapid real-time measurement, non-invasiveness and high resolution (guaranteeing the safety of a patient). These advantages demonstrate the growing success of such techniques. In this review, we will outline the recent status of laser technology applied in the biomedical field, focusing on the various available approaches, particularly utilising compact semiconductor lasers. We will further consider the advancement and integration of several complimentary biophotonic techniques into single multimodal devices, the potential impact of such devices and their future applications. Based on our own studies, we will also cover the simultaneous collection of physiological data with the aid a multifunctional diagnostics system, concentrating on the optimisation of the new technology towards a clinical application. Such data is invaluable for developing algorithms capable of delivering consistent, reliable and meaningful diagnostic information, which can ultimately be employed for the early diagnosis of disease conditions in individuals from around the world.

  15. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  16. A simple method of measuring tibial tubercle to trochlear groove distance on MRI: description of a novel and reliable technique.

    Science.gov (United States)

    Camp, Christopher L; Heidenreich, Mark J; Dahm, Diane L; Bond, Jeffrey R; Collins, Mark S; Krych, Aaron J

    2016-03-01

    Tibial tubercle-trochlear groove (TT-TG) distance is a variable that helps guide surgical decision-making in patients with patellar instability. The purpose of this study was to compare the accuracy and reliability of an MRI TT-TG measuring technique using a simple external alignment method to a previously validated gold standard technique that requires advanced software read by radiologists. TT-TG was calculated by MRI on 59 knees with a clinical diagnosis of patellar instability in a blinded and randomized fashion by two musculoskeletal radiologists using advanced software and by two orthopaedists using the study technique which utilizes measurements taken on a simple electronic imaging platform. Interrater reliability between the two radiologists and the two orthopaedists and intermethods reliability between the two techniques were calculated using interclass correlation coefficients (ICC) and concordance correlation coefficients (CCC). ICC and CCC values greater than 0.75 were considered to represent excellent agreement. The mean TT-TG distance was 14.7 mm (Standard Deviation (SD) 4.87 mm) and 15.4 mm (SD 5.41) as measured by the radiologists and orthopaedists, respectively. Excellent interobserver agreement was noted between the radiologists (ICC 0.941; CCC 0.941), the orthopaedists (ICC 0.978; CCC 0.976), and the two techniques (ICC 0.941; CCC 0.933). The simple TT-TG distance measurement technique analysed in this study resulted in excellent agreement and reliability as compared to the gold standard technique. This method can predictably be performed by orthopaedic surgeons without advanced radiologic software. II.

  17. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  18. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  19. Systems reliability/structural reliability

    International Nuclear Information System (INIS)

    Green, A.E.

    1980-01-01

    The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)

  20. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  1. Reliability of peripheral arterial tonometry in patients with heart failure, diabetic nephropathy and arterial hypertension.

    Science.gov (United States)

    Weisrock, Fabian; Fritschka, Max; Beckmann, Sebastian; Litmeier, Simon; Wagner, Josephine; Tahirovic, Elvis; Radenovic, Sara; Zelenak, Christine; Hashemi, Djawid; Busjahn, Andreas; Krahn, Thomas; Pieske, Burkert; Dinh, Wilfried; Düngen, Hans-Dirk

    2017-08-01

    Endothelial dysfunction plays a major role in cardiovascular diseases and pulse amplitude tonometry (PAT) offers a non-invasive way to assess endothelial dysfunction. However, data about the reliability of PAT in cardiovascular patient populations are scarce. Thus, we evaluated the test-retest reliability of PAT using the natural logarithmic transformed reactive hyperaemia index (LnRHI). Our cohort consisted of 91 patients (mean age: 65±9.7 years, 32% female), who were divided into four groups: those with heart failure with preserved ejection fraction (HFpEF) ( n=25), heart failure with reduced ejection fraction (HFrEF) ( n=22), diabetic nephropathy ( n=21), and arterial hypertension ( n=23). All subjects underwent two separate PAT measurements at a median interval of 7 days (range 4-14 days). LnRHI derived by PAT showed good reliability in subjects with diabetic nephropathy (intra-class correlation (ICC) = 0.863) and satisfactory reliability in patients with both HFpEF (ICC = 0.557) and HFrEF (ICC = 0.576). However, in subjects with arterial hypertension, reliability was poor (ICC = 0.125). We demonstrated that PAT is a reliable technique to assess endothelial dysfunction in adults with diabetic nephropathy, HFpEF or HFrEF. However, in subjects with arterial hypertension, we did not find sufficient reliability, which can possibly be attributed to variations in heart rate and the respective time of the assessments. Clinical Trial Registration Identifier: NCT02299960.

  2. Non-invasive in-situ investigations versus micro-sampling: a comparative study on a Renoirs painting

    International Nuclear Information System (INIS)

    Miliani, C.; Sgamellotti, A.; Universita degli Studi di Perugia . Centro di Eccellenza SMAArt; Scientific Methodologies applied to Archaeology and Art)

    2007-01-01

    In this paper, a multi-technique in-situ non-invasive approach has been followed for the study of the materials used for a painting by Pierre-Auguste Renoir, ''A woman at her toilette''. The study was carried out using five portable spectroscopic techniques, namely X-ray fluorescence, mid-infrared reflectance spectroscopy, near infrared reflectance spectroscopy, and UV-Vis spectroscopy in absorption and emission. The painting was selected as a case study because it was examined in advance of the current investigation using conventional micro-sampling techniques. This provided the opportunity to evaluate potential and limitations of the non-invasive approach to the complex case of the modern painting. (orig.)

  3. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    Science.gov (United States)

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  4. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    Science.gov (United States)

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  5. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  6. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  7. A Closed-Form Technique for the Reliability and Risk Assessment of Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Dueñas-Osorio

    2012-06-01

    Full Text Available This paper proposes a closed-form method to evaluate wind turbine system reliability and associated failure consequences. Monte Carlo simulation, a widely used approach for system reliability assessment, usually requires large numbers of computational experiments, while existing analytical methods are limited to simple system event configurations with a focus on average values of reliability metrics. By analyzing a wind turbine system and its components in a combinatorial yet computationally efficient form, the proposed approach provides an entire probability distribution of system failure that contains all possible configurations of component failure and survival events. The approach is also capable of handling unique component attributes such as downtime and repair cost needed for risk estimations, and enables sensitivity analysis for quantifying the criticality of individual components to wind turbine system reliability. Applications of the technique are illustrated by assessing the reliability of a 12-subassembly turbine system. In addition, component downtimes and repair costs of components are embedded in the formulation to compute expected annual wind turbine unavailability and repair cost probabilities, and component importance metrics useful for maintenance planning and research prioritization. Furthermore, this paper introduces a recursive solution to closed-form method and applies this to a 45-component turbine system. The proposed approach proves to be computationally efficient and yields vital reliability information that could be readily used by wind farm stakeholders for decision making and risk management.

  8. Non-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects.

    Science.gov (United States)

    Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto

    2004-02-01

    The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.

  9. Exclusion and diagnosis of pulmonary embolism by a rapid ELISA D-dimer test and noninvasive imaging techniques within the context of a clinical model.

    Science.gov (United States)

    Michiels, J J; Pattynama, P M

    2000-01-01

    A negative rapid ELISA D-dimer test alone in out-patients with a low to moderate clinical probability (CP) on pulmonary embolism (PE) is predicted to safely exclude pulmonary embolism. The combination of a negative rapid ELISA D-dimer test and a low to moderate CP on PE followed by compression ultrasonography (CUS) for the detection of deep vein thrombosis (DVT) is safe and cost-effective as it reduces the need for noninvasive imaging techniques to about 50% to 60% of outpatients with suspected PE. A high probability ventilation-perfusion (VP) scan or a positive spiral CT consistent with PE and the detection of DVT by CUS are currently considered to be clear indications for anticoagulant treatment. Subsequent pulmonary angiography (PA) is the gold standard diagnostic strategy to exclude or diagnose PE in suspected outpatients with a negative CUS, a positive rapid ELISA D-dimer test, and a nondiagnostic VP scan or negative spiral CT to prevent overtreatment with anticoagulants. However, the willingness of clinicians and the availability of resources to perform PA is restricted, a fact that has provided an impetus for clinical investigators to search for alternative noninvasive strategies to exclude or detect venous thromboembolism (VTE). Serial CUS testing for the detection of DVT in patients with a low to moderate CP on PE and a nondiagnostic VP scan or negative spiral CT is predicted to be safe and will reduce the need for PA to less than 10% or even less than 5%. This noninvasive serial CUS strategy restricts the need for invasive PA to a minor group of patients (spiral CT and a high CP on PE. Prospective evaluations are warranted to implement and to validate the advantages and the disadvantages of the various combinations of noninvasive strategies and to compare serial CUS testing versus PA in randomized clinical management studies of outpatients with suspected pulmonary embolism.

  10. Noninvasive radiographic assessment of cardiovascular function in acute and chronic respiratory failure

    International Nuclear Information System (INIS)

    Berger, H.J.; Matthay, R.A.

    1981-01-01

    Noninvasive radiographic techniques have provided a means of studying the natural history and pathogenesis of cardiovascular performance in acute and chronic respiratory failure. Chest radiography, radionuclide angiocardiography and thallium-201 imaging, and M mode and cross-sectional echocardiography have been employed. Each of these techniques has specific uses, attributes and limitations. For example, measurement of descending pulmonary arterial diameters on the plain chest radiograph allows determination of the presence or absence of pulmonary arterial hypertension. Right and left ventricular performance can be evaluated at rest and during exercise using radionuclide angiocardiography. The biventricular response to exercise and to therapeutic interventions also can be assessed with this approach. Evaluation of the pulmonary valve echogram and echocardiographic right ventricular dimensions have been shown to reflect right ventricular hemodynamics and size. Each of these noninvasive techniques has been applied to the study of patients with respiratory failure and has provided important physiologic data

  11. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  12. Non-invasive means of measuring hepatic fat content.

    Science.gov (United States)

    Mehta, Sanjeev-R; Thomas, E-Louise; Bell, Jimmy-D; Johnston, Desmond-G; Taylor-Robinson, Simon-D

    2008-06-14

    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo (1)H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  13. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    Science.gov (United States)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  14. SALP (Sensitivity Analysis by List Processing), a computer assisted technique for binary systems reliability analysis

    International Nuclear Information System (INIS)

    Astolfi, M.; Mancini, G.; Volta, G.; Van Den Muyzenberg, C.L.; Contini, S.; Garribba, S.

    1978-01-01

    A computerized technique which allows the modelling by AND, OR, NOT binary trees, of various complex situations encountered in safety and reliability assessment, is described. By the use of list-processing, numerical and non-numerical types of information are used together. By proper marking of gates and primary events, stand-by systems, common cause failure and multiphase systems can be analyzed. The basic algorithms used in this technique are shown in detail. Application to a stand-by and multiphase system is then illustrated

  15. Ultra-low power photoplethysmograhy SpO2 measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barriuso Medrano, C.; Calpe Maravilla, J.; Millan Navarro, C.

    2016-07-01

    Photoplethysmograph(y (PPG) is widely used to obtain vital signs such as the peripheral capillary oxygen saturation or the heart rate (HR) non-invasively in real time. These techniques require a great amount of power in order to obtain reliable data, and its use is limited to mains powered devices. For this reason it is of great importance to find methods and algorithms that reduce its current consumption. Three techniques to optimize current consumption when obtaining PPG signals are proposed in this study. Each of them takes advantage of the fact that to obtain these vital signs we only need the peaks of the PPG signal, which means that we may change the accuracy of the acquisition depending on the position within the pulse. The current consumption can be reduced by 55% in the sensor and 62% in the microcontroller. (Author)

  16. Noninvasive prenatal diagnosis for single gene disorders.

    Science.gov (United States)

    Allen, Stephanie; Young, Elizabeth; Bowns, Benjamin

    2017-04-01

    Noninvasive prenatal diagnosis for single gene disorders is coming to fruition in its clinical utility. The presence of cell-free DNA in maternal plasma has been recognized for many years, and a number of applications have developed from this. Noninvasive prenatal diagnosis for single gene disorders has lagged behind due to complexities of technology development, lack of investment and the need for validation samples for rare disorders. Publications are emerging demonstrating a variety of technical approaches and feasibility of clinical application. Techniques for analysis of cell-free DNA including digital PCR, next-generation sequencing and relative haplotype dosage have been used most often for assay development. Analysis of circulating fetal cells in the maternal blood is still being investigated as a viable alternative and more recently transcervical trophoblast cells. Studies exploring ethical and social issues are generally positive but raise concerns around the routinization of prenatal testing. Further work is necessary to make testing available to all patients with a pregnancy at risk of a single gene disorder, and it remains to be seen if the development of more powerful technologies such as isolation and analysis of single cells will shift the emphasis of noninvasive prenatal diagnosis. As testing becomes possible for a wider range of conditions, more ethical questions will become relevant.

  17. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  18. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation.

    Science.gov (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel

    2017-11-01

    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns.

    Science.gov (United States)

    Stein, Howard; Beck, Jennifer; Dunn, Michael

    2016-06-01

    Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation in which both the timing and degree of ventilatory assist are controlled by the patient. Since NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized non-invasive NAVA (NIV-NAVA) regardless of leaks and to monitor continuously patient respiratory pattern and drive. Advantages of NIV-NAVA over conventional modes include improved patient-ventilator interaction, reliable respiratory monitoring and self-regulation of respiratory support. In theory, these characteristics make NIV-NAVA an ideal mode to provide effective, appropriate non-invasive support to newborns with respiratory insufficiency. NIV-NAVA has been successfully used clinically in neonates as a mode of ventilation to prevent intubation, to allow early extubation, and as a novel way to deliver nasal continuous positive airway pressure. The use of NAVA in neonates is described with an emphasis on studies and clinical experience with NIV-NAVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Validity and reliability of a novel slow cuff-deflation system for noninvasive blood pressure monitoring in patients with continuous-flow left ventricular assist device.

    Science.gov (United States)

    Lanier, Gregg M; Orlanes, Khristine; Hayashi, Yacki; Murphy, Jennifer; Flannery, Margaret; Te-Frey, Rosie; Uriel, Nir; Yuzefpolskaya, Melana; Mancini, Donna M; Naka, Yoshifumi; Takayama, Hiroo; Jorde, Ulrich P; Demmer, Ryan T; Colombo, Paolo C

    2013-09-01

    Doppler ultrasound is the clinical gold standard for noninvasive blood pressure (BP) measurement among continuous-flow left ventricular assist device patients. The relationship of Doppler BP to systolic BP (SBP) and mean arterial pressure (MAP) is uncertain and Doppler measurements require a clinic visit. We studied the relationship between Doppler BP and both arterial-line (A-line) SBP and MAP. Validity and reliability of the Terumo Elemano BP Monitor, a novel slow cuff-deflation device that could potentially be used by patients at home, were assessed. Doppler and Terumo BP measurements were made in triplicate among 60 axial continuous-flow left ventricular assist device (HeartMate II) patients (30 inpatients and 30 outpatients) at 2 separate exams (360 possible measurements). A-line measures were also obtained among inpatients. Mean absolute differences (MADs) and correlations were used to determine within-device reliability (comparison of second and third BP measures) and between-device validity. Bland-Altman plots assessed BP agreement between A-line, Doppler BP, and Terumo Elemano. Success rates for Doppler and Terumo Elemano were 100% and 91%. Terumo Elemano MAD for repeat SBP and MAP were 4.6±0.6 and 4.2±0.6 mm Hg; repeat Doppler BP MAD was 2.9±0.2 mm Hg. Mean Doppler BP was lower than A-line SBP by 4.1 (MAD=6.4±1.4) mm Hg and higher than MAP by 9.5 (MAD=11.0±1.2) mm Hg; Terumo Elemano underestimated A-line SBP by 0.3 (MAD=5.6±0.9) mm Hg and MAP by 1.7 (MAD=6.0±1.0) mm Hg. Doppler BP more closely approximates SBP than MAP. Terumo Elemano was successful, reliable, and valid when compared with A-line and Doppler.

  1. Application of image based measurement techniques for the investigation of aeroengine performance on a commercial aircraft in ground operation

    OpenAIRE

    Schröder, Andreas; Geisler, Reinhard; Schanz, Daniel; Agocs, Janos; Pallek, Dieter; Schroll, Michael; Klinner, Joachim; Beversdorff, Manfred; Voges, Melanie; Willert, Christian

    2014-01-01

    The investigation of the flow and sound field upstream and downstream of a full scale aeroengine is aimed at providing important reference data required for reliable modeling and prediction. In this regard a wide variety of contactless and non-invasive laser optical and acoustic measurement techniques have matured in recent years to allow their application on full scale aircraft. Within a measurement campaign involving an Airbus A320 DLR research aircraft inside a sound-attenuating hangar at ...

  2. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  3. The penile cuff test: A clinically useful non-invasive urodynamic investigation to diagnose men with lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Christopher Harding

    2009-01-01

    Full Text Available Objectives: To summarize the development of a novel non-invasive test to categorize voiding dysfunction in men complaining of lower urinary tract symptoms (LUTS - the penile cuff test. Methods: The test involves the controlled inflation of a penile cuff during micturition to interrupt voiding and hence estimate isovolumetric bladder pressure (p ves.isv . The validity, reliability, and clinical usefulness of the test were determined in a number of studies in men with LUTS. Results: The penile cuff test can be successfully performed in over 90% of men with LUTS. The reading of cuff pressure at flow interruption (p cuff.int gives a valid and reliable estimate of invasively-measured p ves.isv and when combined with the reading for maximum flow rate obtained during the test (Q max produces an accurate categorization of bladder outlet obstruction (BOO. Use of this categorization prior to treatment allows improved prediction of outcome from prostatectomy. Conclusion: The penile cuff test fulfils the criteria as a useful clinical measurement technique applicable to the diagnosis and treatment planning of men with LUTS.

  4. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  5. Non-invasive assessment of the liver using imaging

    Science.gov (United States)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  6. Application of optical coherence tomography for noninvasive blood glucose monitoring during hyperglycemia

    Science.gov (United States)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-10-01

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.

  7. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  8. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  9. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  10. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    International Nuclear Information System (INIS)

    Shen Rongsen; Shen Decun

    1998-01-01

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  11. A general software reliability process simulation technique

    Science.gov (United States)

    Tausworthe, Robert C.

    1991-01-01

    The structure and rationale of the generalized software reliability process, together with the design and implementation of a computer program that simulates this process are described. Given assumed parameters of a particular project, the users of this program are able to generate simulated status timelines of work products, numbers of injected anomalies, and the progress of testing, fault isolation, repair, validation, and retest. Such timelines are useful in comparison with actual timeline data, for validating the project input parameters, and for providing data for researchers in reliability prediction modeling.

  12. Comparison of three noninvasive methods for hemoglobin screening of blood donors.

    Science.gov (United States)

    Ardin, Sergey; Störmer, Melanie; Radojska, Stela; Oustianskaia, Larissa; Hahn, Moritz; Gathof, Birgit S

    2015-02-01

    To prevent phlebotomy of anemic individuals and to ensure hemoglobin (Hb) content of the blood units, Hb screening of blood donors before donation is essential. Hb values are mostly evaluated by measurement of capillary blood obtained from fingerstick. Rapid noninvasive methods have recently become available and may be preferred by donors and staff. The aim of this study was to evaluate for the first time all different noninvasive methods for Hb screening. Blood donors were screened for Hb levels in three different trials using three different noninvasive methods (Haemospect [MBR Optical Systems GmbH & Co. KG], NBM 200 [LMB Technology GmbH], Pronto-7 [Masimo Europe Ltd]) in comparison to the established fingerstick method (CompoLab Hb [Fresenius Kabi GmbH]) and to levels obtained from venous samples on a cell counter (Sysmex [Sysmex Europe GmbH]) as reference. The usability of the noninvasive methods was assessed with an especially developed survey. Technical failures occurred by using the Pronto-7 due to nail polish, skin color, or ambient light. The NBM 200 also showed a high sensitivity to ambient light and noticeably lower Hb levels for women than obtained from the Sysmex. The statistical analysis showed the following bias and standard deviation of differences of all methods in comparison to the venous results: Haemospect, -0.22 ± 1.24; NBM, 200 -0.12 ± 1.14; Pronto-7, -0.50 ± 0.99; and CompoLab Hb, -0.53 ± 0.81. Noninvasive Hb tests represent an attractive alternative by eliminating pain and reducing risks of blood contamination. The main problem for generating reliable results seems to be preanalytical variability in sampling. Despite the sensitivity to environmental stress, all methods are suitable for Hb measurement. © 2014 AABB.

  13. Reliability and normative values of the foot line test: a technique to assess foot posture

    DEFF Research Database (Denmark)

    Brushøj, C; Larsen, Klaus; Nielsen, MB

    2007-01-01

    STUDY DESIGN: Test-retest reliability. OBJECTIVE: To examine the reliability and report normative values of a novel test, the foot line test (FLT), to describe foot morphology. BACKGROUND: Numerous foot examinations are performed each day, but most existing examination techniques have considerable...... limitations regarding reliability and validity. METHODS: One hundred thirty subjects with mean foot size 44 (41-50 European size) participated. Two examiners, blinded to each other's measurements, measured the right foot of the subjects twice and the left foot once. The position of the most medial aspect...... of the navicular in the mediolateral direction was projected vertically onto a piece of paper placed under the subject's foot, and compared to the position of the forefoot and hindfoot to obtain the FLT value. RESULTS: FLT values ranged from -8 to 14 mm, with a mean (+/-SD) of 3.7 +/- 3.4 mm. The intratester...

  14. Noninvasive and Quantitative Assessment of In Vivo Fetomaternal Interface Angiogenesis Using RGD-Based Fluorescence

    Directory of Open Access Journals (Sweden)

    M. Keramidas

    2014-01-01

    Full Text Available Angiogenesis is a key process for proper placental development and for the success of pregnancy. Although numerous in vitro methods have been developed for the assessment of this process, relatively few reliable in vivo methods are available to evaluate this activity throughout gestation. Here we report an in vivo technique that specifically measures placental neovascularization. The technique is based on the measurement of a fluorescent alpha v beta 3 (αvβ3 integrin-targeting molecule called Angiolone-Alexa-Fluor 700. The αvβ3 integrin is highly expressed by endothelial cells during the neovascularization and by trophoblast cells during their invasion of the maternal decidua. Angiolone was injected to gravid mice at 6.5 and 11.5 days post coitus (dpc. The fluorescence was analyzed one day later at 7.5 and 12.5 dpc, respectively. We demonstrated that (i Angiolone targets αvβ3 protein in the placenta with a strong specificity, (ii this technique is quantitative as the measurement was correlated to the increase of the placental size observed with increasing gestational age, and (iii information on the outcome is possible, as abnormal placentation could be detected early on during gestation. In conclusion, we report the validation of a new noninvasive and quantitative method to assess the placental angiogenic activity, in vivo.

  15. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of less than 0.2% vol.

  16. Non-invasive assessment of gastric activity

    International Nuclear Information System (INIS)

    Smallwood, R.H.; Brown, B.H.

