WorldWideScience

Sample records for reliable modeling methodologies

  1. Bayesian methodology for reliability model acceptance

    International Nuclear Information System (INIS)

    Zhang Ruoxue; Mahadevan, Sankaran

    2003-01-01

    This paper develops a methodology to assess the reliability computation model validity using the concept of Bayesian hypothesis testing, by comparing the model prediction and experimental observation, when there is only one computational model available to evaluate system behavior. Time-independent and time-dependent problems are investigated, with consideration of both cases: with and without statistical uncertainty in the model. The case of time-independent failure probability prediction with no statistical uncertainty is a straightforward application of Bayesian hypothesis testing. However, for the life prediction (time-dependent reliability) problem, a new methodology is developed in this paper to make the same Bayesian hypothesis testing concept applicable. With the existence of statistical uncertainty in the model, in addition to the application of a predictor estimator of the Bayes factor, the uncertainty in the Bayes factor is explicitly quantified through treating it as a random variable and calculating the probability that it exceeds a specified value. The developed method provides a rational criterion to decision-makers for the acceptance or rejection of the computational model

  2. Reliability Centered Maintenance - Methodologies

    Science.gov (United States)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  3. Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology

    International Nuclear Information System (INIS)

    Knezevic, J.; Odoom, E.R.

    2001-01-01

    A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets

  4. Reliability Modeling of Electromechanical System with Meta-Action Chain Methodology

    Directory of Open Access Journals (Sweden)

    Genbao Zhang

    2018-01-01

    Full Text Available To establish a more flexible and accurate reliability model, the reliability modeling and solving algorithm based on the meta-action chain thought are used in this thesis. Instead of estimating the reliability of the whole system only in the standard operating mode, this dissertation adopts the structure chain and the operating action chain for the system reliability modeling. The failure information and structure information for each component are integrated into the model to overcome the given factors applied in the traditional modeling. In the industrial application, there may be different operating modes for a multicomponent system. The meta-action chain methodology can estimate the system reliability under different operating modes by modeling the components with varieties of failure sensitivities. This approach has been identified by computing some electromechanical system cases. The results indicate that the process could improve the system reliability estimation. It is an effective tool to solve the reliability estimation problem in the system under various operating modes.

  5. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    Directory of Open Access Journals (Sweden)

    Ludfi Pratiwi Bowo

    2017-06-01

    Full Text Available Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequential techniques, epidemiological techniques and systemic techniques, where the marine accidents are included in the epidemiological technique. This study compares the Human Error Assessment and Reduction Technique (HEART methodology and the 4M Overturned Pyramid (MOP model, which are applied to assess marine accidents. Furthermore, the MOP model can effectively describe the relationships of other factors which affect the accidents; whereas, the HEART methodology is only focused on human factors.

  6. Reliability of Soft Tissue Model Based Implant Surgical Guides; A Methodological Mistake.

    Science.gov (United States)

    Sabour, Siamak; Dastjerdi, Elahe Vahid

    2012-08-20

    Abstract We were interested to read the paper by Maney P and colleagues published in the July 2012 issue of J Oral Implantol. The authors aimed to assess the reliability of soft tissue model based implant surgical guides reported that the accuracy was evaluated using software. 1 I found the manuscript title of Maney P, et al. incorrect and misleading. Moreover, they reported twenty-two sites (46.81%) were considered accurate (13 of 24 maxillary and 9 of 23 mandibular sites). As the authors point out in their conclusion, Soft tissue models do not always provide sufficient accuracy for implant surgical guide fabrication.Reliability (precision) and validity (accuracy) are two different methodological issues in researches. Sensitivity, specificity, PPV, NPV, likelihood ratio positive (true positive/false negative) and likelihood ratio negative (false positive/ true negative) as well as odds ratio (true results\\false results - preferably more than 50) are among the tests to evaluate the validity (accuracy) of a single test compared to a gold standard.2-4 It is not clear that the reported twenty-two sites (46.81%) which were considered accurate related to which of the above mentioned estimates for validity analysis. Reliability (repeatability or reproducibility) is being assessed by different statistical tests such as Pearson r, least square and paired t.test which all of them are among common mistakes in reliability analysis 5. Briefly, for quantitative variable Intra Class Correlation Coefficient (ICC) and for qualitative variables weighted kappa should be used with caution because kappa has its own limitation too. Regarding reliability or agreement, it is good to know that for computing kappa value, just concordant cells are being considered, whereas discordant cells should also be taking into account in order to reach a correct estimation of agreement (Weighted kappa).2-4 As a take home message, for reliability and validity analysis, appropriate tests should be

  7. Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure

    International Nuclear Information System (INIS)

    Ekanem, Nsimah J.; Mosleh, Ali; Shen, Song-Hua

    2016-01-01

    Phoenix method is an attempt to address various issues in the field of Human Reliability Analysis (HRA). Built on a cognitive human response model, Phoenix incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies, and takes advantage of the best features of existing and emerging HRA methods. Its original framework was introduced in previous publications. This paper reports on the completed methodology, summarizing the steps and techniques of its qualitative analysis phase. The methodology introduces the “Crew Response Tree” which provides a structure for capturing the context associated with Human Failure Events (HFEs), including errors of omission and commission. It also uses a team-centered version of the Information, Decision and Action cognitive model and “macro-cognitive” abstractions of crew behavior, as well as relevant findings from cognitive psychology literature and operating experience, to identify potential causes of failures and influencing factors during procedure-driven and knowledge-supported crew-plant interactions. The result is the set of identified HFEs and likely scenarios leading to each. The methodology itself is generic in the sense that it is compatible with various quantification methods, and can be adapted for use across different environments including nuclear, oil and gas, aerospace, aviation, and healthcare. - Highlights: • Produces a detailed, consistent, traceable, reproducible and properly documented HRA. • Uses “Crew Response Tree” to capture context associated with Human Failure Events. • Models dependencies between Human Failure Events and influencing factors. • Provides a human performance model for relating context to performance. • Provides a framework for relating Crew Failure Modes to its influencing factors.

  8. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  9. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    OpenAIRE

    Ludfi Pratiwi Bowo; Wanginingastuti Mutmainnah; Masao Furusho

    2017-01-01

    Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA) that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequen...

  10. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  11. Methodology for allocating reliability and risk

    International Nuclear Information System (INIS)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.

    1986-05-01

    This report describes a methodology for reliability and risk allocation in nuclear power plants. The work investigates the technical feasibility of allocating reliability and risk, which are expressed in a set of global safety criteria and which may not necessarily be rigid, to various reactor systems, subsystems, components, operations, and structures in a consistent manner. The report also provides general discussions on the problem of reliability and risk allocation. The problem is formulated as a multiattribute decision analysis paradigm. The work mainly addresses the first two steps of a typical decision analysis, i.e., (1) identifying alternatives, and (2) generating information on outcomes of the alternatives, by performing a multiobjective optimization on a PRA model and reliability cost functions. The multiobjective optimization serves as the guiding principle to reliability and risk allocation. The concept of ''noninferiority'' is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The final step of decision analysis, i.e., assessment of the decision maker's preferences could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided, and several outstanding issues such as generic allocation, preference assessment, and uncertainty are discussed. 29 refs., 44 figs., 39 tabs

  12. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States); Denning, Richard [The Ohio State Univ., Columbus, OH (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States); Unwin, Stephen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-23

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, such as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.

  13. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    International Nuclear Information System (INIS)

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit; Unwin, Stephen

    2015-01-01

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, such as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.

  14. Methodology for reliability based condition assessment

    International Nuclear Information System (INIS)

    Mori, Y.; Ellingwood, B.

    1993-08-01

    Structures in nuclear power plants may be exposed to aggressive environmental effects that cause their strength to decrease over an extended period of service. A major concern in evaluating the continued service for such structures is to ensure that in their current condition they are able to withstand future extreme load events during the intended service life with a level of reliability sufficient for public safety. This report describes a methodology to facilitate quantitative assessments of current and future structural reliability and performance of structures in nuclear power plants. This methodology takes into account the nature of past and future loads, and randomness in strength and in degradation resulting from environmental factors. An adaptive Monte Carlo simulation procedure is used to evaluate time-dependent system reliability. The time-dependent reliability is sensitive to the time-varying load characteristics and to the choice of initial strength and strength degradation models but not to correlation in component strengths within a system. Inspection/maintenance strategies are identified that minimize the expected future costs of keeping the failure probability of a structure at or below an established target failure probability during its anticipated service period

  15. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  16. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    Jose Reyes

    2005-01-01

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''

  17. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  18. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In the nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model to Dynamic Safety System(DDS) shows that the estimated reliability of the system is quite reasonable and realistic

  19. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model of dynamic safety system (DSS) shows that the estimated reliability of the system is quite reasonable and realistic. (author)

  20. Proposed reliability cost model

    Science.gov (United States)

    Delionback, L. M.

    1973-01-01

    The research investigations which were involved in the study include: cost analysis/allocation, reliability and product assurance, forecasting methodology, systems analysis, and model-building. This is a classic example of an interdisciplinary problem, since the model-building requirements include the need for understanding and communication between technical disciplines on one hand, and the financial/accounting skill categories on the other. The systems approach is utilized within this context to establish a clearer and more objective relationship between reliability assurance and the subcategories (or subelements) that provide, or reenforce, the reliability assurance for a system. Subcategories are further subdivided as illustrated by a tree diagram. The reliability assurance elements can be seen to be potential alternative strategies, or approaches, depending on the specific goals/objectives of the trade studies. The scope was limited to the establishment of a proposed reliability cost-model format. The model format/approach is dependent upon the use of a series of subsystem-oriented CER's and sometimes possible CTR's, in devising a suitable cost-effective policy.

  1. Methodology for uranium resource estimates and reliability

    International Nuclear Information System (INIS)

    Blanchfield, D.M.

    1980-01-01

    The NURE uranium assessment method has evolved from a small group of geologists estimating resources on a few lease blocks, to a national survey involving an interdisciplinary system consisting of the following: (1) geology and geologic analogs; (2) engineering and cost modeling; (3) mathematics and probability theory, psychology and elicitation of subjective judgments; and (4) computerized calculations, computer graphics, and data base management. The evolution has been spurred primarily by two objectives; (1) quantification of uncertainty, and (2) elimination of simplifying assumptions. This has resulted in a tremendous data-gathering effort and the involvement of hundreds of technical experts, many in uranium geology, but many from other fields as well. The rationality of the methods is still largely based on the concept of an analog and the observation that the results are reasonable. The reliability, or repeatability, of the assessments is reasonably guaranteed by the series of peer and superior technical reviews which has been formalized under the current methodology. The optimism or pessimism of individual geologists who make the initial assessments is tempered by the review process, resulting in a series of assessments which are a consistent, unbiased reflection of the facts. Despite the many improvements over past methods, several objectives for future development remain, primarily to reduce subjectively in utilizing factual information in the estimation of endowment, and to improve the recognition of cost uncertainties in the assessment of economic potential. The 1980 NURE assessment methodology will undoubtly be improved, but the reader is reminded that resource estimates are and always will be a forecast for the future

  2. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  3. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    Science.gov (United States)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  4. Proposed Reliability/Cost Model

    Science.gov (United States)

    Delionback, L. M.

    1982-01-01

    New technique estimates cost of improvement in reliability for complex system. Model format/approach is dependent upon use of subsystem cost-estimating relationships (CER's) in devising cost-effective policy. Proposed methodology should have application in broad range of engineering management decisions.

  5. Reliability analysis for power supply system in a reprocessing facility based on GO methodology

    International Nuclear Information System (INIS)

    Wang Renze

    2014-01-01

    GO methodology was applied to analyze the reliability of power supply system in a typical reprocessing facility. Based on the fact that tie breakers are set in the system, tie breaker operator was defined. Then GO methodology modeling and quantitative analysis were performed sequently, minimal cut sets and average unavailability of the system were obtained. Parallel analysis between GO methodology and fault tree methodology was also performed. The results showed that setup of tie breakers was rational and necessary and that the modeling was much easier and the chart was much more succinct for GO methodology parallel with fault tree methodology to analyze the reliability of the power supply system. (author)

  6. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  7. Archetype modeling methodology.

    Science.gov (United States)

    Moner, David; Maldonado, José Alberto; Robles, Montserrat

    2018-03-01

    Clinical Information Models (CIMs) expressed as archetypes play an essential role in the design and development of current Electronic Health Record (EHR) information structures. Although there exist many experiences about using archetypes in the literature, a comprehensive and formal methodology for archetype modeling does not exist. Having a modeling methodology is essential to develop quality archetypes, in order to guide the development of EHR systems and to allow the semantic interoperability of health data. In this work, an archetype modeling methodology is proposed. This paper describes its phases, the inputs and outputs of each phase, and the involved participants and tools. It also includes the description of the possible strategies to organize the modeling process. The proposed methodology is inspired by existing best practices of CIMs, software and ontology development. The methodology has been applied and evaluated in regional and national EHR projects. The application of the methodology provided useful feedback and improvements, and confirmed its advantages. The conclusion of this work is that having a formal methodology for archetype development facilitates the definition and adoption of interoperable archetypes, improves their quality, and facilitates their reuse among different information systems and EHR projects. Moreover, the proposed methodology can be also a reference for CIMs development using any other formalism. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Travel time reliability modeling.

    Science.gov (United States)

    2011-07-01

    This report includes three papers as follows: : 1. Guo F., Rakha H., and Park S. (2010), "A Multi-state Travel Time Reliability Model," : Transportation Research Record: Journal of the Transportation Research Board, n 2188, : pp. 46-54. : 2. Park S.,...

  9. Reliability and Model Fit

    Science.gov (United States)

    Stanley, Leanne M.; Edwards, Michael C.

    2016-01-01

    The purpose of this article is to highlight the distinction between the reliability of test scores and the fit of psychometric measurement models, reminding readers why it is important to consider both when evaluating whether test scores are valid for a proposed interpretation and/or use. It is often the case that an investigator judges both the…

  10. A reliability assessment methodology for the VHTR passive safety system

    International Nuclear Information System (INIS)

    Lee, Hyungsuk; Jae, Moosung

    2014-01-01

    The passive safety system of a VHTR (Very High Temperature Reactor), which has recently attracted worldwide attention, is currently being considered for the design of safety improvements for the next generation of nuclear power plants in Korea. The functionality of the passive system does not rely on an external source of an electrical support system, but on the intelligent use of natural phenomena. Its function involves an ultimate heat sink for a passive secondary auxiliary cooling system, especially during a station blackout such as the case of the Fukushima Daiichi reactor accidents. However, it is not easy to quantitatively evaluate the reliability of passive safety for the purpose of risk analysis, considering the existing active system failure since the classical reliability assessment method cannot be applied. Therefore, we present a new methodology to quantify the reliability based on reliability physics models. This evaluation framework is then applied to of the conceptually designed VHTR in Korea. The Response Surface Method (RSM) is also utilized for evaluating the uncertainty of the maximum temperature of nuclear fuel. The proposed method could contribute to evaluating accident sequence frequency and designing new innovative nuclear systems, such as the reactor cavity cooling system (RCCS) in VHTR to be designed and constructed in Korea.

  11. Methodology for reliability, economic and environmental assessment of wave energy

    International Nuclear Information System (INIS)

    Thorpe, T.W.; Muirhead, S.

    1994-01-01

    As part of the Preliminary Actions in Wave Energy R and D for DG XII's Joule programme, methodologies were developed to facilitate assessment of the reliability, economics and environmental impact of wave energy. This paper outlines these methodologies, their limitations and areas requiring further R and D. (author)

  12. Supply chain reliability modelling

    Directory of Open Access Journals (Sweden)

    Eugen Zaitsev

    2012-03-01

    Full Text Available Background: Today it is virtually impossible to operate alone on the international level in the logistics business. This promotes the establishment and development of new integrated business entities - logistic operators. However, such cooperation within a supply chain creates also many problems related to the supply chain reliability as well as the optimization of the supplies planning. The aim of this paper was to develop and formulate the mathematical model and algorithms to find the optimum plan of supplies by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Methods: The mathematical model and algorithms to find the optimum plan of supplies were developed and formulated by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Results and conclusions: The problem of ensuring failure-free performance of goods supply channel analyzed in the paper is characteristic of distributed network systems that make active use of business process outsourcing technologies. The complex planning problem occurring in such systems that requires taking into account the consumer's requirements for failure-free performance in terms of supply volumes and correctness can be reduced to a relatively simple linear programming problem through logical analysis of the structures. The sequence of the operations, which should be taken into account during the process of the supply planning with the supplier's functional reliability, was presented.

  13. Development of reliable pavement models.

    Science.gov (United States)

    2011-05-01

    The current report proposes a framework for estimating the reliability of a given pavement structure as analyzed by : the Mechanistic-Empirical Pavement Design Guide (MEPDG). The methodology proposes using a previously fit : response surface, in plac...

  14. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  15. Reliability assessment of passive containment isolation system using APSRA methodology

    International Nuclear Information System (INIS)

    Nayak, A.K.; Jain, Vikas; Gartia, M.R.; Srivastava, A.; Prasad, Hari; Anthony, A.; Gaikwad, A.J.; Bhatia, S.; Sinha, R.K.

    2008-01-01

    In this paper, a methodology known as APSRA (Assessment of Passive System ReliAbility) has been employed for evaluation of the reliability of passive systems. The methodology has been applied to the passive containment isolation system (PCIS) of the Indian advanced heavy water reactor (AHWR). In the APSRA methodology, the passive system reliability evaluation is based on the failure probability of the system to carryout the desired function. The methodology first determines the operational characteristics of the system and the failure conditions by assigning a predetermined failure criterion. The failure surface is predicted using a best estimate code considering deviations of the operating parameters from their nominal states, which affect the PCIS performance. APSRA proposes to compare the code predictions with the test data to generate the uncertainties on the failure parameter prediction, which is later considered in the code for accurate prediction of failure surface of the system. Once the failure surface of the system is predicted, the cause of failure is examined through root diagnosis, which occurs mainly due to failure of mechanical components. The failure probability of these components is evaluated through a classical PSA treatment using the generic data. The reliability of the PCIS is evaluated from the probability of availability of the components for the success of the passive containment isolation system

  16. An Intuitionistic Fuzzy Methodology for Component-Based Software Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Grigore, Albeanu; Popenţiuvlǎdicescu, Florin

    2012-01-01

    Component-based software development is the current methodology facilitating agility in project management, software reuse in design and implementation, promoting quality and productivity, and increasing the reliability and performability. This paper illustrates the usage of intuitionistic fuzzy...... degree approach in modelling the quality of entities in imprecise software reliability computing in order to optimize management results. Intuitionistic fuzzy optimization algorithms are proposed to be used for complex software systems reliability optimization under various constraints....

  17. Future of structural reliability methodology in nuclear power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Schueeller, G I [Technische Univ. Muenchen (Germany, F.R.); Kafka, P [Gesellschaft fuer Reaktorsicherheit m.b.H. (GRS), Garching (Germany, F.R.)

    1978-10-01

    This paper presents the authors' personal view as to which areas of structural reliability in nuclear power plant design need most urgently to be advanced. Aspects of simulation modeling, design rules, codification and specification of reliability, system analysis, probabilistic structural dynamics, rare events and particularly the interaction of systems and structural reliability are discussed. As an example, some considerations of the interaction effects between the protective systems and the pressure vessel are stated. The paper concludes with recommendation for further research.

  18. Transmission embedded cost allocation methodology with consideration of system reliability

    International Nuclear Information System (INIS)

    Hur, D.; Park, J.-K.; Yoo, C.-I.; Kim, B.H.

    2004-01-01

    In a vertically integrated utility industry, the cost of reliability, as a separate service, has not received much rigorous analysis. However, as a cornerstone of restructuring the industry, the transmission service pricing must change to be consistent with, and supportive of, competitive wholesale electricity markets. This paper focuses on the equitable allocation of transmission network embedded costs including the transmission reliability cost based on the contributions of each generator to branch flows under normal conditions as well as the line outage impact factor under a variety of load levels. A numerical example on a six-bus system is given to illustrate the applications of the proposed methodology. (author)

  19. Power transformer reliability modelling

    NARCIS (Netherlands)

    Schijndel, van A.

    2010-01-01

    Problem description Electrical power grids serve to transport and distribute electrical power with high reliability and availability at acceptable costs and risks. These grids play a crucial though preferably invisible role in supplying sufficient power in a convenient form. Today’s society has

  20. Improved FTA methodology and application to subsea pipeline reliability design.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.

  1. Seismic reliability assessment methodology for CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Stephens, M.J.; Nessim, M.A.; Hong, H.P.

    1995-05-01

    A study was undertaken to develop a reliability-based methodology for the assessment of existing CANDU concrete containment structures with respect to seismic loading. The focus of the study was on defining appropriate specified values and partial safety factors for earthquake loading and resistance parameters. Key issues addressed in the work were the identification of an approach to select design earthquake spectra that satisfy consistent safety levels, and the use of structure-specific data in the evaluation of structural resistance. (author). 23 refs., 9 tabs., 15 figs

  2. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  3. Reliability Overhaul Model

    Science.gov (United States)

    1989-08-01

    Random variables for the conditional exponential distribution are generated using the inverse transform method. C1) Generate U - UCO,i) (2) Set s - A ln...e - [(x+s - 7)/ n] 0 + [Cx-T)/n]0 c. Random variables from the conditional weibull distribution are generated using the inverse transform method. C1...using a standard normal transformation and the inverse transform method. B - 3 APPENDIX 3 DISTRIBUTIONS SUPPORTED BY THE MODEL (1) Generate Y - PCX S

  4. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  5. Design methodologies for reliability of SSL LED boards

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Perpiñà, X.; Jorda, X.; Vellvehi, M.; Werkhoven, R.J.; Husák, M.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.; Gasse, A.

    2013-01-01

    This work presents a comparison of various LED board technologies from thermal, mechanical and reliability point of view provided by an accurate 3-D modelling. LED boards are proposed as a possible technology replacement of FR4 LED boards used in 400 lumen retrofit SSL lamps. Presented design

  6. Evaluation of methodologies for remunerating wind power's reliability in Colombia

    International Nuclear Information System (INIS)

    Botero B, Sergio; Isaza C, Felipe; Valencia, Adriana

    2010-01-01

    Colombia strives to have enough firm capacity available to meet unexpected power shortages and peak demand; this is clear from mechanisms currently in place that provide monetary incentives (in the order of nearly US$ 14/MW h) to power producers that can guarantee electricity provision during scarcity periods. Yet, wind power in Colombia is not able to currently guarantee firm power because an accepted methodology to calculate its potential firm capacity does not exist. In this paper we argue that developing such methodology would provide an incentive to potential investors to enter into this low carbon technology. This paper analyzes three methodologies currently used in energy markets around the world to calculate firm wind energy capacity: PJM, NYISO, and Spain. These methodologies are initially selected due to their ability to accommodate to the Colombian energy regulations. The objective of this work is to determine which of these methodologies makes most sense from an investor's perspective, to ultimately shed light into developing a methodology to be used in Colombia. To this end, the authors developed a methodology consisting on the elaboration of a wind model using the Monte-Carlo simulation, based on known wind behaviour statistics of a region with adequate wind potential in Colombia. The simulation gives back random generation data, representing the resource's inherent variability and simulating the historical data required to evaluate the mentioned methodologies, thus achieving the technology's theoretical generation data. The document concludes that the evaluated methodologies are easy to implement and that these do not require historical data (important for Colombia, where there is almost no historical wind power data). It is also found that the Spanish methodology provides a higher Capacity Value (and therefore a higher return to investors). The financial assessment results show that it is crucial that these types of incentives exist to make viable

  7. Decision-theoretic methodology for reliability and risk allocation in nuclear power plants

    International Nuclear Information System (INIS)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.; El-Bassioni, A.

    1985-01-01

    This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferences could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed

  8. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  9. Go-flow: a reliability analysis methodology applicable to piping system

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kobayashi, M.

    1985-01-01

    Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given

  10. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  11. Reliability in the Rasch Model

    Czech Academy of Sciences Publication Activity Database

    Martinková, Patrícia; Zvára, K.

    2007-01-01

    Roč. 43, č. 3 (2007), s. 315-326 ISSN 0023-5954 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : Cronbach's alpha * Rasch model * reliability Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.552, year: 2007 http://dml.cz/handle/10338.dmlcz/135776

  12. Multinomial-exponential reliability function: a software reliability model

    International Nuclear Information System (INIS)

    Saiz de Bustamante, Amalio; Saiz de Bustamante, Barbara

    2003-01-01

    The multinomial-exponential reliability function (MERF) was developed during a detailed study of the software failure/correction processes. Later on MERF was approximated by a much simpler exponential reliability function (EARF), which keeps most of MERF mathematical properties, so the two functions together makes up a single reliability model. The reliability model MERF/EARF considers the software failure process as a non-homogeneous Poisson process (NHPP), and the repair (correction) process, a multinomial distribution. The model supposes that both processes are statistically independent. The paper discusses the model's theoretical basis, its mathematical properties and its application to software reliability. Nevertheless it is foreseen model applications to inspection and maintenance of physical systems. The paper includes a complete numerical example of the model application to a software reliability analysis

  13. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  14. Methodologies of the hardware reliability prediction for PSA of digital I and C systems

    International Nuclear Information System (INIS)

    Jung, H. S.; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Park, J.

    2000-09-01

    Digital I and C systems are being used widely in the Non-safety systems of the NPP and they are expanding their applications to safety critical systems. The regulatory body shifts their policy to risk based and may require Probabilistic Safety Assessment for the digital I and C systems. But there is no established reliability prediction methodology for the digital I and C systems including both software and hardware yet. This survey report includes a lot of reliability prediction methods for electronic systems in view of hardware. Each method has both the strong and the weak points. This report provides the state-of-art of prediction methods and focus on Bellcore method and MIL-HDBK-217F method in deeply. The reliability analysis models are reviewed and discussed to help analysts. Also this report includes state-of-art of software tools that are supporting reliability prediction

  15. Methodologies of the hardware reliability prediction for PSA of digital I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Park, J

    2000-09-01

    Digital I and C systems are being used widely in the Non-safety systems of the NPP and they are expanding their applications to safety critical systems. The regulatory body shifts their policy to risk based and may require Probabilistic Safety Assessment for the digital I and C systems. But there is no established reliability prediction methodology for the digital I and C systems including both software and hardware yet. This survey report includes a lot of reliability prediction methods for electronic systems in view of hardware. Each method has both the strong and the weak points. This report provides the state-of-art of prediction methods and focus on Bellcore method and MIL-HDBK-217F method in deeply. The reliability analysis models are reviewed and discussed to help analysts. Also this report includes state-of-art of software tools that are supporting reliability prediction.