    1983-01-01

    There have been many suggestions for the routine clinical use of the electro-enterogram, but with the exception of the reported usage in the USSR no significant penetration into medical practice has been reported elsewhere. Amongst the many suggestions have been the possible application of electrical stimulation via surface electrodes to overcome post-operative inhibition of intestinal electrical activity, which can be recorded via surface electrodes. Gastric emptying studies have shown that duodenal ulceration is associated with changes in the rate and pattern of emptying of solid meals. Identifiable patterns in the electro-gastrogram following a metal might have diagnostic application. There is some evidence of correlations of electrical activity and pathology in the large intestine. In the colon diverticular disease has been shown to change the frequency content of the slow wave electrical activity and there is some evidence that this might be recorded from surface electrodes. A major obstacle to progress remains the inability to relate non-invasive recordings to intestinal motility. The best hope may be the use of direct and yet non-invasive methods of obtaining motility and in this context real-time ultrasound imaging is probably the most promising technique. The electro-gastrogram has certainly been shown to allow recording of gastric slow wave activity and there is a reasonable hope that further methods of analysis will allow inferential information on motility to be obtained. The following section makes brief mention of these techniques

  17. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    International Nuclear Information System (INIS)

    Jackowski, Christian; Warntjes, Marcel J.B.; Persson, Anders; Berge, Johan; Baer, Walter

    2011-01-01

    To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy. (orig.)

  18. Novel, non-invasive method for distinguishing the individuals of the fire salamander (Salamandra salamandra in capture-mark-recapture studies

    Directory of Open Access Journals (Sweden)

    Goran Šukalo

    2013-07-01

    Full Text Available Recently we started implementing a highly efficient, non-invasive method of direct individual marking (i.e., typifying in a population study of the fire salamander, Salamandra salamandra. Our technique is based on the unique alphanumeric code for every individual, generated upon the numbers of openings of repellent/toxic skin glands in the yellow areas of the selected regions of the body. This code was proved reliable in the sample of 159 individuals from two separate populations and enabled easy and quick recognition of recaptured animals. The proposed method is inexpensive, easily applicable in the field, involves minimum stress for the animals and does not affect their behaviour and the possibility of repeated captures of “marked” (i.e., coded individuals. It is particularly suitable for dense populations.

  19. Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis

    NARCIS (Netherlands)

    van Werven, J.R.

    2011-01-01

    MR spectroscopy is a noninvasive technique to quantify hepatic steatosis. MR spectroscopy provides information about the chemical composition of tissues in a spectrum. Hepatic steatosis is characterized by accumulation of fat in the liver. The prevalence of hepatic steatosis is increasing due to its

  20. Evaluation of non-invasive multispectral imaging as a tool for measuring the effect of systemic therapy in Kaposi sarcoma.

    Directory of Open Access Journals (Sweden)

    Jana M Kainerstorfer

    Full Text Available Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA of the data. These images were compared with clinical and pathological responses determined by conventional means. We demonstrate that cutaneous lesions have increased blood volume concentration and that changes in this parameter are a reliable indicator of treatment efficacy, differentiating responders and non-responders. Blood volume decreased by at least 20% in all lesions that responded by clinical criteria and increased in the two lesions that did not respond clinically. Responses as assessed by multi-spectral imaging also generally correlated with overall patient clinical response assessment, were often detectable earlier in the course of therapy, and are less subject to observer variability than conventional clinical assessment. Tissue oxygenation was more variable, with lesions often showing decreased oxygenation in the center surrounded by a zone of increased oxygenation. This technique could potentially be a clinically useful supplement to existing response assessment in KS, providing an early, quantitative, and non-invasive marker of treatment effect.

  1. The characterization of natural gemstones using non-invasive FT-IR spectroscopy: New data on tourmalines.

    Science.gov (United States)

    Mercurio, Mariano; Rossi, Manuela; Izzo, Francesco; Cappelletti, Piergiulio; Germinario, Chiara; Grifa, Celestino; Petrelli, Maurizio; Vergara, Alessandro; Langella, Alessio

    2018-02-01

    Fourteen samples of tourmaline from the Real Museo Mineralogico of Federico II University (Naples) have been characterized through multi-methodological investigations (EMPA-WDS, SEM-EDS, LA-ICP-MS, and FT-IR spectroscopy). The samples show different size, morphology and color, and are often associated with other minerals. Data on major and minor elements allowed to identify and classify tourmalines as follows: elbaites, tsilaisite, schorl, dravites, uvites and rossmanite. Non-invasive, non-destructive FT-IR and in-situ analyses were carried out on the same samples to validate this chemically-based identification and classification. The results of this research show that a complete characterization of this mineral species, usually time-consuming and expensive, can be successfully achieved through non-destructive FT-IR technique, thus representing a reliable tool for a fast classification extremely useful to plan further analytical strategies, as well as to support gemological appraisals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Application of a digital technique in evaluating the reliability of shade guides.

    Science.gov (United States)

    Cal, E; Sonugelen, M; Guneri, P; Kesercioglu, A; Kose, T

    2004-05-01

    There appears to be a need for a reliable method for quantification of tooth colour and analysis of shade. Therefore, the primary objective of this study was to show the applicability of graphic software in colour analysis and secondly to investigate the reliability of commercial shade guides produced by the same manufacturer, using this digital technique. After confirming the reliability and reproducibility of the digital method by using self-assessed coloured images, three shade guides of the same manufacturer were photographed in daylight and in studio environments with a digital camera and saved in tagged image file format (TIFF) format. Colour analysis of each photograph was performed using the Adobe Photoshop 4.0 graphic program. Luminosity, and red, green, blue (L and RGB) values of each shade tab of each shade guide were measured and the data were subjected to statistical analysis using the repeated measure Anova test. The L and RGB values of the images taken in daylight differed significantly from those of the images taken in studio environment (P < 0.05). In both environments, the luminosity and red values of the shade tabs were significantly different from each other (P < 0.05). It was concluded that, when the environmental conditions were kept constant, the Adobe Photoshop 4.0 colour analysis program could be used to analyse the colour of images. On the other hand, the results revealed that the accuracy of shade tabs widely being used in colour matching should be readdressed.

  3. Neutron logging reliability techniques and apparatus

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1978-01-01

    This invention relates in general to neutron logging of earth formations, and in particular, to novel apparatus and procedures for determining the validity, or reliability, of data derived at least in part by logging neutron characteristics of earth formations and, if desired, for affording verifiably accurate indications of such data

  4. Neutron logging reliability techniques and apparatus

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1974-01-01

    This invention relates in general to neutron logging of earth formations, and in particular, to novel apparatus and procedures for determining the validity, or reliability, of data derived at least in part by logging neutron characteristics of earth formations and, if desired, for affording verifiably accurate indications of such data. (author)

  5. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia.

    Science.gov (United States)

    Reddy, N P; Rothschild, B M; Mandal, M; Gupta, V; Suryanarayanan, S

    1995-01-01

    Devising techniques and instrumentation for early detection of knee arthritis and chondromalacia presents a challenge in the domain of biomedical engineering. The purpose of the present investigation was to characterize normal knees and knees affected by osteoarthritis, rheumatoid arthritis, and chondromalacia using a set of noninvasive acceleration measurements. Ultraminiature accelerometers were placed on the skin over the patella in four groups of subjects, and acceleration measurements were obtained during leg rotation. Acceleration measurements were significantly different in the four groups of subjects in the time and frequency domains. Power spectral analysis revealed that the average power was significantly different for these groups over a 100-500 Hz range. Noninvasive acceleration measurements can characterize the normal, arthritis, and chondromalacia knees. However, a study on a larger group of subjects is indicated.

  6. Non-invasive technique to measure biogeochemical parameters (pH and O2) in a microenvironment: Design and applications

    Science.gov (United States)

    Li, Biting; Seliman, Ayman; Pales, Ashley; Liang, Weizhen; Sams, Allison; Darnault, Christophe; Devol, Timothy

    2017-04-01

    The primary objectives of this research are to do the pH and O2 sensor foils calibration and then to test them in applications. Potentially, this project can be utilized to monitor the fate and transport of radionuclides in porous media. The information for physical and chemical parameters (e.g. pH and O2) is crucial to know when determining contaminants' behavior and transport in the environment. As a non-invasive method, optical imaging technique using a DSLR camera could capture data on the foil when it fluoresces, and gives a high temporal and spatial resolution during the experimental period. The calibration procedures were done in cuvettes in a row. The preliminary experiments could measure pH value in the range from 4.5 to 7.5, and O2 concentration from 0 mg/L to 20.74 mg/L. Applications of sensor foils have involved nano zero valent and acid rain experiments in order to obtain a gradient of parameter changes.

  7. A Conservative Method for Treating Severely Displaced Pediatric Mandibular Fractures: An Effective Alternative Technique

    Directory of Open Access Journals (Sweden)

    Sahand Samieirad

    2016-06-01

    Full Text Available Pediatric mandibular fractures have been successfully managed in various ways. The use of a lingual splint is an option. This article presents a 4-year old boy who was treated by an alternative conservative method with a combination of an arch bar plus a lingual splint, circum-mandibular wiring and IMF for the reduction, stabilization and fixation of a severely displaced bilateral man‌dibular body fracture. This technique is a reliable, noninvasive procedure; it also limits the discomfort and morbidity associated with maxillomandibular fixation or open reduction and internal fixation in pediatric patients

  8. Dependent systems reliability estimation by structural reliability approach

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2014-01-01

    Estimation of system reliability by classical system reliability methods generally assumes that the components are statistically independent, thus limiting its applicability in many practical situations. A method is proposed for estimation of the system reliability with dependent components, where...... the leading failure mechanism(s) is described by physics of failure model(s). The proposed method is based on structural reliability techniques and accounts for both statistical and failure effect correlations. It is assumed that failure of any component is due to increasing damage (fatigue phenomena...... identification. Application of the proposed method can be found in many real world systems....

  9. Non-invasive monitoring of endocrine status in laboratory primates: methods, guidelines and applications

    Science.gov (United States)

    Heistermann, M.

    2010-11-01

    During the past three decades, non-invasive methods for assessing physiological, in particular endocrine, status have revolutionized almost all areas of primatology, including behavioural ecology, reproductive biology, stress research, conservation and last but not least management of primates in captivity where the technology plays an integral role in assisting the husbandry, breeding and welfare of many species. Non-invasive endocrine methods make use of the fact that hormones circulating in blood are secreted into saliva or deposited in hair and are eliminated from the body via urinary and faecal excretion. The choice of which matrix to use for hormonal assessment depends on a range of factors, including the type of information required, the measurement techniques involved, species differences in hormone metabolism and route of excretion and the practicality of sample collection. However, although sample collection is usually relatively easy, analysing hormones from these non-invasively collected samples is not as easy as many people think, particularly not when dealing with a new species. In this respect, the importance of a careful validation of each technique is essential in order to generate meaningful and accurate results. This paper aims to provide an overview of the available non-invasive endocrine-based methodologies, their relative merits and their potential areas of application for assessing endocrine status in primates, with special reference to captive environments. In addition, general information is given about the most important aspects and caveats researchers have to be aware of when using these methodologies.

  10. Respiration-induced movement correlation for synchronous noninvasive renal cancer surgery.

    Science.gov (United States)

    Abhilash, Rakkunedeth H; Chauhan, Sunita

    2012-07-01

    Noninvasive surgery (NIS), such as high-intensity focused ultrasound (HIFU)-based ablation or radiosurgery, is used for treating tumors and cancers in various parts of the body. The soft tissue targets (usually organs) deform and move as a result of physiological processes such as respiration. Moreover, other deformations induced during surgery by changes in patient position, changes in physical properties caused by repeated exposures and uncertainties resulting from cavitation also occur. In this paper, we present a correlation-based movement prediction technique to address respiration-induced movement of the urological organs while targeting through extracorporeal trans-abdominal route access. Among other organs, kidneys are worst affected during respiratory cycles, with significant three-dimensional displacements observed on the order of 20 mm. Remote access to renal targets such as renal carcinomas and cysts during noninvasive surgery, therefore, requires a tightly controlled real-time motion tracking and quantitative estimate for compensation routine to synchronize the energy source(s) for precise energy delivery to the intended regions. The correlation model finds a mapping between the movement patterns of external skin markers placed on the abdominal access window and the internal movement of the targeted kidney. The coarse estimate of position is then fine-tuned using the Adaptive Neuro-Fuzzy Inference System (ANFIS), thereby achieving a nonlinear mapping. The technical issues involved in this tracking scheme are threefold: the model must have sufficient accuracy in mapping the movement pattern; there must be an image-based tracking scheme to provide the organ position within allowable system latency; and the processing delay resulting from modeling and tracking must be within the achievable prediction horizon to accommodate the latency in the therapeutic delivery system. The concept was tested on ultrasound image sequences collected from 20 healthy

  11. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  12. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients

    Directory of Open Access Journals (Sweden)

    Thomaes Tom

    2012-04-01

    Full Text Available Abstract Background The increasing age of coronary artery disease (CAD patients and the occurrence of sarcopenia in the elderly population accompanied by 'fear of moving' and hospitalization in these patients often results in a substantial loss of skeletal muscle mass and muscle strength. Cardiac rehabilitation can improve exercise tolerance and muscle strength in CAD patients but less data describe eventual morphological muscular changes possibly by more difficult access to imaging techniques. Therefore the aim of this study is to assess and quantify the reliability and validity of an easy applicable method, the ultrasound (US technique, to measure the diameter of rectus femoris muscle in comparison to the muscle dimensions measured with CT scans. Methods 45 older CAD patients without cardiac event during the last 9 months were included in this study. 25 patients were tested twice with ultrasound with a two day interval to assess test-retest reliability and 20 patients were tested twice (once with US and once with CT on the same day to assess the validity of the US technique compared to CT as the gold standard. Isometric and isokinetic muscle testing was performed to test potential zero-order correlations between muscle diameter, muscle volume and muscle force. Results An intraclass correlation coefficient (ICC of 0.97 ((95%CL: 0.92 - 0.99 was found for the test-retest reliability of US and the ICC computed between US and CT was 0.92 (95%CL: 0.81 - 0.97. The absolute difference between both techniques was 0.01 ± 0.12 cm (p = 0.66 resulting in a typical percentage error of 4.4%. Significant zero-order correlations were found between local muscle volume and muscle diameter assessed with CT (r = 0.67, p = 0.001 and assessed with US (r = 0.49, p Conclusions Ultrasound imaging can be used as a valid and reliable measurement tool to assess the rectus femoris muscle diameter in older CAD patients.

  13. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    Science.gov (United States)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  14. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  15. Interpretation of non-invasive breath tests using 13C-labeled substrates - a preliminary report with 13C-methacetin

    Directory of Open Access Journals (Sweden)

    Lock JF

    2009-12-01

    Full Text Available Abstract Non-invasive breath tests can serve as valuable diagnostic tools in medicine as they can determine particular enzymatic and metabolic functions in vivo. However, methodological pitfalls have limited the actual clinical application of those tests till today. A major challenge of non-invasive breath tests has remained the provision of individually reliable test results. To overcome these limitations, a better understanding of breath kinetics during non-invasive breaths tests is essential. This analysis compares the breath recovery of a 13C-methacetin breath test with the actual serum kinetics of the substrate. It is shown, that breath and serum kinetics of the same test are significantly different over a period of 60 minutes. The recovery of the tracer 13CO2 in breath seems to be significantly delayed due to intermediate storage in the bicarbonate pool. This has to be taken into account for the application of non-invasive breath test protocols. Otherwise, breath tests might display bicarbonate kinetics despite the metabolic capacity of the particular target enzyme.

  16. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    International Nuclear Information System (INIS)

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-01-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper

  17. The findings of noninvasive cardiovascular diagnosis with multihelical computed tomography

    International Nuclear Information System (INIS)

    Fed'kyiv, S.V.

    2009-01-01

    The patients aged of 25-82 underwent the multihelical computed tomography, 508 of them with coronary artery disease and 109 are under control. The findings of MHCT-analysis of the coronary arteries at their atherosclerotic involvement were presented with the use of quantitative assessment of coronary artery calcinosis according to Agatston's technique and noninvasive MHCT-coronagraphy.

  18. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy?

    Science.gov (United States)

    Chin, Jun L.; Pavlides, Michael; Moolla, Ahmad; Ryan, John D.

    2016-01-01

    Liver fibrosis reflects sustained liver injury often from multiple, simultaneous factors. Whilst the presence of mild fibrosis on biopsy can be a reassuring finding, the identification of advanced fibrosis is critical to the management of patients with chronic liver disease. This necessity has lead to a reliance on liver biopsy which itself is an imperfect test and poorly accepted by patients. The development of robust tools to non-invasively assess liver fibrosis has dramatically enhanced clinical decision making in patients with chronic liver disease, allowing a rapid and informed judgment of disease stage and prognosis. Should a liver biopsy be required, the appropriateness is clearer and the diagnostic yield is greater with the use of these adjuncts. While a number of non-invasive liver fibrosis markers are now used in routine practice, a steady stream of innovative approaches exists. With improvement in the reliability, reproducibility and feasibility of these markers, their potential role in disease management is increasing. Moreover, their adoption into clinical trials as outcome measures reflects their validity and dynamic nature. This review will summarize and appraise the current and novel non-invasive markers of liver fibrosis, both blood and imaging based, and look at their prospective application in everyday clinical care. PMID:27378924

  19. Noninvasive optoacoustic system for rapid diagnostics and management of circulatory shock

    Science.gov (United States)

    Esenaliev, Rinat O.; Petrov, Irene Y.; Petrov, Yuriy; Kinsky, Michael; Prough, Donald S.

    2012-02-01

    Circulatory shock is lethal, if not promptly diagnosed and effectively treated. Typically, circulatory shock resuscitation is guided by blood pressure, heart rate, and mental status, which have poor predictive value. In patients, in whom early goaldirected therapy was applied using central venous oxygenation measurement, a substantial reduction of mortality was reported (from 46.5% to 30%). However, central venous catheterization is invasive, time-consuming and often results in complications. We proposed to use the optoacoustic technique for noninvasive, rapid assessment of central venous oxygenation. In our previous works we demonstrated that the optoacoustic technique can provide measurement of blood oxygenation in veins and arteries due to high contrast and high resolution. In this work we developed a novel optoacoustic system for noninvasive, automatic, real-time, and continuous measurement of central venous oxygenation. We performed pilot clinical tests of the system in human subjects with different oxygenation in the internal jugular vein and subclavian vein. A novel optoacoustic interface incorporating highly-sensitive optoacoustic probes and standard ultrasound imaging probes were developed and built for the study. Ultrasound imaging systems Vivid i and hand-held Vscan (GE Healthcare) as well as Site-Rite 5 (C.R. Bard) were used in the study. We developed a special algorithm for oxygenation monitoring with minimal influence of overlying tissue. The data demonstrate that the system provides precise measurement of venous oxygenation continuously and in real time. Both current value of the venous oxygenation and trend (in absolute values and for specified time intervals) are displayed in the system. The data indicate that: 1) the optoacoustic system developed by our group is capable of noninvasive measurement of blood oxygenation in specific veins; 2) clinical ultrasound imaging systems can facilitate optoacoustic probing of specific blood vessels; 3) the

  20. Reliability of electronic systems

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2001-01-01

    Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)

  1. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in-vitro Study.

    Science.gov (United States)

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj

    2013-10-01

    Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.

  2. Review of invasive urodynamics and progress towards non-invasive measurements in the assessment of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    C J Griffiths

    2009-01-01

    Full Text Available Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS. It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO. The diagnosis is currently made by plotting the detrusor pressure at maximum flow (p detQmax and maximum flow rate (Q max on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS.

  3. BrainStorm: a psychosocial game suite design for non-invasive cross-generational cognitive capabilities data collection

    Science.gov (United States)

    Ahmad, Faizan; Chen, Yiqiang; Hu, Lisha; Wang, Shuangquan; Wang, Jindong; Chen, Zhenyu; Jiang, Xinlong; Shen, Jianfei

    2017-11-01

    Currently available traditional as well as videogame-based cognitive assessment techniques are inappropriate due to several reasons. This paper presents a novel psychosocial game suite, BrainStorm, for non-invasive cross-generational cognitive capabilities data collection, which additionally provides cross-generational social support. A motivation behind the development of presented game suite is to provide an entertaining and exciting platform for its target users in order to collect gameplay-based cognitive capabilities data in a non-invasive manner. An extensive evaluation of the presented game suite demonstrated high acceptability and attraction for its target users. Besides, the data collection process is successfully reported as transparent and non-invasive.

  4. A critique of reliability prediction techniques for avionics applications

    Directory of Open Access Journals (Sweden)

    Guru Prasad PANDIAN

    2018-01-01

    Full Text Available Avionics (aeronautics and aerospace industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217 and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.

  5. Pre-clinical MR elastography: Principles, techniques, and applications

    Science.gov (United States)

    Bayly, P. V.; Garbow, J. R.

    2018-06-01

    Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.

  6. Evaluation of four non-invasive methods for examination and characterization of pressure ulcers

    DEFF Research Database (Denmark)

    Andersen, E.S.; Karlsmark, T.

    2008-01-01

    Background: Pressure ulcers are globally of major concern and there is need for research in the pathogenesis for early intervention. Early studies have suggested existence of a hypo-echogenic subepidermal layer at the location of pressure ulcers, visualized by ultrasound scans. As a continuation......, we here report on usability of four non-invasive techniques for evaluation of pressure ulcers. Methods: Fifteen pressure ulcers in stage 0-IV were examined using four different non-invasive techniques [redness index, skin temperature, skin elasticity (i.e. retraction time), and ultrasound scanning...... at all pressure ulcers, but none at the reference points. The skin retraction time was often higher at the location of a pressure ulcer than at the reference location. We found no correlation between the stage of the ulcers and temperature, redness index, subepidermal layer thickness, or retraction time...

  7. Application of magnetic resonance elastography as a non-invasive technique for diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    YANG Minglei

    2016-03-01

    Full Text Available At present, liver biopsy is the gold standard for the diagnosis and grading of liver fibrosis, but its limitations have been widely acknowledged. The non-invasive detection methods are needed in clinical practice, and at present, magnetic resonance elastography (MRE is a hot research topic. This article reviews the advances in the clinical application of MRE in related fields, and studies have shown that MRE has a high diagnostic value due to its high sensitivity and specificity in the diagnosis and grading of liver fibrosis and an area under the receiver operating characteristic curve as high as 0.95. Compared with serological and other imaging diagnostic methods, MRE can determine fibrosis stage more accurately and has good reproducibility and objectivity. MRE can be widely applied in all patients except those with hemochromatosis, with special advantages in the diagnosis for patients with obesity and ascites, and can make up for the disadvantages of other methods. This article points out that MRE may become the best non-invasive method for the assessment of liver fibrosis, especially advanced fibrosis.

  8. Comparison of digital surface displacements of maxillary dentures based on noninvasive anatomic landmarks.

    Science.gov (United States)

    Norvell, Nicholas G; Korioth, Tom V; Cagna, David R; Versluis, Antheunis

    2018-02-08

    used. Changing the number and the location of anatomic landmarks had a small effect on the precision of the surface fitting. Repeated scans yielded high precision levels. In contrast, intraobserver repeatability had a larger error. In general, injection-molded dentures showed less displacement after polymerization than did the compression-molded ones. These differences were more substantial at the denture tooth level than on the intaglio surfaces. Anatomic noninvasive fiducials chosen at distinct locations of maxillary edentulous areas seem to be reliable markers for the superposition of corresponding digital surface scans. Maxillary dentures processed with the injection molding technique have minimal deformation. Posterior denture teeth displace in 3 dimensions with the compression molding technique. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  10. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  11. Noninvasive Digital Detection of Fetal DNA in Plasma of 4-Week-Pregnant Women following In Vitro Fertilization and Embryo Transfer.

    Directory of Open Access Journals (Sweden)

    Bedri Karakas

    Full Text Available The discovery of cell-free fetal DNA (cfDNA circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD. However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics. Blood samples were collected from in vitro fertilization (IVF patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221 than the ones yielding girls (0.028 ± 0.003 or non-pregnant women (0.020 ± 0.005, P= 0.0059. Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.

  12. Some areas of reliability technique which have been neglected to some extent - maintainability - human reliability - mechanical reliability - repairable systems

    International Nuclear Information System (INIS)

    Akersten, P.A.

    1985-01-01

    The present thesis consists of four papers, three of which are of a expositary nature and one more theoretical. The first two papers have a natural coupling to the man-machine interface. The first paper is devoted to the concept of maintainability and the role of man as maintenance technician. The second paper discusses aspects of human reliability, mainly studying man as operator. However, maintenance tasks can be studied in the same manner. The third paper concerns reliability prediction for mechanical components. This is an area of vital importance for the reliability practitioner, who needs realistic and easy-to-use mathematical models for different failure modes. The fourth paper discusses mathematical models for repairable systems, especially the problem of testing whether a constant event intensity model is adequate or not. (author)

  13. Development and application of non-invasive biomarkers for carcinogen-DNA adduct analysis in occupationally exposed populations.

    Science.gov (United States)

    Talaska, G; Cudnik, J; Jaeger, M; Rothman, N; Hayes, R; Bhatnagar, V J; Kayshup, S J

    1996-07-17

    Biological monitoring of exposures to carcinogenic compounds in the workplace can be a valuable adjunct to environmental sampling and occupational medicine. Carcinogen-DNA adduct analysis has promise as a biomarker of effective dose if target organ samples can be obtained non-invasively. We have developed non-invasive techniques using exfoliated urothelial and bronchial cells collected in urine and sputum, respectively. First morning urine samples were collected from 33 workers exposed to benzidine or benzidine-based dyes and controls matched for age, education, and smoking status. Sufficient DNA for 32P-postlabelling analysis was obtained from every sample. Mean levels of a specific DNA adduct (which co-chromatographed with standard characterized by MS) were elevated significantly in the benzidine-exposed workers relative to controls. In addition, workers exposed to benzidine had higher adduct levels than those exposed to benzidine-based dyes. This study demonstrates the usefulness of these non-invasive techniques for exposure/effect assessment. To be useful in occupational studies, biomarkers must also be sensitive to exposure interventions. We have conducted topical application studies of used gasoline engine oils in mice and found that the levels of carcinogen-DNA adducts in skin and lung can be significantly lowered if skin cleaning is conducted in a timely manner. The combination of useful, non-invasive techniques to monitor exposure and effect and industrial hygiene interventions can be used to detect and prevent exposures to a wide range of carcinogens including those found in used gasoline engine oils and jet exhausts.

  14. WAYS TO INCREASE ACCURACY AND RELIABILITY OF INDIVIDUAL DOSES ASSESSMENTS IN PERSONNEL WITHIN THERMOLUMINESCENCE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    G. N. Kaydanovskiy

    2012-01-01

    Full Text Available The paper analyses the main sources of measurement errors of individual doses in personnel performed within the thermoluminescence technique and gives recommendations to minimize these errors. The reasons that reduce reliability of effective dose assessments derived from measured values of personal dose equivalent are imperfections of guidance documents. Changes to the Guidelines «Organization and implementation of individual dosimetric control. Staff of health institutions» are justified.

  15. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation

    OpenAIRE

    Shin, Henry; Watkins, Zach; Hu, Xiaogang

    2017-01-01

    Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to th...

  16. Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease

    International Nuclear Information System (INIS)

    Schuijf, J.D.; Poldermans, D.; Shaw, L.J.; Jukema, J.W.; Wall, E.E. van der; Lamb, H.J.; Roos, A. de; Wijns, W.; Bax, J.J.

    2006-01-01

    The role of non-invasive imaging techniques in the evaluation of patients with suspected or known coronary artery disease (CAD) has increased exponentially over the past decade. The traditionally available imaging modalities, including nuclear imaging, stress echocardiography and magnetic resonance imaging (MRI), have relied on detection of CAD by visualisation of its functional consequences (i.e. ischaemia). However, extensive research is being invested in the development of non-invasive anatomical imaging using computed tomography or MRI to allow detection of (significant) atherosclerosis, eventually at a preclinical stage. In addition to establishing the presence of or excluding CAD, identification of patients at high risk for cardiac events is of paramount importance to determine post-test management, and the majority of non-invasive imaging tests can also be used for this purpose. The aim of this review is to provide an overview of the available non-invasive imaging modalities and their merits for the diagnostic and prognostic work-up in patients with suspected or known CAD. (orig.)

  17. Validity and reliability of central blood pressure estimated by upper arm oscillometric cuff pressure.

    Science.gov (United States)

    Climie, Rachel E D; Schultz, Martin G; Nikolic, Sonja B; Ahuja, Kiran D K; Fell, James W; Sharman, James E

    2012-04-01

    Noninvasive central blood pressure (BP) independently predicts mortality, but current methods are operator-dependent, requiring skill to obtain quality recordings. The aims of this study were first, to determine the validity of an automatic, upper arm oscillometric cuff method for estimating central BP (O(CBP)) by comparison with the noninvasive reference standard of radial tonometry (T(CBP)). Second, we determined the intratest and intertest reliability of O(CBP). To assess validity, central BP was estimated by O(CBP) (Pulsecor R6.5B monitor) and compared with T(CBP) (SphygmoCor) in 47 participants free from cardiovascular disease (aged 57 ± 9 years) in supine, seated, and standing positions. Brachial mean arterial pressure (MAP) and diastolic BP (DBP) from the O(CBP) device were used to calibrate in both devices. Duplicate measures were recorded in each position on the same day to assess intratest reliability, and participants returned within 10 ± 7 days for repeat measurements to assess intertest reliability. There was a strong intraclass correlation (ICC = 0.987, P difference (1.2 ± 2.2 mm Hg) for central systolic BP (SBP) determined by O(CBP) compared with T(CBP). Ninety-six percent of all comparisons (n = 495 acceptable recordings) were within 5 mm Hg. With respect to reliability, there were strong correlations but higher limits of agreement for the intratest (ICC = 0.975, P difference 0.6 ± 4.5 mm Hg) and intertest (ICC = 0.895, P difference 4.3 ± 8.0 mm Hg) comparisons. Estimation of central SBP using cuff oscillometry is comparable to radial tonometry and has good reproducibility. As a noninvasive, relatively operator-independent method, O(CBP) may be as useful as T(CBP) for estimating central BP in clinical practice.

  18. A Review on VSC-HVDC Reliability Modeling and Evaluation Techniques

    Science.gov (United States)

    Shen, L.; Tang, Q.; Li, T.; Wang, Y.; Song, F.

    2017-05-01

    With the fast development of power electronics, voltage-source converter (VSC) HVDC technology presents cost-effective ways for bulk power transmission. An increasing number of VSC-HVDC projects has been installed worldwide. Their reliability affects the profitability of the system and therefore has a major impact on the potential investors. In this paper, an overview of the recent advances in the area of reliability evaluation for VSC-HVDC systems is provided. Taken into account the latest multi-level converter topology, the VSC-HVDC system is categorized into several sub-systems and the reliability data for the key components is discussed based on sources with academic and industrial backgrounds. The development of reliability evaluation methodologies is reviewed and the issues surrounding the different computation approaches are briefly analysed. A general VSC-HVDC reliability evaluation procedure is illustrated in this paper.

  19. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  20. Adaptive Response Surface Techniques in Reliability Estimation

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Faber, M. H.; Sørensen, John Dalsgaard

    1993-01-01

    Problems in connection with estimation of the reliability of a component modelled by a limit state function including noise or first order discontinuitics are considered. A gradient free adaptive response surface algorithm is developed. The algorithm applies second order polynomial surfaces...

  1. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis

    Science.gov (United States)

    Jiang, Han-Yu; Chen, Jie; Xia, Chun-Chao; Cao, Li-Kun; Duan, Ting; Song, Bin

    2018-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines. PMID:29904242

  2. NON-INVASIVE INVERSE PROBLEM IN CIVIL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Jan Havelka

    2017-11-01

    Full Text Available In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.

  3. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. A reliable ground bounce noise reduction technique for nanoscale CMOS circuits

    Science.gov (United States)

    Sharma, Vijay Kumar; Pattanaik, Manisha

    2015-11-01

    Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.

  5. First Trimester Noninvasive Prenatal Diagnosis: A Computational Intelligence Approach.

    Science.gov (United States)

    Neocleous, Andreas C; Nicolaides, Kypros H; Schizas, Christos N

    2016-09-01

    The objective of this study is to examine the potential value of using machine learning techniques such as artificial neural network (ANN) schemes for the noninvasive estimation, at 11-13 weeks of gestation, the risk for euploidy, trisomy 21 (T21), and other chromosomal aneuploidies (O.C.A.), from suitable sonographic, biochemical markers, and other relevant data. A database(1) (1)The dataset can become available for academic purposes by communicating directly with the authors.

  6. Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy.

    Science.gov (United States)

    Wu, Helen C; Dachet, Fabien; Ghoddoussi, Farhad; Bagla, Shruti; Fuerst, Darren; Stanley, Jeffrey A; Galloway, Matthew P; Loeb, Jeffrey A

    2017-09-01

    This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  7. Reflectance confocal microscopy: non-invasive distinction between actinic keratosis and squamous cell carcinoma

    NARCIS (Netherlands)

    Peppelman, M.; Nguyen, K.P.; Hoogedoorn, L.; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    BACKGROUND: Early recognition of squamous cell carcinoma (SCC) is difficult. Non-invasive reflectance confocal microscopic (RCM) imaging of the skin is a promising diagnostic technique. Although several RCM features for SCC and AK have been described, it is not determined whether RCM has the ability

  8. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block.

    Science.gov (United States)

    Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando

    2017-01-01

    Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.

  9. Lymphography - an outdated technique

    International Nuclear Information System (INIS)

    Peters, P.E.

    1982-01-01

    The indications for lymphography have changed with the availability of non-invasive techniques like ultrasonic techniques and computerized tomography. This review discusses: Recent results of lymphography in histologically verified patient collectives with lymphatic systemic diseases and lymphatic metastizing tumors. The present role of lymphography is derived from this status report as well as the future perspectives. (orig.) [de

  10. Improving machinery reliability

    CERN Document Server

    Bloch, Heinz P

    1998-01-01

    This totally revised, updated and expanded edition provides proven techniques and procedures that extend machinery life, reduce maintenance costs, and achieve optimum machinery reliability. This essential text clearly describes the reliability improvement and failure avoidance steps practiced by best-of-class process plants in the U.S. and Europe.

  11. Program integration of predictive maintenance with reliability centered maintenance

    International Nuclear Information System (INIS)

    Strong, D.K. Jr; Wray, D.M.

    1990-01-01

    This paper addresses improving the safety and reliability of power plants in a cost-effective manner by integrating the recently developed reliability centered maintenance techniques with the traditional predictive maintenance techniques of nuclear power plants. The topics of the paper include a description of reliability centered maintenance (RCM), enhancing RCM with predictive maintenance, predictive maintenance programs, condition monitoring techniques, performance test techniques, the mid-Atlantic Reliability Centered Maintenance Users Group, test guides and the benefits of shared guide development

  12. Noninvasive patient fixation for extracranial stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lohr, Frank; Debus, Juergen; Frank, Claudia; Herfarth, Klaus; Pastyr, Otto; Rhein, Bernhard; Bahner, Malte L.; Schlegel, Wolfgang; Wannenmacher, Michael

    1999-01-01

    Purpose: To evaluate the setup accuracy that can be achieved with a novel noninvasive patient fixation technique based on a body cast attached to a recently developed stereotactic body frame during fractionated extracranial stereotactic radiotherapy. Methods and Materials: Thirty-one CT studies (≥ 20 slices, thickness: 3 mm) from 5 patients who were immobilized in a body cast attached to a stereotactic body frame for treatment of para medullary tumors in the thoracic or lumbar spine were evaluated with respect to setup accuracy. The immobilization device consisted of a custom-made wrap-around body cast that extended from the neck to the thighs and a separate head mask, both made from Scotchcast. Each CT study was performed immediately before or after every second or third actual treatment fraction without repositioning the patient between CT and treatment. The stereotactic localization system was mounted and the isocenter as initially located stereo tactically was marked with fiducials for each CT study. Deviation of the treated isocenter as compared to the planned position was measured in all three dimensions. Results: The immobilization device can be easily handled, attached to and removed from the stereotactic frame and thus enables treatment of multiple patients with the same stereotactic frame each day. Mean patient movements of 1.6 mm ± 1.2 mm (laterolateral [LL]), 1.4 mm ± 1.0 mm (anterior-posterior [AP]), 2.3 mm ± 1.3 mm (transversal vectorial error [VE]) and < slice thickness = 3 mm (cranio caudal [CC]) were recorded for the targets in the thoracic spine and 1.4 mm ± 1.0 mm (LL), 1.2 mm ± 0.7 mm (AP), 1.8 mm ± 1.2 mm (VE), and < 3 mm (CC) for the lumbar spine. The worst case deviation was 3.9 mm for the first patient with the target in the thoracic spine (in the LL direction). Combining those numbers (mean transversal VE for both locations and maximum CC error of 3 mm), the mean three-dimensional vectorial patient movement and thus the mean overall

  13. Acute Parotitis as a Complication of Noninvasive Ventilation.

    Science.gov (United States)

    Alaya, S; Mofredj, Ali; Tassaioust, K; Bahloul, H; Mrabet, A

    2016-09-01

    Several conditions, including oropharyngeal dryness, pressure sores, ocular irritation, epistaxis, or gastric distension, have been described during noninvasive ventilation (NIV). Although this technique has been widely used in intensive care units and emergency wards, acute swelling of the parotid gland remains a scarcely reported complication. We describe herein the case of an 82-year-old man who developed unilateral parotitis during prolonged NIV for acute heart failure. Intravenous antibiotics, corticosteroids, and adjusting the mask laces' position allowed rapid resolution of clinical symptoms. © The Author(s) 2016.

  14. Targeting the Cerebellum by Noninvasive Neurostimulation: a Review.

    Science.gov (United States)

    van Dun, Kim; Bodranghien, Florian; Manto, Mario; Mariën, Peter

    2017-06-01

    Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.

  15. Noninvasive Ph-telemetric Measurement of Gastrointestinal Function

    Science.gov (United States)

    Tietze, Karen J.

    1991-01-01

    The purpose of this study was to gain experience with and validate the Heidelberg pH-telemetric methodology in order to determine if the pH-telemetric methodology would be a useful noninvasive measure of gastrointestinal transit time for future ground-based and in-flight drug evaluation studies. The Heidelberg pH metering system is a noninvasive, nonradioactive telemetric system that, following oral ingestion, continuously measures intraluminal pH of the stomach, duodenum, small bowel, ileocecal junction, and large bowel. Gastrointestinal motility profiles were obtained in normal volunteers using the lactulose breath-hydrogen and Heidelberg pH metering techniques. All profiles were obtained in the morning after an overnight fast. Heidelberg pH profiles were obtained in the fasting and fed states; lactulose breath-hydrogen profiles were obtained after a standard breakfast. Mouth-to-cecum transit time was measured as the interval from administration of lactulose (30 ml; 20 g) to a sustained increase in breath-hydrogen of 10 ppm or more. Gastric emptying time was measured as the interval from the administration of the Heidelberg capsule to a sustained increase in pH of three units or more.

  16. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  17. Non-invasive biological dosimetry of the skin

    International Nuclear Information System (INIS)

    Barton, S.; Marks, R.; Charles, M.W.; Wells, J.

    1986-01-01

    Investigations designed to identify a potential biological dosimetry technique to examine the effects of X-ray doses down to 0.1 Gy on human skin, are described. In a variety of parameters assessed, the most important changes observed were a significant depression in epidermal cell production in the basal layer after X-ray doses between 0.5 Gy and 1 Gy and a concomitant reduction in the desquamation rate of corneocytes after doses above 1 Gy. Changes in non-specific esterase (NSE) activity were also observed. Further work is described which applies these results to several non-invasive techniques which may have potential for routine application. Preliminary data from irradiated human skin are presented on the measurement of forced desquamation, the evaluation of NSE activity from hair samples and the evaluation of stratum corneum turnover time using the fluorescent dye, dansyl chloride. (author)

  18. Reliability of diagnostic imaging techniques in suspected acute appendicitis: proposed diagnostic protocol

    International Nuclear Information System (INIS)

    Cura del, J. L.; Oleaga, L.; Grande, D.; Vela, A. C.; Ibanez, A. M.

    2001-01-01

    To study the utility of ultrasound and computed tomography (CT) in case of suspected appendicitis. To determine the diagnostic yield in terms of different clinical contexts and patient characteristics. to assess the costs and benefits of introducing these techniques and propose a protocol for their use. Negative appendectomies, complications and length of hospital stay in a group of 152 patients with suspected appendicitis who underwent ultrasound and CT were compared with those of 180 patients who underwent appendectomy during the same time period, but had not been selected for the first group: these patients costs for each group were calculated. In the first group, the diagnostic value of the clinical signs was also evaluated. The reliability of the clinical signs was limited, while the results with ultrasound and CT were excellent. The incidence of negative appendectomy was 9.6% in the study group and 12.2% in the control group. Moreover, there were fewer complications and a shorter hospital stay in the first group. Among men, however, the rate of negative appendectomy was lower in the control group. The cost of using ultrasound and CT in the management of appendicitis was only slightly higher than that of the control group. Although ultrasound and CT are not necessary in cases in which the probability of appendicitis is low or in men presenting clear clinical evidence, the use of these techniques is indicated in the remaining cases in which appendicitis is suspected. In children, ultrasound is the technique of choice. In all other patients, if negative results are obtained with one of the two techniques, the other should be performed. (Author) 49 refs

  19. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  20. Multivariate performance reliability prediction in real-time

    International Nuclear Information System (INIS)

    Lu, S.; Lu, H.; Kolarik, W.J.

    2001-01-01

    This paper presents a technique for predicting system performance reliability in real-time considering multiple failure modes. The technique includes on-line multivariate monitoring and forecasting of selected performance measures and conditional performance reliability estimates. The performance measures across time are treated as a multivariate time series. A state-space approach is used to model the multivariate time series. Recursive forecasting is performed by adopting Kalman filtering. The predicted mean vectors and covariance matrix of performance measures are used for the assessment of system survival/reliability with respect to the conditional performance reliability. The technique and modeling protocol discussed in this paper provide a means to forecast and evaluate the performance of an individual system in a dynamic environment in real-time. The paper also presents an example to demonstrate the technique

  1. Noninvasive quantitation of human liver steatosis using magnetic resonance and bioassay methods

    Energy Technology Data Exchange (ETDEWEB)

    D' Assignies, Gaspard; Ruel, Martin; Khiat, Abdesslem; Lepanto, Luigi; Kauffmann, Claude; Tang, An [Centre Hospitalier de l' Universite de Montreal (CHUM), Departement de Radiologie, Montreal, Quebec (Canada); Chagnon, Miguel [Universite de Montreal (UDEM), Departement de Mathematiques et de Statistique, Montreal, Quebec (Canada); Gaboury, Louis [Centre Hospitalier de l' Universite de Montreal (CHUM), Departement d' Anatomo-Pathologie, Montreal, Quebec (Canada); Boulanger, Yvan [Centre Hospitalier de l' Universite de Montreal (CHUM), Departement de Radiologie, Montreal, Quebec (Canada); Hopital Saint-Luc du CHUM, Departement de Radiologie, Montreal, Quebec (Canada)

    2009-08-15

    The purpose was to evaluate the ability of three magnetic resonance (MR) techniques to detect liver steatosis and to determine which noninvasive technique (MR, bioassays) or combination of techniques is optimal for the quantification of hepatic fat using histopathology as a reference. Twenty patients with histopathologically proven steatosis and 24 control subjects underwent single-voxel proton MR spectroscopy (MRS; 3 voxels), dual-echo in phase/out of phase MR imaging (DEI) and diffusion-weighted MR imaging (DWI) examinations of the liver. Blood or urine bioassays were also performed for steatosis patients. Both MRS and DEI data allowed to detect steatosis with a high sensitivity (0.95 for MRS; 1 for DEI) and specificity (1 for MRS; 0.875 for DEI) but not DWI. Strong correlations were found between fat fraction (FF) measured by MRS, DEI and histopathology segmentation as well as with low density lipoprotein (LDL) and cholesterol concentrations. A Bland-Altman analysis showed a good agreement between the FF measured by MRS and DEI. Partial correlation analyses failed to improve the correlation with segmentation FF when MRS or DEI data were combined with bioassay results. Therefore, FF from MRS or DEI appear to be the best parameters to both detect steatosis and accurately quantify fat liver noninvasively. (orig.)

  2. Tail-Cuff Technique and Its Influence on Central Blood Pressure in the Mouse.

    Science.gov (United States)

    Wilde, Elena; Aubdool, Aisah A; Thakore, Pratish; Baldissera, Lineu; Alawi, Khadija M; Keeble, Julie; Nandi, Manasi; Brain, Susan D

    2017-06-27

    Reliable measurement of blood pressure in conscious mice is essential in cardiovascular research. Telemetry, the "gold-standard" technique, is invasive and expensive and therefore tail-cuff, a noninvasive alternative, is widely used. However, tail-cuff requires handling and restraint during measurement, which may cause stress affecting blood pressure and undermining reliability of the results. C57Bl/6J mice were implanted with radio-telemetry probes to investigate the effects of the steps of the tail-cuff technique on central blood pressure, heart rate, and temperature. This included comparison of handling techniques, operator's sex, habituation, and influence of hypertension induced by angiotensin II. Direct comparison of measurements obtained by telemetry and tail-cuff were made in the same mouse. The results revealed significant increases in central blood pressure, heart rate, and core body temperature from baseline following handling interventions without significant difference among the different handling technique, habituation, or sex of the investigator. Restraint induced the largest and sustained increase in cardiovascular parameters and temperature. The tail-cuff readings significantly underestimated those from simultaneous telemetry recordings; however, "nonsimultaneous" telemetry, obtained in undisturbed mice, were similar to tail-cuff readings obtained in undisturbed mice on the same day. This study reveals that the tail-cuff technique underestimates the core blood pressure changes that occur simultaneously during the restraint and measurement phases. However, the measurements between the 2 techniques are similar when tail-cuff readings are compared with telemetry readings in the nondisturbed mice. The differences between the simultaneous recordings by the 2 techniques should be recognized by researchers. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Leis, Stefan; Höller, Peter; Thon, Natasha; Thomschewski, Aljoscha; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2014-01-01

    Past evidence has shown that invasive and non-invasive brain stimulation may be effective for relieving central pain. To perform a topical review of the literature on brain neurostimulation techniques in patients with chronic neuropathic pain due to traumatic spinal cord injury (SCI) and to assess the current evidence for their therapeutic efficacy. A MEDLINE search was performed using following terms: "Spinal cord injury", "Neuropathic pain", "Brain stimulation", "Deep brain stimulation" (DBS), "Motor cortex stimulation" (MCS), "Transcranial magnetic stimulation" (TMS), "Transcranial direct current stimulation" (tDCS), "Cranial electrotherapy stimulation" (CES). Invasive neurostimulation therapies, in particular DBS and epidural MCS, have shown promise as treatments for neuropathic and phantom limb pain. However, the long-term efficacy of DBS is low, while MCS has a relatively higher potential with lesser complications that DBS. Among the non-invasive techniques, there is accumulating evidence that repetitive TMS can produce analgesic effects in healthy subjects undergoing laboratory-induced pain and in chronic pain conditions of various etiologies, at least partially and transiently. Another very safe technique of non-invasive brain stimulation - tDCS - applied over the sensory-motor cortex has been reported to decrease pain sensation and increase pain threshold in healthy subjects. CES has also proved to be effective in managing some types of pain, including neuropathic pain in subjects with SCI. A number of studies have begun to use non-invasive neuromodulatory techniques therapeutically to relieve neuropathic pain and phantom phenomena in patients with SCI. However, further studies are warranted to corroborate the early findings and confirm different targets and stimulation paradigms. The utility of these protocols in combination with pharmacological approaches should also be explored.