  16. Verification of Fault Tree Models with RBDGG Methodology

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    Currently, fault tree analysis is widely used in the field of probabilistic safety assessment (PSA) of nuclear power plants (NPPs). To guarantee the correctness of fault tree models, which are usually manually constructed by analysts, a review by other analysts is widely used for verifying constructed fault tree models. Recently, an extension of the reliability block diagram was developed, which is named as RBDGG (reliability block diagram with general gates). The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system and, therefore, the modeling of a system for a system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar to that of the development of the RGGG (Reliability Graph with General Gates) methodology. The difference between the RBDGG methodology and RGGG methodology is that the RBDGG methodology focuses on the block failures while the RGGG methodology focuses on the connection line failures. But, it is also known that an RGGG model can be converted to an RBDGG model and vice versa. In this paper, a new method for the verification of the constructed fault tree models using the RBDGG methodology is proposed and demonstrated

  17. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  18. A study on a reliability assessment methodology for the VHTR safety systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok

    2012-02-01

    The passive safety system of a 300MWt VHTR (Very High Temperature Reactor)which has attracted worldwide attention recently is actively considered for designing the improvement in the safety of the next generation nuclear power plant. The passive system functionality does not rely on an external source of the electrical support system,but on an intelligent use of the natural phenomena, such as convection, conduction, radiation, and gravity. It is not easy to evaluate quantitatively the reliability of the passive safety for the risk analysis considering the existing active system failure since the classical reliability assessment method could not be applicable. Therefore a new reliability methodology needs to be developed and applied for evaluating the reliability of the conceptual designed VHTR in this study. The preliminary evaluation and conceptualization are performed using the concept of the load and capacity theory related to the reliability physics model. The method of response surface method (RSM) is also utilized for evaluating the maximum temperature of nuclear fuel in this study. The significant variables and their correlation are considered for utilizing the GAMMA+ code. The proposed method might contribute to designing the new passive system of the VHTR

  19. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshd@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarty, Aranyak [School of Nuclear Studies and Application, Jadavpur University, Kolkata 700032 (India); Nayak, A.K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Prasad, Hari; Gopika, V. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-10-15

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components.

  20. Reliability assessment of Passive Containment Cooling System of an Advanced Reactor using APSRA methodology

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Chakravarty, Aranyak; Nayak, A.K.; Prasad, Hari; Gopika, V.

    2014-01-01

    Highlights: • The paper deals with the reliability assessment of Passive Containment Cooling System of Advanced Heavy Water Reactor. • Assessment of Passive System ReliAbility (APSRA) methodology is used for reliability assessment. • Performance assessment of the PCCS is initially performed during a postulated design basis LOCA. • The parameters affecting the system performance are then identified and considered for further analysis. • The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. - Abstract: Passive Systems are increasingly playing a prominent role in the advanced nuclear reactor systems and are being utilised in normal operations as well as safety systems of the reactors following an accident. The Passive Containment Cooling System (PCCS) is one of the several passive safety features in an Advanced Reactor (AHWR). In this paper, the APSRA methodology has been employed for reliability evaluation of the PCCS of AHWR. Performance assessment of the PCCS is initially performed during a postulated design basis LOCA using the best-estimate code RELAP5/Mod 3.2. The parameters affecting the system performance are then identified and considered for further analysis. Based on some pre-determined failure criterion, the failure surface for the system is predicted using the best-estimate code taking into account the deviations of the identified parameters from their nominal states as well as the model uncertainties inherent to the best estimate code. Root diagnosis is then carried out to determine the various failure causes, which occurs mainly due to malfunctioning of mechanical components. The failure probabilities of the various components are assessed through a classical PSA treatment using generic data. The reliability of the PCCS is then evaluated from the probability of availability of these components

  1. Assessment of ALWR passive safety system reliability. Phase 1: Methodology development and component failure quantification

    International Nuclear Information System (INIS)

    Hake, T.M.; Heger, A.S.

    1995-04-01

    Many advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive systems to perform safety functions, rather than active systems as in current reactor designs. These passive systems depend to a great extent on physical processes such as natural circulation for their driving force, and not on active components, such as pumps. An NRC-sponsored study was begun at Sandia National Laboratories to develop and implement a methodology for evaluating ALWR passive system reliability in the context of probabilistic risk assessment (PRA). This report documents the first of three phases of this study, including methodology development, system-level qualitative analysis, and sequence-level component failure quantification. The methodology developed addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system's underlying physical processes. Traditional PRA methods, such as fault and event tree modeling, are applied to the component failure aspect. Thermal-hydraulic calculations are incorporated into a formal expert judgment process to address uncertainties in selected natural processes and success criteria. The first phase of the program has emphasized the component failure element of passive system reliability, rather than the natural process uncertainties. Although cursory evaluation of the natural processes has been performed as part of Phase 1, detailed assessment of these processes will take place during Phases 2 and 3 of the program

  2. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    International Nuclear Information System (INIS)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective

  3. Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2017-02-01

    Full Text Available In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster–Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  4. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong [School of Computer and Information Science, Southwest University, Chongqing (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville (United States)

    2017-02-15

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  5. Use of PRA methodology for enhancing operational safety and reliability

    International Nuclear Information System (INIS)

    Chu, B.; Rumble, E.; Najafi, B.; Putney, B.; Young, J.

    1985-01-01

    This paper describes a broad scope, on-going R and D study, sponsored by the Electric Power Research Institute (EPRI) to utilize key features of the state-of-the-art plant information management and system analysis techniques to develop and demonstrate a practical engineering tool for assisting plant engineering and operational staff to perform their activities more effectively. The study is foreseen to consist of two major activities: to develop a user-friendly, integrated software system; and to demonstrate the applications of this software on-site. This integrated software, Reliability Analysis Program with In-Plant Data (RAPID), will consist of three types of interrelated elements: an Executive Controller which will provide engineering and operations staff users with interface and control of the other two software elements, a Data Base Manager which can acquire, store, select, and transfer data, and Applications Modules which will perform the specific reliability-oriented functions. A broad range of these functions has been envisaged. The immediate emphasis will be focused on four application modules: a Plant Status Module, a Technical Specification Optimization Module, a Reliability Assessment Module, and a Utility Module for acquiring plant data

  6. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  7. Software reliability models for critical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pham, H.; Pham, M.

    1991-12-01

    This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.

  8. System reliability time-dependent models

    International Nuclear Information System (INIS)

    Debernardo, H.D.

    1991-06-01

    A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es

  9. Field programmable gate array reliability analysis using the dynamic flow graph methodology

    Energy Technology Data Exchange (ETDEWEB)

    McNelles, Phillip; Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario (Canada)

    2016-10-15

    Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the 'IEEE 1164 standard', registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  10. Reliability and continuous regeneration model

    Directory of Open Access Journals (Sweden)

    Anna Pavlisková

    2006-06-01

    Full Text Available The failure-free function of an object is very important for the service. This leads to the interest in the determination of the object reliability and failure intensity. The reliability of an element is defined by the theory of probability.The element durability T is a continuous random variate with the probability density f. The failure intensity (tλ is a very important reliability characteristics of the element. Often it is an increasing function, which corresponds to the element ageing. We disposed of the data about a belt conveyor failures recorded during the period of 90 months. The given ses behaves according to the normal distribution. By using a mathematical analysis and matematical statistics, we found the failure intensity function (tλ. The function (tλ increases almost linearly.

  11. RELIABILITY MODELING BASED ON INCOMPLETE DATA: OIL PUMP APPLICATION

    Directory of Open Access Journals (Sweden)

    Ahmed HAFAIFA

    2014-07-01

    Full Text Available The reliability analysis for industrial maintenance is now increasingly demanded by the industrialists in the world. Indeed, the modern manufacturing facilities are equipped by data acquisition and monitoring system, these systems generates a large volume of data. These data can be used to infer future decisions affecting the health facilities. These data can be used to infer future decisions affecting the state of the exploited equipment. However, in most practical cases the data used in reliability modelling are incomplete or not reliable. In this context, to analyze the reliability of an oil pump, this work proposes to examine and treat the incomplete, incorrect or aberrant data to the reliability modeling of an oil pump. The objective of this paper is to propose a suitable methodology for replacing the incomplete data using a regression method.

  12. Reliability evaluation methodologies for ensuring container integrity of stored transuranic (TRU) waste

    International Nuclear Information System (INIS)

    Smith, K.L.

    1995-06-01

    This report provides methodologies for providing defensible estimates of expected transuranic waste storage container lifetimes at the Radioactive Waste Management Complex. These methodologies can be used to estimate transuranic waste container reliability (for integrity and degradation) and as an analytical tool to optimize waste container integrity. Container packaging and storage configurations, which directly affect waste container integrity, are also addressed. The methodologies presented provide a means for demonstrating Resource Conservation and Recovery Act waste storage requirements

  13. Chapter three: methodology of exposure modeling

    CSIR Research Space (South Africa)

    Moschandreas, DJ

    2002-12-01

    Full Text Available methodologies and models are reviewed. Three exposure/measurement methodologies are assessed. Estimation methods focus on source evaluation and attribution, sources include those outdoors and indoors as well as in occupational and in-transit environments. Fate...

  14. Reliability Modeling of Double Beam Bridge Crane

    Science.gov (United States)

    Han, Zhu; Tong, Yifei; Luan, Jiahui; Xiangdong, Li

    2018-05-01

    This paper briefly described the structure of double beam bridge crane and the basic parameters of double beam bridge crane are defined. According to the structure and system division of double beam bridge crane, the reliability architecture of double beam bridge crane system is proposed, and the reliability mathematical model is constructed.

  15. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  16. Application of GO methodology in reliability analysis of offsite power supply of Daya Bay NPP

    International Nuclear Information System (INIS)

    Shen Zupei; Li Xiaodong; Huang Xiangrui

    2003-01-01

    The author applies the GO methodology to reliability analysis of the offsite power supply system of Daya Bay NPP. The direct quantitative calculation formulas of the stable reliability target of the system with shared signals and the dynamic calculation formulas of the state probability for the unit with two states are derived. The method to solve the fault event sets of the system is also presented and all the fault event sets of the outer power supply system and their failure probability are obtained. The resumption reliability of the offsite power supply system after the stability failure of the power net is also calculated. The result shows that the GO methodology is very simple and useful in the stable and dynamic reliability analysis of the repairable system

  17. Application of REPAS Methodology to Assess the Reliability of Passive Safety Systems

    Directory of Open Access Journals (Sweden)

    Franco Pierro

    2009-01-01

    Full Text Available The paper deals with the presentation of the Reliability Evaluation of Passive Safety System (REPAS methodology developed by University of Pisa. The general objective of the REPAS is to characterize in an analytical way the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems. The REPAS can be used in the design of the passive safety systems to assess their goodness and to optimize their costs. It may also provide numerical values that can be used in more complex safety assessment studies and it can be seen as a support to Probabilistic Safety Analysis studies. With regard to this, some examples in the application of the methodology are reported in the paper. A best-estimate thermal-hydraulic code, RELAP5, has been used to support the analyses and to model the selected systems. Probability distributions have been assigned to the uncertain input parameters through engineering judgment. Monte Carlo method has been used to propagate uncertainties and Wilks' formula has been taken into account to select sample size. Failure criterions are defined in terms of nonfulfillment of the defined design targets.

  18. A methodology based in particle swarm optimization algorithm for preventive maintenance focused in reliability and cost

    International Nuclear Information System (INIS)

    Luz, Andre Ferreira da

    2009-01-01

    In this work, a Particle Swarm Optimization Algorithm (PSO) is developed for preventive maintenance optimization. The proposed methodology, which allows the use flexible intervals between maintenance interventions, instead of considering fixed periods (as usual), allows a better adaptation of scheduling in order to deal with the failure rates of components under aging. Moreover, because of this flexibility, the planning of preventive maintenance becomes a difficult task. Motivated by the fact that the PSO has proved to be very competitive compared to other optimization tools, this work investigates the use of PSO as an alternative tool of optimization. Considering that PSO works in a real and continuous space, it is a challenge to use it for discrete optimization, in which scheduling may comprise variable number of maintenance interventions. The PSO model developed in this work overcome such difficulty. The proposed PSO searches for the best policy for maintaining and considers several aspects, such as: probability of needing repair (corrective maintenance), the cost of such repairs, typical outage times, costs of preventive maintenance, the impact of maintaining the reliability of systems as a whole, and the probability of imperfect maintenance. To evaluate the proposed methodology, we investigate an electro-mechanical system consisting of three pumps and four valves, High Pressure Injection System (HPIS) of a PWR. Results show that PSO is quite efficient in finding the optimum preventive maintenance policies for the HPIS. (author)

  19. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  20. Application of a methodology for the development and validation of reliable process control software

    International Nuclear Information System (INIS)

    Ramamoorthy, C.V.; Mok, Y.R.; Bastani, F.B.; Chin, G.

    1980-01-01

    The necessity of a good methodology for the development of reliable software, especially with respect to the final software validation and testing activities, is discussed. A formal specification development and validation methodology is proposed. This methodology has been applied to the development and validation of a pilot software, incorporating typical features of critical software for nuclear power plants safety protection. The main features of the approach include the use of a formal specification language and the independent development of two sets of specifications. 1 ref

  1. Using the Weibull distribution reliability, modeling and inference

    CERN Document Server

    McCool, John I

    2012-01-01

    Understand and utilize the latest developments in Weibull inferential methods While the Weibull distribution is widely used in science and engineering, most engineers do not have the necessary statistical training to implement the methodology effectively. Using the Weibull Distribution: Reliability, Modeling, and Inference fills a gap in the current literature on the topic, introducing a self-contained presentation of the probabilistic basis for the methodology while providing powerful techniques for extracting information from data. The author explains the use of the Weibull distribution

  2. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, we use an IFR distribution to develop a reliability model for the EBS

  3. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, an IFR distribution is used to develop a reliability model for the EBS

  4. Methodological Developments in Geophysical Assimilation Modeling

    Science.gov (United States)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  5. Operations management research methodologies using quantitative modeling

    NARCIS (Netherlands)

    Bertrand, J.W.M.; Fransoo, J.C.

    2002-01-01

    Gives an overview of quantitative model-based research in operations management, focusing on research methodology. Distinguishes between empirical and axiomatic research, and furthermore between descriptive and normative research. Presents guidelines for doing quantitative model-based research in

  6. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  7. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  8. Inter comparison of REPAS and APSRA methodologies for passive system reliability analysis

    International Nuclear Information System (INIS)

    Solanki, R.B.; Krishnamurthy, P.R.; Singh, Suneet; Varde, P.V.; Verma, A.K.

    2014-01-01

    The increasing use of passive systems in the innovative nuclear reactors puts demand on the estimation of the reliability assessment of these passive systems. The passive systems operate on the driving forces such as natural circulation, gravity, internal stored energy etc. which are moderately weaker than that of active components. Hence, phenomenological failures (virtual components) are equally important as that of equipment failures (real components) in the evaluation of passive systems reliability. The contribution of the mechanical components to the passive system reliability can be evaluated in a classical way using the available component reliability database and well known methods. On the other hand, different methods are required to evaluate the reliability of processes like thermohydraulics due to lack of adequate failure data. The research is ongoing worldwide on the reliability assessment of the passive systems and their integration into PSA, however consensus is not reached. Two of the most widely used methods are Reliability Evaluation of Passive Systems (REPAS) and Assessment of Passive System Reliability (APSRA). Both these methods characterize the uncertainties involved in the design and process parameters governing the function of the passive system. However, these methods differ in the quantification of passive system reliability. Inter comparison among different available methods provides useful insights into the strength and weakness of different methods. This paper highlights the results of the thermal hydraulic analysis of a typical passive isolation condenser system carried out using RELAP mode 3.2 computer code applying REPAS and APSRA methodologies. The failure surface is established for the passive system under consideration and system reliability has also been evaluated using these methods. Challenges involved in passive system reliabilities are identified, which require further attention in order to overcome the shortcomings of these

  9. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  10. Structural reliability in context of statistical uncertainties and modelling discrepancies

    International Nuclear Information System (INIS)

    Pendola, Maurice

    2000-01-01

    Structural reliability methods have been largely improved during the last years and have showed their ability to deal with uncertainties during the design stage or to optimize the functioning and the maintenance of industrial installations. They are based on a mechanical modeling of the structural behavior according to the considered failure modes and on a probabilistic representation of input parameters of this modeling. In practice, only limited statistical information is available to build the probabilistic representation and different sophistication levels of the mechanical modeling may be introduced. Thus, besides the physical randomness, other uncertainties occur in such analyses. The aim of this work is triple: 1. at first, to propose a methodology able to characterize the statistical uncertainties due to the limited number of data in order to take them into account in the reliability analyses. The obtained reliability index measures the confidence in the structure considering the statistical information available. 2. Then, to show a methodology leading to reliability results evaluated from a particular mechanical modeling but by using a less sophisticated one. The objective is then to decrease the computational efforts required by the reference modeling. 3. Finally, to propose partial safety factors that are evolving as a function of the number of statistical data available and as a function of the sophistication level of the mechanical modeling that is used. The concepts are illustrated in the case of a welded pipe and in the case of a natural draught cooling tower. The results show the interest of the methodologies in an industrial context. [fr

  11. Review of Software Reliability Assessment Methodologies for Digital I and C Software of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Hyun; Lee, Seung Jun; Jung, Won Dea [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    Digital instrumentation and control (I and C) systems are increasingly being applied to current nuclear power plants (NPPs) due to its advantages; zero drift, advanced data calculation capacity, and design flexibility. Accordingly, safety issues of software that is main part of the digital I and C system have been raised. As with hardware components, the software failure in NPPs could lead to a large disaster, therefore failure rate test and reliability assessment of software should be properly performed, and after that adopted in NPPs. However, the reliability assessment of the software is quite different with that of hardware, owing to the nature difference between software and hardware. The one of the most different thing is that the software failures arising from design faults as 'error crystal', whereas the hardware failures are caused by deficiencies in design, production, and maintenance. For this reason, software reliability assessment has been focused on the optimal release time considering the economy. However, the safety goal and public acceptance of the NPPs is so distinctive with other industries that the software in NPPs is dependent on reliability quantitative value rather than economy. The safety goal of NPPs compared to other industries is exceptionally high, so conventional methodologies on software reliability assessment already used in other industries could not adjust to safety goal of NPPs. Thus, the new reliability assessment methodology of the software of digital I and C on NPPs need to be developed. In this paper, existing software reliability assessment methodologies are reviewed to obtain the pros and cons of them, and then to assess the usefulness of each method to software of NPPs.

  12. Review of Software Reliability Assessment Methodologies for Digital I and C Software of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Cho, Jae Hyun; Lee, Seung Jun; Jung, Won Dea

    2014-01-01

    Digital instrumentation and control (I and C) systems are increasingly being applied to current nuclear power plants (NPPs) due to its advantages; zero drift, advanced data calculation capacity, and design flexibility. Accordingly, safety issues of software that is main part of the digital I and C system have been raised. As with hardware components, the software failure in NPPs could lead to a large disaster, therefore failure rate test and reliability assessment of software should be properly performed, and after that adopted in NPPs. However, the reliability assessment of the software is quite different with that of hardware, owing to the nature difference between software and hardware. The one of the most different thing is that the software failures arising from design faults as 'error crystal', whereas the hardware failures are caused by deficiencies in design, production, and maintenance. For this reason, software reliability assessment has been focused on the optimal release time considering the economy. However, the safety goal and public acceptance of the NPPs is so distinctive with other industries that the software in NPPs is dependent on reliability quantitative value rather than economy. The safety goal of NPPs compared to other industries is exceptionally high, so conventional methodologies on software reliability assessment already used in other industries could not adjust to safety goal of NPPs. Thus, the new reliability assessment methodology of the software of digital I and C on NPPs need to be developed. In this paper, existing software reliability assessment methodologies are reviewed to obtain the pros and cons of them, and then to assess the usefulness of each method to software of NPPs

  13. A methodology for spectral wave model evaluation

    Science.gov (United States)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave

  14. Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology

    International Nuclear Information System (INIS)

    Nayak, A.K.; Jain, Vikas; Gartia, M.R.; Prasad, Hari; Anthony, A.; Bhatia, S.K.; Sinha, R.K.

    2009-01-01

    In this paper, a methodology known as APSRA (Assessment of Passive System ReliAbility) is used for evaluation of reliability of passive isolation condenser system of the Indian Advanced Heavy Water Reactor (AHWR). As per the APSRA methodology, the passive system reliability evaluation is based on the failure probability of the system to perform the design basis function. The methodology first determines the operational characteristics of the system and the failure conditions based on a predetermined failure criterion. The parameters that could degrade the system performance are identified and considered for analysis. Different modes of failure and their cause are identified. The failure surface is predicted using a best estimate code considering deviations of the operating parameters from their nominal states, which affect the isolation condenser system performance. Once the failure surface of the system is predicted, the causes of failure are examined through root diagnosis, which occur mainly due to failure of mechanical components. Reliability of the system is evaluated through a classical PSA treatment based on the failure probability of the components using generic data

  15. Overcoming some limitations of imprecise reliability models

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, Victor

    2011-01-01

    The application of imprecise reliability models is often hindered by the rapid growth in imprecision that occurs when many components constitute a system and by the fact that time to failure is bounded from above. The latter results in the necessity to explicitly introduce an upper bound on time ...

  16. Bulk Fuel Pricing: DOD Needs to Take Additional Actions to Establish a More Reliable Methodology

    Science.gov (United States)

    2015-11-19

    Page 1 GAO-16-78R Bulk Fuel Pricing 441 G St. N.W. Washington, DC 20548 November 19, 2015 The Honorable Ashton Carter The Secretary of...Defense Bulk Fuel Pricing : DOD Needs to Take Additional Actions to Establish a More Reliable Methodology Dear Secretary Carter: Each fiscal...year, the Office of the Under Secretary of Defense (Comptroller), in coordination with the Defense Logistics Agency, sets a standard price per barrel

  17. Evaluating the reliability of predictions made using environmental transfer models

    International Nuclear Information System (INIS)

    1989-01-01

    The development and application of mathematical models for predicting the consequences of releases of radionuclides into the environment from normal operations in the nuclear fuel cycle and in hypothetical accident conditions has increased dramatically in the last two decades. This Safety Practice publication has been prepared to provide guidance on the available methods for evaluating the reliability of environmental transfer model predictions. It provides a practical introduction of the subject and a particular emphasis has been given to worked examples in the text. It is intended to supplement existing IAEA publications on environmental assessment methodology. 60 refs, 17 figs, 12 tabs

  18. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  19. Reliable RANSAC Using a Novel Preprocessing Model

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2013-01-01

    Full Text Available Geometric assumption and verification with RANSAC has become a crucial step for corresponding to local features due to its wide applications in biomedical feature analysis and vision computing. However, conventional RANSAC is very time-consuming due to redundant sampling times, especially dealing with the case of numerous matching pairs. This paper presents a novel preprocessing model to explore a reduced set with reliable correspondences from initial matching dataset. Both geometric model generation and verification are carried out on this reduced set, which leads to considerable speedups. Afterwards, this paper proposes a reliable RANSAC framework using preprocessing model, which was implemented and verified using Harris and SIFT features, respectively. Compared with traditional RANSAC, experimental results show that our method is more efficient.

  20. Summary of the preparation of methodology for digital system reliability analysis for PSA purposes

    International Nuclear Information System (INIS)

    Hustak, S.; Babic, P.

    2001-12-01

    The report is structured as follows: Specific features of and requirements for the digital part of NPP Instrumentation and Control (I and C) systems (Computer-controlled digital technologies and systems of the NPP I and C system; Specific types of digital technology failures and preventive provisions; Reliability requirements for the digital parts of I and C systems; Safety requirements for the digital parts of I and C systems; Defence-in-depth). Qualitative analyses of NPP I and C system reliability and safety (Introductory system analysis; Qualitative requirements for and proof of NPP I and C system reliability and safety). Quantitative reliability analyses of the digital parts of I and C systems (Selection of a suitable quantitative measure of digital system reliability; Selected qualitative and quantitative findings regarding digital system reliability; Use of relations among the occurrences of the various types of failure). Mathematical section in support of the calculation of the various types of indices (Boolean reliability models, Markovian reliability models). Example of digital system analysis (Description of a selected protective function and the relevant digital part of the I and C system; Functional chain examined, its components and fault tree). (P.A.)

  1. Modelling and estimating degradation processes with application in structural reliability

    International Nuclear Information System (INIS)

    Chiquet, J.

    2007-06-01

    The characteristic level of degradation of a given structure is modeled through a stochastic process called the degradation process. The random evolution of the degradation process is governed by a differential system with Markovian environment. We put the associated reliability framework by considering the failure of the structure once the degradation process reaches a critical threshold. A closed form solution of the reliability function is obtained thanks to Markov renewal theory. Then, we build an estimation methodology for the parameters of the stochastic processes involved. The estimation methods and the theoretical results, as well as the associated numerical algorithms, are validated on simulated data sets. Our method is applied to the modelling of a real degradation mechanism, known as crack growth, for which an experimental data set is considered. (authors)

  2. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  3. Maintenance personnel performance simulation (MAPPS): a model for predicting maintenance performance reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Knee, H.E.; Krois, P.A.; Haas, P.M.; Siegel, A.I.; Ryan, T.G.

    1983-01-01

    The NRC has developed a structured, quantitative, predictive methodology in the form of a computerized simulation model for assessing maintainer task performance. Objective of the overall program is to develop, validate, and disseminate a practical, useful, and acceptable methodology for the quantitative assessment of NPP maintenance personnel reliability. The program was organized into four phases: (1) scoping study, (2) model development, (3) model evaluation, and (4) model dissemination. The program is currently nearing completion of Phase 2 - Model Development

  4. Theories, Models and Methodology in Writing Research

    NARCIS (Netherlands)

    Rijlaarsdam, Gert; Bergh, van den Huub; Couzijn, Michel

    1996-01-01

    Theories, Models and Methodology in Writing Research describes the current state of the art in research on written text production. The chapters in the first part offer contributions to the creation of new theories and models for writing processes. The second part examines specific elements of the

  5. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  6. Stochastic models in reliability and maintenance

    CERN Document Server

    2002-01-01

    Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main­ tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which cla...

  7. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  8. A methodology and success/failure criteria for determining emergency diesel generator reliability

    Energy Technology Data Exchange (ETDEWEB)

    Wyckoff, H. L. [Electric Power Research Institute, Palo Alto, California (United States)

    1986-02-15

    In the U.S., comprehensive records of nationwide emergency diesel generator (EDG) reliability at nuclear power plants have not been consistently collected. Those surveys that have been undertaken have not always been complete and accurate. Moreover, they have been based On an extremely conservative methodology and success/failure criteria that are specified in U.S. Nuclear Regulatory Commission Reg. Guide 1.108. This Reg. Guide was one of the NRCs earlier efforts and does not yield the caliber of statistically defensible reliability values that are now needed. On behalf of the U.S. utilities, EPRI is taking the lead in organizing, investigating, and compiling a realistic database of EDG operating success/failure experience for the years 1983, 1984 and 1985. These data will be analyzed to provide an overall picture of EDG reliability. This paper describes the statistical methodology and start and run success/- failure criteria that EPRI is using. The survey is scheduled to be completed in March 1986. (author)

  9. A methodology and success/failure criteria for determining emergency diesel generator reliability

    International Nuclear Information System (INIS)

    Wyckoff, H.L.

    1986-01-01

    In the U.S., comprehensive records of nationwide emergency diesel generator (EDG) reliability at nuclear power plants have not been consistently collected. Those surveys that have been undertaken have not always been complete and accurate. Moreover, they have been based On an extremely conservative methodology and success/failure criteria that are specified in U.S. Nuclear Regulatory Commission Reg. Guide 1.108. This Reg. Guide was one of the NRCs earlier efforts and does not yield the caliber of statistically defensible reliability values that are now needed. On behalf of the U.S. utilities, EPRI is taking the lead in organizing, investigating, and compiling a realistic database of EDG operating success/failure experience for the years 1983, 1984 and 1985. These data will be analyzed to provide an overall picture of EDG reliability. This paper describes the statistical methodology and start and run success/- failure criteria that EPRI is using. The survey is scheduled to be completed in March 1986. (author)

  10. Reliability Centered Maintenance (RCM) Methodology and Application to the Shutdown Cooling System for APR-1400 Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faragalla, Mohamed M.; Emmanuel, Efenji; Alhammadi, Ibrahim; Awwal, Arigi M.; Lee, Yong Kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Shutdown Cooling System (SCS) is a safety-related system that is used in conjunction with the Main Steam and Main or Auxiliary Feedwater Systems to reduce the temperature of the Reactor Coolant System (RCS) in post shutdown periods from the hot shutdown operating temperature to the refueling temperature. In this paper RCM methodology is applied to (SCS). RCM analysis is performed based on evaluation of Failure Modes Effects and Criticality Analysis (FME and CA) on the component, system and plant. The Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The main objectives of RCM is the safety, preserve the System function, the cost-effective maintenance of the plant components and increase the reliability and availability value. The RCM methodology is useful for improving the equipment reliability by strengthening the management of equipment condition, and leads to a significant decrease in the number of periodical maintenance, extended maintenance cycle, longer useful life of equipment, and decrease in overall maintenance cost. It also focuses on the safety of the system by assigning criticality index to the various components and further selecting maintenance activities based on the risk of failure involved. Therefore, it can be said that RCM introduces a maintenance plan designed for maximum safety in an economical manner and making the system more reliable. For the SCP, increasing the number of condition monitoring tasks will improve the availability of the SCP. It is recommended to reduce the number of periodic maintenance activities.

  11. Reliability Models Applied to a System of Power Converters in Particle Accelerators

    OpenAIRE

    Siemaszko, D; Speiser, M; Pittet, S

    2012-01-01

    Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes.

  12. Data Used in Quantified Reliability Models

    Science.gov (United States)

    DeMott, Diana; Kleinhammer, Roger K.; Kahn, C. J.

    2014-01-01

    Data is the crux to developing quantitative risk and reliability models, without the data there is no quantification. The means to find and identify reliability data or failure numbers to quantify fault tree models during conceptual and design phases is often the quagmire that precludes early decision makers consideration of potential risk drivers that will influence design. The analyst tasked with addressing a system or product reliability depends on the availability of data. But, where is does that data come from and what does it really apply to? Commercial industries, government agencies, and other international sources might have available data similar to what you are looking for. In general, internal and external technical reports and data based on similar and dissimilar equipment is often the first and only place checked. A common philosophy is "I have a number - that is good enough". But, is it? Have you ever considered the difference in reported data from various federal datasets and technical reports when compared to similar sources from national and/or international datasets? Just how well does your data compare? Understanding how the reported data was derived, and interpreting the information and details associated with the data is as important as the data itself.

  13. Functional components for a design strategy: Hot cell shielding in the high reliability safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: rborrelli@uidaho.edu

    2016-08-15

    The high reliability safeguards (HRS) methodology has been established for the safeguardability of advanced nuclear energy systems (NESs). HRS is being developed in order to integrate safety, security, and safeguards concerns, while also optimizing these with operational goals for facilities that handle special nuclear material (SNM). Currently, a commercial pyroprocessing facility is used as an example system. One of the goals in the HRS methodology is to apply intrinsic features of the system to a design strategy. This current study investigates the thickness of the hot cell walls that could adequately shield processed materials. This is an important design consideration that carries implications regarding the formation of material balance areas, the location of key measurement points, and material flow in the facility.

  14. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  15. MERMOS: an EDF project to update the PHRA methodology (Probabilistic Human Reliability Assessment)

    International Nuclear Information System (INIS)

    Le Bot, Pierre; Desmares, E.; Bieder, C.; Cara, F.; Bonnet, J.L.

    1998-01-01

    To account for successive evolution of nuclear power plants emergency operation, EDF had several times to review PHRA methodologies. It was particularly the case when event-based procedures were left behind to the benefit of state-based procedures. A more recent updating was necessary to get pieces of information on the new unit type N4 safety. The extent of changes in operation for this unit type (especially the computerization of both the control room and the procedures) required to deeply rethink existing PHRA methods. It also seemed necessary to - more explicitly than in the past - base the design of methods on concepts evolved in human sciences. These are the main ambitions of the project named MERMOS that started in 1996. The design effort for a new PHRA method is carried out by a multidisciplinary team involving reliability engineers, psychologists and ergonomists. An independent expert is in charge of project review. The method, considered as the analysis tool dedicated to PHRA analysts, is one of the two outcomes of the project. The other one is the formalization of the design approach for the method, aimed at a good appropriation of the method by the analysts. EDF's specificity in the field of PHRA and more generally PSA is that the method is not used by the designers but by analysts. Keeping track of the approach is also meant to guarantee its transposition to other EDF unit types such as 900 or 1300 MW PWR. The PHRA method is based upon a model of emergency operation called 'SAD model'. The formalization effort of the design approach lead to clarify and justify it. The model describes and explains both functioning and dys-functioning of emergency operation in PSA scenarios. It combines a systemic approach and what is called distributed cognition in cognitive sciences. Collective aspects are considered as an important feature in explaining phenomena under study in operation dys-functioning. The PHRA method is to be operational early next year (1998

  16. Methodology for time-dependent reliability analysis of accident sequences and complex reactor systems

    International Nuclear Information System (INIS)

    Paula, H.M.

    1984-01-01

    The work presented here is of direct use in probabilistic risk assessment (PRA) and is of value to utilities as well as the Nuclear Regulatory Commission (NRC). Specifically, this report presents a methodology and a computer program to calculate the expected number of occurrences for each accident sequence in an event tree. The methodology evaluates the time-dependent (instantaneous) and the average behavior of the accident sequence. The methodology accounts for standby safety system and component failures that occur (a) before they are demanded, (b) upon demand, and (c) during the mission (system operation). With respect to failures that occur during the mission, this methodology is unique in the sense that it models components that can be repaired during the mission. The expected number of system failures during the mission provides an upper bound for the probability of a system failure to run - the mission unreliability. The basic event modeling includes components that are continuously monitored, periodically tested, and those that are not tested or are otherwise nonrepairable. The computer program ASA allows practical applications of the method developed. This work represents a required extension of the presently available methodology and allows a more realistic PRA of nuclear power plants

  17. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  18. Study on seismic reliability for foundation grounds and surrounding slopes of nuclear power plants. Proposal of evaluation methodology and integration of seismic reliability evaluation system

    International Nuclear Information System (INIS)

    Ohtori, Yasuki; Kanatani, Mamoru

    2006-01-01

    This paper proposes an evaluation methodology of annual probability of failure for soil structures subjected to earthquakes and integrates the analysis system for seismic reliability of soil structures. The method is based on margin analysis, that evaluates the ground motion level at which structure is damaged. First, ground motion index that is strongly correlated with damage or response of the specific structure, is selected. The ultimate strength in terms of selected ground motion index is then evaluated. Next, variation of soil properties is taken into account for the evaluation of seismic stability of structures. The variation of the safety factor (SF) is evaluated and then the variation is converted into the variation of the specific ground motion index. Finally, the fragility curve is developed and then the annual probability of failure is evaluated combined with seismic hazard curve. The system facilitates the assessment of seismic reliability. A generator of random numbers, dynamic analysis program and stability analysis program are incorporated into one package. Once we define a structural model, distribution of the soil properties, input ground motions and so forth, list of safety factors for each sliding line is obtained. Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS), point estimation method (PEM) and first order second moment (FOSM) implemented in this system are also introduced. As numerical examples, a ground foundation and a surrounding slope are assessed using the proposed method and the integrated system. (author)

  19. Model-driven software migration a methodology

    CERN Document Server

    Wagner, Christian

    2014-01-01

    Today, reliable software systems are the basis of any business or company. The continuous further development of those systems is the central component in software evolution. It requires a huge amount of time- man power- as well as financial resources. The challenges are size, seniority and heterogeneity of those software systems. Christian Wagner addresses software evolution: the inherent problems and uncertainties in the process. He presents a model-driven method which leads to a synchronization between source code and design. As a result the model layer will be the central part in further e

  20. Probabilistic Analysis of Passive Safety System Reliability in Advanced Small Modular Reactors: Methodologies and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Brunett, Acacia; Grelle, Austin

    2015-06-28

    Many advanced small modular reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize with a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper describes the most promising options: mechanistic techniques, which share qualities with conventional probabilistic methods, and simulation-based techniques, which explicitly account for time-dependent processes. The primary intention of this paper is to describe the strengths and weaknesses of each methodology and highlight the lessons learned while applying the two techniques while providing high-level results. This includes the global benefits and deficiencies of the methods and practical problems encountered during the implementation of each technique.

  1. Validity and reliability of using photography for measuring knee range of motion: a methodological study

    Directory of Open Access Journals (Sweden)

    Adie Sam

    2011-04-01

    Full Text Available Abstract Background The clinimetric properties of knee goniometry are essential to appreciate in light of its extensive use in the orthopaedic and rehabilitative communities. Intra-observer reliability is thought to be satisfactory, but the validity and inter-rater reliability of knee goniometry often demonstrate unacceptable levels of variation. This study tests the validity and reliability of measuring knee range of motion using goniometry and photographic records. Methods Design: Methodology study assessing the validity and reliability of one method ('Marker Method' which uses a skin marker over the greater trochanter and another method ('Line of Femur Method' which requires estimation of the line of femur. Setting: Radiology and orthopaedic departments of two teaching hospitals. Participants: 31 volunteers (13 arthritic and 18 healthy subjects. Knee range of motion was measured radiographically and photographically using a goniometer. Three assessors were assessed for reliability and validity. Main outcomes: Agreement between methods and within raters was assessed using concordance correlation coefficient (CCCs. Agreement between raters was assessed using intra-class correlation coefficients (ICCs. 95% limits of agreement for the mean difference for all paired comparisons were computed. Results Validity (referenced to radiographs: Each method for all 3 raters yielded very high CCCs for flexion (0.975 to 0.988, and moderate to substantial CCCs for extension angles (0.478 to 0.678. The mean differences and 95% limits of agreement were narrower for flexion than they were for extension. Intra-rater reliability: For flexion and extension, very high CCCs were attained for all 3 raters for both methods with slightly greater CCCs seen for flexion (CCCs varied from 0.981 to 0.998. Inter-rater reliability: For both methods, very high ICCs (min to max: 0.891 to 0.995 were obtained for flexion and extension. Slightly higher coefficients were obtained

  2. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  3. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  4. A methodology for PSA model validation

    International Nuclear Information System (INIS)

    Unwin, S.D.

    1995-09-01

    This document reports Phase 2 of work undertaken by Science Applications International Corporation (SAIC) in support of the Atomic Energy Control Board's Probabilistic Safety Assessment (PSA) review. A methodology is presented for the systematic review and evaluation of a PSA model. These methods are intended to support consideration of the following question: To within the scope and depth of modeling resolution of a PSA study, is the resultant model a complete and accurate representation of the subject plant? This question was identified as a key PSA validation issue in SAIC's Phase 1 project. The validation methods are based on a model transformation process devised to enhance the transparency of the modeling assumptions. Through conversion to a 'success-oriented' framework, a closer correspondence to plant design and operational specifications is achieved. This can both enhance the scrutability of the model by plant personnel, and provide an alternative perspective on the model that may assist in the identification of deficiencies. The model transformation process is defined and applied to fault trees documented in the Darlington Probabilistic Safety Evaluation. A tentative real-time process is outlined for implementation and documentation of a PSA review based on the proposed methods. (author). 11 refs., 9 tabs., 30 refs

  5. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  6. Human reliability data collection and modelling

    International Nuclear Information System (INIS)

    1991-09-01

    The main purpose of this document is to review and outline the current state-of-the-art of the Human Reliability Assessment (HRA) used for quantitative assessment of nuclear power plants safe and economical operation. Another objective is to consider Human Performance Indicators (HPI) which can alert plant manager and regulator to departures from states of normal and acceptable operation. These two objectives are met in the three sections of this report. The first objective has been divided into two areas, based on the location of the human actions being considered. That is, the modelling and data collection associated with control room actions are addressed first in chapter 1 while actions outside the control room (including maintenance) are addressed in chapter 2. Both chapters 1 and 2 present a brief outline of the current status of HRA for these areas, and major outstanding issues. Chapter 3 discusses HPI. Such performance indicators can signal, at various levels, changes in factors which influence human performance. The final section of this report consists of papers presented by the participants of the Technical Committee Meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  8. A methodology for acquiring qualitative knowledge for probabilistic graphical models

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders L.

    2004-01-01

    We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model...

  9. Estimating the reliability of glycemic index values and potential sources of methodological and biological variability.

    Science.gov (United States)

    Matthan, Nirupa R; Ausman, Lynne M; Meng, Huicui; Tighiouart, Hocine; Lichtenstein, Alice H

    2016-10-01

    The utility of glycemic index (GI) values for chronic disease risk management remains controversial. Although absolute GI value determinations for individual foods have been shown to vary significantly in individuals with diabetes, there is a dearth of data on the reliability of GI value determinations and potential sources of variability among healthy adults. We examined the intra- and inter-individual variability in glycemic response to a single food challenge and methodologic and biological factors that potentially mediate this response. The GI value for white bread was determined by using standardized methodology in 63 volunteers free from chronic disease and recruited to differ by sex, age (18-85 y), and body mass index [BMI (in kg/m 2 ): 20-35]. Volunteers randomly underwent 3 sets of food challenges involving glucose (reference) and white bread (test food), both providing 50 g available carbohydrates. Serum glucose and insulin were monitored for 5 h postingestion, and GI values were calculated by using different area under the curve (AUC) methods. Biochemical variables were measured by using standard assays and body composition by dual-energy X-ray absorptiometry. The mean ± SD GI value for white bread was 62 ± 15 when calculated by using the recommended method. Mean intra- and interindividual CVs were 20% and 25%, respectively. Increasing sample size, replication of reference and test foods, and length of blood sampling, as well as AUC calculation method, did not improve the CVs. Among the biological factors assessed, insulin index and glycated hemoglobin values explained 15% and 16% of the variability in mean GI value for white bread, respectively. These data indicate that there is substantial variability in individual responses to GI value determinations, demonstrating that it is unlikely to be a good approach to guiding food choices. Additionally, even in healthy individuals, glycemic status significantly contributes to the variability in GI value

  10. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  11. A methodology for modeling regional terrorism risk.

    Science.gov (United States)

    Chatterjee, Samrat; Abkowitz, Mark D

    2011-07-01

    Over the past decade, terrorism risk has become a prominent consideration in protecting the well-being of individuals and organizations. More recently, there has been interest in not only quantifying terrorism risk, but also placing it in the context of an all-hazards environment in which consideration is given to accidents and natural hazards, as well as intentional acts. This article discusses the development of a regional terrorism risk assessment model designed for this purpose. The approach taken is to model terrorism risk as a dependent variable, expressed in expected annual monetary terms, as a function of attributes of population concentration and critical infrastructure. This allows for an assessment of regional terrorism risk in and of itself, as well as in relation to man-made accident and natural hazard risks, so that mitigation resources can be allocated in an effective manner. The adopted methodology incorporates elements of two terrorism risk modeling approaches (event-based models and risk indicators), producing results that can be utilized at various jurisdictional levels. The validity, strengths, and limitations of the model are discussed in the context of a case study application within the United States. © 2011 Society for Risk Analysis.

  12. MoPCoM Methodology: Focus on Models of Computation

    Science.gov (United States)

    Koudri, Ali; Champeau, Joël; Le Lann, Jean-Christophe; Leilde, Vincent

    Today, developments of Real Time Embedded Systems have to face new challenges. On the one hand, Time-To-Market constraints require a reliable development process allowing quick design space exploration. On the other hand, rapidly developing technology, as stated by Moore's law, requires techniques to handle the resulting productivity gap. In a previous paper, we have presented our Model Based Engineering methodology addressing those issues. In this paper, we make a focus on Models of Computation design and analysis. We illustrate our approach on a Cognitive Radio System development implemented on an FPGA. This work is part of the MoPCoM research project gathering academic and industrial organizations (http://www.mopcom.fr).

  13. Use of curium neutron flux from head-end pyroprocessing subsystems for the High Reliability Safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: r.angelo.borrelli@gmail.com

    2014-10-01

    The deployment of nuclear energy systems (NESs) is expanding around the world. Nations are investing in NESs as a means to establish energy independence, grow national economies, and address climate change. Transitioning to the advanced nuclear fuel cycle can meet growing energy demands and ensure resource sustainability. However, nuclear facilities in all phases of the advanced fuel cycle must be ‘safeguardable,’ where safety, safeguards, and security are integrated into a practical design strategy. To this end, the High Reliability Safeguards (HRS) approach is a continually developing safeguardability methodology that applies intrinsic design features and employs a risk-informed approach for systems assessment that is safeguards-motivated. Currently, a commercial pyroprocessing facility is used as the example system. This paper presents a modeling study that investigates the neutron flux associated with processed materials. The intent of these studies is to determine if the neutron flux will affect facility design, and subsequently, safeguardability. The results presented in this paper are for the head-end subsystems in a pyroprocessing facility. The collective results from these studies will then be used to further develop the HRS methodology.

  14. Building and integrating reliability models in a Reliability-Centered-Maintenance approach

    International Nuclear Information System (INIS)

    Verite, B.; Villain, B.; Venturini, V.; Hugonnard, S.; Bryla, P.

    1998-03-01

    Electricite de France (EDF) has recently developed its OMF-Structures method, designed to optimize preventive maintenance of passive structures such as pipes and support, based on risk. In particular, reliability performances of components need to be determined; it is a two-step process, consisting of a qualitative sort followed by a quantitative evaluation, involving two types of models. Initially, degradation models are widely used to exclude some components from the field of preventive maintenance. The reliability of the remaining components is then evaluated by means of quantitative reliability models. The results are then included in a risk indicator that is used to directly optimize preventive maintenance tasks. (author)

  15. Reliability Model of Power Transformer with ONAN Cooling

    OpenAIRE

    M. Sefidgaran; M. Mirzaie; A. Ebrahimzadeh

    2010-01-01

    Reliability of a power system is considerably influenced by its equipments. Power transformers are one of the most critical and expensive equipments of a power system and their proper functions are vital for the substations and utilities. Therefore, reliability model of power transformer is very important in the risk assessment of the engineering systems. This model shows the characteristics and functions of a transformer in the power system. In this paper the reliability model...

  16. Methodology, models and algorithms in thermographic diagnostics

    CERN Document Server

    Živčák, Jozef; Madarász, Ladislav; Rudas, Imre J

    2013-01-01

    This book presents  the methodology and techniques of  thermographic applications with focus primarily on medical thermography implemented for parametrizing the diagnostics of the human body. The first part of the book describes the basics of infrared thermography, the possibilities of thermographic diagnostics and the physical nature of thermography. The second half includes tools of intelligent engineering applied for the solving of selected applications and projects. Thermographic diagnostics was applied to problematics of paraplegia and tetraplegia and carpal tunnel syndrome (CTS). The results of the research activities were created with the cooperation of the four projects within the Ministry of Education, Science, Research and Sport of the Slovak Republic entitled Digital control of complex systems with two degrees of freedom, Progressive methods of education in the area of control and modeling of complex object oriented systems on aircraft turbocompressor engines, Center for research of control of te...

  17. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.

    Science.gov (United States)

    Zhang, Tingting; Wei, Wensong; Zhao, Bin; Wang, Ranran; Li, Mingliu; Yang, Liming; Wang, Jianhua; Sun, Qun

    2018-03-08

    This study investigated the possibility of using visible and near-infrared (VIS/NIR) hyperspectral imaging techniques to discriminate viable and non-viable wheat seeds. Both sides of individual seeds were subjected to hyperspectral imaging (400-1000 nm) to acquire reflectance spectral data. Four spectral datasets, including the ventral groove side, reverse side, mean (the mean of two sides' spectra of every seed), and mixture datasets (two sides' spectra of every seed), were used to construct the models. Classification models, partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), coupled with some pre-processing methods and successive projections algorithm (SPA), were built for the identification of viable and non-viable seeds. Our results showed that the standard normal variate (SNV)-SPA-PLS-DA model had high classification accuracy for whole seeds (>85.2%) and for viable seeds (>89.5%), and that the prediction set was based on a mixed spectral dataset by only using 16 wavebands. After screening with this model, the final germination of the seed lot could be higher than 89.5%. Here, we develop a reliable methodology for predicting the viability of wheat seeds, showing that the VIS/NIR hyperspectral imaging is an accurate technique for the classification of viable and non-viable wheat seeds in a non-destructive manner.

  18. Model evaluation methodology applicable to environmental assessment models

    International Nuclear Information System (INIS)

    Shaeffer, D.L.

    1979-08-01

    A model evaluation methodology is presented to provide a systematic framework within which the adequacy of environmental assessment models might be examined. The necessity for such a tool is motivated by the widespread use of models for predicting the environmental consequences of various human activities and by the reliance on these model predictions for deciding whether a particular activity requires the deployment of costly control measures. Consequently, the uncertainty associated with prediction must be established for the use of such models. The methodology presented here consists of six major tasks: model examination, algorithm examination, data evaluation, sensitivity analyses, validation studies, and code comparison. This methodology is presented in the form of a flowchart to show the logical interrelatedness of the various tasks. Emphasis has been placed on identifying those parameters which are most important in determining the predictive outputs of a model. Importance has been attached to the process of collecting quality data. A method has been developed for analyzing multiplicative chain models when the input parameters are statistically independent and lognormally distributed. Latin hypercube sampling has been offered as a promising candidate for doing sensitivity analyses. Several different ways of viewing the validity of a model have been presented. Criteria are presented for selecting models for environmental assessment purposes

  19. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  20. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  1. Time domain series system definition and gear set reliability modeling

    International Nuclear Information System (INIS)

    Xie, Liyang; Wu, Ningxiang; Qian, Wenxue

    2016-01-01

    Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.

  2. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  3. Modeling, methodologies and tools for molecular and nano-scale communications modeling, methodologies and tools

    CERN Document Server

    Nakano, Tadashi; Moore, Michael

    2017-01-01

    (Preliminary) The book presents the state of art in the emerging field of molecular and nanoscale communication. It gives special attention to fundamental models, and advanced methodologies and tools used in the field. It covers a wide range of applications, e.g. nanomedicine, nanorobot communication, bioremediation and environmental managements. It addresses advanced graduate students, academics and professionals working at the forefront in their fields and at the interfaces between different areas of research, such as engineering, computer science, biology and nanotechnology.

  4. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  5. A possibilistic uncertainty model in classical reliability theory

    International Nuclear Information System (INIS)

    De Cooman, G.; Capelle, B.

    1994-01-01

    The authors argue that a possibilistic uncertainty model can be used to represent linguistic uncertainty about the states of a system and of its components. Furthermore, the basic properties of the application of this model to classical reliability theory are studied. The notion of the possibilistic reliability of a system or a component is defined. Based on the concept of a binary structure function, the important notion of a possibilistic function is introduced. It allows to calculate the possibilistic reliability of a system in terms of the possibilistic reliabilities of its components

  6. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  7. Methodology for Modeling and Analysis of Business Processes (MMABP

    Directory of Open Access Journals (Sweden)

    Vaclav Repa

    2015-10-01

    Full Text Available This paper introduces the methodology for modeling business processes. Creation of the methodology is described in terms of the Design Science Method. Firstly, the gap in contemporary Business Process Modeling approaches is identified and general modeling principles which can fill the gap are discussed. The way which these principles have been implemented in the main features of created methodology is described. Most critical identified points of the business process modeling are process states, process hierarchy and the granularity of process description. The methodology has been evaluated by use in the real project. Using the examples from this project the main methodology features are explained together with the significant problems which have been met during the project. Concluding from these problems together with the results of the methodology evaluation the needed future development of the methodology is outlined.

  8. Developing Fast and Reliable Flood Models

    DEFF Research Database (Denmark)

    Thrysøe, Cecilie; Toke, Jens; Borup, Morten

    2016-01-01

    . A surrogate model is set up for a case study area in Aarhus, Denmark, to replace a MIKE FLOOD model. The drainage surrogates are able to reproduce the MIKE URBAN results for a set of rain inputs. The coupled drainage-surface surrogate model lacks details in the surface description which reduces its overall...... accuracy. The model shows no instability, hence larger time steps can be applied, which reduces the computational time by more than a factor 1400. In conclusion, surrogate models show great potential for usage in urban water modelling....

  9. Evaluation of mobile ad hoc network reliability using propagation-based link reliability model

    International Nuclear Information System (INIS)

    Padmavathy, N.; Chaturvedi, Sanjay K.

    2013-01-01

    A wireless mobile ad hoc network (MANET) is a collection of solely independent nodes (that can move randomly around the area of deployment) making the topology highly dynamic; nodes communicate with each other by forming a single hop/multi-hop network and maintain connectivity in decentralized manner. MANET is modelled using geometric random graphs rather than random graphs because the link existence in MANET is a function of the geometric distance between the nodes and the transmission range of the nodes. Among many factors that contribute to the MANET reliability, the reliability of these networks also depends on the robustness of the link between the mobile nodes of the network. Recently, the reliability of such networks has been evaluated for imperfect nodes (transceivers) with binary model of communication links based on the transmission range of the mobile nodes and the distance between them. However, in reality, the probability of successful communication decreases as the signal strength deteriorates due to noise, fading or interference effects even up to the nodes' transmission range. Hence, in this paper, using a propagation-based link reliability model rather than a binary-model with nodes following a known failure distribution to evaluate the network reliability (2TR m , ATR m and AoTR m ) of MANET through Monte Carlo Simulation is proposed. The method is illustrated with an application and some imperative results are also presented

  10. Application case study of AP1000 automatic depressurization system (ADS) for reliability evaluation by GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Muhammad, E-mail: hashimsajid@yahoo.com; Hidekazu, Yoshikawa, E-mail: yosikawa@kib.biglobe.ne.jp; Takeshi, Matsuoka, E-mail: mats@cc.utsunomiya-u.ac.jp; Ming, Yang, E-mail: myang.heu@gmail.com

    2014-10-15

    Highlights: • Discussion on reasons why AP1000 equipped with ADS system comparatively to PWR. • Clarification of full and partial depressurization of reactor coolant system by ADS system. • Application case study of four stages ADS system for reliability evaluation in LBLOCA. • GO-FLOW tool is capable to evaluate dynamic reliability of passive safety systems. • Calculated ADS reliability result significantly increased dynamic reliability of PXS. - Abstract: AP1000 nuclear power plant (NPP) utilized passive means for the safety systems to ensure its safety in events of transient or severe accidents. One of the unique safety systems of AP1000 to be compared with conventional PWR is the “four stages Automatic Depressurization System (ADS)”, and ADS system originally works as an active safety system. In the present study, authors first discussed the reasons of why four stages ADS system is added in AP1000 plant to be compared with conventional PWR in the aspect of reliability. And then explained the full and partial depressurization of RCS system by four stages ADS in events of transient and loss of coolant accidents (LOCAs). Lastly, the application case study of four stages ADS system of AP1000 has been conducted in the aspect of reliability evaluation of ADS system under postulated conditions of full RCS depressurization during large break loss of a coolant accident (LBLOCA) in one of the RCS cold legs. In this case study, the reliability evaluation is made by GO-FLOW methodology to determinate the influence of ADS system in dynamic reliability of passive core cooling system (PXS) of AP1000, i.e. what will happen if ADS system fails or successfully actuate. The GO-FLOW is success-oriented reliability analysis tool and is capable to evaluating the systems reliability/unavailability alternatively to Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) tools. Under these specific conditions of LBLOCA, the GO-FLOW calculated reliability results indicated

  11. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  12. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  13. Reliability modeling of digital RPS with consideration of undetected software faults

    Energy Technology Data Exchange (ETDEWEB)

    Khalaquzzaman, M.; Lee, Seung Jun; Jung, Won Dea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Man Cheol [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    This paper provides overview of different software reliability methodologies and proposes a technic for estimating the reliability of RPS with consideration of undetected software faults. Software reliability analysis of safety critical software has been challenging despite spending a huge effort for developing large number of software reliability models, and no consensus yet to attain on an appropriate modeling methodology. However, it is realized that the combined application of BBN based SDLC fault prediction method and random black-box testing of software would provide better ground for reliability estimation of safety critical software. Digitalizing the reactor protection system of nuclear power plant has been initiated several decades ago and now full digitalization has been adopted in the new generation of NPPs around the world because digital I and C systems have many better technical features like easier configurability and maintainability over analog I and C systems. Digital I and C systems are also drift-free and incorporation of new features is much easier. Rules and regulation for safe operation of NPPs are established and has been being practiced by the operators as well as regulators of NPPs to ensure safety. The failure mechanism of hardware and analog systems well understood and the risk analysis methods for these components and systems are well established. However, digitalization of I and C system in NPP introduces some crisis and uncertainty in reliability analysis methods of the digital systems/components because software failure mechanisms are still unclear.