  4. Noninvasive ventilation in hypoxemic respiratory failure

    Directory of Open Access Journals (Sweden)

    Raja Dhar

    2016-01-01

    Full Text Available Noninvasive ventilation (NIV refers to positive pressure ventilation delivered through a noninvasive interface (nasal mask, facemask, or nasal plugs etc. Over the past decade its use has become more common as its benefits are increasingly recognized. This review will focus on the evidence supporting the use of NIV in various conditions resulting in acute hypoxemic respiratory failure (AHRF, that is, non-hypercapnic patients having acute respiratory failure in the absence of a cardiac origin or underlying chronic pulmonary disease. Outcomes depend on the patient's diagnosis and clinical characteristics. Patients should be monitored closely for signs of noninvasive ventilation failure and promptly intubated before a crisis develops. The application of noninvasive ventilation by a trained and experienced team, with careful patient selection, should optimize patient outcomes.

  5. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  6. A new brain stimulation method: Noninvasive transcranial magneto–acoustical stimulation

    International Nuclear Information System (INIS)

    Yuan Yi; Chen Yu-Dong; Li Xiao-Li

    2016-01-01

    We investigate transcranial magneto–acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin–Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes. (paper)

  7. Prospective comparison of noninvasive techniques for amputation level selection

    International Nuclear Information System (INIS)

    Malone, J.M.; Anderson, G.G.; Lalka, S.G.; Hagaman, R.M.; Henry, R.; McIntyre, K.E.; Bernhard, V.M.

    1987-01-01

    This study prospectively compared the following tests for their accuracy in amputation level selection: transcutaneous oxygen, transcutaneous carbon dioxide, transcutaneous oxygen-to-transcutaneous carbon dioxide, foot-to-chest transcutaneous oxygen, intradermal xenon-133, ankle-brachial index, and absolute popliteal artery Doppler systolic pressure. All metabolic parameters had a high degree of statistical accuracy in predicting amputation healing whereas none of the other tests had statistical reliability. Amputation site healing was not affected by the presence of diabetes mellitus nor were the test results for any of the metabolic parameters

  8. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  9. Techniques for increasing the reliability of accelerator control system electronics

    International Nuclear Information System (INIS)

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics

  10. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  11. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  12. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  13. Noninvasive neuromodulation in migraine and cluster headache.

    Science.gov (United States)

    Starling, Amaal

    2018-06-01

    The purpose of this narrative review is to provide an overview of the currently available noninvasive neuromodulation devices for the treatment of migraine and cluster headache. Over the last decade, several noninvasive devices have undergone development and clinical trials to evaluate efficacy and safety. Based on this body of work, single-pulse transcranial magnetic stimulation, transcutaneous supraorbital neurostimulation, and noninvasive vagal nerve stimulation devices have been cleared by the United States Food and Drug Administration and are available for clinical use for the treatment of primary headache disorders. Overall, these novel noninvasive devices appear to be safe, well tolerated, and have demonstrated promising results in clinical trials in both migraine and cluster headache. This narrative review will provide a summary and update of the proposed mechanisms of action, evidence, safety, and future directions of various currently available modalities of noninvasive neuromodulation for the treatment of migraine and cluster headache.

  14. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    Science.gov (United States)

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  15. A New Method for Noninvasive Genetic Sampling of Saliva in Ecological Research.

    Directory of Open Access Journals (Sweden)

    Diana Lobo

    Full Text Available Noninvasive samples for genetic analyses have become essential to address ecological questions. Popular noninvasive samples such as faeces contain degraded DNA which may compromise genotyping success. Saliva is an excellent alternative DNA source but scarcity of suitable collection methods makes its use anecdotal in field ecological studies. We develop a noninvasive method of collection that combines baits and porous materials able to capture saliva. We report its potential in optimal conditions, using confined dogs and collecting saliva early after deposition. DNA concentration in saliva extracts was generally high (mean 14 ng μl(-1. We correctly identified individuals in 78% of samples conservatively using ten microsatellite loci, and 90% of samples using only eight loci. Consensus genotypes closely matched reference genotypes obtained from hair DNA (99% of identification successes and 91% of failures. Mean genotyping effort needed for identification using ten loci was 2.2 replicates. Genotyping errors occurred at a very low frequency (allelic dropout: 2.3%; false alleles: 1.5%. Individual identification success increased with duration of substrate handling inside dog's mouth and the volume of saliva collected. Low identification success was associated with baits rich in DNA-oxidant polyphenols and DNA concentrations <1 ng μl(-1. The procedure performed at least as well as other noninvasive methods, and could advantageously allow detection of socially low-ranked individuals underrepresented in sources of DNA that are involved in marking behaviour (faeces or urine. Once adapted and refined, there is promise for this technique to allow potentially high rates of individual identification in ecological field studies requiring noninvasive sampling of wild vertebrates.

  16. Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye.

    Science.gov (United States)

    Chan, Marion M; Gray, Brian D; Pak, Koon Y; Fong, Dunne

    2015-03-09

    Development of non-invasive molecular imaging techniques that are based on cellular changes in inflammation has been of active interest for arthritis diagnosis. This technology will allow real-time detection of tissue damage and facilitate earlier treatment of the disease, thus representing an improvement over X-rays, which detect bone damage at the advanced stage. Tracing apoptosis, an event occurring in inflammation, has been a strategy used. PSVue 794 is a low-molecular-weight, near-infrared (NIR)-emitting complex of bis(zinc2+-dipicolylamine) (Zn-DPA) that binds to phosphatidylserine (PS), a plasma membrane anionic phospholipid that becomes flipped externally upon cell death by apoptosis. In this study, we evaluated the capacity of PSVue 794 to act as an in vivo probe for non-invasive molecular imaging assessment of rheumatoid arthritis (RA) via metabolic function in murine collagen-induced arthritis, a widely adopted animal model for RA. Male DBA/1 strain mice were treated twice with chicken collagen type II in Freund's adjuvant. Their arthritis development was determined by measuring footpad thickness and confirmed with X-ray analysis and histology. In vivo imaging was performed with the NIR dye and the LI-COR Odyssey Image System. The level of emission was compared among mice with different disease severity, non-arthritic mice and arthritic mice injected with a control dye without the Zn-DPA targeting moiety. Fluorescent emission correlated reliably with the degree of footpad swelling and the manifestation of arthritis. Ex vivo examination showed emission was from the joint. Specificity of binding was confirmed by the lack of emission when arthritic mice were given the control dye. Furthermore, the PS-binding protein annexin V displaced the NIR dye from binding, and the difference in emission was numerically measurable on a scale. This report introduces an economical alternative method for assessing arthritis non-invasively in murine models. Inflammation in

  17. Non-Invasive monitoring of diaphragmatic timing by means of surface contact sensors: An experimental study in dogs

    Directory of Open Access Journals (Sweden)

    Galdiz Batxi

    2004-09-01

    Full Text Available Abstract Background Non-invasive monitoring of respiratory muscle function is an area of increasing research interest, resulting in the appearance of new monitoring devices, one of these being piezoelectric contact sensors. The present study was designed to test whether the use of piezoelectric contact (non-invasive sensors could be useful in respiratory monitoring, in particular in measuring the timing of diaphragmatic contraction. Methods Experiments were performed in an animal model: three pentobarbital anesthetized mongrel dogs. The motion of the thoracic cage was acquired by means of a piezoelectric contact sensor placed on the costal wall. This signal is compared with direct measurements of the diaphragmatic muscle length, made by sonomicrometry. Furthermore, to assess the diaphragmatic function other respiratory signals were acquired: respiratory airflow and transdiaphragmatic pressure. Diaphragm contraction time was estimated with these four signals. Using diaphragm length signal as reference, contraction times estimated with the other three signals were compared with the contraction time estimated with diaphragm length signal. Results The contraction time estimated with the TM signal tends to give a reading 0.06 seconds lower than the measure made with the DL signal (-0.21 and 0.00 for FL and DP signals, respectively, with a standard deviation of 0.05 seconds (0.08 and 0.06 for FL and DP signals, respectively. Correlation coefficients indicated a close link between time contraction estimated with TM signal and contraction time estimated with DL signal (a Pearson correlation coefficient of 0.98, a reliability coefficient of 0.95, a slope of 1.01 and a Spearman's rank-order coefficient of 0.98. In general, correlation coefficients and mean and standard deviation of the difference were better in the inspiratory load respiratory test than in spontaneous ventilation tests. Conclusion The technique presented in this work provides a non-invasive

  18. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  19. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Hornero, Fernando; Rieta, José J

    2011-01-01

    The standard electrocardiogram (ECG) is the most common non-invasive way to study atrial fibrillation (AF). In this respect, previous works have shown that the surface lead V 1 reflects mainly the dominant atrial frequency (DAF) of the right atrium (RA), which has been widely used to study AF. In a similar way, AF organization and fibrillatory (f) wave amplitude are two recently proposed non-invasive AF markers. These markers need to be validated with invasive recordings in order to assess their capability to reliably reflect the internal fibrillatory activity dynamics. In this work, these two non-invasive metrics have been compared with similar measures recorded from two unipolar atrial electrograms (AEGs). For both ECG and AEG signals, AF organization has been computed by applying a nonlinear regularity index, such as sample entropy (SampEn), to the atrial activity (AA) and to its fundamental waveform, defined as the main atrial wave (MAW). The surface and epicardial f wave amplitude has been estimated through their mean power. Results obtained for 38 patients showed statistically significant correlations between the values measured from surface and invasive recordings, thus corroborating the usefulness of the aforesaid markers in the non-invasive study of AF. Precisely, for AF organization computed from the MAW, the correlation coefficients between surface and both AEGs were R = 0.926 (p < 0.001) and R = 0.932 (p < 0.001). For f wave amplitude, slightly lower significant relationships were noticed, the correlation coefficients being R = 0.765 (p < 0.001) and R = 0.842 (p < 0.001). These outcomes together with interesting linear relationships found among the parameters suggest that AF regularity estimated via SampEn and f wave amplitude can non-invasively characterize the epicardial activity related to AF

  20. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Science.gov (United States)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  1. Electronics reliability calculation and design

    CERN Document Server

    Dummer, Geoffrey W A; Hiller, N

    1966-01-01

    Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea

  2. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  3. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry

    International Nuclear Information System (INIS)

    Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D.

    2008-01-01

    The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects

  4. Reliability and maintainability assessment factors for reliable fault-tolerant systems

    Science.gov (United States)

    Bavuso, S. J.

    1984-01-01

    A long term goal of the NASA Langley Research Center is the development of a reliability assessment methodology of sufficient power to enable the credible comparison of the stochastic attributes of one ultrareliable system design against others. This methodology, developed over a 10 year period, is a combined analytic and simulative technique. An analytic component is the Computer Aided Reliability Estimation capability, third generation, or simply CARE III. A simulative component is the Gate Logic Software Simulator capability, or GLOSS. The numerous factors that potentially have a degrading effect on system reliability and the ways in which these factors that are peculiar to highly reliable fault tolerant systems are accounted for in credible reliability assessments. Also presented are the modeling difficulties that result from their inclusion and the ways in which CARE III and GLOSS mitigate the intractability of the heretofore unworkable mathematics.

  5. Review of the Mechanisms and Effects of Noninvasive Body Contouring Devices on Cellulite and Subcutaneous Fat

    Science.gov (United States)

    Alizadeh, Zahra; Halabchi, Farzin; Mazaheri, Reza; Abolhasani, Maryam; Tabesh, Mastaneh

    2016-01-01

    Context Today, different kinds of non-invasive body contouring modalities, including cryolipolysis, radiofrequency (RF), low-level laser therapy (LLLT), and high-intensity focused ultrasound (HIFU) are available for reducing the volume of subcutaneous adipose tissue or cellulite. Each procedure has distinct mechanisms for stimulating apoptosis or necrosis adipose tissue. In addition to the mentioned techniques, some investigations are underway for analyzing the efficacy of other techniques such as whole body vibration (WBV) and extracorporeal shockwave therapy (ESWT). In the present review the mechanisms, effects and side effects of the mentioned methods have been discussed. The effect of these devices on cellulite or subcutaneous fat reduction has been assessed. Evidence Acquisition We searched pubmed, google scholar and the cochrane databases for systemic reviews, review articles, meta-analysis and randomized clinical trials up to February 2015. The keywords were subcutaneous fat, cellulite, obesity, noninvasive body contouring, cryolipolysis, RF, LLLT, HIFU, ESWT and WBV with full names and abbreviations. Results We included seven reviews and 66 original articles in the present narrative review. Most of them were applied on normal weight or overweight participants (body mass index cellulite in some body areas. However, the clinical effects are mild to moderate, for example 2 - 4 cm circumference reduction as a sign of subcutaneous fat reduction during total treatment sessions. Overall, there is no definitive noninvasive treatment method for cellulite. Additionally, due to the methodological differences in the existing evidence, comparing the techniques is difficult. PMID:28123436

  6. New trend in non-invasive prenatal diagnosis.

    Science.gov (United States)

    Ferrari, M; Carrera, P; Lampasona, V; Galbiati, S

    2015-12-07

    The presence of fetal DNA in maternal plasma represents a source of genetic material which can be obtained non-invasively. To date, the translation of noninvasive prenatal diagnosis from research into clinical practice has been rather fragmented, and despite the advances in improving the analytical sensitivity of methods, distinguishing between fetal and maternal sequences remains very challenging. Thus, the field of noninvasive prenatal diagnosis of genetic diseases has yet to attain a routine application in clinical diagnostics. On the contrary, fetal sex determination in pregnancies at high risk of sex-linked disorders, tests for fetal RHD genotyping and non-invasive assessment of chromosomal aneuploidies are now available worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves

    2009-01-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  8. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br

    2009-07-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  9. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  10. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  11. Noninvasive detection of macular pigments in the human eye.

    Science.gov (United States)

    Gellermann, Werner; Bernstein, Paul S

    2004-01-01

    There is currently strong interest in developing noninvasive technologies for the detection of macular carotenoid pigments in the human eye. These pigments, consisting of lutein and zeaxanthin, are taken up from the diet and are thought to play an important role in the prevention of age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. It may be possible to prevent or delay the onset of this debilitating disease with suitable dietary intervention strategies. We review the most commonly used detection techniques based on heterochromatic flicker photometry, fundus reflectometry, and autofluorescense techniques and put them in perspective with recently developed more molecule-specific Raman detection methods. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  12. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available X-ray micro-tomography (micro-CT is a miniaturized form of conventional computed axial tomography (CAT able to investigate small radio-opaque objects at a-few-microns high resolution, in a nondestructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure. Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues.

  13. Reliability of Phase Velocity Measurements of Flexural Acoustic Waves in the Human Tibia In-Vivo.

    Science.gov (United States)

    Vogl, Florian; Schnüriger, Karin; Gerber, Hans; Taylor, William R

    2016-01-01

    Axial-transmission acoustics have shown to be a promising technique to measure individual bone properties and detect bone pathologies. With the ultimate goal being the in-vivo application of such systems, quantification of the key aspects governing the reliability is crucial to bring this method towards clinical use. This work presents a systematic reliability study quantifying the sources of variability and their magnitudes of in-vivo measurements using axial-transmission acoustics. 42 healthy subjects were measured by an experienced operator twice per week, over a four-month period, resulting in over 150000 wave measurements. In a complementary study to assess the influence of different operators performing the measurements, 10 novice operators were trained, and each measured 5 subjects on a single occasion, using the same measurement protocol as in the first part of the study. The estimated standard error for the measurement protocol used to collect the study data was ∼ 17 m/s (∼ 4% of the grand mean) and the index of dependability, as a measure of reliability, was Φ = 0.81. It was shown that the method is suitable for multi-operator use and that the reliability can be improved efficiently by additional measurements with device repositioning, while additional measurements without repositioning cannot improve the reliability substantially. Phase velocity values were found to be significantly higher in males than in females (p < 10-5) and an intra-class correlation coefficient of r = 0.70 was found between the legs of each subject. The high reliability of this non-invasive approach and its intrinsic sensitivity to mechanical properties opens perspectives for the rapid and inexpensive clinical assessment of bone pathologies, as well as for monitoring programmes without any radiation exposure for the patient.

  14. Fecal Glucocorticoid Analysis: Non-invasive Adrenal Monitoring in Equids.

    Science.gov (United States)

    Yarnell, Kelly; Purcell, Rebecca S; Walker, Susan L

    2016-04-25

    Adrenal activity can be assessed in the equine species by analysis of feces for corticosterone metabolites. During a potentially aversive situation, corticotrophin releasing hormone (CRH) is released from the hypothalamus in the brain. This stimulates the release of adrenocorticotrophic hormone (ACTH) from the pituitary gland, which in turn stimulates release of glucocorticoids from the adrenal gland. In horses the glucocorticoid corticosterone is responsible for several adaptations needed to support equine flight behaviour and subsequent removal from the aversive situation. Corticosterone metabolites can be detected in the feces of horses and assessment offers a non-invasive option to evaluate long term patterns of adrenal activity. Fecal assessment offers advantages over other techniques that monitor adrenal activity including blood plasma and saliva analysis. The non-invasive nature of the method avoids sampling stress which can confound results. It also allows the opportunity for repeated sampling over time and is ideal for studies in free ranging horses. This protocol describes the enzyme linked immunoassay (EIA) used to assess feces for corticosterone, in addition to the associated biochemical validation.

  15. New approach to neurorehabilitation: cranial nerve noninvasive neuromodulation (CN-NINM) technology

    Science.gov (United States)

    Danilov, Yuri P.; Tyler, Mitchel E.; Kaczmarek, Kurt A.; Skinner, Kimberley L.

    2014-06-01

    Cranial Nerve NonInvasive NeuroModulation (CN-NINM) is a primary and complementary multi-targeted rehabilitation therapy that appears to initiate the recovery of multiple damaged or suppressed brain functions affected by neurological disorders. It is deployable as a simple, home-based device (portable neuromodulation stimulator, or PoNSTM) and training regimen following initial patient training in an outpatient clinic. It may be easily combined with many existing rehabilitation therapies, and may reduce or eliminate the need for more aggressive invasive procedures or possibly decrease total medication intake. CN-NINM uses sequenced patterns of electrical stimulation on the tongue. Our hypothesis is that CN-NINM induces neuroplasticity by noninvasive stimulation of two major cranial nerves: trigeminal (CN-V), and facial (CN-VII). This stimulation excites a natural flow of neural impulses to the brainstem (pons varolli and medulla), and cerebellum, to effect changes in the function of these targeted brain structures, extending to corresponding nuclei of the brainstem. CN-NINM represents a synthesis of a new noninvasive brain stimulation technique with applications in physical medicine, cognitive, and affective neurosciences. Our new stimulation method appears promising for treatment of a full spectrum of movement disorders, and for both attention and memory dysfunction associated with traumatic brain injury.

  16. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    Science.gov (United States)

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  17. NDE reliability and advanced NDE technology validation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Hutton, P.H.; Reid, L.D.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1989-01-01

    This paper reports on progress for three programs: (1) evaluation and improvement in nondestructive examination reliability for inservice inspection of light water reactors (LWR) (NDE Reliability Program), (2) field validation acceptance, and training for advanced NDE technology, and (3) evaluation of computer-based NDE techniques and regional support of inspection activities. The NDE Reliability Program objectives are to quantify the reliability of inservice inspection techniques for LWR primary system components through independent research and establish means for obtaining improvements in the reliability of inservice inspections. The areas of significant progress will be described concerning ASME Code activities, re-analysis of the PISC-II data, the equipment interaction matrix study, new inspection criteria, and PISC-III. The objectives of the second program are to develop field procedures for the AE and SAFT-UT techniques, perform field validation testing of these techniques, provide training in the techniques for NRC headquarters and regional staff, and work with the ASME Code for the use of these advanced technologies. The final program's objective is to evaluate the reliability and accuracy of interpretation of results from computer-based ultrasonic inservice inspection systems, and to develop guidelines for NRC staff to monitor and evaluate the effectiveness of inservice inspections conducted on nuclear power reactors. This program started in the last quarter of FY89, and the extent of the program was to prepare a work plan for presentation to and approval from a technical advisory group of NRC staff

  18. Noninvasive prenatal testing (NIPT) in twin pregnancies with treatment of assisted reproductive techniques (ART) in a single center

    DEFF Research Database (Denmark)

    Tan, YueQiu; Gao, Ya; Lin, Ge

    2016-01-01

    Objective: The objective of the study is to report the performance of noninvasive prenatal testing (NIPT) in twin pregnancies after the treatment of assisted reproductive technology (ART). Method: In two years period, 565 pregnant women with ART twin pregnancies were prospectively tested by NIPT...

  19. Non-invasive optical detection of glucose in cell culture nutrient medium

    Science.gov (United States)

    Cote, Gerald L.

    1993-01-01

    The objective of the proposed research was to begin the development of a non-invasive optical sensor for measuring glucose concentration in the output medium of cell cultures grown in a unique NASA bioreactor referred to as an integrated rotating-wall vessel (IRWV). The input, a bovine serum based nutrient media, has a known glucose concentration. The cells within the bioreactor digest a portion of the glucose. Thus, the non-invasive optical sensor is needed to monitor the decrease in glucose due to cellular consumption since the critical parameters for sustained cellular productivity are glucose and pH. Previous glucose sensing techniques have used chemical reactions to quantify the glucose concentration. Chemical reactions, however, cannot provide for continuous, real time, non-invasive measurement as is required in this application. Our effort while in the fellowship program was focused on the design, optical setup, and testing of one bench top prototype non-invasive optical sensor using a mid-infrared absorption spectroscopy technique. Glucose has a fundamental vibrational absorption peak in the mid-infrared wavelength range at 9.6 micron. Preliminary absorption data using a CO2 laser were collected at this wavelength for water based glucose solutions at different concentrations and one bovine serum based nutrient medium (GTSF) with added glucose. The results showed near linear absorption responses for the glucose-in-water data with resolutions as high at 108 mg/dl and as low as 10 mg/dl. The nutrient medium had a resolution of 291 mg/dl. The variability of the results was due mainly to thermal and polarization drifts of the laser while the decrease in sensitivity to glucose in the nutrient medium was expected due to the increase in the number of confounders present in the nutrient medium. A multispectral approach needs to be used to compensate for these confounders. The CO2 laser used for these studies was wavelength tunable (9.2 to 10.8 micrometers), however

  20. Machine learning techniques for medical diagnosis of diabetes using iris images.

    Science.gov (United States)

    Samant, Piyush; Agarwal, Ravinder

    2018-04-01

    Complementary and alternative medicine techniques have shown their potential for the treatment and diagnosis of chronical diseases like diabetes, arthritis etc. On the same time digital image processing techniques for disease diagnosis is reliable and fastest growing field in biomedical. Proposed model is an attempt to evaluate diagnostic validity of an old complementary and alternative medicine technique, iridology for diagnosis of type-2 diabetes using soft computing methods. Investigation was performed over a close group of total 338 subjects (180 diabetic and 158 non-diabetic). Infra-red images of both the eyes were captured simultaneously. The region of interest from the iris image was cropped as zone corresponds to the position of pancreas organ according to the iridology chart. Statistical, texture and discrete wavelength transformation features were extracted from the region of interest. The results show best classification accuracy of 89.63% calculated from RF classifier. Maximum specificity and sensitivity were absorbed as 0.9687 and 0.988, respectively. Results have revealed the effectiveness and diagnostic significance of proposed model for non-invasive and automatic diabetes diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Noninvasive Evaluation of Injectable Chitosan/Nano-Hydroxyapatite/Collagen Scaffold via Ultrasound

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2012-01-01

    Full Text Available To meet the challenges of designing an in situ forming scaffold and regenerating bone with complex three-dimensional (3D structures, an in situ forming hydrogel scaffold based on nano-hydroxyapatite (nHA, collagen (Col, and chitosan (CS was synthesized. Currently, only a limited number of techniques are available to mediate and visualize the injection process of the injectable biomaterials directly and noninvasively. In this study, the potential of ultrasound for the quantitative in vivo evaluation of tissue development in CS/nHAC scaffold was evaluated. The CS/nHAC scaffold was injected into rat subcutaneous tissue and evaluated for 28 days. Quantitative measurements of the gray-scale value, volume, and blood flow of the scaffold were evaluated using diagnostic technique. This study demonstrates that ultrasound can be used to noninvasively and nondestructively monitor and evaluate the in vivo characteristics of injectable bone scaffold. In comparison to the CS, the CS/nHAC scaffold showed a greater stiffness, less degradation rate, and better blood supply in the in vivo evaluation. In conclusion, the diagnostic ultrasound method is a good tool to evaluate the in vivo formation of injectable bone scaffolds and facilitates the broad use to monitor tissue development and remodeling in bone tissue engineering.