  14. An interval-valued reliability model with bounded failure rates

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, Victor

    2012-01-01

    The approach to deriving interval-valued reliability measures described in this paper is distinctive from other imprecise reliability models in that it overcomes the issue of having to impose an upper bound on time to failure. It rests on the presupposition that a constant interval-valued failure...... rate is known possibly along with other reliability measures, precise or imprecise. The Lagrange method is used to solve the constrained optimization problem to derive new reliability measures of interest. The obtained results call for an exponential-wise approximation of failure probability density...

  15. Analytical modeling of nuclear power station operator reliability

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1979-01-01

    The operator-plant interface is a critical component of power stations which requires the formulation of mathematical models to be applied in plant reliability analysis. The human model introduced here is based on cybernetic interactions and allows for use of available data from psychological experiments, hot and cold training and normal operation. The operator model is identified and integrated in the control and protection systems. The availability and reliability are given for different segments of the operator task and for specific periods of the operator life: namely, training, operation and vigilance or near retirement periods. The results can be easily and directly incorporated in system reliability analysis. (author)

  16. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  17. Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Patton, Andrew J.; Quaedvlieg, Rogier

    We propose a new framework for modeling and forecasting common financial risks based on (un)reliable realized covariance measures constructed from high-frequency intraday data. Our new approach explicitly incorporates the effect of measurement errors and time-varying attenuation biases into the c......We propose a new framework for modeling and forecasting common financial risks based on (un)reliable realized covariance measures constructed from high-frequency intraday data. Our new approach explicitly incorporates the effect of measurement errors and time-varying attenuation biases...

  18. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  19. Model uncertainty and multimodel inference in reliability estimation within a longitudinal framework.

    Science.gov (United States)

    Alonso, Ariel; Laenen, Annouschka

    2013-05-01

    Laenen, Alonso, and Molenberghs (2007) and Laenen, Alonso, Molenberghs, and Vangeneugden (2009) proposed a method to assess the reliability of rating scales in a longitudinal context. The methodology is based on hierarchical linear models, and reliability coefficients are derived from the corresponding covariance matrices. However, finding a good parsimonious model to describe complex longitudinal data is a challenging task. Frequently, several models fit the data equally well, raising the problem of model selection uncertainty. When model uncertainty is high one may resort to model averaging, where inferences are based not on one but on an entire set of models. We explored the use of different model building strategies, including model averaging, in reliability estimation. We found that the approach introduced by Laenen et al. (2007, 2009) combined with some of these strategies may yield meaningful results in the presence of high model selection uncertainty and when all models are misspecified, in so far as some of them manage to capture the most salient features of the data. Nonetheless, when all models omit prominent regularities in the data, misleading results may be obtained. The main ideas are further illustrated on a case study in which the reliability of the Hamilton Anxiety Rating Scale is estimated. Importantly, the ambit of model selection uncertainty and model averaging transcends the specific setting studied in the paper and may be of interest in other areas of psychometrics. © 2012 The British Psychological Society.

  20. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    Science.gov (United States)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  1. In-plant reliability data base for nuclear power plant components: data collection and methodology report

    International Nuclear Information System (INIS)

    Drago, J.P.; Borkowski, R.J.; Pike, D.H.; Goldberg, F.F.

    1982-07-01

    The development of a component reliability data for use in nuclear power plant probabilistic risk assessments and reliabiilty studies is presented in this report. The sources of the data are the in-plant maintenance work request records from a sample of nuclear power plants. This data base is called the In-Plant Reliability Data (IPRD) system. Features of the IPRD system are compared with other data sources such as the Licensee Event Report system, the Nuclear Plant Reliability Data system, and IEEE Standard 500. Generic descriptions of nuclear power plant systems formulated for IPRD are given

  2. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  3. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jing [ORNL; Mahmassani, Hani S. [Northwestern University, Evanston

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  4. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.

    2017-06-26

    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.

  5. Advances in ranking and selection, multiple comparisons, and reliability methodology and applications

    CERN Document Server

    Balakrishnan, N; Nagaraja, HN

    2007-01-01

    S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan's influence and impact on these areas. Thematically organized, the chapters cover a broad range of topics from: Inference; Ranking and Selection; Multiple Comparisons and Tests; Agreement Assessment; Reliability; and Biostatistics. Featuring

  6. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  7. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  8. Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology

    International Nuclear Information System (INIS)

    Hashim Muhammad; Yoshikawa, Hidekazu; Matsuoka, Takeshi; Yang Ming

    2014-01-01

    The passive safety systems utilized in advanced pressurized water reactor (PWR) design such as AP1000 should be more reliable than that of active safety systems of conventional PWR by less possible opportunities of hardware failures and human errors (less human intervention). The objectives of present study are to evaluate the dynamic reliability of AP1000 plant in order to check the effectiveness of passive safety systems by comparing the reliability-related issues with that of active safety systems in the event of the big accidents. How should the dynamic reliability of passive safety systems properly evaluated? And then what will be the comparison of reliability results of AP1000 passive safety systems with the active safety systems of conventional PWR. For this purpose, a single loop model of AP1000 passive core cooling system (PXS) and passive containment cooling system (PCCS) are assumed separately for quantitative reliability evaluation. The transient behaviors of these passive safety systems are taken under the large break loss-of-coolant accident in the cold leg. The analysis is made by utilizing the qualitative method failure mode and effect analysis in order to identify the potential failure mode and success-oriented reliability analysis tool called GO-FLOW for quantitative reliability evaluation. The GO-FLOW analysis has been conducted separately for PXS and PCCS systems under the same accident. The analysis results show that reliability of AP1000 passive safety systems (PXS and PCCS) is increased due to redundancies and diversity of passive safety subsystems and components, and four stages automatic depressurization system is the key subsystem for successful actuation of PXS and PCCS system. The reliability results of PCCS system of AP1000 are more reliable than that of the containment spray system of conventional PWR. And also GO-FLOW method can be utilized for reliability evaluation of passive safety systems. (author)

  9. Plant and control system reliability and risk model

    International Nuclear Information System (INIS)

    Niemelae, I.M.

    1986-01-01

    A new reliability modelling technique for control systems and plants is demonstrated. It is based on modified boolean algebra and it has been automated into an efficient computer code called RELVEC. The code is useful for getting an overall view of the reliability parameters or for an in-depth reliability analysis, which is essential in risk analysis, where the model must be capable of answering to specific questions like: 'What is the probability of this temperature limiter to provide a false alarm', or 'what is the probability of air pressure in this subsystem to drop below lower limit'. (orig./DG)

  10. Modeling reliability of power systems substations by using stochastic automata networks

    International Nuclear Information System (INIS)

    Šnipas, Mindaugas; Radziukynas, Virginijus; Valakevičius, Eimutis

    2017-01-01

    In this paper, stochastic automata networks (SANs) formalism to model reliability of power systems substations is applied. The proposed strategy allows reducing the size of state space of Markov chain model and simplifying system specification. Two case studies of standard configurations of substations are considered in detail. SAN models with different assumptions were created. SAN approach is compared with exact reliability calculation by using a minimal path set method. Modeling results showed that total independence of automata can be assumed for relatively small power systems substations with reliable equipment. In this case, the implementation of Markov chain model by a using SAN method is a relatively easy task. - Highlights: • We present the methodology to apply stochastic automata network formalism to create Markov chain models of power systems. • The stochastic automata network approach is combined with minimal path sets and structural functions. • Two models of substation configurations with different model assumptions are presented to illustrate the proposed methodology. • Modeling results of system with independent automata and functional transition rates are similar. • The conditions when total independence of automata can be assumed are addressed.

  11. A reliability-based preventive maintenance methodology for the projection spot welding machine

    Directory of Open Access Journals (Sweden)

    Fayzimatov Ulugbek

    2018-06-01

    Full Text Available An effective operations of a projection spot welding (PSW machine is closely related to the effec-tiveness of the maintenance. Timely maintenance can prevent failures and improve reliability and maintainability of the machine. Therefore, establishing the maintenance frequency for the welding machine is one of the most important tasks for plant engineers. In this regard, reliability analysis of the welding machine can be used to establish preventive maintenance intervals (PMI and to identify the critical parts of the system. In this reliability and maintainability study, analysis of the PSW machine was carried out. The failure and repair data for analysis were obtained from automobile manufacturing company located in Uzbekistan. The machine was divided into three main sub-systems: electrical, pneumatic and hydraulic. Different distributions functions for all sub-systems was tested and their parameters tabulated. Based on estimated parameters of the analyzed distribu-tions, PMI for the PSW machines sub-systems at different reliability levels was calculated. Finally, preventive measures for enhancing the reliability of the PSW machine sub-systems are suggested.

  12. Methodological issues concerning the application of reliable laser particle sizing in soils

    Science.gov (United States)

    de Mascellis, R.; Impagliazzo, A.; Basile, A.; Minieri, L.; Orefice, N.; Terribile, F.

    2009-04-01

    During the past decade, the evolution of technologies has enabled laser diffraction (LD) to become a much widespread means of particle size distribution (PSD), replacing sedimentation and sieve analysis in many scientific fields mainly due to its advantages of versatility, fast measurement and high reproducibility. Despite such developments of the last decade, the soil scientist community has been quite reluctant to replace the good old sedimentation techniques (ST); possibly because of (i) the large complexity of the soil matrix inducing different types of artefacts (aggregates, deflocculating dynamics, etc.), (ii) the difficulties in relating LD results with results obtained through sedimentation techniques and (iii) the limited size range of most LD equipments. More recently LD granulometry is slowly gaining appreciation in soil science also because of some innovations including an enlarged size dynamic range (0,01-2000 m) and the ability to implement more powerful algorithms (e.g. Mie theory). Furthermore, LD PSD can be successfully used in the application of physically based pedo-transfer functions (i.e., Arya and Paris model) for investigations of soil hydraulic properties, due to the direct determination of PSD in terms of volume percentage rather than in terms of mass percentage, thus eliminating the need to adopt the rough approximation of a single value for soil particle density in the prediction process. Most of the recent LD work performed in soil science deals with the comparison with sedimentation techniques and show the general overestimation of the silt fraction following a general underestimation of the clay fraction; these well known results must be related with the different physical principles behind the two techniques. Despite these efforts, it is indeed surprising that little if any work is devoted to more basic methodological issues related to the high sensitivity of LD to the quantity and the quality of the soil samples. Our work aims to

  13. Quantitative metal magnetic memory reliability modeling for welded joints

    Science.gov (United States)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  14. Software reliability growth model for safety systems of nuclear reactor

    International Nuclear Information System (INIS)

    Thirugnana Murthy, D.; Murali, N.; Sridevi, T.; Satya Murty, S.A.V.; Velusamy, K.

    2014-01-01

    The demand for complex software systems has increased more rapidly than the ability to design, implement, test, and maintain them, and the reliability of software systems has become a major concern for our, modern society.Software failures have impaired several high visibility programs in space, telecommunications, defense and health industries. Besides the costs involved, it setback the projects. The ways of quantifying it and using it for improvement and control of the software development and maintenance process. This paper discusses need for systematic approaches for measuring and assuring software reliability which is a major share of project development resources. It covers the reliability models with the concern on 'Reliability Growth'. It includes data collection on reliability, statistical estimation and prediction, metrics and attributes of product architecture, design, software development, and the operational environment. Besides its use for operational decisions like deployment, it includes guiding software architecture, development, testing and verification and validation. (author)

  15. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  16. A Survey of Software Reliability Modeling and Estimation

    Science.gov (United States)

    1983-09-01

    considered include: the Jelinski-Moranda Model, the ,Geometric Model,’ and Musa’s Model. A Monte -Carlo study of the behavior of the ’V"’"*least squares...ceedings Number 261, 1979, pp. 34-1, 34-11. IoelAmrit, AGieboSSukert, Alan and Goel, Ararat , "A Guidebookfor Software Reliability Assessment, 1980

  17. Power plant reliability calculation with Markov chain models

    International Nuclear Information System (INIS)

    Senegacnik, A.; Tuma, M.

    1998-01-01

    In the paper power plant operation is modelled using continuous time Markov chains with discrete state space. The model is used to compute the power plant reliability and the importance and influence of individual states, as well as the transition probabilities between states. For comparison the model is fitted to data for coal and nuclear power plants recorded over several years. (orig.) [de

  18. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  19. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  20. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  1. Methodology for performing RF reliability experiments on a generic test structure

    NARCIS (Netherlands)

    Sasse, G.T.; de Vries, Rein J.; Schmitz, Jurriaan

    2007-01-01

    This paper discusses a new technique developed for generating well defined RF large voltage swing signals for on wafer experiments. This technique can be employed for performing a broad range of different RF reliability experiments on one generic test structure. The frequency dependence of a

  2. The Reliability of Methodological Ratings for speechBITE Using the PEDro-P Scale

    Science.gov (United States)

    Murray, Elizabeth; Power, Emma; Togher, Leanne; McCabe, Patricia; Munro, Natalie; Smith, Katherine

    2013-01-01

    Background: speechBITE (http://www.speechbite.com) is an online database established in order to help speech and language therapists gain faster access to relevant research that can used in clinical decision-making. In addition to containing more than 3000 journal references, the database also provides methodological ratings on the PEDro-P (an…

  3. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  4. Reliability model for common mode failures in redundant safety systems

    International Nuclear Information System (INIS)

    Fleming, K.N.

    1974-12-01

    A method is presented for computing the reliability of redundant safety systems, considering both independent and common mode type failures. The model developed for the computation is a simple extension of classical reliability theory. The feasibility of the method is demonstrated with the use of an example. The probability of failure of a typical diesel-generator emergency power system is computed based on data obtained from U. S. diesel-generator operating experience. The results are compared with reliability predictions based on the assumption that all failures are independent. The comparison shows a significant increase in the probability of redundant system failure, when common failure modes are considered. (U.S.)

  5. Modeling of system reliability Petri nets with aging tokens

    International Nuclear Information System (INIS)

    Volovoi, V.

    2004-01-01

    The paper addresses the dynamic modeling of degrading and repairable complex systems. Emphasis is placed on the convenience of modeling for the end user, with special attention being paid to the modeling part of a problem, which is considered to be decoupled from the choice of solution algorithms. Depending on the nature of the problem, these solution algorithms can include discrete event simulation or numerical solution of the differential equations that govern underlying stochastic processes. Such modularity allows a focus on the needs of system reliability modeling and tailoring of the modeling formalism accordingly. To this end, several salient features are chosen from the multitude of existing extensions of Petri nets, and a new concept of aging tokens (tokens with memory) is introduced. The resulting framework provides for flexible and transparent graphical modeling with excellent representational power that is particularly suited for system reliability modeling with non-exponentially distributed firing times. The new framework is compared with existing Petri-net approaches and other system reliability modeling techniques such as reliability block diagrams and fault trees. The relative differences are emphasized and illustrated with several examples, including modeling of load sharing, imperfect repair of pooled items, multiphase missions, and damage-tolerant maintenance. Finally, a simple implementation of the framework using discrete event simulation is described

  6. Learning reliable manipulation strategies without initial physical models

    Science.gov (United States)

    Christiansen, Alan D.; Mason, Matthew T.; Mitchell, Tom M.

    1990-01-01

    A description is given of a robot, possessing limited sensory and effectory capabilities but no initial model of the effects of its actions on the world, that acquires such a model through exploration, practice, and observation. By acquiring an increasingly correct model of its actions, it generates increasingly successful plans to achieve its goals. In an apparently nondeterministic world, achieving reliability requires the identification of reliable actions and a preference for using such actions. Furthermore, by selecting its training actions carefully, the robot can significantly improve its learning rate.

  7. An evaluation of the reliability and usefulness of external-initiator PRA [probabilistic risk analysis] methodologies

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally ''mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab

  8. An evaluation of the reliability and usefulness of external-initiator PRA (probabilistic risk analysis) methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Budnitz, R.J.; Lambert, H.E. (Future Resources Associates, Inc., Berkeley, CA (USA))

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab.

  9. Methodological Approach for Modeling of Multienzyme in-pot Processes

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Roman Martinez, Alicia; Sin, Gürkan

    2011-01-01

    This paper presents a methodological approach for modeling multi-enzyme in-pot processes. The methodology is exemplified stepwise through the bi-enzymatic production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). In this case study, sensitivity analysis is also used ...

  10. Using LISREL to Evaluate Measurement Models and Scale Reliability.

    Science.gov (United States)

    Fleishman, John; Benson, Jeri

    1987-01-01

    LISREL program was used to examine measurement model assumptions and to assess reliability of Coopersmith Self-Esteem Inventory for Children, Form B. Data on 722 third-sixth graders from over 70 schools in large urban school district were used. LISREL program assessed (1) nature of basic measurement model for scale, (2) scale invariance across…

  11. Travel Time Reliability for Urban Networks : Modelling and Empirics

    NARCIS (Netherlands)

    Zheng, F.; Liu, Xiaobo; van Zuylen, H.J.; Li, Jie; Lu, Chao

    2017-01-01

    The importance of travel time reliability in traffic management, control, and network design has received a lot of attention in the past decade. In this paper, a network travel time distribution model based on the Johnson curve system is proposed. The model is applied to field travel time data

  12. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  13. Models for reliability and management of NDT data

    International Nuclear Information System (INIS)

    Simola, K.

    1997-01-01

    In this paper the reliability of NDT measurements was approached from three directions. We have modelled the flaw sizing performance, the probability of flaw detection, and developed models to update the knowledge of true flaw size based on sequential measurement results and flaw sizing reliability model. In discussed models the measured flaw characteristics (depth, length) are assumed to be simple functions of the true characteristics and random noise corresponding to measurement errors, and the models are based on logarithmic transforms. Models for Bayesian updating of the flaw size distributions were developed. Using these models, it is possible to take into account the prior information of the flaw size and combine it with the measured results. A Bayesian approach could contribute e. g. to the definition of an appropriate combination of practical assessments and technical justifications in NDT system qualifications, as expressed by the European regulatory bodies

  14. Locally Simple Models Construction: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    I. A. Kazakov

    2017-12-01

    Full Text Available One of the most notable trends associated with the Fourth industrial revolution is a significant strengthening of the role played by semantic methods. They are engaged in artificial intelligence means, knowledge mining in huge flows of big data, robotization, and in the internet of things. Smart contracts also can be mentioned here, although the ’intelligence’ of smart contracts still needs to be seriously elaborated. These trends should inevitably lead to an increased role of logical methods working with semantics, and significantly expand the scope of their application in practice. However, there are a number of problems that hinder this process. We are developing an approach, which makes the application of logical modeling efficient in some important areas. The approach is based on the concept of locally simple models and is primarily focused on solving tasks in the management of enterprises, organizations, governing bodies. The most important feature of locally simple models is their ability to replace software systems. Replacement of programming by modeling gives huge advantages, for instance, it dramatically reduces development and support costs. Modeling, unlike programming, preserves the explicit semantics of models allowing integration with artificial intelligence and robots. In addition, models are much more understandable to general people than programs. In this paper we propose the implementation of the concept of locally simple modeling on the basis of so-called document models, which has been developed by us earlier. It is shown that locally simple modeling is realized through document models with finite submodel coverages. In the second part of the paper an example of using document models for solving a management problem of real complexity is demonstrated.

  15. Transparent reliability model for fault-tolerant safety systems

    International Nuclear Information System (INIS)

    Bodsberg, Lars; Hokstad, Per

    1997-01-01

    A reliability model is presented which may serve as a tool for identification of cost-effective configurations and operating philosophies of computer-based process safety systems. The main merit of the model is the explicit relationship in the mathematical formulas between failure cause and the means used to improve system reliability such as self-test, redundancy, preventive maintenance and corrective maintenance. A component failure taxonomy has been developed which allows the analyst to treat hardware failures, human failures, and software failures of automatic systems in an integrated manner. Furthermore, the taxonomy distinguishes between failures due to excessive environmental stresses and failures initiated by humans during engineering and operation. Attention has been given to develop a transparent model which provides predictions which are in good agreement with observed system performance, and which is applicable for non-experts in the field of reliability

  16. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  17. Modelling of nuclear power plant control and instrumentation elements for automatic disturbance and reliability analysis

    International Nuclear Information System (INIS)

    Hollo, E.

    1985-08-01

    Present Final Report summarizes results of R/D work done within IAEA-VEIKI (Institute for Electrical Power Research, Budapest, Hungary) Research Contract No. 3210 during 3 years' period of 01.08.1982 - 31.08.1985. Chapter 1 lists main research objectives of the project. Main results obtained are summarized in Chapters 2 and 3. Outcomes from development of failure modelling methodologies and their application for C/I components of WWER-440 units are as follows (Chapter 2): improvement of available ''failure mode and effect analysis'' methods and mini-fault tree structures usable for automatic disturbance (DAS) and reliability (RAS) analysis; general classification and determination of functional failure modes of WWER-440 NPP C/I components; set up of logic models for motor operated control valves and rod control/drive mechanism. Results of development of methods and their application for reliability modelling of NPP components and systems cover (Chapter 3): development of an algorithm (computer code COMPREL) for component-related failure and reliability parameter calculation; reliability analysis of PAKS II NPP diesel system; definition of functional requirements for reliability data bank (RDB) in WWER-440 units. Determination of RDB input/output data structure and data manipulation services. Methods used are a-priori failure mode and effect analysis, combined fault tree/event tree modelling technique, structural computer programming, probability theory application to nuclear field

  18. Agent-based Modeling Methodology for Analyzing Weapons Systems

    Science.gov (United States)

    2015-03-26

    technique involve model structure, system representation and the degree of validity, coupled with the simplicity, of the overall model. ABM is best suited... system representation of the air combat system . We feel that a simulation model that combines ABM with equation-based representation of weapons and...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Casey D. Connors, Major, USA

  19. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  20. Modeling Methodologies for Representing Urban Cultural Geographies in Stability Operations

    National Research Council Canada - National Science Library

    Ferris, Todd P

    2008-01-01

    ... 2.0.0, in an effort to provide modeling methodologies for a single simulation tool capable of exploring the complex world of urban cultural geographies undergoing Stability Operations in an irregular warfare (IW) environment...

  1. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  2. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large......, and rated voltage/current are opposed to shift in time to effect early breaking during the normal operation of the circuit. Therefore, in such cases, a reliable protection required for the other circuit components will not be achieved. The thermo-mechanical models, fatigue analysis and thermo...

  3. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  4. A Methodology and Toolkit for Deploying Reliable Security Policies in Critical Infrastructures

    Directory of Open Access Journals (Sweden)

    Faouzi Jaïdi

    2018-01-01

    Full Text Available Substantial advances in Information and Communication Technologies (ICT bring out novel concepts, solutions, trends, and challenges to integrate intelligent and autonomous systems in critical infrastructures. A new generation of ICT environments (such as smart cities, Internet of Things, edge-fog-social-cloud computing, and big data analytics is emerging; it has different applications to critical domains (such as transportation, communication, finance, commerce, and healthcare and different interconnections via multiple layers of public and private networks, forming a grid of critical cyberphysical infrastructures. Protecting sensitive and private data and services in critical infrastructures is, at the same time, a main objective and a great challenge for deploying secure systems. It essentially requires setting up trusted security policies. Unfortunately, security solutions should remain compliant and regularly updated to follow and track the evolution of security threats. To address this issue, we propose an advanced methodology for deploying and monitoring the compliance of trusted access control policies. Our proposal extends the traditional life cycle of access control policies with pertinent activities. It integrates formal and semiformal techniques allowing the specification, the verification, the implementation, the reverse-engineering, the validation, the risk assessment, and the optimization of access control policies. To automate and facilitate the practice of our methodology, we introduce our system SVIRVRO that allows managing the extended life cycle of access control policies. We refer to an illustrative example to highlight the relevance of our contributions.

  5. Systems reliability/structural reliability

    International Nuclear Information System (INIS)

    Green, A.E.

    1980-01-01

    The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)

  6. Average inactivity time model, associated orderings and reliability properties

    Science.gov (United States)

    Kayid, M.; Izadkhah, S.; Abouammoh, A. M.

    2018-02-01

    In this paper, we introduce and study a new model called 'average inactivity time model'. This new model is specifically applicable to handle the heterogeneity of the time of the failure of a system in which some inactive items exist. We provide some bounds for the mean average inactivity time of a lifespan unit. In addition, we discuss some dependence structures between the average variable and the mixing variable in the model when original random variable possesses some aging behaviors. Based on the conception of the new model, we introduce and study a new stochastic order. Finally, to illustrate the concept of the model, some interesting reliability problems are reserved.

  7. A discrete-time Bayesian network reliability modeling and analysis framework

    International Nuclear Information System (INIS)

    Boudali, H.; Dugan, J.B.

    2005-01-01

    Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis

  8. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  9. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    Science.gov (United States)

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A note on the application of probabilistic structural reliability methodology to nuclear power plants

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1978-01-01

    The interest shown in the general prospects of primary energy in European countries prompted description of the actual European situation. Explanation of the needs for installation of nuclear power plants in most contries of the European Communities are given. Activities of the Commission of the European Communities to initiate a progressive harmonization of already existing European criteria, codes and complementary requirements in order to improve the structural reliability of components and systems of nuclear power plants are summarized. Finally, the applicability of a probabilistic safety analysis to facilitate decision-making as to safety by defining acceptable target and limit values, coupled with a subjective estimate as it is applied in the safety analyses performed in most European countries, is demonstrated. (Auth.)

  11. Reliability of case definitions for public health surveillance assessed by Round-Robin test methodology

    Directory of Open Access Journals (Sweden)

    Claus Hermann

    2006-05-01

    Full Text Available Abstract Background Case definitions have been recognized to be important elements of public health surveillance systems. They are to assure comparability and consistency of surveillance data and have crucial impact on the sensitivity and the positive predictive value of a surveillance system. The reliability of case definitions has rarely been investigated systematically. Methods We conducted a Round-Robin test by asking all 425 local health departments (LHD and the 16 state health departments (SHD in Germany to classify a selection of 68 case examples using case definitions. By multivariate analysis we investigated factors linked to classification agreement with a gold standard, which was defined by an expert panel. Results A total of 7870 classifications were done by 396 LHD (93% and all SHD. Reporting sensitivity was 90.0%, positive predictive value 76.6%. Polio case examples had the lowest reporting precision, salmonellosis case examples the highest (OR = 0.008; CI: 0.005–0.013. Case definitions with a check-list format of clinical criteria resulted in higher reporting precision than case definitions with a narrative description (OR = 3.08; CI: 2.47–3.83. Reporting precision was higher among SHD compared to LHD (OR = 1.52; CI: 1.14–2.02. Conclusion Our findings led to a systematic revision of the German case definitions and build the basis for general recommendations for the creation of case definitions. These include, among others, that testable yes/no criteria in a check-list format is likely to improve reliability, and that software used for data transmission should be designed in strict accordance with the case definitions. The findings of this study are largely applicable to case definitions in many other countries or international networks as they share the same structural and editorial characteristics of the case definitions evaluated in this study before their revision.