  2. power system reliability in supplying nuclear reactors

    International Nuclear Information System (INIS)

    Gad, M.M.M.

    2007-01-01

    this thesis presents a simple technique for deducing minimal cut set (MCS) from the defined minimal path set (MPS) of generic distribution system and this technique have been used to evaluate the basic reliability indices of Egypt's second research reactor (ETRR-2) electrical distribution network. the alternative system configurations are then studied to evaluate their impact on service reliability. the proposed MCS approach considers both sustained and temporary outage. the temporary outage constitutes an important parameter in characterizing the system reliability indices for critical load point in distribution system. it is also consider the power quality impact on the reliability indices

  3. Quality of the Critical Incident Technique in practice: Interrater reliability and users' acceptance under real conditions

    Directory of Open Access Journals (Sweden)

    ANNA KOCH

    2009-03-01

    Full Text Available The Critical Incident Technique (CIT is a widely used task analysis method in personnel psychology. While studies on psychometric properties of the CIT so far primarily took into account relevance ratings of task-lists or attributes, and hence, only a smaller or adapted part of the CIT, little is known about the psychometric properties of the complete CIT in its most meaningful and fruitful way. Therefore, the aim of the present study was to assess interrater reliability and the participants’ view of the CIT under real conditions and especially to provide data for the key step of the CIT: the classification of behavior descriptions into requirements. Additionally, the cost-benefit-ratio and practicability were rated from the participants’ views as an important indicator for the acceptance of the task analysis approach in practice. Instructors of German Institutions for Statutory Accidents Insurance and Prevention as well as their supervisors took part in a job analysis with the CIT. Moderate interrater reliability for the relevance rating was found while the classification step yielded unexpectedly low coefficients for interrater reliability. The cost-benefit-ratio and practicability of the complete CIT were rated very positive. The results are discussed in relation to determinants that facilitate or impede the application of task analysis procedures.

  4. NONINVASIVE MEASUREMENT OF INTRARENAL BLOOD-FLOW DISTRIBUTION - KINETIC-MODEL OF RENAL I-123 HIPPURAN HANDLING

    NARCIS (Netherlands)

    JANSSEN, WMT; BEEKHUIS, H; DEBRUIN, R; DEJONG, PE; DEZEEUW, D

    1995-01-01

    A new technique for noninvasive measurement of intrarenal blood flow distribution over cortex and medulla is proposed. The tech nique involves analysis of I-123-labeled hippuran renography, according to a kinetic model that describes the flow of I-123- hippuran from the heart (input) through the

  5. A Noninvasive Imaging Approach to Understanding Speech Changes following Deep Brain Stimulation in Parkinson's Disease

    Science.gov (United States)

    Narayana, Shalini; Jacks, Adam; Robin, Donald A.; Poizner, Howard; Zhang, Wei; Franklin, Crystal; Liotti, Mario; Vogel, Deanie; Fox, Peter T.

    2009-01-01

    Purpose: To explore the use of noninvasive functional imaging and "virtual" lesion techniques to study the neural mechanisms underlying motor speech disorders in Parkinson's disease. Here, we report the use of positron emission tomography (PET) and transcranial magnetic stimulation (TMS) to explain exacerbated speech impairment following…

  6. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Conservation genetics of otters: Review about the use of non-invasive samples

    OpenAIRE

    Aristizábal Duque, Sandra L.; Orozco-Jiménez, Luz Y.; Zapata-Escobar, Carolina; Palacio-Baena, Jaime A.

    2018-01-01

    Abstract: Wild population management programs require determining some fundamental aspects for conservation, including population structure, flow between populations, evolutionary history and kinship, among others. Since sample collection from wild mammals for DNA extraction is a complex task, conservation genetics has developed non-invasive sampling techniques, which allow obtaining DNA without the need to capture individuals. For the genetic characterization of otter populations, stools are...

  8. Canis familiaris As a Model for Non-Invasive Comparative Neuroscience.

    Science.gov (United States)

    Bunford, Nóra; Andics, Attila; Kis, Anna; Miklósi, Ádám; Gácsi, Márta

    2017-07-01

    There is an ongoing need to improve animal models for investigating human behavior and its biological underpinnings. The domestic dog (Canis familiaris) is a promising model in cognitive neuroscience. However, before it can contribute to advances in this field in a comparative, reliable, and valid manner, several methodological issues warrant attention. We review recent non-invasive canine neuroscience studies, primarily focusing on (i) variability among dogs and between dogs and humans in cranial characteristics, and (ii) generalizability across dog and dog-human studies. We argue not for methodological uniformity but for functional comparability between methods, experimental designs, and neural responses. We conclude that the dog may become an innovative and unique model in comparative neuroscience, complementing more traditional models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  10. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, J H; Aldershvile, J

    1988-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution or ...... are reliable. The discrepancy between the non-invasive and invasive LVEF values raises the question, whether LVEF is overestimated by cardioangiography or underestimated by radionuclide cardiography....

  11. Establishing the Appropriate Attributes in Current Human Reliability Assessment Techniques for Nuclear Safety

    International Nuclear Information System (INIS)

    Bowie, Jane; Munley, Gary; Dang, Vinh; Wreathall, John; Bye, Andreas; Cooper, Susan; Marble, Julie; Peters, Sean; Xing, Jing; Fauchille, Veronique; Fiset, Jean Yves; Haage, Monica; Johanson, Gunnar; Jung, Won Dae; Kim, Jaewhan; Lee, Seung Jung; Kubicek, Jan; Le Bot, Pierre; Pesme, Helene; Preischl, Wolfgang; Salway, Alice; Amri, Abdallah; Lamarre, Greg; White, Andrew; )

    2015-03-01

    This report presents the results of a joint task of the Working Groups on Risk Assessment (WGRISK) and on Human and Organisational Factors (WGHOF) of the OECD/NEA CSNI, to identify desirable attributes of Human Reliability Assessment (HRA) methods, and to evaluate a range of HRA methods used in OECD member countries against those attributes. The purpose of this project is to provide information that will support regulators and operators of nuclear facilities when making judgements about the appropriateness of HRA methods for conducting assessments in support of Probabilistic Safety Assessments (PSA). The task was performed by an international team of Human Factors, HRA and PSA experts from a broad range of OECD member countries. As in other reviews of HRA methods, the study did not set out to recommend or promote the use of any particular HRA method. Rather the study aims to identify the strengths and limitations of commonly used and developing methods to aid those responsible for production of HRAs in selecting appropriate tools for specific HRA applications. The study also aims to assist regulators when making judgements on the appropriateness of the application of an HRA technique within nuclear-related probabilistic safety assessments. The report is aimed at practitioners in the field of human reliability assessment, human factors, and risk assessment more generally

  12. A semi-automatic technique for measurement of arterial wall from black blood MRI

    International Nuclear Information System (INIS)

    Ladak, Hanif M.; Thomas, Jonathan B.; Mitchell, J. Ross; Rutt, Brian K.; Steinman, David A.

    2001-01-01

    Black blood magnetic resonance imaging (MRI) has become a popular technique for imaging the artery wall in vivo. Its noninvasiveness and high resolution make it ideal for studying the progression of early atherosclerosis in normal volunteers or asymptomatic patients with mild disease. However, the operator variability inherent in the manual measurement of vessel wall area from MR images hinders the reliable detection of relatively small changes in the artery wall over time. In this paper we present a semi-automatic method for segmenting the inner and outer boundary of the artery wall, and evaluate its operator variability using analysis of variance (ANOVA). In our approach, a discrete dynamic contour is approximately initialized by an operator, deformed to the inner boundary, dilated, and then deformed to the outer boundary. A group of four operators performed repeated measurements on 12 images from normal human subjects using both our semi-automatic technique and a manual approach. Results from the ANOVA indicate that the inter-operator standard error of measurement (SEM) of total wall area decreased from 3.254 mm2 (manual) to 1.293 mm2 (semi-automatic), and the intra-operator SEM decreased from 3.005 mm2 to 0.958 mm2. Operator reliability coefficients increased from less than 69% to more than 91% (inter-operator) and 95% (intra-operator). The minimum detectable change in wall area improved from more than 8.32 mm2 (intra-operator, manual) to less than 3.59 mm2 (inter-operator, semi-automatic), suggesting that it is better to have multiple operators measure wall area with our semi-automatic technique than to have a single operator make repeated measurements manually. Similar improvements in wall thickness and lumen radius measurements were also recorded. Since the semi-automatic technique has effectively ruled out the effect of the operator on these measurements, it may be possible to use such techniques to expand prospective studies of atherogenesis to multiple

  13. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  14. NASA reliability preferred practices for design and test

    Science.gov (United States)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  15. Human reliability assessment and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Embrey, D.E.; Lucas, D.A.

    1989-01-01

    Human reliability assessment (HRA) is used within Probabilistic Risk Assessment (PRA) to identify the human errors (both omission and commission) which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. There exist a variey of HRA techniques and the selection of an appropriate one is often difficult. This paper reviews a number of available HRA techniques and discusses their strengths and weaknesses. The techniques reviewed include: decompositional methods, time-reliability curves and systematic expert judgement techniques. (orig.)

  16. Non-invasive in situ Examination of Colour Changes of Blue Paints in Danish Golden Age Paintings

    DEFF Research Database (Denmark)

    Buti, David; Vila, Anna; Filtenborg, Troels Folke

    A non-invasive study of some paintings containing areas of paint with a Prussian blue component has been conducted at the Statens Museum for Kunst. The in situ campaign has been carried out with a range of different spectroscopic portable techniques, provided by the MOLAB transnational access...... of the frame. Prussian blue is a hydrated iron(III) hexacyanoferrate(II) complex of variable composition depending on the manufacturing [1]. It has been reported that the method of preparation, as well as the use of white pigments or extenders to dilute the blue pigment, may be a factor contributing to its......, the current in situ campaign aimed at mapping and understanding the degradation of Prussian blue and lead white admixtures using non-invasive portable techniques. The presence of Prussian blue was detected, with the MOLAB analytical means, in all the exposed, faded areas, although the colour had turned pale...

  17. Trade-Offs between Energy Saving and Reliability in Low Duty Cycle Wireless Sensor Networks Using a Packet Splitting Forwarding Technique

    Directory of Open Access Journals (Sweden)

    Leonardi Alessandro

    2010-01-01

    Full Text Available One of the challenging topics and design constraints in Wireless Sensor Networks (WSNs is the reduction of energy consumption because, in most application scenarios, replacement of power resources in sensor devices might be unfeasible. In order to minimize the power consumption, some nodes can be put to sleep during idle times and wake up only when needed. Although it seems the best way to limit the consumption of energy, other performance parameters such as network reliability have to be considered. In a recent paper, we introduced a new forwarding algorithm for WSNs based on a simple splitting procedure able to increase the network lifetime. The forwarding technique is based on the Chinese Remainder Theorem and exhibits very good results in terms of energy efficiency and complexity. In this paper, we intend to investigate a trade-off between energy efficiency and reliability of the proposed forwarding scheme when duty-cycling techniques are considered too.

  18. Clinical role of non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David

    2017-01-07

    Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis ( i.e ., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field.

  19. Noninvasive imaging of breast cancer

    International Nuclear Information System (INIS)

    Medarova, Z.

    2009-01-01

    With the development of molecularly targeted cancer therapies, it is highly advantageous to be able to determine their efficacy, to improve overall patient survival. Non-invasive imaging techniques are currently available for visualizing different pathological conditions of the human body, but their use for cancer monitoring is limited due to the lack of tumor-specific imaging probes. This review will attempt to summarize the current clinical diagnostic approaches for breast cancer detection, staging, and therapy assessment. In addition, I will present some novel concepts from the field of molecular imaging that form the basis of some of our research. We believe that this general imaging strategy has the potential of significantly advancing our ability to diagnose breast cancer at the earliest stages of the pathology, before any overt clinical symptoms have developed, as well as to better direct the development of molecularly-targeted individualized therapy protocols.

  20. Masimo Rad-57 Pulse CO-Oximeter for noninvasive carboxyhemoglobin measurement.

    Science.gov (United States)

    Suner, Selim; McMurdy, John

    2009-03-01

    Noninvasive methods of body fluid chemical measurement have been expanding. New technologies are enabling the quantification of different compounds in the blood and interstitial tissues. One example of this is the pulse oximeter, which has facilitated the measurement of oxyhemoglobin rapidly and reliably without the requirement of blood-draws. The Masimo Rad-57 Pulse CO-Oximeter expanded the capabilities of pulse-oximetry to include measurements of carboxyhemoglobin and methemoglobin. This innovation has revolutionized the paradigm for detection of patients with CO poisoning. Previously, clinicians relied on historical information and patient signs and symptoms pointing to the possibility of CO exposure or toxicity. Only then would a blood test be ordered to measure carboxyhemoglobin levels. Since the presentation of CO poisoning is nonspecific and overlaps with many other conditions, and since the presence of environmental CO is often unknown, the detection of this condition was only possible in cases where the presence of CO was obvious or where the symptoms were severe. We now know, from studies conducted using the Rad-57, the only US FDA-approved device for noninvasive measurement of SpCO, that there are a significant number of patients who experience CO exposure but are nonsymptomatic. The Rad-57 provides a clinical justification for screening in the healthcare setting to identify patients with significant CO exposure who would otherwise be undetected.

  1. Use of ECG and Other Simple Non-Invasive Tools to Assess Pulmonary Hypertension.

    Directory of Open Access Journals (Sweden)

    Gabor Kovacs

    Full Text Available There is a broad consensus that pulmonary hypertension (PH is to be diagnosed by right heart catheterization (RHC and that the most important non-invasive tool is echocardiography. However, the role of simple non-invasive tools in the work-up of PH is not clearly defined. We hypothesized that the use of simple non-invasive techniques may help to guide important decisions in the diagnostics of pulmonary hypertension.We aimed to develop an algorithm with the use of simple, non-invasive tools in order to identify patients with very high or very low likelihood of PH.We retrospectively analyzed all consecutive patients undergoing RHC between 2005 and 2010 in our center and performed logistic regression of simple non-invasive parameters regarding detection and exclusion of PH and derived a two-step algorithm. In a prospective study we evaluated this algorithm between 2011 and 2013.The retrospective cohort consisted of n = 394 patients of which 49% presented with PH. Right axis deviation in the ECG was present in 90/394 patients and had a positive predictive value (PPV of 93% for PH. The combination of non-right axis deviation, N-terminal pro brain natriuretic peptide (NT-proBNP<333pg/ml, arterial oxygen saturation (SO2≥95.5% and WHO functional class I-II was present in 69/394 patients and excluded PH with a negative predictive value (NPV of 96%. The prospective study confirmed these results in a cohort of n = 168 patients (PPV:92%, NPV:97%. Taken together, simple non-invasive tools allowed a prediction regarding the presence or absence of PH in 42% of patients with suspected PH.ECG, NT-proBNP, SO2 and WHO functional class may predict the presence or absence of PH in almost half of the patients with suspected PH, suggesting an important role for these variables in the work-up of patients at risk for PH.NCT01607502.

  2. Addressing national priorities through nuclear technology: Application of stable isotope techniques in evaluating nutritional intervention programs

    International Nuclear Information System (INIS)

    Mwangi, C.; Ndemwa, P.

    2008-01-01

    The concept is a new concept in Kenya that need driven technology. A paradigm shift from the conventional methods of measuring breast milk intake by means of weighing infants before and after feeding. A validation tool against anthropometrical measures of body fat through body density and skin-fold measurements. A reliable, accurate and non-invasive tool for monitoring lean body mass changes in clinical assessments.Isotopes Techniques in Body composition assessment.Technique-based Parameters of efficacy and/or effect are: Isotope (deuterium) dose given orally to subject (about 30 grams),Saliva (or urine) samples collected after 3-4 hrs, Concentration of isotope in saliva is measured using Fourier Transformed Infra-red Spectrophotometer (FTIR), Concentration gives the Total Body Water (TBW) component in the body, TBW = 73% Fat Free Mass (FFM), Calculate FFM (kg) from equation and subtract from Total Body Weight (kg) to get value of Fat Mass (kg)

  3. Bayesian methods in reliability

    Science.gov (United States)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  4. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  5. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices.

    Science.gov (United States)

    Martina, Jerson R; Westerhof, Berend E; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F M; de Mol, Bas A J M; Lahpor, Jaap R

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support. Noninvasive arterial pressure waveforms were recorded with Nexfin (BMEYE, Amsterdam, The Netherlands). First, these measurements were validated simultaneously with invasive arterial pressures in 29 intensive care unit patients. Next, the association between blood pressure responses and measures derived by echocardiography, including left ventricular end-diastolic dimensions (LVEDDs), left ventricular end-systolic dimensions (LVESDs), and left ventricular shortening fraction (LVSF) were determined during pump speed change procedures in 30 outpatients. Noninvasive arterial blood pressure waveforms by the Nexfin monitor slightly underestimated invasive measures during cf-LVAD support. Differences between noninvasive and invasive measures (mean ± SD) of systolic, diastolic, mean, and pulse pressures were -7.6 ± 5.8, -7.0 ± 5.2, -6.9 ± 5.1, and -0.6 ± 4.5 mm Hg, respectively (all blood pressure responses did not correlate with LVEDD, LVESD, or LVSF, while LVSF correlated weakly with both pulse pressure (r = 0.24; p = 0.005) and (dP(art)/dt)max (r = 0.25; p = 0.004). The dicrotic notch in the pressure waveform was a better predictor of aortic valve opening (area under the curve [AUC] = 0.87) than pulse pressure (AUC = 0.64) and (dP(art)/dt)max (AUC = 0.61). Patients with partial support rather than full support at 9,000 rpm had a significant change in systolic pressure, pulse pressure, and (dP(art)/dt)max during ramp studies, while echocardiographic measures did not change. Blood pressure measurements by Nexfin were reliable and may thereby act as a compliment to the assessment of the cf-LVAD patient.

  6. Human reliability assessors guide: an overview

    International Nuclear Information System (INIS)

    Humphreys, P.

    1988-01-01

    The Human Reliability Assessors Guide 1 provides a review of techniques currently available for the quantification of Human Error Probabilities. The Guide has two main objectives. The first is to provide a clear and comprehensive description of eight major techniques which can be used to assess human reliability. This is supplemented by case studies taken from practical applications of each technique to industrial problems. The second objective is to provide practical guidelines for the selection of techniques. The selection process is aided by reference to a set of criteria against which each of the eight techniques have been evaluated. Utilising the criteria and critiques, a selection method is presented. This is designed to assist the potential user in choosing the technique, or combination of techniques, most suited to answering the users requirements. For each of the eight selected techniques, a summary of the origins of the technique is provided, together with a method description, detailed case studies, abstracted case studies and supporting references. (author)

  7. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    Science.gov (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  8. Electromyography data for non-invasive naturally-controlled robotic hand prostheses.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.

  9. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  10. Assessment of the reliability of ultrasonic inspection methods

    International Nuclear Information System (INIS)

    Haines, N.F.; Langston, D.B.; Green, A.J.; Wilson, R.

    1982-01-01

    The reliability of NDT techniques has remained an open question for many years. A reliable technique may be defined as one that, when rigorously applied by a number of inspection teams, consistently finds then correctly sizes all defects of concern. In this paper we report an assessment of the reliability of defect detection by manual ultrasonic methods applied to the inspection of thick section pressure vessel weldments. Initially we consider the available data relating to the inherent physical capabilities of ultrasonic techniques to detect cracks in weldment and then, independently, we assess the likely variability in team to team performance when several teams are asked to follow the same specified test procedure. The two aspects of 'capability' and 'variability' are brought together to provide quantitative estimates of the overall reliability of ultrasonic inspection of thick section pressure vessel weldments based on currently existing data. The final section of the paper considers current research programmes on reliability and presents a view on how these will help to further improve NDT reliability. (author)

  11. Integration of nondestructive examination reliability and fracture mechanics

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bates, D.J.; Charlot, L.A.

    1985-01-01

    The primary pressure boundaries (pressure vessels and piping) of nuclear power plants are in-service inspected (ISI) according to the rules of ASME Boiler and Pressure Vessel Code, Section XI. Ultrasonic techniques are normally used for these inspections, which are periodically performed on a sampling of welds. The Integration of Nondestructive Examination (NDE) Reliability and Fracture Mechanics (FM) Program at Pacific Northwest Laboratory was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: 1) determine the reliability of ultrasonic ISI performed on commercial light-water reactor primary systems; 2) using probabilistic FM analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability; 3) evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques; and 4) based on material properties, service conditions, and NDE uncertainties, formulate recommended revisions to ASME Code, Section XI, and Regulatory Requirements needed to ensure suitably low failure probabilities

  12. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  13. Current status and future of non-invasive studies of human brain functions

    International Nuclear Information System (INIS)

    Shibasaki, Hiroshi

    2008-01-01

    Currently available non-invasive studies are divided into two groups: electrophysiological studies and functional neuroimaging based on the hemodynamic principle. The former includes electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation, and the latter includes functional MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT) and near-infrared spectroscopy. The hemodynamic response has been shown to be correlated with neuronal electrical activity, especially with synaptic activity rather than spiking activity, within a certain range. Since each technique has advantage and disadvantage, it is important to apply the most appropriate technique to solve each specific question. The combined use of more than one techniques of different principles, if possible, provides data of higher spatial and temporal resolution. Functional connectivity among different brain areas can be studied by using some of these techniques either alone or in combination. (author)

  14. Noninvasive Assessment of Gastric Emptying by Near-Infrared Fluorescence Reflectance Imaging in Mice: Pharmacological Validation with Tegaserod, Cisapride, and Clonidine

    Directory of Open Access Journals (Sweden)

    Hans-Ulrich Gremlich

    2004-10-01

    Full Text Available Noninvasive near-infrared fluorescence reflectance imaging (FRI is an in vivo technique to assess physiological and molecular processes in the intact organism. Here we describe a method to assess gastric emptying in mice. TentaGel™ beads with covalently bound cyanine dye (Cy5.5 conjugates as fluorescent probe were administered by oral gavage. The amount of intragastric beads/label was derived from the fluorescence signal intensity measured in a region of interest corresponding to the mouse stomach. The FRI signal intensity decreased as a function of time reflecting gastric emptying. In control mice, the gastric half-emptying time was in agreement with literature data. Pharmacological modulation of gastric motility allowed the evaluation of the sensitivity of the FRI-based method. Gastric emptying was either stimulated or inhibited by treatment with the 5-HT4 receptor agonists tegaserod (Zelnorm® and cisapride or the α2-receptor agonist clonidine, respectively. Tegaserod and cisapride dose-dependently accelerated gastric emptying. In contrast, clonidine dose-dependently delayed gastric emptying. In conclusion, FRI using fluorescently labeled beads allows the reliable determination of gastric emptying as well as the assessment of pharmacological interventions. The technique thus offers the potential to characterize molecular targets and pathways involved in physiological regulation and pharmacological modulation of gastric emptying.