  12. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  13. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF). Th...

  14. Considerations of the Software Metric-based Methodology for Software Reliability Assessment in Digital I and C Systems

    International Nuclear Information System (INIS)

    Ha, J. H.; Kim, M. K.; Chung, B. S.; Oh, H. C.; Seo, M. R.

    2007-01-01

    Analog I and C systems have been replaced by digital I and C systems because the digital systems have many potential benefits to nuclear power plants in terms of operational and safety performance. For example, digital systems are essentially free of drifts, have higher data handling and storage capabilities, and provide improved performance by accuracy and computational capabilities. In addition, analog replacement parts become more difficult to obtain since they are obsolete and discontinued. There are, however, challenges to the introduction of digital technology into the nuclear power plants because digital systems are more complex than analog systems and their operation and failure modes are different. Especially, software, which can be the core of functionality in the digital systems, does not wear out physically like hardware and its failure modes are not yet defined clearly. Thus, some researches to develop the methodology for software reliability assessment are still proceeding in the safety-critical areas such as nuclear system, aerospace and medical devices. Among them, software metric-based methodology has been considered for the digital I and C systems of Korean nuclear power plants. Advantages and limitations of that methodology are identified and requirements for its application to the digital I and C systems are considered in this study

  15. The reliability of the Adelaide in-shoe foot model.

    Science.gov (United States)

    Bishop, Chris; Hillier, Susan; Thewlis, Dominic

    2017-07-01

    Understanding the biomechanics of the foot is essential for many areas of research and clinical practice such as orthotic interventions and footwear development. Despite the widespread attention paid to the biomechanics of the foot during gait, what largely remains unknown is how the foot moves inside the shoe. This study investigated the reliability of the Adelaide In-Shoe Foot Model, which was designed to quantify in-shoe foot kinematics and kinetics during walking. Intra-rater reliability was assessed in 30 participants over five walking trials whilst wearing shoes during two data collection sessions, separated by one week. Sufficient reliability for use was interpreted as a coefficient of multiple correlation and intra-class correlation coefficient of >0.61. Inter-rater reliability was investigated separately in a second sample of 10 adults by two researchers with experience in applying markers for the purpose of motion analysis. The results indicated good consistency in waveform estimation for most kinematic and kinetic data, as well as good inter-and intra-rater reliability. The exception is the peak medial ground reaction force, the minimum abduction angle and the peak abduction/adduction external hindfoot joint moments which resulted in less than acceptable repeatability. Based on our results, the Adelaide in-shoe foot model can be used with confidence for 24 commonly measured biomechanical variables during shod walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  17. Models of Information Security Highly Reliable Computing Systems

    Directory of Open Access Journals (Sweden)

    Vsevolod Ozirisovich Chukanov

    2016-03-01

    Full Text Available Methods of the combined reservation are considered. The models of reliability of systems considering parameters of restoration and prevention of blocks of system are described. Ratios for average quantity prevention and an availability quotient of blocks of system are given.

  18. An architectural model for software reliability quantification: sources of data

    International Nuclear Information System (INIS)

    Smidts, C.; Sova, D.

    1999-01-01

    Software reliability assessment models in use today treat software as a monolithic block. An aversion towards 'atomic' models seems to exist. These models appear to add complexity to the modeling, to the data collection and seem intrinsically difficult to generalize. In 1997, we introduced an architecturally based software reliability model called FASRE. The model is based on an architecture derived from the requirements which captures both functional and nonfunctional requirements and on a generic classification of functions, attributes and failure modes. The model focuses on evaluation of failure mode probabilities and uses a Bayesian quantification framework. Failure mode probabilities of functions and attributes are propagated to the system level using fault trees. It can incorporate any type of prior information such as results of developers' testing, historical information on a specific functionality and its attributes, and, is ideally suited for reusable software. By building an architecture and deriving its potential failure modes, the model forces early appraisal and understanding of the weaknesses of the software, allows reliability analysis of the structure of the system, provides assessments at a functional level as well as at a systems' level. In order to quantify the probability of failure (or the probability of success) of a specific element of our architecture, data are needed. The term element of the architecture is used here in its broadest sense to mean a single failure mode or a higher level of abstraction such as a function. The paper surveys the potential sources of software reliability data available during software development. Next the mechanisms for incorporating these sources of relevant data to the FASRE model are identified

  19. Reliability and Maintainability model (RAM) user and maintenance manual. Part 2

    Science.gov (United States)

    Ebeling, Charles E.

    1995-01-01

    This report documents the procedures for utilizing and maintaining the Reliability and Maintainability Model (RAM) developed by the University of Dayton for the NASA Langley Research Center (LaRC). The RAM model predicts reliability and maintainability (R&M) parameters for conceptual space vehicles using parametric relationships between vehicle design and performance characteristics and subsystem mean time between maintenance actions (MTBM) and manhours per maintenance action (MH/MA). These parametric relationships were developed using aircraft R&M data from over thirty different military aircraft of all types. This report describes the general methodology used within the model, the execution and computational sequence, the input screens and data, the output displays and reports, and study analyses and procedures. A source listing is provided.

  20. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  1. Modular reliability modeling of the TJNAF personnel safety system

    International Nuclear Information System (INIS)

    Cinnamon, J.; Mahoney, K.

    1997-01-01

    A reliability model for the Thomas Jefferson National Accelerator Facility (formerly CEBAF) personnel safety system has been developed. The model, which was implemented using an Excel spreadsheet, allows simulation of all or parts of the system. Modularity os the model's implementation allows rapid open-quotes what if open-quotes case studies to simulate change in safety system parameters such as redundancy, diversity, and failure rates. Particular emphasis is given to the prediction of failure modes which would result in the failure of both of the redundant safety interlock systems. In addition to the calculation of the predicted reliability of the safety system, the model also calculates availability of the same system. Such calculations allow the user to make tradeoff studies between reliability and availability, and to target resources to improving those parts of the system which would most benefit from redesign or upgrade. The model includes calculated, manufacturer's data, and Jefferson Lab field data. This paper describes the model, methods used, and comparison of calculated to actual data for the Jefferson Lab personnel safety system. Examples are given to illustrate the model's utility and ease of use

  2. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  3. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  4. Reliability modeling and analysis of smart power systems

    CERN Document Server

    Karki, Rajesh; Verma, Ajit Kumar

    2014-01-01

    The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti

  5. A general graphical user interface for automatic reliability modeling

    Science.gov (United States)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  6. Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. Lynn [RTI International, Research Triangle Park, NC (United States)

    2017-05-31

    The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.

  7. Photovoltaic Reliability Performance Model v 2.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-16

    PV-RPM is intended to address more “real world” situations by coupling a photovoltaic system performance model with a reliability model so that inverters, modules, combiner boxes, etc. can experience failures and be repaired (or left unrepaired). The model can also include other effects, such as module output degradation over time or disruptions such as electrical grid outages. In addition, PV-RPM is a dynamic probabilistic model that can be used to run many realizations (i.e., possible future outcomes) of a system’s performance using probability distributions to represent uncertain parameter inputs.

  8. Bring Your Own Device - Providing Reliable Model of Data Access

    Directory of Open Access Journals (Sweden)

    Stąpór Paweł

    2016-10-01

    Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.

  9. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  10. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  11. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  12. Reliability Evaluation Methodologies of Fault Tolerant Techniques of Digital I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Seong, Poong Hyun; Lee, Seung Jun

    2011-01-01

    Since the reactor protection system was replaced from analog to digital, digital reactor protection system has 4 redundant channels and each channel has several modules. It is necessary for various fault tolerant techniques to improve availability and reliability due to using complex components in DPPS. To use the digital system, it is necessary to improve the reliability and availability of a system through fault-tolerant techniques. Several researches make an effort to effects of fault tolerant techniques. However, the effects of fault tolerant techniques have not been properly considered yet in most fault tree models. Various fault-tolerant techniques, which used in digital system in NPPs, should reflect in fault tree analysis for getting lower system unavailability and more reliable PSA. When fault-tolerant techniques are modeled in fault tree, categorizing the module to detect by each fault tolerant techniques, fault coverage, detection period and the fault recovery should be considered. Further work will concentrate on various aspects for fault tree modeling. We will find other important factors, and found a new theory to construct the fault tree model

  13. Evaluation of validity and reliability of a methodology for measuring human postural attitude and its relation to temporomandibular joint disorders

    Science.gov (United States)

    Fernández, Ramón Fuentes; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Venegas, Gonzalo Hernán Oporto; Cantin, Mario; Ottone, Nicolás Ernesto

    2016-01-01

    INTRODUCTION Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. METHODS The variable postures of 78 subjects (36 men, 42 women; age 18–24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. RESULTS The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen’s Kappa coefficient (> 0.87) and Pearson’s correlation coefficient (r = 0.824, > 80%). CONCLUSION This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. PMID:26768173

  14. Testing the reliability of ice-cream cone model

    Science.gov (United States)

    Pan, Zonghao; Shen, Chenglong; Wang, Chuanbing; Liu, Kai; Xue, Xianghui; Wang, Yuming; Wang, Shui

    2015-04-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but space-weather prediction. Several models (such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observed by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of all the FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle till July 2012, by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. Then we could discuss the reliability of the ice-cream cone model.

  15. Creation and Reliability Analysis of Vehicle Dynamic Weighing Model

    Directory of Open Access Journals (Sweden)

    Zhi-Ling XU

    2014-08-01

    Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.

  16. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  17. Imperfect Preventive Maintenance Model Study Based On Reliability Limitation

    Directory of Open Access Journals (Sweden)

    Zhou Qian

    2016-01-01

    Full Text Available Effective maintenance is crucial for equipment performance in industry. Imperfect maintenance conform to actual failure process. Taking the dynamic preventive maintenance cost into account, the preventive maintenance model was constructed by using age reduction factor. The model regards the minimization of repair cost rate as final target. It use allowed smallest reliability as the replacement condition. Equipment life was assumed to follow two parameters Weibull distribution since it was one of the most commonly adopted distributions to fit cumulative failure problems. Eventually the example verifies the rationality and benefits of the model.

  18. Geologic modeling in risk assessment methodology for radioactive waste management

    International Nuclear Information System (INIS)

    Logan, S.E.; Berbano, M.C.

    1977-01-01

    Under contract to the U.S. Environmental Protection Agency (EPA), the University of New Mexico is developing a computer based assessment methodology for evaluating public health and environmental impacts from the disposal of radioactive waste in geologic formations. Methodology incorporates a release or fault tree model, an environmental model, and an economic model. The release model and its application to a model repository in bedded salt is described. Fault trees are constructed to provide the relationships between various geologic and man-caused events which are potential mechanisms for release of radioactive material beyond the immediate environs of the repository. The environmental model includes: 1) the transport to and accumulations at various receptors in the biosphere, 2) pathways from these environmental concentrations, and 3) radiation dose to man. Finally, economic results are used to compare and assess various disposal configurations as a basis for formulatin

  19. Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2013-12-01

    Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method.  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

  20. Validating agent oriented methodology (AOM) for netlogo modelling and simulation

    Science.gov (United States)

    WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan

    2017-10-01

    AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.

  1. Software reliability growth models with normal failure time distributions

    International Nuclear Information System (INIS)

    Okamura, Hiroyuki; Dohi, Tadashi; Osaki, Shunji

    2013-01-01

    This paper proposes software reliability growth models (SRGM) where the software failure time follows a normal distribution. The proposed model is mathematically tractable and has sufficient ability of fitting to the software failure data. In particular, we consider the parameter estimation algorithm for the SRGM with normal distribution. The developed algorithm is based on an EM (expectation-maximization) algorithm and is quite simple for implementation as software application. Numerical experiment is devoted to investigating the fitting ability of the SRGMs with normal distribution through 16 types of failure time data collected in real software projects

  2. Reliability modelling - PETROBRAS 2010 integrated gas supply chain

    Energy Technology Data Exchange (ETDEWEB)

    Faertes, Denise; Heil, Luciana; Saker, Leonardo; Vieira, Flavia; Risi, Francisco; Domingues, Joaquim; Alvarenga, Tobias; Carvalho, Eduardo; Mussel, Patricia

    2010-09-15

    The purpose of this paper is to present the innovative reliability modeling of Petrobras 2010 integrated gas supply chain. The model represents a challenge in terms of complexity and software robustness. It was jointly developed by PETROBRAS Gas and Power Department and Det Norske Veritas. It was carried out with the objective of evaluating security of supply of 2010 gas network design that was conceived to connect Brazilian Northeast and Southeast regions. To provide best in class analysis, state of the art software was used to quantify the availability and the efficiency of the overall network and its individual components.

  3. AMSAA Reliability Growth Guide

    National Research Council Canada - National Science Library

    Broemm, William

    2000-01-01

    ... has developed reliability growth methodology for all phases of the process, from planning to tracking to projection. The report presents this methodology and associated reliability growth concepts.

  4. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  5. Incorporation of Markov reliability models for digital instrumentation and control systems into existing PRAs

    International Nuclear Information System (INIS)

    Bucci, P.; Mangan, L. A.; Kirschenbaum, J.; Mandelli, D.; Aldemir, T.; Arndt, S. A.

    2006-01-01

    Markov models have the ability to capture the statistical dependence between failure events that can arise in the presence of complex dynamic interactions between components of digital instrumentation and control systems. One obstacle to the use of such models in an existing probabilistic risk assessment (PRA) is that most of the currently available PRA software is based on the static event-tree/fault-tree methodology which often cannot represent such interactions. We present an approach to the integration of Markov reliability models into existing PRAs by describing the Markov model of a digital steam generator feedwater level control system, how dynamic event trees (DETs) can be generated from the model, and how the DETs can be incorporated into an existing PRA with the SAPHIRE software. (authors)

  6. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  7. K-Means Subject Matter Expert Refined Topic Model Methodology

    Science.gov (United States)

    2017-01-01

    computing environment the Visual Basic for Applications ( VBA ) programming language presents the option as our programming language of choice. We propose...background, or access to other computational programming environments, to build topic models from free text datasets using a familiar Excel based...environment the restricts access to other software based text analytic tools. Opportunities to deploy developmental versions of the methodology and

  8. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  9. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  10. Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving.

    Science.gov (United States)

    Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice

    2016-10-11

    The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle's surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture.

  11. Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving

    Directory of Open Access Journals (Sweden)

    Jos Elfring

    2016-10-01

    Full Text Available The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture.

  12. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME......Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...... models have 70,000 constraints and variables and will grow larger). We have developed a quadrupleprecision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging...

  13. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  14. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  15. Understanding software faults and their role in software reliability modeling

    Science.gov (United States)

    Munson, John C.

    1994-01-01

    This study is a direct result of an on-going project to model the reliability of a large real-time control avionics system. In previous modeling efforts with this system, hardware reliability models were applied in modeling the reliability behavior of this system. In an attempt to enhance the performance of the adapted reliability models, certain software attributes were introduced in these models to control for differences between programs and also sequential executions of the same program. As the basic nature of the software attributes that affect software reliability become better understood in the modeling process, this information begins to have important implications on the software development process. A significant problem arises when raw attribute measures are to be used in statistical models as predictors, for example, of measures of software quality. This is because many of the metrics are highly correlated. Consider the two attributes: lines of code, LOC, and number of program statements, Stmts. In this case, it is quite obvious that a program with a high value of LOC probably will also have a relatively high value of Stmts. In the case of low level languages, such as assembly language programs, there might be a one-to-one relationship between the statement count and the lines of code. When there is a complete absence of linear relationship among the metrics, they are said to be orthogonal or uncorrelated. Usually the lack of orthogonality is not serious enough to affect a statistical analysis. However, for the purposes of some statistical analysis such as multiple regression, the software metrics are so strongly interrelated that the regression results may be ambiguous and possibly even misleading. Typically, it is difficult to estimate the unique effects of individual software metrics in the regression equation. The estimated values of the coefficients are very sensitive to slight changes in the data and to the addition or deletion of variables in the

  16. An Assessment of the VHTR Safety Distance Using the Reliability Physics Model

    International Nuclear Information System (INIS)

    Lee, Joeun; Kim, Jintae; Jae, Moosung

    2015-01-01

    In Korea planning the production of hydrogen using high temperature from nuclear power is in progress. To produce hydrogen from nuclear plants, supplying temperature above 800 .deg. C is required. Therefore, Very High Temperature Reactor (VHTR) which is able to provide about 950 .deg. C is suitable. In situation of high temperature and corrosion where hydrogen might be released easily, hydrogen production facility using VHTR has a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but also on VHTR. Those explosions result in unsafe situation that cause serious damage. However, In terms of thermal-hydraulics view, long distance makes low efficiency Thus, in this study, a methodology for the safety assessment of safety distance between the hydrogen production facilities and the VHTR is developed with reliability physics model. Based on the standard safety criteria which is a value of 1 x 10 -6 , the safety distance between the hydrogen production facilities and the VHTR using reliability physics model are calculated to be a value of 60m - 100m. In the future, assessment for characteristic of VHTR, the capacity to resist pressure from outside hydrogen explosion and the overpressure for the large amount of detonation volume in detail is expected to identify more precise safety distance using this reliability physics model

  17. An analysis of the human reliability on Three Mile Island II accident considering THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da; Alvim, Antonio Carlos Marques

    2005-01-01

    The research on the Analysis of the Human Reliability becomes more important every day, as well as the study of the human factors and the contributions of the same ones to the incidents and accidents, mainly in complex plants or of high technology. The analysis here developed it uses the methodologies THERP (Technique for Human Error Prediction) and ATHEANA (A Technique for Human Error Analysis), as well as, the tables and the cases presented in THERP Handbook and to develop a qualitative and quantitative study of an occurred nuclear accident. The chosen accident was it of Three Mile Island (TMI). The accident analysis has revealed a series of incorrect actions that resulted in the permanent loss of the reactor and shutdown of Unit 2. This study also aims at enhancing the understanding of the THERP and ATHEANA methods and at practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and the influence of human failures on equipment of a system, in this case, a nuclear power plant. (author)

  18. A computational model for reliability calculation of steam generators from defects in its tubes

    International Nuclear Information System (INIS)

    Rivero, Paulo C.M.; Melo, P.F. Frutuoso e

    2000-01-01

    Nowadays, probability approaches are employed for calculating the reliability of steam generators as a function of defects in their tubes without any deterministic association with warranty assurance. Unfortunately, probability models produce large failure values, as opposed to the recommendation of the U.S. Code of Federal Regulations, that is, failure probabilities must be as small as possible In this paper, we propose the association of the deterministic methodology with the probabilistic one. At first, the failure probability evaluation of steam generators follows a probabilistic methodology: to find the failure probability, critical cracks - obtained from Monte Carlo simulations - are limited to have length's in the interval defined by their lower value and the plugging limit one, so as to obtain a failure probability of at most 1%. The distribution employed for modeling the observed (measured) cracks considers the same interval. Any length outside the mentioned interval is not considered for the probability evaluation: it is approached by the deterministic model. The deterministic approach is to plug the tube when any anomalous crack is detected in it. Such a crack is an observed one placed in the third region on the plot of the logarithmic time derivative of crack lengths versus the mode I stress intensity factor, while for normal cracks the plugging of tubes occurs in the second region of that plot - if they are dangerous, of course, considering their random evolution. A methodology for identifying anomalous cracks is also presented. (author)

  19. Reliable low precision simulations in land surface models

    Science.gov (United States)

    Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.

    2017-12-01

    Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.

  20. A Practical, Robust Methodology for Acquiring New Observation Data Using Computationally Expensive Groundwater Models

    Science.gov (United States)

    Siade, Adam J.; Hall, Joel; Karelse, Robert N.

    2017-11-01

    Regional groundwater flow models play an important role in decision making regarding water resources; however, the uncertainty embedded in model parameters and model assumptions can significantly hinder the reliability of model predictions. One way to reduce this uncertainty is to collect new observation data from the field. However, determining where and when to obtain such data is not straightforward. There exist a number of data-worth and experimental design strategies developed for this purpose. However, these studies often ignore issues related to real-world groundwater models such as computational expense, existing observation data, high-parameter dimension, etc. In this study, we propose a methodology, based on existing methods and software, to efficiently conduct such analyses for large-scale, complex regional groundwater flow systems for which there is a wealth of available observation data. The method utilizes the well-established d-optimality criterion, and the minimax criterion for robust sampling strategies. The so-called Null-Space Monte Carlo method is used to reduce the computational burden associated with uncertainty quantification. And, a heuristic methodology, based on the concept of the greedy algorithm, is proposed for developing robust designs with subsets of the posterior parameter samples. The proposed methodology is tested on a synthetic regional groundwater model, and subsequently applied to an existing, complex, regional groundwater system in the Perth region of Western Australia. The results indicate that robust designs can be obtained efficiently, within reasonable computational resources, for making regional decisions regarding groundwater level sampling.

  1. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  2. A systematic methodology to extend the applicability of a bioconversion model for the simulation of various co-digestion scenarios

    DEFF Research Database (Denmark)

    Kovalovszki, Adam; Alvarado-Morales, Merlin; Fotidis, Ioannis

    2017-01-01

    Detailed simulation of anaerobic digestion (AD) requires complex mathematical models and the optimization of numerous model parameters. By performing a systematic methodology and identifying parameters with the highest impact on process variables in a well-established AD model, its applicability...... was extended to various co-digestion scenarios. More specifically, the application of the step-by-step methodology led to the estimation of a general and reduced set of parameters, for the simulation of scenarios where either manure or wastewater were co-digested with different organic substrates. Validation...... experimental data quite well, indicating that it offers a reliable reference point for future simulations of anaerobic co-digestion scenarios....

  3. A Methodology to Assess Ionospheric Models for GNSS

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Ibánez, Deimos

    2015-04-01

    Testing the accuracy of the ionospheric models used in the Global Navigation Satellite System (GNSS) is a long-standing issue. It is still a challenging problem due to the lack of accurate enough slant ionospheric determinations to be used as a reference. The present study proposes a methodology to assess any ionospheric model used in satellite-based applications and, in particular, GNSS ionospheric models. The methodology complements other analysis comparing the navigation based on different models to correct the code and carrier-phase observations. Specifically, the following ionospheric models are assessed: the operational models broadcast in the Global Positioning System (GPS), Galileo and the European Geostationary Navigation Overlay System (EGNOS), the post-process Global Ionospheric Maps (GIMs) from different analysis centers belonging to the International GNSS Service (IGS) and, finally, a new GIM computed by the gAGE/UPC research group. The methodology is based in the comparison between the predictions of the ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences shall be separated into the hardware delays (a receiver constant plus a satellite constant) per data interval, e.g., a day. The condition that these Differential Code Biases (DCBs) are commonly shared throughout the world-wide network of receivers and satellites provides a global character to the assessment. This approach generalizes simple tests based on double differenced Slant Total Electron Contents (STECs) between pairs of satellites and receivers on a much local scale. The present study has been conducted during the entire 2014, i.e., the last Solar Maximum. The seasonal and latitudinal structures of the results clearly reflect the different strategies used by the different models. On one hand, ionospheric model corrections based on a grid (IGS-GIMs or EGNOS) are shown to be several times better than the models

  4. An experimental methodology for a fuzzy set preference model

    Science.gov (United States)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate

  5. Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance

    Science.gov (United States)

    Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra

    2017-06-01

    In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.

  6. Reliable critical sized defect rodent model for cleft palate research.

    Science.gov (United States)

    Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena

    2014-12-01

    Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Organizational information assets classification model and security architecture methodology

    Directory of Open Access Journals (Sweden)

    Mostafa Tamtaji

    2015-12-01

    Full Text Available Today's, Organizations are exposed with huge and diversity of information and information assets that are produced in different systems shuch as KMS, financial and accounting systems, official and industrial automation sysytems and so on and protection of these information is necessary. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released.several benefits of this model cuses that organization has a great trend to implementing Cloud computing. Maintaining and management of information security is the main challenges in developing and accepting of this model. In this paper, at first, according to "design science research methodology" and compatible with "design process at information systems research", a complete categorization of organizational assets, including 355 different types of information assets in 7 groups and 3 level, is presented to managers be able to plan corresponding security controls according to importance of each groups. Then, for directing of organization to architect it’s information security in cloud computing environment, appropriate methodology is presented. Presented cloud computing security architecture , resulted proposed methodology, and presented classification model according to Delphi method and expers comments discussed and verified.

  8. Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation.

    Science.gov (United States)

    Ribba, B; Grimm, H P; Agoram, B; Davies, M R; Gadkar, K; Niederer, S; van Riel, N; Timmis, J; van der Graaf, P H

    2017-08-01

    With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a workshop was held at Roche Pharma Research and Early Development to focus discussions on two critical methodological aspects of QSP model development: optimal structural granularity and parameter estimation. We here report in a perspective article a summary of presentations and discussions. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. Usage models in reliability assessment of software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P.; Pulkkinen, U. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland)

    1997-04-01

    This volume in the OHA-project report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in the OHA-project report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. In this report the issues related to the statistical testing and especially automated test case generation are considered. The goal is to find an efficient method for building usage models for the generation of statistically significant set of test cases and to gather practical experiences from this method by applying it in a case study. The scope of the study also includes the tool support for the method, as the models may grow quite large and complex. (32 refs., 30 figs.).

  10. Reliability model for offshore wind farms; Paalidelighedsmodel for havvindmoelleparker

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.; Lundtang Paulsen, J.; Lybech Toegersen, M.; Krogh, T. [Risoe National Lab., Roskilde (Denmark); Raben, N.; Donovan, M.H.; Joergensen, L. [SEAS (Denmark); Winther-Jensen, M.

    2002-05-01

    A method for the prediction of the mean availability for an offshore windfarm has been developed. Factors comprised are the reliability of the single turbine, the strategy for preventive maintenance the climate, the number of repair teams, and the type of boats available for transport. The mean availability is defined as the sum of the fractions of time, where each turbine is available for production. The project has been carried out together with SEAS Wind Technique, and their site Roedsand has been chosen as the example of the work. A climate model has been created based on actual site measurements. The prediction of the availability is done with a Monte Carlo-simulation. Software was developed for the preparation of the climate model from weather measurements as well as for the Monte carlo-simulation. Three examples have been simulated, one with guessed parametres, and the other two with parameters more close to the Roedsand case. (au)

  11. Usage models in reliability assessment of software-based systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Pulkkinen, U.; Korhonen, J.

    1997-04-01

    This volume in the OHA-project report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in the OHA-project report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. In this report the issues related to the statistical testing and especially automated test case generation are considered. The goal is to find an efficient method for building usage models for the generation of statistically significant set of test cases and to gather practical experiences from this method by applying it in a case study. The scope of the study also includes the tool support for the method, as the models may grow quite large and complex. (32 refs., 30 figs.)

  12. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    Science.gov (United States)

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  13. Teaching methodology for modeling reference evapotranspiration with artificial neural networks

    OpenAIRE

    Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos

    2015-01-01

    [EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...

  14. Rating the raters in a mixed model: An approach to deciphering the rater reliability

    Science.gov (United States)

    Shang, Junfeng; Wang, Yougui

    2013-05-01

    Rating the raters has attracted extensive attention in recent years. Ratings are quite complex in that the subjective assessment and a number of criteria are involved in a rating system. Whenever the human judgment is a part of ratings, the inconsistency of ratings is the source of variance in scores, and it is therefore quite natural for people to verify the trustworthiness of ratings. Accordingly, estimation of the rater reliability will be of great interest and an appealing issue. To facilitate the evaluation of the rater reliability in a rating system, we propose a mixed model where the scores of the ratees offered by a rater are described with the fixed effects determined by the ability of the ratees and the random effects produced by the disagreement of the raters. In such a mixed model, for the rater random effects, we derive its posterior distribution for the prediction of random effects. To quantitatively make a decision in revealing the unreliable raters, the predictive influence function (PIF) serves as a criterion which compares the posterior distributions of random effects between the full data and rater-deleted data sets. The benchmark for this criterion is also discussed. This proposed methodology of deciphering the rater reliability is investigated in the multiple simulated and two real data sets.

  15. Mixed-mode modelling mixing methodologies for organisational intervention

    CERN Document Server

    Clarke, Steve; Lehaney, Brian

    2001-01-01

    The 1980s and 1990s have seen a growing interest in research and practice in the use of methodologies within problem contexts characterised by a primary focus on technology, human issues, or power. During the last five to ten years, this has given rise to challenges regarding the ability of a single methodology to address all such contexts, and the consequent development of approaches which aim to mix methodologies within a single problem situation. This has been particularly so where the situation has called for a mix of technological (the so-called 'hard') and human­ centred (so-called 'soft') methods. The approach developed has been termed mixed-mode modelling. The area of mixed-mode modelling is relatively new, with the phrase being coined approximately four years ago by Brian Lehaney in a keynote paper published at the 1996 Annual Conference of the UK Operational Research Society. Mixed-mode modelling, as suggested above, is a new way of considering problem situations faced by organisations. Traditional...

  16. reliability reliability

    African Journals Online (AJOL)

    eobe

    Corresponding author, Tel: +234-703. RELIABILITY .... V , , given by the code of practice. However, checks must .... an optimization procedure over the failure domain F corresponding .... of Concrete Members based on Utility Theory,. Technical ...

  17. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  18. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  19. 3D Urban Virtual Models generation methodology for smart cities

    Directory of Open Access Journals (Sweden)

    M. Álvarez

    2018-04-01

    Full Text Available Currently the use of Urban 3D Models goes beyond the mere support of three-dimensional image for the visualization of our urban surroundings. The three-dimensional Urban Models are in themselves fundamental tools to manage the different phenomena that occur in smart cities. It is therefore necessary to generate realistic models, in which BIM building design information can be integrated with GIS and other space technologies. The generation of 3D Urban Models benefit from the amount of data from sensors with the latest technologies such as airborne sensors and of the existence of international standards such as CityGML. This paper presents a methodology for the development of a three - dimensional Urban Model, based on LiDAR data and the CityGML standard, applied to the city of Lorca.

  20. A Dialogue about MCQs, Reliability, and Item Response Modelling

    Science.gov (United States)

    Wright, Daniel B.; Skagerberg, Elin M.

    2006-01-01

    Multiple choice questions (MCQs) are becoming more common in UK psychology departments and the need to assess their reliability is apparent. Having examined the reliability of MCQs in our department we faced many questions from colleagues about why we were examining reliability, what it was that we were doing, and what should be reported when…

  1. A methodology for overall consequence modeling in chemical industry

    International Nuclear Information System (INIS)

    Arunraj, N.S.; Maiti, J.

    2009-01-01

    Risk assessment in chemical process industry is a very important issue for safeguarding human and the ecosystem from damages caused to them. Consequence assessment is an integral part of risk assessment. However, the commonly used consequence estimation methods involve time-consuming complex mathematical models and simple assimilation of losses without considering all the consequence factors. This lead to the deterioration of quality of estimated risk value. So, the consequence modeling has to be performed in detail considering all major losses with optimal time to improve the decisive value of risk. The losses can be broadly categorized into production loss, assets loss, human health and safety loss, and environment loss. In this paper, a conceptual framework is developed to assess the overall consequence considering all the important components of major losses. Secondly, a methodology is developed for the calculation of all the major losses, which are normalized to yield the overall consequence. Finally, as an illustration, the proposed methodology is applied to a case study plant involving benzene extraction. The case study result using the proposed consequence assessment scheme is compared with that from the existing methodologies.

  2. METHODOLOGICAL APPROACHES FOR MODELING THE RURAL SETTLEMENT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Gorbenkova Elena Vladimirovna

    2017-10-01

    Full Text Available Subject: the paper describes the research results on validation of a rural settlement developmental model. The basic methods and approaches for solving the problem of assessment of the urban and rural settlement development efficiency are considered. Research objectives: determination of methodological approaches to modeling and creating a model for the development of rural settlements. Materials and methods: domestic and foreign experience in modeling the territorial development of urban and rural settlements and settlement structures was generalized. The motivation for using the Pentagon-model for solving similar problems was demonstrated. Based on a systematic analysis of existing development models of urban and rural settlements as well as the authors-developed method for assessing the level of agro-towns development, the systems/factors that are necessary for a rural settlement sustainable development are identified. Results: we created the rural development model which consists of five major systems that include critical factors essential for achieving a sustainable development of a settlement system: ecological system, economic system, administrative system, anthropogenic (physical system and social system (supra-structure. The methodological approaches for creating an evaluation model of rural settlements development were revealed; the basic motivating factors that provide interrelations of systems were determined; the critical factors for each subsystem were identified and substantiated. Such an approach was justified by the composition of tasks for territorial planning of the local and state administration levels. The feasibility of applying the basic Pentagon-model, which was successfully used for solving the analogous problems of sustainable development, was shown. Conclusions: the resulting model can be used for identifying and substantiating the critical factors for rural sustainable development and also become the basis of

  3. THE PROBLEMS OF MODELING THE RELIABILITY STRUCTURE OF THE COMPLEX TECHNICAL SYSTEM ON THE BASIS OF A STEAM‐WATER SYSTEM OF THE ENGINE ROOM

    Directory of Open Access Journals (Sweden)

    Leszek CHYBOWSKI

    2012-04-01

    Full Text Available In the paper the concept of a system structure with particular emphasis on the reliability structure has been presented. Advantages and disadvantages of modeling the reliability structure of a system using reliability block diagrams (RBD have been shown. RBD models of a marine steam‐water system constructed according to the concept of ‘multi‐component’, ‘one component’ and mixed models have been discussed. Critical remarks on the practical application of models which recognize only the structural surplus have been dealt with. The significant value of the model by professors Smalko and Jaźwiński called by them ‘default reliability structure’ has been pointed out. The necessity of building a new type of models: quality‐quantity, useful in the methodology developed by the author's multi-criteria analysis of importance of elements in the reliability structure of complex technical systems.

  4. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    Science.gov (United States)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  5. Logic flowgraph methodology - A tool for modeling embedded systems

    Science.gov (United States)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  6. Modern methodology and applications in spatial-temporal modeling

    CERN Document Server

    Matsui, Tomoko

    2015-01-01

    This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component an...

  7. Development of a methodology for conducting an integrated HRA/PRA --. Task 1, An assessment of human reliability influences during LP&S conditions PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, W.J.; Barriere, M.T.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., McLean, VA (United States)

    1993-06-01

    During Low Power and Shutdown (LP&S) conditions in a nuclear power plant (i.e., when the reactor is subcritical or at less than 10--15% power), human interactions with the plant`s systems will be more frequent and more direct. Control is typically not mediated by automation, and there are fewer protective systems available. Therefore, an assessment of LP&S related risk should include a greater emphasis on human reliability than such an assessment made for power operation conditions. In order to properly account for the increase in human interaction and thus be able to perform a probabilistic risk assessment (PRA) applicable to operations during LP&S, it is important that a comprehensive human reliability assessment (HRA) methodology be developed and integrated into the LP&S PRA. The tasks comprising the comprehensive HRA methodology development are as follows: (1) identification of the human reliability related influences and associated human actions during LP&S, (2) identification of potentially important LP&S related human actions and appropriate HRA framework and quantification methods, and (3) incorporation and coordination of methodology development with other integrated PRA/HRA efforts. This paper describes the first task, i.e., the assessment of human reliability influences and any associated human actions during LP&S conditions for a pressurized water reactor (PWR).

  8. Modeling high-Power Accelerators Reliability-SNS LINAC (SNS-ORNL); MAX LINAC (MYRRHA)

    International Nuclear Information System (INIS)

    Pitigoi, A. E.; Fernandez Ramos, P.

    2013-01-01

    Improving reliability has recently become a very important objective in the field of particle accelerators. The particle accelerators in operation are constantly undergoing modifications, and improvements are implemented using new technologies, more reliable components or redundant schemes (to obtain more reliability, strength, more power, etc.) A reliability model of SNS (Spallation Neutron Source) LINAC has been developed within MAX project and analysis of the accelerator systems reliability has been performed within the MAX project, using the Risk Spectrum reliability analysis software. The analysis results have been evaluated by comparison with the SNS operational data. Results and conclusions are presented in this paper, oriented to identify design weaknesses and provide recommendations for improving reliability of MYRRHA linear accelerator. The SNS reliability model developed for the MAX preliminary design phase indicates possible avenues for further investigation that could be needed to improve the reliability of the high-power accelerators, in view of the future reliability targets of ADS accelerators.

  9. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    OpenAIRE

    Chassin, David P.; Posse, Christian

    2004-01-01

    The reliability of electric transmission systems is examined using a scale-free model of network structure and failure propagation. The topologies of the North American eastern and western electric networks are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using s...

  10. Preparation of methodology for reliability analysis of selected digital segments of the instrumentation and control systems of NPPs. Pt. 1

    International Nuclear Information System (INIS)

    Hustak, S.; Patrik, M.; Babic, P.

    2000-12-01

    The report is structured as follows: (i) Introduction; (ii) Important notions relating to the safety and dependability of software systems for nuclear power plants (selected notions from IAEA Technical Report No. 397; safety aspects of software application; reliability/dependability aspects of digital systems); (iii) Peculiarities of digital systems and ways to a dependable performance of the required function (failures in the system and principles of defence against them; ensuring resistance of digital systems against failures at various hardware and software levels); (iv) The issue of analytical procedures to assess the safety and reliability of safety-related digital systems (safety and reliability assessment at an early stage of the project; general framework of reliability analysis of complex systems; choice of an appropriate quantitative measure of software reliability); (v) Selected qualitative and quantitative information about the reliability of digital systems; the use of relations between the incidence of various types of faults); and (vi) Conclusions and recommendations. (P.A.)

  11. Methodology and preliminary models for analyzing nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1978-11-01

    This report describes a general analytical tool designed to assist the NRC in making nuclear safeguards decisions. The approach is based on decision analysis--a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material, demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria), and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  12. Methodology and preliminary models for analyzing nuclear-safeguards decisions

    International Nuclear Information System (INIS)

    Judd, B.R.; Weissenberger, S.

    1978-11-01

    This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  13. Model identification methodology for fluid-based inerters

    Science.gov (United States)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  14. Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models

    Science.gov (United States)

    Duffy, Stephen F.

    1997-01-01

    Al single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.

  15. Integrating FMEA in a Model-Driven Methodology

    Science.gov (United States)

    Scippacercola, Fabio; Pietrantuono, Roberto; Russo, Stefano; Esper, Alexandre; Silva, Nuno

    2016-08-01

    Failure Mode and Effects Analysis (FMEA) is a well known technique for evaluating the effects of potential failures of components of a system. FMEA demands for engineering methods and tools able to support the time- consuming tasks of the analyst. We propose to make FMEA part of the design of a critical system, by integration into a model-driven methodology. We show how to conduct the analysis of failure modes, propagation and effects from SysML design models, by means of custom diagrams, which we name FMEA Diagrams. They offer an additional view of the system, tailored to FMEA goals. The enriched model can then be exploited to automatically generate FMEA worksheet and to conduct qualitative and quantitative analyses. We present a case study from a real-world project.

  16. A simulation model for reliability-based appraisal of an energy policy: The case of Lebanon

    International Nuclear Information System (INIS)

    Hamdan, H.A.; Ghajar, R.F.; Chedid, R.B.

    2012-01-01

    The Lebanese Electric Power System (LEPS) has been suffering from technical and financial deficiencies for decades and mirrors the problems encountered in many developing countries suffering from inadequate or no power systems planning resulting in incomplete and ill-operating infrastructure, and suffering from effects of political instability, huge debts, unavailability of financing desired projects and inefficiency in operation. The upgrade and development of the system necessitate the adoption of a comprehensive energy policy that introduces solutions to a diversity of problems addressing the technical, financial, administrative and governance aspects of the system. In this paper, an energy policy for Lebanon is proposed and evaluated based on integration between energy modeling and financial modeling. The paper utilizes the Load Modification Technique (LMT) as a probabilistic tool to assess the impact of policy implementation on energy production, overall cost, technical/commercial losses and reliability. Scenarios reflecting implementation of policy projects are assessed and their impacts are compared with business-as-usual scenarios which assume no new investment is to take place in the sector. Conclusions are drawn on the usefulness of the proposed evaluation methodology and the effectiveness of the adopted energy policy for Lebanon and other developing countries suffering from similar power system problems. - Highlights: ► Evaluation methodology based on a probabilistic simulation tool is proposed. ► A business-as-usual scenario for a given study period of the LEPS was modeled. ► Mitigation scenarios reflecting implementation of the energy policy are modeled. ► Policy simulated and compared with business-as-usual scenarios of the LEPS. ► Results reflect usefulness of proposed methodology and the adopted energy policy.

  17. Approach for an integral power transformer reliability model

    NARCIS (Netherlands)

    Schijndel, van A.; Wouters, P.A.A.F.; Steennis, E.F.; Wetzer, J.M.

    2012-01-01

    In electrical power transmission and distribution networks power transformers represent a crucial group of assets both in terms of reliability and investments. In order to safeguard the required quality at acceptable costs, decisions must be based on a reliable forecast of future behaviour. The aim

  18. Wireless Channel Modeling Perspectives for Ultra-Reliable Communications

    DEFF Research Database (Denmark)

    Eggers, Patrick Claus F.; Popovski, Petar

    2018-01-01

    Ultra-Reliable Communication (URC) is one of the distinctive features of the upcoming 5G wireless communication. The level of reliability, going down to packet error rates (PER) of $10^{-9}$, should be sufficiently convincing in order to remove cables in an industrial setting or provide remote co...

  19. Methodological Aspects of Modelling and Simulation of Robotized Workstations

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2018-05-01

    Full Text Available From the point of view of development of application and program products, key directions that need to be respected in computer support for project activities are quite clearly specified. User interfaces with a high degree of graphical interactive convenience, two-dimensional and three-dimensional computer graphics contribute greatly to streamlining project methodologies and procedures in particular. This is mainly due to the fact that a high number of solved tasks is clearly graphic in the modern design of robotic systems. Automation of graphical character tasks is therefore a significant development direction for the subject area. The authors present results of their research in the area of automation and computer-aided design of robotized systems. A new methodical approach to modelling robotic workstations, consisting of ten steps incorporated into the four phases of the logistics process of creating and implementing a robotic workplace, is presented. The emphasis is placed on the modelling and simulation phase with verification of elaborated methodologies on specific projects or elements of the robotized welding plant in automotive production.

  20. Methodology Using MELCOR Code to Model Proposed Hazard Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Gavin Hawkley

    2010-07-01

    This study demonstrates a methodology for using the MELCOR code to model a proposed hazard scenario within a building containing radioactive powder, and the subsequent evaluation of a leak path factor (LPF) (or the amount of respirable material which that escapes a facility into the outside environment), implicit in the scenario. This LPF evaluation will analyzes the basis and applicability of an assumed standard multiplication of 0.5 × 0.5 (in which 0.5 represents the amount of material assumed to leave one area and enter another), for calculating an LPF value. The outside release is dependsent upon the ventilation/filtration system, both filtered and un-filtered, and from other pathways from the building, such as doorways (, both open and closed). This study is presents ed to show how the multiple leak path factorsLPFs from the interior building can be evaluated in a combinatory process in which a total leak path factorLPF is calculated, thus addressing the assumed multiplication, and allowing for the designation and assessment of a respirable source term (ST) for later consequence analysis, in which: the propagation of material released into the environmental atmosphere can be modeled and the dose received by a receptor placed downwind can be estimated and the distance adjusted to maintains such exposures as low as reasonably achievableALARA.. Also, this study will briefly addresses particle characteristics thatwhich affect atmospheric particle dispersion, and compares this dispersion with leak path factorLPF methodology.

  1. Calibration Modeling Methodology to Optimize Performance for Low Range Applications

    Science.gov (United States)

    McCollum, Raymond A.; Commo, Sean A.; Parker, Peter A.

    2010-01-01

    Calibration is a vital process in characterizing the performance of an instrument in an application environment and seeks to obtain acceptable accuracy over the entire design range. Often, project requirements specify a maximum total measurement uncertainty, expressed as a percent of full-scale. However in some applications, we seek to obtain enhanced performance at the low range, therefore expressing the accuracy as a percent of reading should be considered as a modeling strategy. For example, it is common to desire to use a force balance in multiple facilities or regimes, often well below its designed full-scale capacity. This paper presents a general statistical methodology for optimizing calibration mathematical models based on a percent of reading accuracy requirement, which has broad application in all types of transducer applications where low range performance is required. A case study illustrates the proposed methodology for the Mars Entry Atmospheric Data System that employs seven strain-gage based pressure transducers mounted on the heatshield of the Mars Science Laboratory mission.

  2. Development of core technology for KNGR system design; development of quantitative reliability evaluation methodologies of KNGR digital I and C components

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Poong Hyun; Choi, Jong Gyun; Kim, Ung Soo; Kim, Jong Hyun; Kim, Man Cheol; Lee, Seung Jun; Lee, Young Je; Ha, Jun Soo [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-03-01

    For the digital systems to be applied to the nuclear industry, which has its unique conservertive to safety, reliability assessment of digital systems is a prerequisite. But, because digital systems show different failure modes from compared to existing analog systems, the existing reliability assessment method cannot be applied to digital systems. It means that a new reliability assessment method for digital systems should be developed. The goal of this study is development of reliability assessment method for digital systems on board level and related software tool. To achieve the goal, we have conducted researches on development of a database for hardware components for digital I and C systems, development of a reliability assessment model for the reliability prediction of digital systems on board level, and the applicability to KNGR digital I and C systems. We developed a database for reliability assessment of digital hardware components, a reliability assessment method for digital systems with consideration of software and hardware together, and a software tool for the reliability assessment of digital systems, which is named as RelPredic. We plan to apply the results of this study to the reliability assessment of digital systems in KNGR digital I and C systems. 13 refs., 71 figs., 31 tabs. (Author)

  3. A ROADMAP FOR GENERATING SEMANTICALLY ENRICHED BUILDING MODELS ACCORDING TO CITYGML MODEL VIA TWO DIFFERENT METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    G. Floros

    2016-10-01

    Full Text Available The methodologies of 3D modeling techniques have increasingly increased due to the rapid advances of new technologies. Nowadays, the focus of 3D modeling software is focused, not only to the finest visualization of the models, but also in their semantic features during the modeling procedure. As a result, the models thus generated are both realistic and semantically enriched. Additionally, various extensions of modeling software allow for the immediate conversion of the model’s format, via semi-automatic procedures with respect to the user’s scope. The aim of this paper is to investigate the generation of a semantically enriched Citygml building model via two different methodologies. The first methodology includes the modeling in Trimble SketchUp and the transformation in FME Desktop Manager, while the second methodology includes the model’s generation in CityEngine and its transformation in the CityGML format via the 3DCitiesProject extension for ArcGIS. Finally, the two aforesaid methodologies are being compared and specific characteristics are evaluated, in order to infer the methodology that is best applied depending on the different projects’ purposes.

  4. Building Modelling Methodologies for Virtual District Heating and Cooling Networks

    Energy Technology Data Exchange (ETDEWEB)

    Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas; Lingman, Peter; Linder, Nicklas

    2017-10-26

    District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.

  5. Reliability of multi-model and structurally different single-model ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Yokohata, Tokuta [National Institute for Environmental Studies, Center for Global Environmental Research, Tsukuba, Ibaraki (Japan); Annan, James D.; Hargreaves, Julia C. [Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Yokohama, Kanagawa (Japan); Collins, Matthew [University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); Jackson, Charles S.; Tobis, Michael [The University of Texas at Austin, Institute of Geophysics, 10100 Burnet Rd., ROC-196, Mail Code R2200, Austin, TX (United States); Webb, Mark J. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-08-15

    The performance of several state-of-the-art climate model ensembles, including two multi-model ensembles (MMEs) and four structurally different (perturbed parameter) single model ensembles (SMEs), are investigated for the first time using the rank histogram approach. In this method, the reliability of a model ensemble is evaluated from the point of view of whether the observations can be regarded as being sampled from the ensemble. Our analysis reveals that, in the MMEs, the climate variables we investigated are broadly reliable on the global scale, with a tendency towards overdispersion. On the other hand, in the SMEs, the reliability differs depending on the ensemble and variable field considered. In general, the mean state and historical trend of surface air temperature, and mean state of precipitation are reliable in the SMEs. However, variables such as sea level pressure or top-of-atmosphere clear-sky shortwave radiation do not cover a sufficiently wide range in some. It is not possible to assess whether this is a fundamental feature of SMEs generated with particular model, or a consequence of the algorithm used to select and perturb the values of the parameters. As under-dispersion is a potentially more serious issue when using ensembles to make projections, we recommend the application of rank histograms to assess reliability when designing and running perturbed physics SMEs. (orig.)

  6. Model checking methodology for large systems, faults and asynchronous behaviour. SARANA 2011 work report

    International Nuclear Information System (INIS)

    Lahtinen, J.; Launiainen, T.; Heljanko, K.; Ropponen, J.

    2012-01-01

    Digital instrumentation and control (I and C) systems are challenging to verify. They enable complicated control functions, and the state spaces of the models easily become too large for comprehensive verification through traditional methods. Model checking is a formal method that can be used for system verification. A number of efficient model checking systems are available that provide analysis tools to determine automatically whether a given state machine model satisfies the desired safety properties. This report reviews the work performed in the Safety Evaluation and Reliability Analysis of Nuclear Automation (SARANA) project in 2011 regarding model checking. We have developed new, more exact modelling methods that are able to capture the behaviour of a system more realistically. In particular, we have developed more detailed fault models depicting the hardware configuration of a system, and methodology to model function-block-based systems asynchronously. In order to improve the usability of our model checking methods, we have developed an algorithm for model checking large modular systems. The algorithm can be used to verify properties of a model that could otherwise not be verified in a straightforward manner. (orig.)

  7. Model checking methodology for large systems, faults and asynchronous behaviour. SARANA 2011 work report

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Launiainen, T.; Heljanko, K.; Ropponen, J. [Aalto Univ., Espoo (Finland). Dept. of Information and Computer Science

    2012-07-01

    Digital instrumentation and control (I and C) systems are challenging to verify. They enable complicated control functions, and the state spaces of the models easily become too large for comprehensive verification through traditional methods. Model checking is a formal method that can be used for system verification. A number of efficient model checking systems are available that provide analysis tools to determine automatically whether a given state machine model satisfies the desired safety properties. This report reviews the work performed in the Safety Evaluation and Reliability Analysis of Nuclear Automation (SARANA) project in 2011 regarding model checking. We have developed new, more exact modelling methods that are able to capture the behaviour of a system more realistically. In particular, we have developed more detailed fault models depicting the hardware configuration of a system, and methodology to model function-block-based systems asynchronously. In order to improve the usability of our model checking methods, we have developed an algorithm for model checking large modular systems. The algorithm can be used to verify properties of a model that could otherwise not be verified in a straightforward manner. (orig.)

  8. Models and data requirements for human reliability analysis

    International Nuclear Information System (INIS)

    1989-03-01

    It has been widely recognised for many years that the safety of the nuclear power generation depends heavily on the human factors related to plant operation. This has been confirmed by the accidents at Three Mile Island and Chernobyl. Both these cases revealed how human actions can defeat engineered safeguards and the need for special operator training to cover the possibility of unexpected plant conditions. The importance of the human factor also stands out in the analysis of abnormal events and insights from probabilistic safety assessments (PSA's), which reveal a large proportion of cases having their origin in faulty operator performance. A consultants' meeting, organized jointly by the International Atomic Energy Agency (IAEA) and the International Institute for Applied Systems Analysis (IIASA) was held at IIASA in Laxenburg, Austria, December 7-11, 1987, with the aim of reviewing existing models used in Probabilistic Safety Assessment (PSA) for Human Reliability Analysis (HRA) and of identifying the data required. The report collects both the contributions offered by the members of the Expert Task Force and the findings of the extensive discussions that took place during the meeting. Refs, figs and tabs

  9. Measurement of Cue-Induced Craving in Human Methamphetamine- Dependent Subjects New Methodological Hopes for Reliable Assessment of Treatment Efficacy

    Directory of Open Access Journals (Sweden)

    Zahra Alam Mehrjerdi

    2011-09-01

    Full Text Available Methamphetamine (MA is a highly addictive psychostimulant drug with crucial impacts on individuals on various levels. Exposure to methamphetamine-associated cues in laboratory can elicit measureable craving and autonomic reactivity in most individuals with methamphetamine dependence and the cue reactivity can model how craving would result in continued drug seeking behaviors and relapse in real environments but study on this notion is still limited. In this brief article, the authors review studies on cue-induced craving in human methamphetamine- dependent subjects in a laboratory-based approach. Craving for methamphetamine is elicited by a variety of methods in laboratory such as paraphernalia, verbal and visual cues and imaginary scripts. In this article, we review the studies applying different cues as main methods of craving incubation in laboratory settings. The brief reviewed literature provides strong evidence that craving for methamphetamine in laboratory conditions is significantly evoked by different cues. Cue-induced craving has important treatment and clinical implications for psychotherapists and clinicians when we consider the role of induced craving in evoking intense desire or urge to use methamphetamine after or during a period of successful craving prevention program. Elicited craving for methamphetamine in laboratory conditions is significantly influenced by methamphetamine-associated cues and results in rapid craving response toward methamphetamine use. This notion can be used as a main core for laboratory-based assessment of treatment efficacy for methamphetamine-dependent patients. In addition, the laboratory settings for studying craving can bridge the gap between somehow-non-reliable preclinical animal model studies and budget demanding randomized clinical trials.

  10. Modeling methodology for a CMOS-MEMS electrostatic comb

    Science.gov (United States)

    Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.

    2002-04-01

    A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.

  11. Integrating software reliability concepts into risk and reliability modeling of digital instrumentation and control systems used in nuclear power plants

    International Nuclear Information System (INIS)

    Arndt, S. A.