  15. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  16. Modelling noninvasively measured cerebral signals during a hypoxemia challenge: steps towards individualised modelling.

    Directory of Open Access Journals (Sweden)

    Beth Jelfs

    Full Text Available Noninvasive approaches to measuring cerebral circulation and metabolism are crucial to furthering our understanding of brain function. These approaches also have considerable potential for clinical use "at the bedside". However, a highly nontrivial task and precondition if such methods are to be used routinely is the robust physiological interpretation of the data. In this paper, we explore the ability of a previously developed model of brain circulation and metabolism to explain and predict quantitatively the responses of physiological signals. The five signals all noninvasively-measured during hypoxemia in healthy volunteers include four signals measured using near-infrared spectroscopy along with middle cerebral artery blood flow measured using transcranial Doppler flowmetry. We show that optimising the model using partial data from an individual can increase its predictive power thus aiding the interpretation of NIRS signals in individuals. At the same time such optimisation can also help refine model parametrisation and provide confidence intervals on model parameters. Discrepancies between model and data which persist despite model optimisation are used to flag up important questions concerning the underlying physiology, and the reliability and physiological meaning of the signals.

  17. Noninvasive vaccination against infectious diseases.

    Science.gov (United States)

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  18. Extraction of the fetal ECG in noninvasive recordings by signal decompositions

    International Nuclear Information System (INIS)

    Christov, I; Simova, I; Abächerli, R

    2014-01-01

    No signal processing technique has been able to reliably deliver an undistorted fetal electrocardiographic (fECG) signal from electrodes placed on the maternal abdomen because of the low signal-to-noise ratio of the fECG recorded from the maternal body surface. As a result, this led to increased rates of Caesarean deliveries of healthy infants. In an attempt to solve the problem, Physionet/Computing in Cardiology announced the 2013 Challenge: noninvasive fetal ECG. We are suggesting a method for cancellation of the maternal ECG consisting of: maternal QRS detection, heart rate dependant P-QRS-T interval selection, location of the fiducial points inside this interval for best matching by cross correlation, superimposition of the intervals, calculation of the mean signal of the P-QRS-T interval, and sequential subtraction of the mean signal from the whole fECG recording. Three signal decomposition methods were further applied in order to enhance the fetal QRSs (fQRS): principal component analysis, root-mean-square and Hotelling’s T-squared. A combined lead of all decompositions was synthesized and fQRS detection was performed on it. The current research differs from the Challenge in that it uses three signal decomposition methods to enhance the fECG. The new results for 97 recordings of test set B are: 305.657 for Event 4: Fetal heart rate (FHR) and 23.062 for Event 5: Fetal RR interval (FRR). (paper)

  19. Non-invasive PGAA, PIXE and ToF-ND analyses on Hungarian Bronze Age defensive armour

    International Nuclear Information System (INIS)

    Marianne Moedlinger; Imre Kovacs; Zoltan Szoekefalvi-Nagy; Ziad El Morr

    2014-01-01

    Non-invasive, archaeometric analyses on selected Hungarian Bronze Age defensive armour is presented here: three greaves, three helmets two shields as well as one vessel fragment were analysed with PIXE, PGAA and TOF-ND. The detected alloy elemental and phase composition as well as its intergranular or spatial concentration distribution reveals important insights into the alloys used and the manufacturing techniques applied c. 1200-950 BC, and allows to reconstruct the production techniques used during the Late Bronze Age. (author)

  20. Reliability of cervical lordosis measurement techniques on long-cassette radiographs.

    Science.gov (United States)

    Janusz, Piotr; Tyrakowski, Marcin; Yu, Hailong; Siemionow, Kris

    2016-11-01

    Lateral radiographs are commonly used to assess cervical sagittal alignment. Three assessment methods have been described and are commonly utilized in clinical practice. These methods are described for perfect lateral cervical radiographs, however in everyday practice radiograph quality varies. The aim of this study was to compare the reliability and reproducibility of 3 cervical lordosis (CL) measurement methods. Forty-four standing lateral radiographs were randomly chosen from a lateral long-cassette radiograph database. Measurements of CL were performed with: Cobb method C2-C7 (CM), C2-C7 posterior tangent method (PTM), sum of posterior tangent method for each segment (SPTM). Three independent orthopaedic surgeons measured CL using the three methods on 44 lateral radiographs. One researcher used the three methods to measured CL three times at 4-week time intervals. Agreement between the methods as well as their intra- and interobserver reliability were tested and quantified by intraclass correlation coefficient (ICC) and median error for a single measurement (SEM). ICC of 0.75 or more reflected an excellent agreement/reliability. The results were compared with repeated ANOVA test, with p  0.05). All three methods appeared to be highly reliable. Although, high agreement between all measurement methods was shown, we do not recommend using Cobb measurement method interchangeably with PTM or SPTM within a single study as this could lead to error, whereas, such a comparison between tangent methods can be considered.

  1. Pioglitazone modulates vascular inflammation in atherosclerotic rabbits : noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging

    NARCIS (Netherlands)

    Vucic, E.; Dickson, S.D.; Calcagno, C.; Rudd, J.H.F.; Moshier, E.; Hayashi, K.; Mounessa, J.S.; Roytman, M.; Moon, M.J.; Lin, J.; Tsimikas, S.; Fisher, E.A.; Nicolay, K.; Fuster, V.; Fayad, Z.A.

    2011-01-01

    Objectives We sought to determine the antiatherosclerotic properties of pioglitazone using multimethod noninvasive imaging techniques. Background Inflammation is an essential component of vulnerable or high-risk atheromas. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist,

  2. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty

    2014-01-01

    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  3. Non-Invasive Study of Nerve Fibres using Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, A. R.; Brazhe, N. A.; Rodionova, N. N.

    2008-01-01

    This paper presents the results of a laser interference microscopy study of the morphology and dynamical properties of myelinated nerve fibres. We describe the principles of operation of the phase-modulated laser interference microscope and show how this novel technique allows us to obtain...... information non-invasively about the internal structure of different regions of a nerve fibre. We also analyse the temporal variations in the internal optical properties in order to detect the rhythmic activity in the nerve fibre at different time scales and to shed light on the underlying biological...

  4. An Efficient, Simple, and Noninvasive Procedure for Genotyping Aquatic and Nonaquatic Laboratory Animals.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Roediger, Julia; Shi, Yun-Bo; Schech, Joseph Mat

    2017-09-01

    Various animal models are indispensible in biomedical research. Increasing awareness and regulations have prompted the adaptation of more humane approaches in the use of laboratory animals. With the development of easier and faster methodologies to generate genetically altered animals, convenient and humane methods to genotype these animals are important for research involving such animals. Here, we report skin swabbing as a simple and noninvasive method for extracting genomic DNA from mice and frogs for genotyping. We show that this method is highly reliable and suitable for both immature and adult animals. Our approach allows a simpler and more humane approach for genotyping vertebrate animals.

  5. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  6. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  7. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.

    2016-07-26

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  8. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  9. Reliability of a two-wavelength autofluorescence technique by Heidelberg Spectralis to measure macular pigment optical density in Asian subjects.

    Science.gov (United States)

    Obana, Akira; Gellermann, Werner; Gohto, Yuko; Seto, Takahiko; Sasano, Hiroyuki; Tanito, Masaki; Okazaki, Shigetoshi

    2018-03-01

    This study evaluates the accuracy of an objective two-wavelength fundus autofluorescence technique for the purpose of measuring the macular pigment optical density (MPOD) in Asian pigmented eyes. Potential differences between MPOD values obtained via autofluorescence technique and subjective heterochromatic photometry (HFP) were examined. Inter-examiner reproducibility between three examiners and test-retest reliability over five time points were also explored. Subjects were 27 healthy Japanese volunteers aged 24 to 58 (mean ± standard deviation, 40.2 ± 9.0) years. An MPOD module of the Spectralis MultiColor instrument configuration (Spectralis-MP) was used for the autofluorescence technique, and a Macular Metrics Densitometer (MM) was used for HFP. The mean MPOD values at 0.25° and 0.5° eccentricities using the Spectralis-MP were 0.51 ± 0.12 and 0.48 ± 0.13, respectively. In comparison, the MM based values were 0.72 ± 0.23 and 0.61 ± 0.25, respectively. High correlations between the Spectralis-MP and MM instrument were found (Pearson's correlation coefficients of 0.73 and 0.87 at 0.25° and 0.5° eccentricities, respectively), but there was a systematic bias: the MPOD values by MM method were significantly higher than those by Spectralis-MP at 0.25° eccentricity. High inter-examiner reproducibility and test-retest reliability were found for MM measurements at 0.5° eccentricity, but not at 0.25°. The Spectralis-MP showed less inter-examiner and test-retest variability than the MM instrument at 0.25° and 0.5° eccentricities. We conclude that the Spectralis-MP, given its high agreement with the HFP method and due to its higher reproducibility and reliability, is well suited for clinical measurements of MPOD levels in Asian pigmented eyes. Copyright © 2018. Published by Elsevier Ltd.

  10. Non-invasive nuclear device for communicating pressure inside a body to the exterior thereof

    International Nuclear Information System (INIS)

    Fleischmann, L.W.; Meyer, G.A.; Hittman, F.; Lyon, W.C.; Hayes, W.H. Jr.

    1979-01-01

    The need for a non-invasive technique for measuring the pressure in body cavities of animals or humans is recognized as highly desirable for continuous or intermittent monitoring of body conditions. The non-invasive nuclear device of the present invention is fully implantable and is fully capable of communicating pressure inside a body to the exterior to allow readout non-invasively. In its preferred form, the invention includes a housing for subcutaneous implantation with the radioactive source. An urging means such as a bellows is provided in the housing interior. The fluid pressure from a fluid pressure sensing device within the body is transmitted to the housing interior by means of a pressure-limiting fluid through a conduit. This causes the radioactive source to move against the force out of the initial or repose shielded relationship causing a proportional increase in pressure in the body portion being monitored. The radioactive output from the radioactive source corresponds to the magnitude of the pressure within the body. The housing may be securely mounted on a supporting portion of the body and the mounting serves as a radiation shield for the body. (JTA)

  11. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  12. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  13. Noninvasive Methods to Evaluate Bladder Obstruction in Men

    Directory of Open Access Journals (Sweden)

    Dean S. Elterman

    2013-01-01

    Full Text Available Lower urinary tract symptoms (LUTS caused by benign prostatic hyperplasia (BPH commonly affect older men. Fifty percent of men in their sixties and 80% of men in their nineties will be affected. Many of these men will seek care for their bothersome symptoms and decreased quality of life. There is a poor association between LUTS and objective measures such as post void residual, voided volumes, or maximal flow. Pressure flow studies are considered the gold standard for detecting bladder outlet obstruction. These studies tend to be cumbersome, expensive, and have exposure to ionizing radiation. There are several techniques which may offer noninvasive methods of detecting bladder outlet obstruction (BOO in men.

  14. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  15. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  16. Reliability Estimation Based Upon Test Plan Results

    National Research Council Canada - National Science Library

    Read, Robert

    1997-01-01

    The report contains a brief summary of aspects of the Maximus reliability point and interval estimation technique as it has been applied to the reliability of a device whose surveillance tests contain...

  17. Evaluation of spectral correction techniques for fluorescence measurements on pigmented lesions in vivo

    NARCIS (Netherlands)

    Sterenborg, H. J.; Saarnak, A. E.; Frank, R.; Motamedi, M.

    1996-01-01

    Recently, the use of optical spectroscopy for non-invasive diagnosis of malignant melanoma has been suggested. The reliability of such optical measurements can be seriously compromised by spatial variations in the optical properties of the tissue that are not related to malignancy. In the present

  18. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  19. Comparison of survey techniques on detection of northern flying squirrels

    Science.gov (United States)

    Diggins, Corinne A.; Gilley, L. Michelle; Kelly, Christine A.; Ford, W. Mark

    2016-01-01

    The ability to detect a species is central to the success of monitoring for conservation and management purposes, especially if the species is rare or endangered. Traditional methods, such as live capture, can be labor-intensive, invasive, and produce low detection rates. Technological advances and new approaches provide opportunities to more effectively survey for species both in terms of accuracy and efficiency than previous methods. We conducted a pilot comparison study of a traditional technique (live-trapping) and 2 novel noninvasive techniques (camera-trapping and ultrasonic acoustic surveys) on detection rates of the federally endangered Carolina northern flying squirrel (Glaucomys sabrinus coloratus) in occupied habitat within the Roan Mountain Highlands of North Carolina, USA. In 2015, we established 3 5 × 5 live-trapping grids (6.5 ha) with 4 camera traps and 4 acoustic detectors systematically embedded in each grid. All 3 techniques were used simultaneously during 2 4-day survey periods. We compared techniques by assessing probability of detection (POD), latency to detection (LTD; i.e., no. of survey nights until initial detection), and survey effort. Acoustics had the greatest POD (0.37 ± 0.06 SE), followed by camera traps (0.30 ± 0.06) and live traps (0.01 ± 0.005). Acoustics had a lower LTD than camera traps (P = 0.017), where average LTD was 1.5 nights for acoustics and 3.25 nights for camera traps. Total field effort was greatest with live traps (111.9 hr) followed by acoustics (8.4 hr) and camera traps (9.6 hr), although processing and examination for data of noninvasive techniques made overall effort similar among the 3 methods. This pilot study demonstrated that both noninvasive methods were better rapid-assessment detection techniques for flying squirrels than live traps. However, determining seasonal effects between survey techniques and further development of protocols for both noninvasive techniques is

  20. Non-Invasive Assessment of Dairy Products Using SpatiallyResolved Diffuse Reflectance Spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Kamran, Faisal; Dahl, Anders Bjorholm

    2015-01-01

    of commercially available milk and yogurt products with three different levels of fat content are measured. These constitute a relevant range of products at a dairy plant. The measured reduced scattering properties of the samples are presented and show a clear discrimination between levels of fat contents as well...... as fermentation. The presented measurement technique and method of analysis is thus suitable for a rapid, noncontact, and non-invasive inspection that can deduce physically interpretable properties....

  1. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    Science.gov (United States)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage

  2. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    International Nuclear Information System (INIS)

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Jenkins, Bruce G.; Isacson, Ole

    2005-01-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders

  3. PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques

    International Nuclear Information System (INIS)

    Somer, Edward J.R.; Marsden, Paul K.; Benatar, Nigel A.; O'Doherty, Michael J.; Goodey, Joanne; Smith, Michael A.

    2003-01-01

    The fusion of functional positron emission tomography (PET) data with anatomical magnetic resonance (MR) or computed tomography images, using a variety of interactive and automated techniques, is becoming commonplace, with the technique of choice dependent on the specific application. The case of PET-MR image fusion in soft tissue is complicated by a lack of conspicuous anatomical features and deviation from the rigid-body model. Here we compare a point-based external marker technique with an automated mutual information algorithm and discuss the practicality, reliability and accuracy of each when applied to the study of soft tissue sarcoma. Ten subjects with suspected sarcoma in the knee, thigh, groin, flank or back underwent MR and PET scanning after the attachment of nine external fiducial markers. In the assessment of the point-based technique, three error measures were considered: fiducial localisation error (FLE), fiducial registration error (FRE) and target registration error (TRE). FLE, which represents the accuracy with which the fiducial points can be located, is related to the FRE minimised by the registration algorithm. The registration accuracy is best characterised by the TRE, which is the distance between corresponding points in each image space after registration. In the absence of salient features within the target volume, the TRE can be measured at fiducials excluded from the registration process. To assess the mutual information technique, PET data, acquired after physically removing the markers, were reconstructed in a variety of ways and registered with MR. Having applied the transform suggested by the algorithm to the PET scan acquired before the markers were removed, the residual distance between PET and MR marker-pairs could be measured. The manual point-based technique yielded the best results (RMS TRE =8.3 mm, max =22.4 mm, min =1.7 mm), performing better than the automated algorithm (RMS TRE =20.0 mm, max =30.5 mm, min =7.7 mm) when

  4. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  5. A soft-computing methodology for noninvasive time-spatial temperature estimation.

    Science.gov (United States)

    Teixeira, César A; Ruano, Maria Graça; Ruano, António E; Pereira, Wagner C A

    2008-02-01

    The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 degrees C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 degrees C, being "elected" as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.

  6. Treatment of Neck Pain: Noninvasive Interventions

    Science.gov (United States)

    Carragee, Eugene J.; van der Velde, Gabrielle; Carroll, Linda J.; Nordin, Margareta; Guzman, Jaime; Peloso, Paul M.; Holm, Lena W.; Côté, Pierre; Hogg-Johnson, Sheilah; Cassidy, J. David; Haldeman, Scott

    2008-01-01

    Study Design. Best evidence synthesis. Objective. To identify, critically appraise, and synthesize literature from 1980 through 2006 on noninvasive interventions for neck pain and its associated disorders. Summary of Background Data. No comprehensive systematic literature reviews have been published on interventions for neck pain and its associated disorders in the past decade. Methods. We systematically searched Medline and screened for relevance literature published from 1980 through 2006 on the use, effectiveness, and safety of noninvasive interventions for neck pain and associated disorders. Consensus decisions were made about the scientific merit of each article; those judged to have adequate internal validity were included in our best evidence synthesis. Results. Of the 359 invasive and noninvasive intervention articles deemed relevant, 170 (47%) were accepted as scientifically admissible, and 139 of these related to noninvasive interventions (including health care utilization, costs, and safety). For whiplash-associated disorders, there is evidence that educational videos, mobilization, and exercises appear more beneficial than usual care or physical modalities. For other neck pain, the evidence suggests that manual and supervised exercise interventions, low-level laser therapy, and perhaps acupuncture are more effective than no treatment, sham, or alternative interventions; however, none of the active treatments was clearly superior to any other in either the short-or long-term. For both whiplash-associated disorders and other neck pain without radicular symptoms, interventions that focused on regaining function as soon as possible are relatively more effective than interventions that do not have such a focus. Conclusion. Our best evidence synthesis suggests that therapies involving manual therapy and exercise are more effective than alternative strategies for patients with neck pain; this was also true of therapies which include educational interventions

  7. Reliability of Ultrasonographic Measurement of Cervical Multifidus Muscle Dimensions during Isometric Contraction of Neck Muscles

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri Arimi

    2012-07-01

    Full Text Available Background and Aim: Cervical multifidus is considered as one of the most important neck stabilizers. Weakness and muscular atrophy of this muscle were seen in patients with chronic neck pain. Ultrasonographic imaging is a non-invasive and feasible technique that commonly used to record such changes and measure muscle dimensions. Therefore, the aim of this study was to evaluate the reliability of ultrasonographic measurement of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles. Materials and Method: Ten subjects (5 patients with chronic neck pain and 5 healthy subjects were recruited in this study. Cervical multifidus muscle’s dimensions were measured at the level of forth cervical vertebrae. Ultrasonographic measurement of cervical multifidus muscle at rest, 50% and 100% of maximal voluntary contraction (MVC were performed by one examiner within 1 week interval. The dimensions of cervical multifidus muscle including cross-sectional area (CSA, anterior posterior dimension (APD, and lateral dimension (LD were measured. Intraclass correlation coefficients (ICC, standard error of measurement (SEM and minimal detectable change (MDC were computed for data analysis.Results: The between days reliability of maximum strength of neck muscles and multifidus muscle dimensions at rest, 50% and 100% of MVC of neck muscles were good to excellent (ICC=0.75-0.99.Conclusion: The results of this study showed that ultrasonographic measuring of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles at the level of C4 in females with chronic neck pain and healthy subjects is a reliable and repeatable method.

  8. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazunori, E-mail: kazokada@sfsu.edu [Department of Computer Science, San Francisco State University, San Francisco, California 94132 (United States); Rysavy, Steven [Biomedical and Health Informatics Program, University of Washington, Seattle, Washington 98195 (United States); Flores, Arturo [Computer Science and Engineering, University of California, San Diego, California 92093 (United States); Linguraru, Marius George [Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010 and Departments of Radiology and Pediatrics, George Washington University, Washington, DC 20037 (United States)

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  9. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    International Nuclear Information System (INIS)

    Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George

    2015-01-01

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions

  10. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans.

    Science.gov (United States)

    Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George

    2015-04-01

    This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon's state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon's conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  11. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  12. Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites

    Science.gov (United States)

    Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.

    2017-12-01

    How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.

  13. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment

    International Nuclear Information System (INIS)

    Mahato, Niladri K.; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-01-01

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T 1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T 1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4

  14. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment.

    Science.gov (United States)

    Mahato, Niladri K; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-05-18

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4

  15. A technical guide to tDCS, and related non-invasive brain stimulation tools

    Science.gov (United States)

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  16. Non-invasive physical treatments for chronic/recurrent headache.

    NARCIS (Netherlands)

    Bronfort, G.; Nilsson, N.; Haas, M.; Evans, R.; Goldsmith, C. H.; Assendelft, W. J.; Bouter, L. M.

    2004-01-01

    BACKGROUND: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. OBJECTIVES: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. SEARCH STRATEGY: We searched the

  17. Non-invasive physical treatments for chronic/recurrent headache

    NARCIS (Netherlands)

    Brønfort, Gert; Haas, Mitchell; Evans, Roni L.; Goldsmith, Charles H.; Assendelft, Willem J.J.; Bouter, Lex M.

    2014-01-01

    Background: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. Objectives: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. Search methods: We searched the

  18. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  19. Effectiveness and reliability of US inservice inspection techniques

    International Nuclear Information System (INIS)

    Doctor, S.R.; Becker, F.L.; Selby, G.P.

    1982-01-01

    The work presented is from an ongoing program directed toward measuring the effectiveness and reliability of inservice inspection (ISI) of light water reactor systems (primary piping and pressure vessel). Extensive round robin and parametric evaluations have been conducted in 10 in. Sch. 80 stainless steel as well as centrifugally cast stainless steel and clad ferritic main coolant pipe welds. Results from these measurements will be viewed in relationship to US regulations and ASME Section XI Code requirements. 6 figures

  20. Approach to reliability assessment

    International Nuclear Information System (INIS)

    Green, A.E.; Bourne, A.J.

    1975-01-01

    Experience has shown that reliability assessments can play an important role in the early design and subsequent operation of technological systems where reliability is at a premium. The approaches to and techniques for such assessments, which have been outlined in the paper, have been successfully applied in variety of applications ranging from individual equipments to large and complex systems. The general approach involves the logical and systematic establishment of the purpose, performance requirements and reliability criteria of systems. This is followed by an appraisal of likely system achievment based on the understanding of different types of variational behavior. A fundamental reliability model emerges from the correlation between the appropriate Q and H functions for performance requirement and achievement. This model may cover the complete spectrum of performance behavior in all the system dimensions

  1. An uncommon case of noninvasive ocular surface squamous ...

    African Journals Online (AJOL)

    We describe a rare case of noninvasive OSSN involving the entire cornea in a human immunodeficiency virus‑negative patient. The patient was successfully treated with no recurrence, after intact surgical removal, mitomycin C treatment, and cryotherapy. Keywords: Noninvasive ocular surface squamous neoplasia, ocular ...