    2006-01-01

    As software-based digital systems are becoming more and more common in all aspects of industrial process control, including the nuclear power industry, it is vital that the current state of the art in quality, reliability, and safety analysis be advanced to support the quantitative review of these systems. Several research groups throughout the world are working on the development and assessment of software-based digital system reliability methods and their applications in the nuclear power, aerospace, transportation, and defense industries. However, these groups are hampered by the fact that software experts and probabilistic safety assessment experts view reliability engineering very differently. This paper discusses the characteristics of a common vocabulary and modeling framework. (authors)

  12. Spatial Development Modeling Methodology Application Possibilities in Vilnius

    Directory of Open Access Journals (Sweden)

    Lina Panavaitė

    2017-05-01

    Full Text Available In order to control the continued development of high-rise buildings and their irreversible visual impact on the overall silhouette of the city, the great cities of the world introduced new methodological principles to city’s spatial development models. These methodologies and spatial planning guidelines are focused not only on the controlled development of high-rise buildings, but on the spatial modelling of the whole city by defining main development criteria and estimating possible consequences. Vilnius city is no exception, however the re-establishment of independence of Lithuania caused uncontrolled urbanization process, so most of the city development regulations emerged as a consequence of unmanaged processes of investors’ expectations legalization. The importance of consistent urban fabric as well as conservation and representation of city’s most important objects gained attention only when an actual threat of overshadowing them with new architecture along with unmanaged urbanization in the city center or urban sprawl at suburbia, caused by land-use projects, had emerged. Current Vilnius’ spatial planning documents clearly define urban structure and key development principles, however the definitions are relatively abstract, causing uniform building coverage requirements for territories with distinct qualities and simplifying planar designs which do not meet quality standards. The overall quality of urban architecture is not regulated. The article deals with current spatial modeling methods, their individual parts, principles, the criteria for quality assessment and their applicability in Vilnius. The text contains an outline of possible building coverage regulations and impact assessment criteria for new development. The article contains a compendium of requirements for high-quality spatial planning and building design.

  13. Introducing the MINDER research project: Methodologies for Improvement of Non-residential buildings' Daily Energy Efficiency Reliability

    OpenAIRE

    Berker, Thomas; Gansmo, Helen Jøsok; Junghans, Antje

    2014-01-01

    In the Norwegian building sector, we are currently witnessing the transition from a realization gap - the gap between availability of solutions and their implementation - to a reliability gap: the gap between the building's potential performances as it is commissioned to its users and its actual performance in daily use. When new solutions do not live up to their promises, not only the performance of the individual building is at stake. The reliability gap can easily grow into a credibility g...

  14. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  15. Modeling, implementation, and validation of arterial travel time reliability : [summary].

    Science.gov (United States)

    2013-11-01

    Travel time reliability (TTR) has been proposed as : a better measure of a facilitys performance than : a statistical measure like peak hour demand. TTR : is based on more information about average traffic : flows and longer time periods, thus inc...

  16. Modeling, implementation, and validation of arterial travel time reliability.

    Science.gov (United States)

    2013-11-01

    Previous research funded by Florida Department of Transportation (FDOT) developed a method for estimating : travel time reliability for arterials. This method was not initially implemented or validated using field data. This : project evaluated and r...

  17. Study of redundant Models in reliability prediction of HXMT's HES

    International Nuclear Information System (INIS)

    Wang Jinming; Liu Congzhan; Zhang Zhi; Ji Jianfeng

    2010-01-01

    Two redundant equipment structures of HXMT's HES are proposed firstly, the block backup and dual system cold-redundancy. Then prediction of the reliability is made by using parts count method. Research of comparison and analysis is also performed on the two proposals. A conclusion is drawn that a higher reliability and longer service life could be offered by taking a redundant equipment structure of block backup. (authors)

  18. Processing of the GALILEO fuel rod code model uncertainties within the AREVA LWR realistic thermal-mechanical analysis methodology

    International Nuclear Information System (INIS)

    Mailhe, P.; Barbier, B.; Garnier, C.; Landskron, H.; Sedlacek, R.; Arimescu, I.; Smith, M.; Bellanger, P.

    2013-01-01

    The availability of reliable tools and associated methodology able to accurately predict the LWR fuel behavior in all conditions is of great importance for safe and economic fuel usage. For that purpose, AREVA has developed its new global fuel rod performance code GALILEO along with its associated realistic thermal-mechanical analysis methodology. This realistic methodology is based on a Monte Carlo type random sampling of all relevant input variables. After having outlined the AREVA realistic methodology, this paper will be focused on the GALILEO code benchmarking process, on its extended experimental database and on the GALILEO model uncertainties assessment. The propagation of these model uncertainties through the AREVA realistic methodology is also presented. This GALILEO model uncertainties processing is of the utmost importance for accurate fuel design margin evaluation as illustrated on some application examples. With the submittal of Topical Report GALILEO to the U.S. NRC in 2013, GALILEO and its methodology are on the way to be industrially used in a wide range of irradiation conditions. (authors)

  19. Parameter estimation of component reliability models in PSA model of Krsko NPP

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2001-01-01

    In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)

  20. A case study in data audit and modelling methodology. Australia

    Energy Technology Data Exchange (ETDEWEB)

    Apelbaum, John [Apelbaum Consulting Group, 750 Blackburn Road, Melbourne VIC 3170 (Australia)

    2009-10-15

    The purpose of the paper is to outline a rigorous, spatially consistent and cost-effective transport planning tool that projects travel demand, energy and emissions for all modes associated with domestic and international transport. The planning tool (Aus{sub e}Tran) is a multi-modal, multi-fuel and multi-regional macroeconomic and demographic-based computational model of the Australian transport sector that overcomes some of the gaps associated with existing strategic level transport emission models. The paper also identifies a number of key data issues that need to be resolved prior to model development with particular reference to the Australian environment. The strategic model structure endogenously derives transport demand, energy and emissions by jurisdiction, vehicle type, emission type and transport service for both freight and passenger transport. Importantly, the analytical framework delineates the national transport task, energy consumed and emissions according to region, state/territory of origin and jurisdictional protocols, provides an audit mechanism for the evaluation of the methodological framework, integrates a mathematical protocol to derive time series FFC emission factors and allows for the impact of non-registered road vehicles on transport, fuel and emissions. (author)

  1. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    Chen Debiao; Yang Xinglin; Li Yuan; Li Jin

    2012-01-01

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  2. 78 FR 45447 - Revisions to Modeling, Data, and Analysis Reliability Standard

    Science.gov (United States)

    2013-07-29

    ...; Order No. 782] Revisions to Modeling, Data, and Analysis Reliability Standard AGENCY: Federal Energy... Analysis (MOD) Reliability Standard MOD- 028-2, submitted to the Commission for approval by the North... Organization. The Commission finds that the proposed Reliability Standard represents an improvement over the...

  3. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  4. Possibilities and limitations of applying software reliability growth models to safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2007-01-01

    It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's Non-Homogeneous Poisson Process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software

  5. Event and fault tree model for reliability analysis of the greek research reactor

    International Nuclear Information System (INIS)

    Albuquerque, Tob R.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes

    2013-01-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This work uses the methods of fault tree (FT) and event tree (ET) to perform the Probabilistic Safety Assessment (PSA) in research reactors. The PSA according to IAEA (International Atomic Energy Agency) is divided into Level 1, Level 2 and level 3. At Level 1, conceptually safety systems act to prevent the accident, at Level 2, the accident occurred and seeks to minimize the consequences, known as stage management of the accident, and at Level 3 are determined consequences. This paper focuses on Level 1 studies, and searches through the acquisition of knowledge consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR - 1, was used as a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from there were developed the possible accident sequences, using event tree, which could lead damage to the core. Furthermore, for each of the affected systems, the possible accidents sequences were made fault tree and evaluated the probability of each event top of the FT. The studies were conducted using a commercial computational tool SAPHIRE. The results thus obtained, performance or failure to act of the systems analyzed were considered satisfactory. This work is directed to the Greek Research Reactor due to data availability. (author)

  6. Event and fault tree model for reliability analysis of the greek research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Tob R.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes, E-mail: atalbuquerque@ien.gov.br, E-mail: btony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This work uses the methods of fault tree (FT) and event tree (ET) to perform the Probabilistic Safety Assessment (PSA) in research reactors. The PSA according to IAEA (International Atomic Energy Agency) is divided into Level 1, Level 2 and level 3. At Level 1, conceptually safety systems act to prevent the accident, at Level 2, the accident occurred and seeks to minimize the consequences, known as stage management of the accident, and at Level 3 are determined consequences. This paper focuses on Level 1 studies, and searches through the acquisition of knowledge consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR - 1, was used as a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from there were developed the possible accident sequences, using event tree, which could lead damage to the core. Furthermore, for each of the affected systems, the possible accidents sequences were made fault tree and evaluated the probability of each event top of the FT. The studies were conducted using a commercial computational tool SAPHIRE. The results thus obtained, performance or failure to act of the systems analyzed were considered satisfactory. This work is directed to the Greek Research Reactor due to data availability. (author)

  7. Improvement of level-1 PSA computer code package - Modeling and analysis for dynamic reliability of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Baek, Sang Yeup; Shin, In Sup; Moon, Shin Myung; Moon, Jae Phil; Koo, Hoon Young; Kim, Ju Shin [Seoul National University, Seoul (Korea, Republic of); Hong, Jung Sik [Seoul National Polytechnology University, Seoul (Korea, Republic of); Lim, Tae Jin [Soongsil University, Seoul (Korea, Republic of)

    1996-08-01

    The objective of this project is to develop a methodology of the dynamic reliability analysis for NPP. The first year`s research was focused on developing a procedure for analyzing failure data of running components and a simulator for estimating the reliability of series-parallel structures. The second year`s research was concentrated on estimating the lifetime distribution and PM effect of a component from its failure data in various cases, and the lifetime distribution of a system with a particular structure. Computer codes for performing these jobs were also developed. The objectives of the third year`s research is to develop models for analyzing special failure types (CCFs, Standby redundant structure) that were nor considered in the first two years, and to complete a methodology of the dynamic reliability analysis for nuclear power plants. The analysis of failure data of components and related researches for supporting the simulator must be preceded for providing proper input to the simulator. Thus this research is divided into three major parts. 1. Analysis of the time dependent life distribution and the PM effect. 2. Development of a simulator for system reliability analysis. 3. Related researches for supporting the simulator : accelerated simulation analytic approach using PH-type distribution, analysis for dynamic repair effects. 154 refs., 5 tabs., 87 figs. (author)

  8. Human reliability-based MC and A models for detecting insider theft

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Wyss, Gregory Dane

    2010-01-01

    Material control and accounting (MC and A) safeguards operations that track and account for critical assets at nuclear facilities provide a key protection approach for defeating insider adversaries. These activities, however, have been difficult to characterize in ways that are compatible with the probabilistic path analysis methods that are used to systematically evaluate the effectiveness of a site's physical protection (security) system (PPS). MC and A activities have many similar characteristics to operator procedures performed in a nuclear power plant (NPP) to check for anomalous conditions. This work applies human reliability analysis (HRA) methods and models for human performance of NPP operations to develop detection probabilities for MC and A activities. This has enabled the development of an extended probabilistic path analysis methodology in which MC and A protections can be combined with traditional sensor data in the calculation of PPS effectiveness. The extended path analysis methodology provides an integrated evaluation of a safeguards and security system that addresses its effectiveness for attacks by both outside and inside adversaries.

  9. Modeling methodology for supply chain synthesis and disruption analysis

    Science.gov (United States)

    Wu, Teresa; Blackhurst, Jennifer

    2004-11-01

    The concept of an integrated or synthesized supply chain is a strategy for managing today's globalized and customer driven supply chains in order to better meet customer demands. Synthesizing individual entities into an integrated supply chain can be a challenging task due to a variety of factors including conflicting objectives, mismatched incentives and constraints of the individual entities. Furthermore, understanding the effects of disruptions occurring at any point in the system is difficult when working toward synthesizing supply chain operations. Therefore, the goal of this research is to present a modeling methodology to manage the synthesis of a supply chain by linking hierarchical levels of the system and to model and analyze disruptions in the integrated supply chain. The contribution of this research is threefold: (1) supply chain systems can be modeled hierarchically (2) the performance of synthesized supply chain system can be evaluated quantitatively (3) reachability analysis is used to evaluate the system performance and verify whether a specific state is reachable, allowing the user to understand the extent of effects of a disruption.

  10. Competing risk models in reliability systems, a Weibull distribution model with Bayesian analysis approach

    International Nuclear Information System (INIS)

    Iskandar, Ismed; Gondokaryono, Yudi Satria

    2016-01-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  11. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors. Results from the Coordinated Research Project on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors

    International Nuclear Information System (INIS)

    2014-09-01

    Strong reliance on inherent and passive design features has become a hallmark of many advanced reactor designs, including several evolutionary designs and nearly all advanced small and medium sized reactor (SMR) designs. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones — not only to enhance the operational safety of the reactors but also to eliminate the possibility of serious accidents. Accordingly, the assessment of the reliability of passive safety systems is a crucial issue to be resolved before their extensive use in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are unknown a priori. The functions of passive systems are based on basic physical laws and thermodynamic principals, and they may not experience the same kind of failures as active systems. Hence, consistent efforts are required to qualify the reliability of passive systems. To support the development of advanced nuclear reactor designs with passive systems, investigations into their reliability using various methodologies are being conducted in several Member States with advanced reactor development programmes. These efforts include reliability methods for passive systems by the French Atomic Energy and Alternative Energies Commission, reliability evaluation of passive safety system by the University of Pisa, Italy, and assessment of passive system reliability by the Bhabha Atomic Research Centre, India. These different approaches seem to demonstrate a consensus on some aspects. However, the developers of the approaches have been unable to agree on the definition of reliability in a passive system. Based on these developments and in order to foster collaboration, the IAEA initiated the Coordinated Research Project (CRP) on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors in 2008. The

  12. Conceptual Software Reliability Prediction Models for Nuclear Power Plant Safety Systems

    International Nuclear Information System (INIS)

    Johnson, G.; Lawrence, D.; Yu, H.

    2000-01-01

    The objective of this project is to develop a method to predict the potential reliability of software to be used in a digital system instrumentation and control system. The reliability prediction is to make use of existing measures of software reliability such as those described in IEEE Std 982 and 982.2. This prediction must be of sufficient accuracy to provide a value for uncertainty that could be used in a nuclear power plant probabilistic risk assessment (PRA). For the purposes of the project, reliability was defined to be the probability that the digital system will successfully perform its intended safety function (for the distribution of conditions under which it is expected to respond) upon demand with no unintended functions that might affect system safety. The ultimate objective is to use the identified measures to develop a method for predicting the potential quantitative reliability of a digital system. The reliability prediction models proposed in this report are conceptual in nature. That is, possible prediction techniques are proposed and trial models are built, but in order to become a useful tool for predicting reliability, the models must be tested, modified according to the results, and validated. Using methods outlined by this project, models could be constructed to develop reliability estimates for elements of software systems. This would require careful review and refinement of the models, development of model parameters from actual experience data or expert elicitation, and careful validation. By combining these reliability estimates (generated from the validated models for the constituent parts) in structural software models, the reliability of the software system could then be predicted. Modeling digital system reliability will also require that methods be developed for combining reliability estimates for hardware and software. System structural models must also be developed in order to predict system reliability based upon the reliability

  13. A review of the models for evaluating organizational factors in human reliability analysis

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da; Melo, Paulo Fernando Ferreira Frutuoso e

    2009-01-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  14. A review of the models for evaluating organizational factors in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br; Melo, Paulo Fernando Ferreira Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  15. A Review on VSC-HVDC Reliability Modeling and Evaluation Techniques

    Science.gov (United States)

    Shen, L.; Tang, Q.; Li, T.; Wang, Y.; Song, F.

    2017-05-01

    With the fast development of power electronics, voltage-source converter (VSC) HVDC technology presents cost-effective ways for bulk power transmission. An increasing number of VSC-HVDC projects has been installed worldwide. Their reliability affects the profitability of the system and therefore has a major impact on the potential investors. In this paper, an overview of the recent advances in the area of reliability evaluation for VSC-HVDC systems is provided. Taken into account the latest multi-level converter topology, the VSC-HVDC system is categorized into several sub-systems and the reliability data for the key components is discussed based on sources with academic and industrial backgrounds. The development of reliability evaluation methodologies is reviewed and the issues surrounding the different computation approaches are briefly analysed. A general VSC-HVDC reliability evaluation procedure is illustrated in this paper.

  16. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  17. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  18. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    Science.gov (United States)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  19. A methodology for ecosystem-scale modeling of selenium

    Science.gov (United States)

    Presser, T.S.; Luoma, S.N.

    2010-01-01

    The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determinehow Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure

  20. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    Directory of Open Access Journals (Sweden)

    Kaijuan Yuan

    2016-01-01

    Full Text Available Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  1. SR-Site groundwater flow modelling methodology, setup and results

    International Nuclear Information System (INIS)

    Selroos, Jan-Olof; Follin, Sven

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report

  2. Development of a General Modelling Methodology for Vacuum Residue Hydroconversion

    Directory of Open Access Journals (Sweden)

    Pereira de Oliveira L.

    2013-11-01

    Full Text Available This work concerns the development of a methodology for kinetic modelling of refining processes, and more specifically for vacuum residue conversion. The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the transformation of the feedstock molecules into effluent molecules by means of a two-step procedure. In the first step, a synthetic mixture of molecules representing the feedstock for the process is generated via a molecular reconstruction method, termed SR-REM molecular reconstruction. In the second step, a kinetic Monte-Carlo method (kMC is used to simulate the conversion reactions on this mixture of molecules. The molecular reconstruction was applied to several petroleum residues and is illustrated for an Athabasca (Canada vacuum residue. The kinetic Monte-Carlo method is then described in detail. In order to validate this stochastic approach, a lumped deterministic model for vacuum residue conversion was simulated using Gillespie’s Stochastic Simulation Algorithm. Despite the fact that both approaches are based on very different hypotheses, the stochastic simulation algorithm simulates the conversion reactions with the same accuracy as the deterministic approach. The full-scale stochastic simulation approach using molecular-level reaction pathways provides high amounts of detail on the effluent composition and is briefly illustrated for Athabasca VR hydrocracking.

  3. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  4. A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations

    International Nuclear Information System (INIS)

    Kaplani, E.; Kaplanis, S.

    2012-01-01

    Highlights: ► Solar radiation data for European cities follow the Extreme Value or Weibull distribution. ► Simulation model for the sizing of SAPV systems based on energy balance and stochastic analysis. ► Simulation of PV Generator-Loads-Battery Storage System performance for all months. ► Minimum peak power and battery capacity required for reliable SAPV sizing for various European cities. ► Peak power and battery capacity reduced by more than 30% for operation 95% success rate. -- Abstract: The large fluctuations observed in the daily solar radiation profiles affect highly the reliability of the PV system sizing. Increasing the reliability of the PV system requires higher installed peak power (P m ) and larger battery storage capacity (C L ). This leads to increased costs, and makes PV technology less competitive. This research paper presents a new stochastic simulation model for stand-alone PV systems, developed to determine the minimum installed P m and C L for the PV system to be energy independent. The stochastic simulation model developed, makes use of knowledge acquired from an in-depth statistical analysis of the solar radiation data for the site, and simulates the energy delivered, the excess energy burnt, the load profiles and the state of charge of the battery system for the month the sizing is applied, and the PV system performance for the entire year. The simulation model provides the user with values for the autonomy factor d, simulating PV performance in order to determine the minimum P m and C L depending on the requirements of the application, i.e. operation with critical or non-critical loads. The model makes use of NASA’s Surface meteorology and Solar Energy database for the years 1990–2004 for various cities in Europe with a different climate. The results obtained with this new methodology indicate a substantial reduction in installed peak power and battery capacity, both for critical and non-critical operation, when compared to

  5. A Comparison Study of a Generic Coupling Methodology for Modeling Wake Effects of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Tim Verbrugghe

    2017-10-01

    Full Text Available Wave Energy Converters (WECs need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, by diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC array is complex; it is difficult, or in some cases impossible, to simulate both these near-field and far-field wake effects using a single numerical model, in a time- and cost-efficient way in terms of computational time and effort. Within this research, a generic coupling methodology is developed to model both near-field and far-field wake effects caused by floating (e.g., WECs, platforms or fixed offshore structures. The methodology is based on the coupling of a wave-structure interaction solver (Nemoh and a wave propagation model. In this paper, this methodology is applied to two wave propagation models (OceanWave3D and MILDwave, which are compared to each other in a wide spectrum of tests. Additionally, the Nemoh-OceanWave3D model is validated by comparing it to experimental wave basin data. The methodology proves to be a reliable instrument to model wake effects of WEC arrays; results demonstrate a high degree of agreement between the numerical simulations with relative errors lower than 5 % and to a lesser extent for the experimental data, where errors range from 4 % to 17 % .

  6. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models.

    Science.gov (United States)

    Castaño, Fernando; Beruvides, Gerardo; Villalonga, Alberto; Haber, Rodolfo E

    2018-05-10

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the 'Internet of Things' (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds.

  7. Methodology for assessing electric vehicle charging infrastructure business models

    International Nuclear Information System (INIS)

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage. - Highlights: • Ecosystem is a network of actors who collaborate to create a positive business case. • Electro-mobility (electricity-powered road vehicles and ICT) is a complex ecosystem. • Methodological analysis to ensure that all actors benefit from electro-mobility. • Economic analysis of charging infrastructure deployment linked to its usage. • Comparison of EV ownership cost vs. ICE for vehicle users.

  8. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    OpenAIRE

    Douglas H. Marin dos Santos; Álvaro N. Atallah

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the ...

  9. SIERRA - A 3-D device simulator for reliability modeling

    Science.gov (United States)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  10. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  11. A methodology model for quality management in a general hospital.

    Science.gov (United States)

    Stern, Z; Naveh, E

    1997-01-01

    A reappraisal is made of the relevance of industrial modes of quality management to the issues of medical care. Analysis of the nature of medical care, which differentiates it from the supplier-client relationships of industry, presents the main intrinsic characteristics, which create problems in application of the industrial quality management approaches to medical care. Several examples are the complexity of the relationship between the medical action and the result obtained, the client's nonacceptance of economic profitability as a value in his medical care, and customer satisfaction biased by variable standards of knowledge. The real problems unique to hospitals are addressed, and a methodology model for their quality management is offered. Included is a sample of indicator vectors, measurements of quality care, cost of medical care, quality of service, and human resources. These are based on the trilogy of planning quality, quality control, and improving quality. The conclusions confirm the inadequacy of industrial quality management approaches for medical institutions and recommend investment in formulation of appropriate concepts.

  12. Modeling myocardial infarction in mice: methodology, monitoring, pathomorphology.

    Science.gov (United States)

    Ovsepyan, A A; Panchenkov, D N; Prokhortchouk, E B; Telegin, G B; Zhigalova, N A; Golubev, E P; Sviridova, T E; Matskeplishvili, S T; Skryabin, K G; Buziashvili, U I

    2011-01-01

    Myocardial infarction is one of the most serious and widespread diseases in the world. In this work, a minimally invasive method for simulating myocardial infarction in mice is described in the Russian Federation for the very first time; the procedure is carried out by ligation of the coronary heart artery or by controlled electrocoagulation. As a part of the methodology, a series of anesthetic, microsurgical and revival protocols are designed, owing to which a decrease in the postoperational mortality from the initial 94.6 to 13.6% is achieved. ECG confirms the development of large-focal or surface myocardial infarction. Postmortal histological examination confirms the presence of necrosis foci in the heart muscles of 87.5% of animals. Altogether, the medical data allow us to conclude that an adequate mouse model for myocardial infarction was generated. A further study is focused on the standardization of the experimental procedure and the use of genetically modified mouse strains, with the purpose of finding the most efficient therapeutic approaches for this disease.

  13. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  14. Fuzzy sets as extension of probabilistic models for evaluating human reliability

    International Nuclear Information System (INIS)

    Przybylski, F.

    1996-11-01

    On the base of a survey of established quantification methodologies for evaluating human reliability, a new computerized methodology was developed in which a differential consideration of user uncertainties is made. In this quantification method FURTHER (FUzzy Sets Related To Human Error Rate Prediction), user uncertainties are quantified separately from model and data uncertainties. As tools fuzzy sets are applied which, however, stay hidden to the method's user. The user in the quantification process only chooses an action pattern, performance shaping factors and natural language expressions. The acknowledged method HEART (Human Error Assessment and Reduction Technique) serves as foundation of the fuzzy set approach FURTHER. By means of this method, the selection of a basic task in connection with its basic error probability, the decision how correct the basic task's selection is, the selection of a peformance shaping factor, and the decision how correct the selection and how important the performance shaping factor is, were identified as aspects of fuzzification. This fuzzification is made on the base of data collection and information from literature as well as of the estimation by competent persons. To verify the ammount of additional information to be received by the usage of fuzzy sets, a benchmark session was accomplished. In this benchmark twelve actions were assessed by five test-persons. In case of the same degree of detail in the action modelling process, the bandwidths of the interpersonal evaluations decrease in FURTHER in comparison with HEART. The uncertainties of the single results could not be reduced up to now. The benchmark sessions conducted so far showed plausible results. A further testing of the fuzzy set approach by using better confirmed fuzzy sets can only be achieved in future practical application. Adequate procedures, however, are provided. (orig.) [de

  15. Methodological Bases for Describing Risks of the Enterprise Business Model in Integrated Reporting

    Directory of Open Access Journals (Sweden)

    Nesterenko Oksana O.

    2017-12-01

    Full Text Available The aim of the article is to substantiate the methodological bases for describing the business and accounting risks of an enterprise business model in integrated reporting for their timely detection and assessment, and develop methods for their leveling or minimizing and possible prevention. It is proposed to consider risks in the process of forming integrated reporting from two sides: first, risks that arise in the business model of an organization and should be disclosed in its integrated report; second, accounting risks of integrated reporting, which should be taken into account by members of the cross-sectoral working group and management personnel in the process of forming and promulgating integrated reporting. To develop an adequate accounting and analytical tool for disclosure of information about the risks of the business model and integrated reporting, their leveling or minimization, in the article a terminological analysis of the essence of entrepreneurial and accounting risks is carried out. The entrepreneurial risk is defined as an objective-subjective economic category that characterizes the probability of negative or positive consequences of economic-social-ecological activity within the framework of the business model of an enterprise under uncertainty. The accounting risk is suggested to be understood as the probability of unfavorable consequences as a result of organizational, methodological errors in the integrated accounting system, which present threat to the quality, accuracy and reliability of the reporting information on economic, social and environmental activities in integrated reporting as well as threat of inappropriate decision-making by stakeholders based on the integrated report. For the timely identification of business risks and maximum leveling of the influence of accounting risks on the process of formation and publication of integrated reporting, in the study the place of entrepreneurial and accounting risks in

  16. Possibilities and Limitations of Applying Software Reliability Growth Models to Safety- Critical Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2006-01-01

    As digital systems are gradually introduced to nuclear power plants (NPPs), the need of quantitatively analyzing the reliability of the digital systems is also increasing. Kang and Sung identified (1) software reliability, (2) common-cause failures (CCFs), and (3) fault coverage as the three most critical factors in the reliability analysis of digital systems. For the estimation of the safety-critical software (the software that is used in safety-critical digital systems), the use of Bayesian Belief Networks (BBNs) seems to be most widely used. The use of BBNs in reliability estimation of safety-critical software is basically a process of indirectly assigning a reliability based on various observed information and experts' opinions. When software testing results or software failure histories are available, we can use a process of directly estimating the reliability of the software using various software reliability growth models such as Jelinski- Moranda model and Goel-Okumoto's nonhomogeneous Poisson process (NHPP) model. Even though it is generally known that software reliability growth models cannot be applied to safety-critical software due to small number of expected failure data from the testing of safety-critical software, we try to find possibilities and corresponding limitations of applying software reliability growth models to safety critical software

  17. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  18. Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide.