  2. A Novel Diagnostic Aid for Detection of Intra-Abdominal Adhesions to the Anterior Abdominal Wall Using Dynamic Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Randall, D.; Fenner, J.; Gillott, R.; Broek, R.P.G ten; Strik, C.; Spencer, P.; Bardhan, K.D.

    2016-01-01

    Introduction. Abdominal adhesions can cause serious morbidity and complicate subsequent operations. Their diagnosis is often one of exclusion due to a lack of a reliable, non-invasive diagnostic technique. Development and testing of a candidate technique are described below. Method. During

  3. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  4. Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique.

    Science.gov (United States)

    Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun

    2018-03-03

    Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.

  5. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Non-Invasive in vivo Imaging in Small Animal Research

    Directory of Open Access Journals (Sweden)

    V. Koo

    2006-01-01

    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  7. Comparison of two non-invasive methods of microbial analysis in surgery practice: incision swabbing and the indirect imprint technique.

    Science.gov (United States)

    Chovanec, Zdenek; Veverkova, Lenka; Votava, Miroslav; Svoboda, Jiri; Jedlicka, Vaclav; Capov, Ivan

    2014-12-01

    A variety of methods exist to take samples from surgical site infections for cultivation; however, an unambiguous and suitable method has not yet been defined. The aim of our retrospective non-randomized study was to compare two non-invasive techniques of sampling material for microbiologic analysis in surgical practice. We compared bacteria cultured from samples obtained with the use of the swab technique, defined in our study as the gold standard, with the indirect imprint technique. A cotton-tipped swab (Copan, Brescia, Italy) was used; the imprints were taken using Whatman no. 4 filter paper (Macherey-Nagal, Duren, Germany) cut into 5×5 cm pieces placed on blood agar in a Petri dish. To culture the microorganisms in the microbiology laboratory, we used blood agar, UriSelect 4 medium (Bio-Rad, Marnes-la-Coquette, France), and a medium with sodium chloride (blood agar with salt). After careful debridement, a sample was taken from the incision surface by swab and subsequently the same area of the surface was imprinted onto filter paper. The samples were analyzed in the microbiology laboratory under standard safety precautions. The cultivation results of the two techniques were processed statistically using contingency tables and the McNemar test. Those samples that were simultaneously cultivation-positive by imprint and -negative by swabbing were processed in greater detail. Over the period between October 2008 and March 2013, 177 samples from 70 patients were analyzed. Sampling was carried out from 42 males and 28 females. One hundred forty-six samples were from incisions after operations (21 samples from six patients after operation on the thoracic cavity, 73 samples from 35 patients after operation on the abdominal cavity combined with the gastrointestinal tract, 52 samples from 19 patients with other surgical site infections not included above) and 31 samples from 11 patients with no post-operative infection. One patient had a sample taken both from a post

  8. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  9. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  10. Soft computing approach for reliability optimization: State-of-the-art survey

    International Nuclear Information System (INIS)

    Gen, Mitsuo; Yun, Young Su

    2006-01-01

    In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach

  11. Reliability evaluation of high-performance, low-power FinFET standard cells based on mixed RBB/FBB technique

    Science.gov (United States)

    Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole

    2017-04-01

    With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).

  12. A technical survey on issues of the quantitative evaluation of software reliability

    International Nuclear Information System (INIS)

    Park, J. K; Sung, T. Y.; Eom, H. S.; Jeong, H. S.; Park, J. H.; Kang, H. G.; Lee, K. Y.; Park, J. K.

    2000-04-01

    To develop the methodology for evaluating the software reliability included in digital instrumentation and control system (I and C), many kinds of methodologies/techniques that have been proposed from the software reliability engineering fuel are analyzed to identify the strong and week points of them. According to analysis results, methodologies/techniques that can be directly applied for the evaluation of the software reliability are not exist. Thus additional researches to combine the most appropriate methodologies/techniques from existing ones would be needed to evaluate the software reliability. (author)

  13. Evaluation of noninvasive tests for the preoperative staging of carcinoma of the esophagus: a prospective study

    International Nuclear Information System (INIS)

    Inculet, R.I.; Keller, S.M.; Dwyer, A.; Roth, J.A.

    1985-01-01

    A prospective study was undertaken to define the usefulness of conventional full-lung linear tomography, radionuclide liver plus spleen and bone scans, and thoracic and abdominal computed tomography for the preoperative staging of carcinoma of the esophagus. Thirty-three patients with carcinoma of the esophagus were studied. The computed tomographic (CT) scan of the thorax and upper abdomen was the single most accurate noninvasive study. With computed tomography, the relationship of the tumor to the tracheobronchial tree was the feature most useful in predicting local resectability. In all patients with the finding of tracheobronchial compression by the tumor, the tumor could not be resected completely. The predictive value of this CT finding in patients with locally unresectable tumor was high (0.83), indicating its usefulness in assessing unresectability. The CT finding of visible separation between tumor mass and tracheobronchial tree was present in 10 of 14 patients with locally resectable tumor (predictive value, 0.63). However, tumor abutting the tracheobronchial tree without compression was a poor predictor of unresectability (predictive value, 0.36). The radionuclide bone scan was the only other noninvasive study to demonstrate a metastasis not evident by CT scan. The combination of chest and abdominal CT scan, bone scan, and bronchoscopy before operation will accurately stage the majority of patients with esophageal cancer but no noninvasive test is of sufficient reliability to exclude patients from operative resection if otherwise indicated

  14. Noninvasive optoacoustic system for rapid diagnosis and management of circulatory shock

    Science.gov (United States)

    Petrov, Irene Y.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. N.; Seeton, Roger; Esenaliev, Rinat O.; Prough, Donald S.

    2013-03-01

    Circulatory shock can lead to death or severe complications, if not promptly diagnosed and effectively treated. Typically, diagnosis and management of circulatory shock are guided by blood pressure and heart rate. However, these variables have poor specificity, sensitivity, and predictive value. Early goal-directed therapy in septic shock patients, using central venous catheterization (CVC), reduced mortality from 46.5% to 30%. However, CVC is invasive and complication-prone. We proposed to use an optoacoustic technique for noninvasive, rapid assessment of peripheral and central venous oxygenation. In this work we used a medical grade optoacoustic system for noninvasive, ultrasound image-guided measurement of central and peripheral venous oxygenation. Venous oxygenation during shock declines more rapidly in the periphery than centrally. Ultrasound imaging of the axillary [peripheral] and internal jugular vein [central] was performed using the Vivid e (GE Healthcare). We built an optoacoustic interface incorporating an optoacoustic transducer and a standard ultrasound imaging probe. Central and peripheral venous oxygenations were measured continuously in healthy volunteers. To simulate shock-induced changes in central and peripheral oxygenation, we induced peripheral vasoconstriction in the upper extremity by using a cooling blanket. Central and peripheral venous oxygenations were measured before (baseline) and after cooling and after rewarming. During the entire experiment, central venous oxygenation was relatively stable, while peripheral venous oxygenation decreased by 5-10% due to cooling and recovered after rewarming. The obtained data indicate that noninvasive, optoacoustic measurements of central and peripheral venous oxygenation may be used for diagnosis and management of circulatory shock with high sensitivity and specificity.

  15. Analytical model for real time, noninvasive estimation of blood glucose level.

    Science.gov (United States)

    Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti

    2014-01-01

    The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.

  16. Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet.

    Science.gov (United States)

    Wedrowicz, Faye; Karsa, Mawar; Mosse, Jennifer; Hogan, Fiona E

    2013-07-01

    The koala, an Australian icon, has been added to the threatened species list. Rationale for the listing includes proposed declines in population size, threats to populations (e.g. disease) and loss and fragmentation of habitat. There is now an urgent need to obtain accurate data to assess the status of koala populations in Australia, to ensure the long-term viability of this species. Advances in genetic techniques have enabled DNA analysis to study and inform the management of wild populations; however, sampling of individual koalas is difficult in tall, often remote, eucalypt forest. The collection of faecal pellets (scats) from the forest floor presents an opportunistic sampling strategy, where DNA can be collected without capturing or even sighting an individual. Obtaining DNA via noninvasive sampling can be used to rapidly sample a large proportion of a population; however, DNA from noninvasively collected samples is often degraded. Factors influencing DNA quality and quantity include environmental exposure, diet and methods of sample collection, storage and DNA isolation. Reduced DNA quality and quantity can introduce genotyping errors and provide inaccurate DNA profiles, reducing confidence in the ability of such data to inform management/conservation strategies. Here, we present a protocol that produces a reliable individual koala genotype from a single faecal pellet and highlight the importance of optimizing DNA isolation and analysis for the species of interest. This method could readily be adapted for genetic studies of mammals other than koalas, particularly those whose diet contains high proportions of volatile materials that are likely to induce DNA damage. © 2013 John Wiley & Sons Ltd.

  17. Noninvasive wearable sensor for indirect glucometry.

    Science.gov (United States)

    Zilberstein, Gleb; Zilberstein, Roman; Maor, Uriel; Righetti, Pier Giorgio

    2018-04-02

    A noninvasive mini-sensor for blood glucose concentration assessment has been developed. The monitoring is performed by gently pressing a wrist or fingertip onto the chemochromic mixture coating a thin glass or polymer film positioned on the back panel of a smart watch with PPG/HRM (photoplethysmographic/heart rate monitoring sensor). The various chemochromic components measure the absolute values of the following metabolites present in the sweat: acetone, acetone beta-hydroxybutirate, aceto acetate, water, carbon dioxide, lactate anion, pyruvic acid, Na and K salts. Taken together, all these parameters give information about blood glucose concentration, calculated via multivariate analysis based on neural network algorithms built into the sensor. The Clarke Error Grid shows an excellent correlation between data measured by the standard invasive glucose analyser and the present noninvasive sensor, with all points aligned along a 45-degree diagonal and contained almost exclusively in sector A. Graphs measuring glucose levels five times a day (prior, during and after breakfast and prior, during and after lunch), for different individuals (males and females) show a good correlation between the two curves of conventional, invasive meters vs. the noninvasive sensor, with an error of ±15%. This novel, noninvasive sensor for indirect glucometry is fully miniaturized, easy to use and operate and could represent a valid alternative in clinical settings and for individual, personal users, to current, invasive tools. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  19. Ultrasonography for Noninvasive Assessment of Portal Hypertension.

    Science.gov (United States)

    Maruyama, Hitoshi; Yokosuka, Osamu

    2017-07-15

    Portal hypertension is a major pathophysiology in patients with cirrhosis. Portal pressure is the gold standard to evaluate the severity of portal hypertension, and radiological intervention is the only procedure for pressure measurement. Ultrasound (US) is a simple and noninvasive imaging modality available worldwide. B-mode imaging allows broad applications for patients to detect and characterize chronic liver diseases and focal hepatic lesions. The Doppler technique offers real-time observation of blood flow with qualitative and quantitative assessments, and the application of microbubble-based contrast agents has improved the detectability of peripheral blood flow. In addition, elastography for the liver and spleen covers a wider field beyond the original purpose of fibrosis assessment. These developments enhance the practical use of US in the evaluation of portal hemodynamic abnormalities. This article reviews the recent progress of US in the assessment of portal hypertension.

  20. Validation and Test-Retest Reliability of New Thermographic Technique Called Thermovision Technique of Dry Needling for Gluteus Minimus Trigger Points in Sciatica Subjects and TrPs-Negative Healthy Volunteers

    Science.gov (United States)

    Rychlik, Michał; Samborski, Włodzimierz

    2015-01-01

    The aim of this study was to assess the validity and test-retest reliability of Thermovision Technique of Dry Needling (TTDN) for the gluteus minimus muscle. TTDN is a new thermography approach used to support trigger points (TrPs) diagnostic criteria by presence of short-term vasomotor reactions occurring in the area where TrPs refer pain. Method. Thirty chronic sciatica patients (n=15 TrP-positive and n=15 TrPs-negative) and 15 healthy volunteers were evaluated by TTDN three times during two consecutive days based on TrPs of the gluteus minimus muscle confirmed additionally by referred pain presence. TTDN employs average temperature (T avr), maximum temperature (T max), low/high isothermal-area, and autonomic referred pain phenomenon (AURP) that reflects vasodilatation/vasoconstriction. Validity and test-retest reliability were assessed concurrently. Results. Two components of TTDN validity and reliability, T avr and AURP, had almost perfect agreement according to κ (e.g., thigh: 0.880 and 0.938; calf: 0.902 and 0.956, resp.). The sensitivity for T avr, T max, AURP, and high isothermal-area was 100% for everyone, but specificity of 100% was for T avr and AURP only. Conclusion. TTDN is a valid and reliable method for T avr and AURP measurement to support TrPs diagnostic criteria for the gluteus minimus muscle when digitally evoked referred pain pattern is present. PMID:26137486

  1. User's guide to the Reliability Estimation System Testbed (REST)

    Science.gov (United States)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  2. The Bone Black Pigment Identification by Noninvasive, In Situ Infrared Reflection Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alessia Daveri

    2018-01-01

    Full Text Available Two real case studies, an oil painting on woven paper and a cycle of mural paintings, have been presented to validate the use of infrared reflection spectroscopy as suitable technique for the identification of bone black pigment. By the use of the sharp weak band at 2013 cm−1, it has been possible to distinguish animal carbon-based blacks by a noninvasive method. Finally, an attempt for an eventual assignment for the widely used sharp band at 2013 cm−1 is discussed.

  3. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  4. Overview of system reliability analyses for PSA

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2012-01-01

    Overall explanations are given for many matters relating to system reliability analysis. Systems engineering, Operations research, Industrial engineering, Quality control are briefly explained. Many system reliability analysis methods including advanced methods are introduced. Discussions are given for FMEA, reliability block diagram, Markov model, Petri net, Bayesian network, goal tree success tree, dynamic flow graph methodology, cell-to-cell mapping technique, the GO-FLOW and others. (author)

  5. PET/CT colonography: a novel non-invasive technique for assessment of extent and activity of ulcerative colitis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chandan J.; Sharma, Raju [All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi (India); Makharia, Govind K.; Tiwari, Rajeew P. [All India Institute of Medical Sciences, Department of Gastroenterology and Human Nutrition, New Delhi (India); Kumar, Rakesh; Kumar, Rajender; Malhotra, Arun [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India)

    2010-04-15

    Extent of involvement and activity of ulcerative colitis (UC) is best evaluated by colonoscopy. Colonoscopy however carries risk during acute exacerbation. We investigated the utility of PET/CT colonography for assessment of extent and activity of UC. Within a 1-week window, 15 patients with mild to moderately active UC underwent colonoscopy and PET/CT colonography 60 min after injection of 10 mCi of {sup 18}F-fluorodeoxyglucose (FDG). PET activity score based on the amount of FDG uptake and endoscopic mucosal activity in seven colonic segments of each patient was recorded. The mean maximum standardized uptake value (SUV{sub max}) of seven segments was compared with activity in liver. A PET activity grade of 0, 1, 2 or 3 was assigned to each region depending upon their SUV{sub max} ratio (colon segment to liver). The extent of disease was left-sided colitis in five and pancolitis in ten. The mean Ulcerative Colitis Disease Activity Index (UCDAI) was 7.6. The number of segments involved as per colonoscopic evaluation and PET/CT colonography was 67 and 66, respectively. There was a good correlation for extent evaluation between the two modalities (kappa 55.3%, p = 0.02). One patient had grade 0 PET activity, nine had grade 2 and five had grade 3 PET activity. In six patients, there was one to one correlation between PET activity grades with that of endoscopic grade. One patient showed activity in the sacroiliac joint suggesting active sacroiliitis. PET/CT colonography is a novel non-invasive technique for the assessment of extent and activity of the disease in patients with UC. (orig.)

  6. Integrated Technologies Like Noninvasive Brain Stimulation (NIBS for Stroke Rehabilitation; New Hopes for Patients, Neuroscientists, and Clinicians in Iran

    Directory of Open Access Journals (Sweden)

    Shahid Bashir

    2010-08-01

    Full Text Available A B S T R A C TThe applications of neurophysiological therapy techniques range far and few in the realm of modern day medicine. However, the concept of electromagnetic stimulation, the basis for many noninvasive brain stimulation (NIBS techniques today, has been of interest to the scientific community since the late nineteenth century. Recently, transcranial direct current stimulation (tDCS and transcranial magnetic stimulation (TMS, two noninvasive neurostimulation techniques, have begun to gain popularity and acceptance in the clinical neurophysiology, neurorehabilitaion, neurology, neuroscience, and psychiatry has spread widely, mostly in research applications, but increasingly with clinical aims in mind. These two neurophysiological techniques have proven to be valuable assets in not only the diagnosis, but also the treatment of many neurological disorders (post-stroke motor deficits, tinnitus, fibromyalgia, depression, epilepsy, autism, ageing and parkinson’s disease. Its effects can be modulated by combination with pharmacological treatment that has undergone resurgence in recent years. In this review we discuss how these integrated technology like NIBS for evaluation in the clinical evidence to date and what mechanism it work for stroke rehabilitation particularly. Then, we will review the current situation of stroke rehabilitation in Iran and new hopes that NIBS could bring for clinicians and patients in this nationally prioritized field.

  7. Signal averaging technique for noninvasive recording of late potentials in patients with coronary artery disease

    Science.gov (United States)

    Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.

    1987-01-01

    An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.

  8. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.

    Science.gov (United States)

    Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A

    2018-01-01

    Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.

  9. Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography

    International Nuclear Information System (INIS)

    Mannapperuma, Kavan; Holton, Benjamin D; Lesniewski, Peter J; Thomas, John C

    2015-01-01

    Imaging photoplethysmography is a relatively new technique for extracting biometric information from video images of faces. This is useful in non-invasive monitoring of patients including neonates or the aged, with respect to sudden infant death syndrome, sleep apnoea, pulmonary disease, physical or mental stress and other cardio-vascular conditions. In this paper, we investigate the limits of detection of the heart rate (HR) while reducing the video quality. We compare the performance of three independent component analysis (ICA) methods (JADE, FastICA, RADICAL), autocorrelation with signal conditioning techniques and identify the most robust approach. We discuss sources of increasing error and other limiting conditions in three situations of reduced signal-to-noise ratio: one where the area of the analyzed face is decreased from 100 to 5%, another where the face area is progressively re-sampled down to a single RGB pixel and one where the HR signal is severely reduced with respect to the boundary noise. In most cases, the cardiac pulse rate can be reliably and accurately detected from videos containing only 5% facial area or from a face occupying just 4 pixels or containing only 5% of the facial HR modulation. (paper)

  10. Noninvasive nodal restaging in clinically node positive breast cancer patients after neoadjuvant systemic therapy: A systematic review

    International Nuclear Information System (INIS)

    Schipper, R.J.; Moossdorff, M.; Beets-Tan, R.G.H.; Smidt, M.L.; Lobbes, M.B.I.

    2015-01-01

    Objective: To provide a systematic review of studies comparing the diagnostic performance of noninvasive techniques and axillary lymph node dissection in the identification of initially node positive patients with pathological complete response of axillary lymph nodes to neoadjuvant systemic therapy. Methods: PubMed and Embase databases were searched until May 21st, 2014. First, duplicate studies were eliminated. Next, study abstracts were read by two readers to assess eligibility. Studies were selected based on predefined inclusion criteria. Of these, data extraction was performed by two readers independently. Results: Of the 987 abstracts that were considered for inclusion, four were eligible for final analysis, which included a total of 572 patients. The diagnostic performance of clinical examination, axillary ultrasound, breast MRI, whole body 18 F-FDG PET-CT, and a prediction model to identify patients with pathological complete response were investigated. Studies were often limited by small sample size. Furthermore, systemic therapy regimens and definitions of clinical and pathological complete response were variable, refraining further pooling of data. The reported positive predictive value of different techniques to identify patients with axillary pathological complete response after neoadjuvant systemic therapy varied between 40% and 100%. Conclusion: At present, there is no accurate noninvasive restaging technique able to identify patients with complete axillary response after neoadjuvant systemic therapy

  11. Noninvasive prediction of left ventricular end-diastolic pressure in patients with coronary artery disease and preserved ejection fraction.

    Science.gov (United States)

    Abd-El-Aziz, Tarek A

    2012-01-01

    The aim of this study was to compare 3 different available methods for estimating left ventricular end-diastolic pressure (LVEDP) noninvasively in patients with coronary artery disease and preserved left ventricular ejection fraction (EF). We used 3 equations for noninvasive estimation of LVEDP: The equation of Mulvagh et al., LVEDP(1) = 46 - 0.22 (IVRT) - 0.10 (AFF) - 0.03 (DT) - (2 ÷ E/A) + 0.05 MAR; the equation of Stork et al., LVEDP(2) = 1.06 + 15.15 × Ai/Ei; and the equation of Abd-El-Aziz, LVEDP(3) = [0.54 (MABP) × (1 - EF)] - 2.23. ( A, A-wave velocity; AFF, atrial filling fraction; Ai, time velocity integral of A wave; DT, deceleration time; E, E-wave velocity; Ei, time velocity integral of E wave; IVRT, isovolumic relaxation time; MABP, mean arterial blood pressure; MAR, time from termination of mitral flow to the electrocardiographic R wave; Ti, time velocity integral of total wave.) LVEDP measured by catheterization was correlated with LVEDP(1) (r = 0.52, P Aziz, LVEDP = [0.54 MABP × (1 - EF)] - 2.23, appears to be the most accurate, reliable, and easily applied method for estimating LVEDP noninvasively in patients with preserved left ventricular ejection fraction and an LVEDP < 20 mm Hg. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Noninvasive continuous monitoring of digital pulse waves during hemodialysis

    DEFF Research Database (Denmark)

    Burkert, Antje; Scholze, Alexandra; Tepel, Martin

    2009-01-01

    Intermittent hemodynamic instability during hemodialysis treatment is a frequent complication in patients with end-stage renal failure. A noninvasive method for continuous hemodynamic monitoring is needed. We used noninvasive digital photoplethysmography and an algorithm for continuous, investiga...

  13. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  14. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  15. Characterizing reliability in a product/process design-assurance program

    Energy Technology Data Exchange (ETDEWEB)

    Kerscher, W.J. III [Delphi Energy and Engine Management Systems, Flint, MI (United States); Booker, J.M.; Bement, T.R.; Meyer, M.A. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Over the years many advancing techniques in the area of reliability engineering have surfaced in the military sphere of influence, and one of these techniques is Reliability Growth Testing (RGT). Private industry has reviewed RGT as part of the solution to their reliability concerns, but many practical considerations have slowed its implementation. It`s objective is to demonstrate the reliability requirement of a new product with a specified confidence. This paper speaks directly to that objective but discusses a somewhat different approach to achieving it. Rather than conducting testing as a continuum and developing statistical confidence bands around the results, this Bayesian updating approach starts with a reliability estimate characterized by large uncertainty and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework.

  16. Reliability evaluation of power systems

    CERN Document Server

    Billinton, Roy

    1996-01-01

    The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).

  17. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  18. [Non-invasive assessment of fatty liver].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-05

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.

  19. Non-Invasive In Vivo Ultrasound Temperature Estimation

    Science.gov (United States)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  20. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  1. Reliability Parts Derating Guidelines

    Science.gov (United States)

    1982-06-01

    226-30, October 1974. 66 I, 26. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser Engineering and...Vol. R-23, No. 4, 226-30, October 1974. 28. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser...opnatien ot 󈨊 deg C, mounted on a 4-inach square 0.250~ inch thick al~loy alum~nusi panel.. This mounting technique should be L~ ken into cunoidur~tiou

  2. Noninvasive detection of coronary thrombi with 111In platelets: concise communication

    International Nuclear Information System (INIS)

    Bergmann, S.R.; Lerch, R.A.; Mathias, C.J.; Sobel, B.E.; Welch, M.J.

    1983-01-01

    The need for rapid, definitive identification of coronary thrombosis has been intensified by the advent of thrombolytic therapy and by interest in the role of thrombosis in the etiology of coronary artery disease. To determine whether platelet thrombi can be detected noninvasively with 111 In platelets, a method was developed in which /sup 99m/Tc-tagged red blood cells were used to correct for activity within the blood attributable to platelets circulating but not associated with thrombus. In 18 dogs coronary thrombi were induced closed-chest with a copper coil introduced into the coronary artery. 111 In platelets and /sup 99m/Tc RBCs were administered either before or 1 hr after induction of thrombus, and serial scintigrams obtained. Coronary thrombus was identified readily in the processed scintigrams. In six dogs, thrombolysis was achieved with intracoronary streptokinase. In each case serial scintigraphy demonstrated resolution of the clot. The dual radiotracer technique should permit serial noninvasive delineation of the temporal relationship between platelet deposition and coronary heart disease in patients, and should facilitate the evaluation of interventions designed to prevent platelet aggregation or to lyse existing thrombi

  3. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Science.gov (United States)

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  4. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview.

    Science.gov (United States)

    Pereira, Jorge; Porto-Figueira, Priscilla; Cavaco, Carina; Taunk, Khushman; Rapole, Srikanth; Dhakne, Rahul; Nagarajaram, Hampapathalu; Câmara, José S

    2015-01-09

    Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  5. Proposed Reliability/Cost Model

    Science.gov (United States)

    Delionback, L. M.

    1982-01-01

    New technique estimates cost of improvement in reliability for complex system. Model format/approach is dependent upon use of subsystem cost-estimating relationships (CER's) in devising cost-effective policy. Proposed methodology should have application in broad range of engineering management decisions.

  6. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  7. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  8. Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva

    International Nuclear Information System (INIS)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.; Campbell, James A.; Lin, Yuehe

    2004-01-01

    There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. The system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk

  9. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  10. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin

    DEFF Research Database (Denmark)

    Themstrup, L.; Welzel, Julia; Ciardo, Silvana

    2016-01-01

    Objectives: Dynamic optical coherence tomography (D-OCT) is an angiographic variation of OCT that non-invasively provides images of the in vivo microvasculature of the skin by combining conventional OCT images with flow data. The objective of this study was to investigate and report on the D.......001), and also the redness a measurements were positively correlated with the D-OCT measurements (r = 0.48; 95% CI [0.406, 0.55]). D-OCT was able to reliably image and identify morphologic changes in the vascular network consistent with the induced physiological changes of blood flow. Conclusion: This study has...... initiated validation of the use of D-OCT for imaging of skin blood flow. Our results showed that D-OCT was able to reliably image and identify changes in the skin vasculature consistent with the induced physiological blood flow changes. These basic findings support the use of D-OCT imaging for in vivo...

  11. The ventricular function after operative correction of chronic mitral insufficiency. Non-invasive study with technetium-99m pertechnetate. First passage technique

    International Nuclear Information System (INIS)

    Bougioukas, G.

    1982-01-01

    14 patients (age 49.6 ± 13.3 years) with pure mitral insufficiency of the second to fourth degree underwent an operative intervention on the mitral valve, whereby in 12 cases the valve was replaced and two times the insufficiency could be cleared up with a plastic reconstruction. On the average of 21.6 ± 11 months after the operation a non-invasive study was done with the help of heart scintigraphy 'first passage technique' with Tc 99m pertechnetate at rest and at maximum ergometeric stress. With this method pre- and postoperative end-diastolic volumes (227/ 114 ml), end-systolic volumes (69/ 46 ml), heart minute volumes (4.5/ 5.7 l/min), total output fraction of the left ventricle (61/ 69%), diastolic filling speed and emptying speed of the ventricle were determined as well as the measuring of the lung flow time. The speed of the rapid filling phase gave no indication of a hindrance as a result of an implanted valve or a plastic reconstruction. The changes under stress indicate a normal reaction of the ventricle. This ability to react corresponds clinically to the improvement of the patients on the average of 1.1 degrees according to the NYHA classification. (orig./TRV) [de

  12. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  13. NDE reliability gains from combining eddy-current and ultrasonic testing

    International Nuclear Information System (INIS)

    Horn, D.; Mayo, W.R.

    1999-01-01

    We investigate statistical methods for combining the results of two complementary inspection techniques, eddy-current and ultrasonic testing. The reliability of rejection/acceptance decisions based on combined information is compared with that based on each inspection technique individually. The measured reliability increases with the amount of information incorporated in the decision. (author)

  14. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    Science.gov (United States)

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  15. Noninvasive risk stratification of lethal ventricular arrhythmias and sudden cardiac death after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kenji Yodogawa, MD

    2014-08-01

    Full Text Available Prediction of lethal ventricular arrhythmias leading to sudden cardiac death is one of the most important and challenging problems after myocardial infarction (MI. Identification of MI patients who are prone to ventricular tachyarrhythmias allows for an indication of implantable cardioverter-defibrillator placement. To date, noninvasive techniques such as microvolt T-wave alternans (MTWA, signal-averaged electrocardiography (SAECG, heart rate variability (HRV, and heart rate turbulence (HRT have been developed for this purpose. MTWA is an indicator of repolarization abnormality and is currently the most promising risk-stratification tool for predicting malignant ventricular arrhythmias. Similarly, late potentials detected by SAECG are indices of depolarization abnormality and are useful in risk stratification. However, the role of SAECG is limited because of its low predictive accuracy. Abnormal HRV and HRT patterns reflect autonomic disturbances, which may increase the risk of lethal ventricular arrhythmias, but the existing evidence is insufficient. Further studies of noninvasive assessment may provide a new insight into risk stratification in post-MI patients.

  16. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...

  17. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  18. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    Science.gov (United States)

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Validation of an enzyme-immunoassay for the non-invasive monitoring of faecal testosterone metabolites in male cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Pribbenow, Susanne; Wachter, Bettina; Ludwig, Carsten; Weigold, Annika; Dehnhard, Martin

    2016-03-01

    In mammals, the sex hormone testosterone is the major endocrine variable to objectify testicular activity and thus reproductive function in males. Testosterone is involved in the development and function of male reproductive physiology and sex-related behaviour. The development of a reliable androgen enzyme-immunoassay (EIA) to monitor faecal testosterone metabolites (fTM) is a powerful tool to non-invasively assess the gonadal status of males. We validated an epiandrosterone EIA for male cheetahs by performing a testosterone radiometabolism study followed by high-performance liquid chromatography (HPLC) analyses and excluding possible cross-reactivities with androgenic metabolites not derived from testosterone metabolism. The physiological and biological relevance of the epiandrosterone EIA was validated by demonstrating (1) a significant increase in fTM concentrations within one day in response to a testosterone injection, (2) a significant increase in fTM concentrations within one day in response to a gonadotropin-releasing hormone (GnRH) injection, which failed following a placebo injection, and (3) significant differences in fTM concentrations between adult male and adult female cheetahs and between adult and juvenile male cheetahs of a free-ranging population. Finally, we demonstrated stability of fTM concentrations measured in faecal samples exposed to ambient temperatures up to 72h. Our results clearly demonstrate that the epiandrosterone EIA is a reliable non-invasive method to monitor testicular activity in male cheetahs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Dyke, Katherine; Kim, Soyoung; Jackson, Georgina M; Jackson, Stephen R

    Transcranial direct current stimulation (tDCS) is a popular non-invasive brain stimulation technique that has been shown to influence cortical excitability. While polarity specific effects have often been reported, this is not always the case, and variability in both the magnitude and direction of the effects have been observed. We aimed to explore the consistency and reliability of the effects of tDCS by investigating changes in cortical excitability across multiple testing sessions in the same individuals. A within subjects design was used to investigate the effects of anodal and cathodal tDCS applied to the motor cortex. Four experimental sessions were tested for each polarity in addition to two sham sessions. Transcranial magnetic stimulation (TMS) was used to measure cortical excitability (TMS recruitment curves). Changes in excitability were measured by comparing baseline measures and those taken immediately following 20 minutes of 2 mA stimulation or sham stimulation. Anodal tDCS significantly increased cortical excitability at a group level, whereas cathodal tDCS failed to have any significant effects. The sham condition also failed to show any significant changes. Analysis of intra-subject responses to anodal stimulation across four sessions suggest that the amount of change in excitability across sessions was only weakly associated, and was found to have poor reliability across sessions (ICC = 0.276). The effects of cathodal stimulation show even poorer reliability across sessions (ICC = 0.137). In contrast ICC analysis for the two sessions of sham stimulation reflect a moderate level of reliability (ICC = .424). Our findings indicate that although 2 mA anodal tDCS is effective at increasing cortical excitability at group level, the effects are unreliable across repeated testing sessions within individual participants. Our results suggest that 2 mA cathodal tDCS does not significantly alter cortical excitability immediately following

  1. Toward noninvasive detection and monitoring of malaria with broadband diffuse optical spectroscopy

    Science.gov (United States)

    Campbell, Chris; Tromberg, Bruce J.; O'Sullivan, Thomas D.

    2018-02-01

    Despite numerous advances, malaria continues to kill nearly half a million people globally every year. New analytical methods and diagnostics are critical to understanding how treatments under development affect the lifecycle of malaria parasites. A biomarker that has been gaining interest is the "malaria pigment" hemozoin. This byproduct of hemoglobin digestion by the parasite has a unique spectral signature but is difficult to differentiate from hemoglobin and other tissue chromophores. Hemozoin can be detected in blood samples, but only utilizing approaches that require specialized training and facilities. Diffuse optical spectroscopy (DOS) is a noninvasive sensing technique that is sensitive to near-infrared absorption and scattering and capable of probing centimeter-deep volumes of tissue in vivo. DOS is relatively low-cost, does not require specialized training and thus potentially suitable for use in low-resource settings. In this work, we assess the potential of DOS to detect and quantify the presence of hemozoin noninvasively and at physiologically relevant levels. We suspended synthetic hemozoin in Intralipid-based tissue-simulating phantoms in order to mimic malaria infection in multiply-scattering tissue. Using a fiber probe that combines frequency-domain and continuous-wave broadband DOS (650-1000 nm), we detected hemozoin concentrations below 250 ng/ml, which corresponds to parasitemia sensitivities comparable to modern rapid diagnostic tests. We used the experimental variability to simulate and estimate the sensitivity of DOS to hemozoin in tissue that includes hemoglobin, water, and lipid under various tissue oxygen saturation levels. The results indicate that with increased precision, it may be possible to detect Hz noninvasively with DOS.

  2. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.

    Science.gov (United States)

    Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm

    2015-02-01

    Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.

  3. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges

    Directory of Open Access Journals (Sweden)

    Carmelo Mario Vicario

    2013-11-01

    Full Text Available In the last decades interest in application of non-invasive brain stimulation for enhancing neural functions is growing continuously. However, the use of such techniques in pediatric populations remains rather limited and mainly confined to the treatment of severe neurological and psychiatric diseases. In this article we provide a complete review of non-invasive brain stimulation studies conducted in pediatric populations. We also provide a brief discussion about the current limitations and future directions in a field of research still very young and full of issues to be explored.

  4. Gold nanoparticles for non-invasive cell tracking with CT imaging

    Science.gov (United States)

    Meir, Rinat; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela

    2018-02-01

    Cell-based therapies use living cells with therapeutic traits to treat various diseases. This is a beneficial alternative for diseases that existing medicine cannot cure efficiently. However, inconsistent results in clinical trials are preventing the advancement and implementation of cell-based therapy. In order to explain such results, there is a need to discover the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, demonstrating the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. This cell-tracking technology has the potential to become an essential tool in pre-clinical studies as well as in clinical trials and advance cell therapy.

  5. A blinded prospective study comparing four current noninvasive approaches in the differential diagnosis of medical versus surgical jaundice

    International Nuclear Information System (INIS)

    O'Connor, K.W.; Snodgrass, P.J.; Swonder, J.E.; Mahoney, S.; Burt, R.; Cockerill, E.M.; Lumeng, L.

    1983-01-01

    A prospective study was undertaken to compare the diagnostic accuracy of clinical evaluation, ultrasound, computed tomography, and technetium 99m-HIDA or -PIPIDA biliary scans in distinguishing between intrahepatic and extrahepatic jaundice. A final diagnosis was established in each of the 50 patients who completed the study, among whom 29 had intrahepatic cholestasis and 21 had extrahepatic obstruction. In the diagnosis of extrahepatic obstruction, the sensitivities of clinical evaluation, ultrasound, computed tomography, and nuclear medicine biliary scan were 95%, 55%, 63%, and 41%, respectively; the specificities were 76%, 93%, 93%, and 88%; and the overall accuracies were 84%, 78%, 81%, and 68%. These data support the conclusion that when the clinical evaluation is carefully performed, it is the single most effective noninvasive means of detecting extrahepatic biliary obstruction in a jaundiced patient. Although ultrasound, computed tomography, and radionuclide biliary scan are less sensitive, they are highly reliable if they indicate that extrahepatic obstruction is present. A flow chart of invasive and noninvasive approaches for evaluation of the jaundiced patient is presented

  6. Sizing of SRAM Cell with Voltage Biasing Techniques for Reliability Enhancement of Memory and PUF Functions

    Directory of Open Access Journals (Sweden)

    Chip-Hong Chang

    2016-08-01

    Full Text Available Static Random Access Memory (SRAM has recently been developed into a physical unclonable function (PUF for generating chip-unique signatures for hardware cryptography. The most compelling issue in designing a good SRAM-based PUF (SPUF is that while maximizing the mismatches between the transistors in the cross-coupled inverters improves the quality of the SPUF, this ironically also gives rise to increased memory read/write failures. For this reason, the memory cells of existing SPUFs cannot be reused as storage elements, which increases the overheads of cryptographic system where long signatures and high-density storage are both required. This paper presents a novel design methodology for dual-mode SRAM cell optimization. The design conflicts are resolved by using word-line voltage modulation, dynamic voltage scaling, negative bit-line and adaptive body bias techniques to compensate for reliability degradation due to transistor downsizing. The augmented circuit-level techniques expand the design space to achieve a good solution to fulfill several otherwise contradicting key design qualities for both modes of operation, as evinced by our statistical analysis and simulation results based on complementary metal–oxide–semiconductor (CMOS 45 nm bulk Predictive Technology Model.

  7. Pulmonary infiltrates in non-HIV immunocompromised patients: a diagnostic approach using non-invasive and bronchoscopic procedures

    Science.gov (United States)

    Rano, A; Agusti, C; Jimenez, P; Angrill, J; Benito, N; Danes, C; Gonzalez, J; Rovira, M; Pumarola, T; Moreno, A; Torres, A

    2001-01-01

    BACKGROUND—The development of pulmonary infiltrates is a frequent life threatening complication in immunocompromised patients, requiring early diagnosis and specific treatment. In the present study non-invasive and bronchoscopic diagnostic techniques were applied in patients with different non-HIV immunocompromised conditions to determine the aetiology of the pulmonary infiltrates and to evaluate the impact of these methods on therapeutic decisions and outcome in this population.
METHODS—The non-invasive diagnostic methods included serological tests, blood antigen detection, and blood, nasopharyngeal wash (NPW), sputum and tracheobronchial aspirate (TBAS) cultures. Bronchoscopic techniques included fibrobronchial aspirate (FBAS), protected specimen brush (PSB), and bronchoalveolar lavage (BAL). Two hundred consecutive episodes of pulmonary infiltrates were prospectively evaluated during a 30 month period in 52 solid organ transplant recipients, 53 haematopoietic stem cell transplant (HSCT) recipients, 68 patients with haematological malignancies, and 27 patients requiring chronic treatment with corticosteroids and/or immunosuppressive drugs.
RESULTS—An aetiological diagnosis was obtained in 162 (81%) of the 200 patients. The aetiology of the pulmonary infiltrates was infectious in 125 (77%) and non-infectious in 37 (23%); 38 (19%) remained undiagnosed. The main infectious aetiologies were bacterial (48/125, 24%), fungal (33/125, 17%), and viral (20/125, 10%), and the most frequent pathogens were Aspergillus fumigatus (n=29), Staphylococcus aureus (n=17), and Pseudomonas aeruginosa (n=12). Among the non-infectious aetiologies, pulmonary oedema (16/37, 43%) and diffuse alveolar haemorrhage (10/37, 27%) were the most common causes. Non-invasive techniques led to the diagnosis of pulmonary infiltrates in 41% of the cases in which they were used; specifically, the diagnostic yield of blood cultures was 30/191 (16%); sputum cultures 27/88 (31%); NPW 9/50 (18

  8. Connective tissue diseases and noninvasive evaluation of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ardita G

    2014-06-01

    Full Text Available Giorgio Ardita, Giacomo Failla, Paolo Maria Finocchiaro, Francesco Mugno, Luigi Attanasio, Salvatore Timineri, Michelangelo Maria Di SalvoCardiovascular Department, Angiology Unit, Ferrarotto Hospital, Catania, ItalyAbstract: Connective tissue diseases (CTDs are associated with increased risk of cardiovascular disease due to accelerated atherosclerosis. In patients with autoimmune disorders, in addition to traditional risk factors, an immune-mediated inflammatory process of the vasculature seems to contribute to atherogenesis. Several pathogenetic mechanisms have been proposed, including chronic inflammation and immunologic abnormalities, both able to produce vascular damage. Macrovascular atherosclerosis can be noninvasively evaluated by ultrasound measurement of carotid or femoral plaque. Subclinical atherosclerosis can be evaluated by well-established noninvasive techniques which rely on ultrasound detection of carotid intima-media thickness. Flow-mediated vasodilatation and arterial stiffness are considered markers of endothelial dysfunction and subclinical atherosclerosis, respectively, and have been recently found to be impaired early in a wide spectrum of autoimmune diseases. Carotid intima-media thickness turns out to be a leading marker of subclinical atherosclerosis, and many studies recognize its role as a predictor of future vascular events, both in non-CTD individuals and in CTD patients. In rheumatic diseases, flow-mediated dilatation and arterial stiffness prove to be strongly correlated with inflammation, disease damage index, and with subclinical atherosclerosis, although their prognostic role has not yet been conclusively shown. Systemic lupus erythematosus, rheumatoid arthritis, and likely antiphospholipid syndrome are better associated with premature and accelerated atherosclerosis. Inconclusive results were reported in systemic sclerosis.Keywords: rheumatic disease, subclinical atherosclerosis, arterial stiffness

  9. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  10. Issues in cognitive reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Hitchler, M.J.; Rumancik, J.A.

    1984-01-01

    This chapter examines some problems in current methods to assess reactor operator reliability at cognitive tasks and discusses new approaches to solve these problems. The two types of human failures are errors in the execution of an intention and errors in the formation/selection of an intention. Topics considered include the types of description, error correction, cognitive performance and response time, the speed-accuracy tradeoff function, function based task analysis, and cognitive task analysis. One problem of human reliability analysis (HRA) techniques in general is the question of what are the units of behavior whose reliability are to be determined. A second problem for HRA is that people often detect and correct their errors. The use of function based analysis, which maps the problem space for plant control, is recommended

  11. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    Science.gov (United States)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  12. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    Science.gov (United States)

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  13. Challenges in the noninvasive detection of body composition using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenliang Chen

    2014-11-01

    Full Text Available Noninvasive detection of body composition plays a significant role in the improvement of life quality and reduction in complications of the patients, and the near-infrared (NIR spectroscopy, with the advantages of painlessness and convenience, is considered as the most promising tool for the online noninvasive monitoring of body composition. However, quite different from other fields of online detection using NIR spectroscopy, such as food safety and environment monitoring, noninvasive detection of body composition demands higher precision of the instruments as well as more rigorousness of measurement conditions. Therefore, new challenges emerge when NIR spectroscopy is applied to the noninvasive detection of body composition, which, in this paper, are first concluded from the aspects of measurement methods, measurement conditions, instrument precision, multi-component influence, individual difference and novel weak-signal extraction method based on our previous research in the cutting-edge field of NIR noninvasive blood glucose detection. Moreover, novel ideas and approaches of our group to solve these problems are introduced, which may provide evidence for the future development of noninvasive blood glucose detection, and further contribute to the noninvasive detection of other body compositions using NIR spectroscopy.

  14. Modulating the brain at work using noninvasive transcranial stimulation.

    Science.gov (United States)

    McKinley, R Andy; Bridges, Nathaniel; Walters, Craig M; Nelson, Jeremy

    2012-01-02

    This paper proposes a shift in the way researchers currently view and use transcranial brain stimulation technologies. From a neuroscience perspective, the standard application of both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) has been mainly to explore the function of various brain regions. These tools allow for noninvasive and painless modulation of cortical tissue. In the course of studying the function of an area, many studies often report enhanced performance of a task during or following the stimulation. However, little follow-up research is typically done to further explore these effects. Approaching this growing pool of cognitive neuroscience literature with a neuroergonomics mindset (i.e., studying the brain at work), the possibilities of using these stimulation techniques for more than simply investigating the function of cortical areas become evident. In this paper, we discuss how cognitive neuroscience brain stimulation studies may complement neuroergonomics research on human performance optimization. And, through this discussion, we hope to shift the mindset of viewing transcranial stimulation techniques as solely investigatory basic science tools or possible clinical therapeutic devices to viewing transcranial stimulation techniques as interventional tools to be incorporated in applied science research and systems for the augmentation and enhancement of human operator performance. Published by Elsevier Inc.

  15. Noninvasive 133Xe inhalation method for cerebral blood flow measurement

    International Nuclear Information System (INIS)

    Takagi, Shigeharu; Kobatake, Keitaro; Shinohara, Yukito

    1991-01-01

    Recent development of the 133 Xe inhalation technique has made it possible to measure cerebral blood flow (CBF) noninvasively. Recording of the head curves from the frontal and temporal areas during inhalation of 133 Xe, however, is contaminated by the artifact from the air passages. A method based on Fourier transforms was reported to be able to eliminate air passage artifact (APA) effectively. However, it was pointed out that such an algorithm does not give a complete correction if the artifact seen by the head detectors differs in shape from that recorded from the airways at the mouth, which may happen when there is a slow isotope convection in the nasal and sinus cavities. The purpose of this study was to compare the CBF values calculated by the Fourier method with those by the conventional method of Obrist (VM method). Mean hemispheric gray matter flow (F 1 ) calculated by the VM method in 11 subjects, including normal volunteers and patients with various neurological diseases, was 69.2±13.2 mg/100 g brain/ min, whereas F 1 calculated by the Fourier method in the same subjects was 64.4±13.5, indicating that APA can be effectively eliminated by the Fourier method. The F 1 values calculated by the Fourier method from the frontal and temporal regions were relatively high, and closer to the F 1 values calculated by the VM method. The size of the APA was large in these regions. It was concluded that the deformed APA contaminated the results in these regions, and could not be eliminated effectively by the Fourier method. It is suggested that the shape of the head curve and the size of APA should be carefully examined to ensure that CBF data are reliable. (author)

  16. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  17. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  18. Architectural Techniques to Enable Reliable and Scalable Memory Systems

    OpenAIRE

    Nair, Prashant J.

    2017-01-01

    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even bui...

  19. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  20. Travel Time Reliability in Indiana

    OpenAIRE

    Martchouk, Maria; Mannering, Fred L.; Singh, Lakhwinder

    2010-01-01

    Travel time and travel time reliability are important performance measures for assessing traffic condition and extent of congestion on a roadway. This study first uses a floating car technique to assess travel time and travel time reliability on a number of Indiana highways. Then the study goes on to describe the use of Bluetooth technology to collect real travel time data on a freeway and applies it to obtain two weeks of data on Interstate 69 in Indianapolis. An autoregressive model, estima...