    Science.gov (United States)

    Bilcke, Joke; Beutels, Philippe; Brisson, Marc; Jit, Mark

    2011-01-01

    Accounting for uncertainty is now a standard part of decision-analytic modeling and is recommended by many health technology agencies and published guidelines. However, the scope of such analyses is often limited, even though techniques have been developed for presenting the effects of methodological, structural, and parameter uncertainty on model results. To help bring these techniques into mainstream use, the authors present a step-by-step guide that offers an integrated approach to account for different kinds of uncertainty in the same model, along with a checklist for assessing the way in which uncertainty has been incorporated. The guide also addresses special situations such as when a source of uncertainty is difficult to parameterize, resources are limited for an ideal exploration of uncertainty, or evidence to inform the model is not available or not reliable. for identifying the sources of uncertainty that influence results most are also described. Besides guiding analysts, the guide and checklist may be useful to decision makers who need to assess how well uncertainty has been accounted for in a decision-analytic model before using the results to make a decision.

  19. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    International Nuclear Information System (INIS)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias; Zhang, Jie

    2017-01-01

    Highlights: • An ensemble model is developed to produce both deterministic and probabilistic wind forecasts. • A deep feature selection framework is developed to optimally determine the inputs to the forecasting methodology. • The developed ensemble methodology has improved the forecasting accuracy by up to 30%. - Abstract: With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by first layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.

  20. Reliability and Validity of Digital Imagery Methodology for Measuring Starting Portions and Plate Waste from School Salad Bars.

    Science.gov (United States)

    Bean, Melanie K; Raynor, Hollie A; Thornton, Laura M; Sova, Alexandra; Dunne Stewart, Mary; Mazzeo, Suzanne E

    2018-04-12

    Scientifically sound methods for investigating dietary consumption patterns from self-serve salad bars are needed to inform school policies and programs. To examine the reliability and validity of digital imagery for determining starting portions and plate waste of self-serve salad bar vegetables (which have variable starting portions) compared with manual weights. In a laboratory setting, 30 mock salads with 73 vegetables were made, and consumption was simulated. Each component (initial and removed portion) was weighed; photographs of weighed reference portions and pre- and post-consumption mock salads were taken. Seven trained independent raters visually assessed images to estimate starting portions to the nearest ¼ cup and percentage consumed in 20% increments. These values were converted to grams for comparison with weighed values. Intraclass correlations between weighed and digital imagery-assessed portions and plate waste were used to assess interrater reliability and validity. Pearson's correlations between weights and digital imagery assessments were also examined. Paired samples t tests were used to evaluate mean differences (in grams) between digital imagery-assessed portions and measured weights. Interrater reliabilities were excellent for starting portions and plate waste with digital imagery. For accuracy, intraclass correlations were moderate, with lower accuracy for determining starting portions of leafy greens compared with other vegetables. However, accuracy of digital imagery-assessed plate waste was excellent. Digital imagery assessments were not significantly different from measured weights for estimating overall vegetable starting portions or waste; however, digital imagery assessments slightly underestimated starting portions (by 3.5 g) and waste (by 2.1 g) of leafy greens. This investigation provides preliminary support for use of digital imagery in estimating starting portions and plate waste from school salad bars. Results might inform

  1. The validity and reliability of the type 2 diabetes and health promotion scale Turkish version: a methodological study.

    Science.gov (United States)

    Yildiz, Esra; Kavuran, Esin

    2018-03-01

    A healthy promotion is important for maintaining health and preventing complications in patients with type 2 diabetes. The aim of the present study was to examine the psychometrics of a recently developed tool that can be used to screen for a health-promoting lifestyle in patients with type 2 diabetes. Data were collected from outpatients attending diabetes clinics. The Type 2 Diabetes and Health Promotion Scale (T2DHPS) and a demographic questionnaire were administered to 295 participants. Forward-backward translation of the original English version was used to develop a Turkish version. Internal consistency of the scale was assessed by Cronbach's alpha. An explanatory factor analysis and confirmatory factor analysis used validity of the Type 2 Diabetes and Health Promotion Scale - Turkish version. Kaiser-Meyer-Olkin (KMO) and Bartlett's sphericity tests showed that the sample met the criteria required for factor analysis. The reliability coefficient for the total scale was 0.84, and alpha coefficients for the subscales ranged from 0.57 to 0.92. A six-factor solution was obtained that explained 59.3% of the total variance. The ratio of chi-square statistics to degrees of freedom (χ 2 /df) 3.30 (χ 2 = 1157.48/SD = 350); error of root mean square approximation (RMSEA) 0.061; GFI value of 0.91 and comparative fit index (CFI) value was obtained as 0.91. Turkish version of The T2DHPS is a valid and reliable tool that can be used to assess patients' health-promoting lifestyle behaviours. Validity and reliability studies in different cultures and regions are recommended. © 2017 Nordic College of Caring Science.

  2. Response surface methodology approach for structural reliability analysis: An outline of typical applications performed at CEC-JRC, Ispra

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1982-01-01

    The paper presents the main results of the work carried out at JRC-Ispra for the study of specific problems posed by the application of the response surface methodology to the exploration of structural and nuclear reactor safety codes. Some relevant studies have been achieved: assessment of structure behaviours in the case of seismic occurrences; determination of the probability of coherent blockage in LWR fuel elements due to LOCA occurrence; analysis of ATWS consequences in PWR reactors by means of an ALMOD code; analysis of the first wall for an experimental fusion reactor by means of the Bersafe code. (orig.)

  3. Procedure for Application of Software Reliability Growth Models to NPP PSA

    International Nuclear Information System (INIS)

    Son, Han Seong; Kang, Hyun Gook; Chang, Seung Cheol

    2009-01-01

    As the use of software increases at nuclear power plants (NPPs), the necessity for including software reliability and/or safety into the NPP Probabilistic Safety Assessment (PSA) rises. This work proposes an application procedure of software reliability growth models (RGMs), which are most widely used to quantify software reliability, to NPP PSA. Through the proposed procedure, it can be determined if a software reliability growth model can be applied to the NPP PSA before its real application. The procedure proposed in this work is expected to be very helpful for incorporating software into NPP PSA

  4. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  5. Dynamic reliability modeling of three-state networks

    OpenAIRE

    Ashrafi, S.; Asadi, M.

    2014-01-01

    This paper is an investigation into the reliability and stochastic properties of three-state networks. We consider a single-step network consisting of n links and we assume that the links are subject to failure. We assume that the network can be in three states, up (K = 2), partial performance (K = 1), and down (K = 0). Using the concept of the two-dimensional signature, we study the residual lifetimes of the networks under different scenarios on the states and the number of...

  6. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Douglas H. Marin dos Santos

    2015-06-01

    Full Text Available The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA, aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov. We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  7. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study.

    Science.gov (United States)

    Marin Dos Santos, Douglas H; Atallah, Álvaro N

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  8. The transparency, reliability and utility of tropical rainforest land-use and land-cover change models.

    Science.gov (United States)

    Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M

    2014-06-01

    Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the

  9. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Study on Uncertainty Quantification of Reflood Model using CIRCE Methodology

    International Nuclear Information System (INIS)

    Jeon, Seongsu; Hong, Soonjoon; Oh, Deogyeon; Bang, Youngseok

    2013-01-01

    The CIRCE method is intended to quantify the uncertainties of the correlations of a code. It may replace the expert judgment generally used. In this study, an uncertainty quantification of reflood model was performed using CIRCE methodology. In this paper, the application process of CIRCE methodology and main results are briefly described. This research is expected to be useful to improve the present audit calculation methodology, KINS-REM. In this study, an uncertainty quantification of reflood model was performed using CIRCE methodology. The application of CIRCE provided the satisfactory results. This research is expected to be useful to improve the present audit calculation methodology, KINS-REM

  11. Theory model and experiment research about the cognition reliability of nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; Zhao Bingquan

    2000-01-01

    In order to improve the reliability of NPP operation, the simulation research on the reliability of nuclear power plant operators is needed. Making use of simulator of nuclear power plant as research platform, and taking the present international reliability research model-human cognition reliability for reference, the part of the model is modified according to the actual status of Chinese nuclear power plant operators and the research model of Chinese nuclear power plant operators obtained based on two-parameter Weibull distribution. Experiments about the reliability of nuclear power plant operators are carried out using the two-parameter Weibull distribution research model. Compared with those in the world, the same results are achieved. The research would be beneficial to the operation safety of nuclear power plant

  12. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  13. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  14. Model case IRS-RWE for the determination of reliability data in practical operation

    Energy Technology Data Exchange (ETDEWEB)

    Hoemke, P; Krause, H

    1975-11-01

    Reliability und availability analyses are carried out to assess the safety of nuclear power plants. The paper deals in the first part with the requirement of accuracy for the input data of such analyses and in the second part with the prototype data collection of reliability data 'Model case IRS-RWE'. The objectives and the structure of the data collection are described. The present results show that the estimation of reliability data in power plants is possible and gives reasonable results.

  15. Estimating the Parameters of Software Reliability Growth Models Using the Grey Wolf Optimization Algorithm

    OpenAIRE

    Alaa F. Sheta; Amal Abdel-Raouf

    2016-01-01

    In this age of technology, building quality software is essential to competing in the business market. One of the major principles required for any quality and business software product for value fulfillment is reliability. Estimating software reliability early during the software development life cycle saves time and money as it prevents spending larger sums fixing a defective software product after deployment. The Software Reliability Growth Model (SRGM) can be used to predict the number of...

  16. A new model for reliability optimization of series-parallel systems with non-homogeneous components

    International Nuclear Information System (INIS)

    Feizabadi, Mohammad; Jahromi, Abdolhamid Eshraghniaye

    2017-01-01

    In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs. - Highlights: • In this paper, a new model is proposed for reliability optimization of series-parallel systems. • In the previous models, there is a restricting assumption based on which all components of a subsystem must be homogeneous. • The presented model provides a possibility for the subsystems’ components to be non- homogeneous in the required conditions. • The computational results demonstrate the high performance of the proposed model in improving reliability and reducing costs.

  17. Reference Management Methodologies for Large Structural Models at Kennedy Space Center

    Science.gov (United States)

    Jones, Corey; Bingham, Ryan; Schmidt, Rick

    2011-01-01

    There have been many challenges associated with modeling some of NASA KSC's largest structures. Given the size of the welded structures here at KSC, it was critically important to properly organize model struc.ture and carefully manage references. Additionally, because of the amount of hardware to be installed on these structures, it was very important to have a means to coordinate between different design teams and organizations, check for interferences, produce consistent drawings, and allow for simple release processes. Facing these challenges, the modeling team developed a unique reference management methodology and model fidelity methodology. This presentation will describe the techniques and methodologies that were developed for these projects. The attendees will learn about KSC's reference management and model fidelity methodologies for large structures. The attendees will understand the goals of these methodologies. The attendees will appreciate the advantages of developing a reference management methodology.

  18. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da

    2004-03-01

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  19. Risk methodology for geologic disposal of radioactive waste: model description and user manual for Pathways model

    International Nuclear Information System (INIS)

    Helton, J.C.; Kaestner, P.C.

    1981-03-01

    A model for the environmental movement and human uptake of radionuclides is presented. This model is designated the Pathways-to-Man Model and was developed as part of a project funded by the Nuclear Regulatory Commission to design a methodology to assess the risk associated with the geologic disposal of high-level radioactive waste. The Pathways-to-Man Model is divided into two submodels. One of these, the Environmental Transport Model, represents the long-term distribution and accumulation of radionuclides in the environment. This model is based on a mixed-cell approach and describes radionuclide movement with a system of linear differential equations. The other, the Transport-to-Man Model, represents the movement of radionuclides from the environment to man. This model is based on concentration ratios. General descriptions of these models are provided in this report. Further, documentation is provided for the computer program which implements the Pathways Model

  20. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  1. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  2. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  3. Reliability Based Optimal Design of Vertical Breakwaters Modelled as a Series System Failure

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1996-01-01

    Reliability based design of monolithic vertical breakwaters is considered. Probabilistic models of important failure modes such as sliding and rupture failure in the rubble mound and the subsoil are described. Characterisation of the relevant stochastic parameters are presented, and relevant design...... variables are identified and an optimal system reliability formulation is presented. An illustrative example is given....

  4. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  5. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  6. Study on the methodology for predicting and preventing errors to improve reliability of maintenance task in nuclear power plant

    International Nuclear Information System (INIS)

    Hanafusa, Hidemitsu; Iwaki, Toshio; Embrey, D.

    2000-01-01

    The objective of this study was to develop and effective methodology for predicting and preventing errors in nuclear power plant maintenance tasks. A method was established by which chief maintenance personnel can predict and reduce errors when reviewing the maintenance procedures and while referring to maintenance supporting systems and methods in other industries including aviation and chemical plant industries. The method involves the following seven steps: 1. Identification of maintenance tasks. 2. Specification of important tasks affecting safety. 3. Assessment of human errors occurring during important tasks. 4. Identification of Performance Degrading Factors. 5. Dividing important tasks into sub-tasks. 6. Extraction of errors using Predictive Human Error Analysis (PHEA). 7. Development of strategies for reducing errors and for recovering from errors. By way of a trial, this method was applied to the pump maintenance procedure in nuclear power plants. This method is believed to be capable of identifying the expected errors in important tasks and supporting the development of error reduction measures. By applying this method, the number of accidents resulting form human errors during maintenance can be reduced. Moreover, the maintenance support base using computers was developed. (author)

  7. Development of an Environment for Software Reliability Model Selection

    Science.gov (United States)

    1992-09-01

    now is directed to other related problems such as tools for model selection, multiversion programming, and software fault tolerance modeling... multiversion programming, 7. Hlardware can be repaired by spare modules, which is not. the case for software, 2-6 N. Preventive maintenance is very important

  8. Fatigue reliability and effective turbulence models in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2007-01-01

    behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...

  9. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  10. A Novel OBDD-Based Reliability Evaluation Algorithm for Wireless Sensor Networks on the Multicast Model

    Directory of Open Access Journals (Sweden)

    Zongshuai Yan

    2015-01-01

    Full Text Available The two-terminal reliability calculation for wireless sensor networks (WSNs is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs require the multicast model to deliver information. This research first provides a formal definition for the WSN on the multicast model. Next, a symbolic OBDD_Multicast algorithm is proposed to evaluate the reliability of WSNs on the multicast model. Furthermore, our research on OBDD_Multicast construction avoids the problem of invalid expansion, which reduces the number of subnetworks by identifying the redundant paths of two adjacent nodes and s-t unconnected paths. Experiments show that the OBDD_Multicast both reduces the complexity of the WSN reliability analysis and has a lower running time than Xing’s OBDD- (ordered binary decision diagram- based algorithm.

  11. Wind Farm Reliability Modelling Using Bayesian Networks and Semi-Markov Processes

    Directory of Open Access Journals (Sweden)

    Robert Adam Sobolewski

    2015-09-01

    Full Text Available Technical reliability plays an important role among factors affecting the power output of a wind farm. The reliability is determined by an internal collection grid topology and reliability of its electrical components, e.g. generators, transformers, cables, switch breakers, protective relays, and busbars. A wind farm reliability’s quantitative measure can be the probability distribution of combinations of operating and failed states of the farm’s wind turbines. The operating state of a wind turbine is its ability to generate power and to transfer it to an external power grid, which means the availability of the wind turbine and other equipment necessary for the power transfer to the external grid. This measure can be used for quantitative analysis of the impact of various wind farm topologies and the reliability of individual farm components on the farm reliability, and for determining the expected farm output power with consideration of the reliability. This knowledge may be useful in an analysis of power generation reliability in power systems. The paper presents probabilistic models that quantify the wind farm reliability taking into account the above-mentioned technical factors. To formulate the reliability models Bayesian networks and semi-Markov processes were used. Using Bayesian networks the wind farm structural reliability was mapped, as well as quantitative characteristics describing equipment reliability. To determine the characteristics semi-Markov processes were used. The paper presents an example calculation of: (i probability distribution of the combination of both operating and failed states of four wind turbines included in the wind farm, and (ii expected wind farm output power with consideration of its reliability.

  12. Construction of a reliable model pyranometer for irradiance ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... hour, latitude and cloud cover are the most widely or commonly used ... models in the Nigerian environment include that of Burari and Sambo .... influence the stability of the assembly (reducing its phase ... earth's surface.

  13. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  14. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  15. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    Bina, M.

    2014-01-01

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  16. Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance.

    Science.gov (United States)

    Sahle, Berhe W; Owen, Alice J; Chin, Ken Lee; Reid, Christopher M

    2017-09-01

    Numerous models predicting the risk of incident heart failure (HF) have been developed; however, evidence of their methodological rigor and reporting remains unclear. This study critically appraises the methods underpinning incident HF risk prediction models. EMBASE and PubMed were searched for articles published between 1990 and June 2016 that reported at least 1 multivariable model for prediction of HF. Model development information, including study design, variable coding, missing data, and predictor selection, was extracted. Nineteen studies reporting 40 risk prediction models were included. Existing models have acceptable discriminative ability (C-statistics > 0.70), although only 6 models were externally validated. Candidate variable selection was based on statistical significance from a univariate screening in 11 models, whereas it was unclear in 12 models. Continuous predictors were retained in 16 models, whereas it was unclear how continuous variables were handled in 16 models. Missing values were excluded in 19 of 23 models that reported missing data, and the number of events per variable was models. Only 2 models presented recommended regression equations. There was significant heterogeneity in discriminative ability of models with respect to age (P prediction models that had sufficient discriminative ability, although few are externally validated. Methods not recommended for the conduct and reporting of risk prediction modeling were frequently used, and resulting algorithms should be applied with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  18. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    Science.gov (United States)

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  19. Reliability Assessment of IGBT Modules Modeled as Systems with Correlated Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between...... was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might...... be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics....

  20. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  1. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  2. Modeling human intention formation for human reliability assessment

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1988-01-01

    This paper describes a dynamic simulation capability for modeling how people form intentions to act in nuclear power plant emergency situations. This modeling tool, Cognitive Environment Simulation or CES, was developed based on techniques from artificial intelligence. It simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g. errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person machine system. One application of the CES modeling environment is to enhance the measurement of the human contribution to risk in probabilistic risk assessment studies. (author)

  3. Modelling Reliability of Supply and Infrastructural Dependency in Energy Distribution Systems

    OpenAIRE

    Helseth, Arild

    2008-01-01

    This thesis presents methods and models for assessing reliability of supply and infrastructural dependency in energy distribution systems with multiple energy carriers. The three energy carriers of electric power, natural gas and district heating are considered. Models and methods for assessing reliability of supply in electric power systems are well documented, frequently applied in the industry and continuously being subject to research and improvement. On the contrary, there are compar...

  4. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  5. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  6. Appraisal and Reliability of Variable Engagement Model Prediction ...

    African Journals Online (AJOL)

    The variable engagement model based on the stress - crack opening displacement relationship and, which describes the behaviour of randomly oriented steel fibres composite subjected to uniaxial tension has been evaluated so as to determine the safety indices associated when the fibres are subjected to pullout and with ...

  7. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  8. Reliability Evaluation for the Surface to Air Missile Weapon Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Deng Jianjun

    2015-01-01

    Full Text Available The fuzziness and randomness is integrated by using digital characteristics, such as Expected value, Entropy and Hyper entropy. The cloud model adapted to reliability evaluation is put forward based on the concept of the surface to air missile weapon. The cloud scale of the qualitative evaluation is constructed, and the quantitative variable and the qualitative variable in the system reliability evaluation are corresponded. The practical calculation result shows that it is more effective to analyze the reliability of the surface to air missile weapon by this way. The practical calculation result also reflects the model expressed by cloud theory is more consistent with the human thinking style of uncertainty.

  9. Modeling reliability measurement of interface on information system: Towards the forensic of rules

    Science.gov (United States)

    Nasution, M. K. M.; Sitompul, Darwin; Harahap, Marwan

    2018-02-01

    Today almost all machines depend on the software. As a software and hardware system depends also on the rules that are the procedures for its use. If the procedure or program can be reliably characterized by involving the concept of graph, logic, and probability, then regulatory strength can also be measured accordingly. Therefore, this paper initiates an enumeration model to measure the reliability of interfaces based on the case of information systems supported by the rules of use by the relevant agencies. An enumeration model is obtained based on software reliability calculation.

  10. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  11. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  12. On new cautious structural reliability models in the framework of imprecise probabilities

    DEFF Research Database (Denmark)

    Utkin, Lev; Kozine, Igor

    2010-01-01

    measures when the number of events of interest or observations is very small. The main feature of the models is that prior ignorance is not modelled by a fixed single prior distribution, but by a class of priors which is defined by upper and lower probabilities that can converge as statistical data......New imprecise structural reliability models are described in this paper. They are developed based on the imprecise Bayesian inference and are imprecise Dirichlet, imprecise negative binomial, gamma-exponential and normal models. The models are applied to computing cautious structural reliability...

  13. A Structural Reliability Business Process Modelling with System Dynamics Simulation

    OpenAIRE

    Lam, C. Y.; Chan, S. L.; Ip, W. H.

    2010-01-01

    Business activity flow analysis enables organizations to manage structured business processes, and can thus help them to improve performance. The six types of business activities identified here (i.e., SOA, SEA, MEA, SPA, MSA and FIA) are correlated and interact with one another, and the decisions from any business activity form feedback loops with previous and succeeding activities, thus allowing the business process to be modelled and simulated. For instance, for any company that is eager t...

  14. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  15. Methodological challenges to bridge the gap between regional climate and hydrology models

    Science.gov (United States)

    Bozhinova, Denica; José Gómez-Navarro, Juan; Raible, Christoph; Felder, Guido

    2017-04-01

    The frequency and severity of floods worldwide, together with their impacts, are expected to increase under climate change scenarios. It is therefore very important to gain insight into the physical mechanisms responsible for such events in order to constrain the associated uncertainties. Model simulations of the climate and hydrological processes are important tools that can provide insight in the underlying physical processes and thus enable an accurate assessment of the risks. Coupled together, they can provide a physically consistent picture that allows to assess the phenomenon in a comprehensive way. However, climate and hydrological models work at different temporal and spatial scales, so there are a number of methodological challenges that need to be carefully addressed. An important issue pertains the presence of biases in the simulation of precipitation. Climate models in general, and Regional Climate models (RCMs) in particular, are affected by a number of systematic biases that limit their reliability. In many studies, prominently the assessment of changes due to climate change, such biases are minimised by applying the so-called delta approach, which focuses on changes disregarding absolute values that are more affected by biases. However, this approach is not suitable in this scenario, as the absolute value of precipitation, rather than the change, is fed into the hydrological model. Therefore, bias has to be previously removed, being this a complex matter where various methodologies have been proposed. In this study, we apply and discuss the advantages and caveats of two different methodologies that correct the simulated precipitation to minimise differences with respect an observational dataset: a linear fit (FIT) of the accumulated distributions and Quantile Mapping (QM). The target region is Switzerland, and therefore the observational dataset is provided by MeteoSwiss. The RCM is the Weather Research and Forecasting model (WRF), driven at the

  16. Towards a generic, reliable CFD modelling methodology for waste-fired grate boilers

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko

    of the increased CO2 and H2O vapour concentrations on radiative heat transfer in the boiler. The impacts of full buoyancy on turbulence are also investigated. As a validation effort, the temperature profiles at different ports inside the furnace are measured and the experimental values are compared with the CFD...

  17. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  18. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  19. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  20. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  1. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  2. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development.

    Science.gov (United States)

    Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P

    2014-05-20

    Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on

  3. Revision of different implementations for digital preservation: towards a methodological proposal for preserving and auditing IR reliability

    Directory of Open Access Journals (Sweden)

    Marisa Raquel De Giusti

    2018-04-01

    Full Text Available This work introduces the initial experience of an infrastructure for digital documents preservation in archives or repositories. Prior backgrounds of similar infrastructures are recognized in this work, and among them three successful experiences are described. These experiences are all aimed to connect a digital repository with different software tools able to ensure digital preservation of repository contents according to OAIS ISO 14721 standard (2012. After the description of the three models, we describe a prototype under development in the repositories supported by PREBI-SEDICI (UNLP, which uses the software tools DSpace, Archivematica and ArchivesSpace. In this prototype, DSpace handles the ingest and delivery of digital contents, while Archivematica performs all the required digital preservation activities. This is achieved through a set of microservices applied to a conceptual structure similar to the information package (IP in its different versions (SIP, AIP, DIP. The resulting structure of the IP includes checksums, original files, logs, transfer documentation and XML metadata. The main purpose of this work is to show the background activities already carried out in institutions around the world, and to start a research project aiming to generate ideas and thoughts in the Latin American context.

  4. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori......The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...

  5. Software reliability studies

    Science.gov (United States)

    Hoppa, Mary Ann; Wilson, Larry W.

    1994-01-01

    There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.

  6. On reliability and maintenance modelling of ageing equipment in electric power systems

    International Nuclear Information System (INIS)

    Lindquist, Tommie

    2008-04-01

    Maintenance optimisation is essential to achieve cost-efficiency, availability and reliability of supply in electric power systems. The process of maintenance optimisation requires information about the costs of preventive and corrective maintenance, as well as the costs of failures borne by both electricity suppliers and customers. To calculate expected costs, information is needed about equipment reliability characteristics and the way in which maintenance affects equipment reliability. The aim of this Ph.D. work has been to develop equipment reliability models taking the effect of maintenance into account. The research has focussed on the interrelated areas of condition estimation, reliability modelling and maintenance modelling, which have been investigated in a number of case studies. In the area of condition estimation two methods to quantitatively estimate the condition of disconnector contacts have been developed, which utilise results from infrared thermography inspections and contact resistance measurements. The accuracy of these methods were investigated in two case studies. Reliability models have been developed and implemented for SF6 circuit-breakers, disconnector contacts and XLPE cables in three separate case studies. These models were formulated using both empirical and physical modelling approaches. To improve confidence in such models a Bayesian statistical method incorporating information from the equipment design process was also developed. This method was illustrated in a case study of SF6 circuit-breaker operating rods. Methods for quantifying the effect of maintenance on equipment condition and reliability have been investigated in case studies on disconnector contacts and SF6 circuit-breakers. The input required by these methods are condition measurements and historical failure and maintenance data, respectively. This research has demonstrated that the effect of maintenance on power system equipment may be quantified using available data

  7. Damage Model for Reliability Assessment of Solder Joints in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    environmental factors. Reliability assessment for such type of products conventionally is performed by classical reliability techniques based on test data. Usually conventional reliability approaches are time and resource consuming activities. Thus in this paper we choose a physics of failure approach to define...... damage model by Miner’s rule. Our attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Based on the proposed method it is described how to find the damage level for a given temperature loading profile. The proposed method is discussed...

  8. The model case IRS-RWE for the determination of reliability data in practical operation

    International Nuclear Information System (INIS)

    Hoemke, P.; Krause, H.

    1975-11-01

    Reliability und availability analyses are carried out to assess the safety of nuclear power plants. This paper deals in the first part with the requirement of accuracy for the input data of such analyses and in the second part with the prototype data collection of reliability data 'Model case IRS-RWE'. The objectives and the structure of the data collection will be described. The present results show that the estimation of reliability data in power plants is possible and gives reasonable results. (orig.) [de

  9. Investigation of reliability indicators of information analysis systems based on Markov’s absorbing chain model

    Science.gov (United States)

    Gilmanshin, I. R.; Kirpichnikov, A. P.

    2017-09-01

    In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.

  10. Maintenance overtime policies in reliability theory models with random working cycles

    CERN Document Server

    Nakagawa, Toshio

    2015-01-01

    This book introduces a new concept of replacement in maintenance and reliability theory. Replacement overtime, where replacement occurs at the first completion of a working cycle over a planned time, is a new research topic in maintenance theory and also serves to provide a fresh optimization technique in reliability engineering. In comparing replacement overtime with standard and random replacement techniques theoretically and numerically, 'Maintenance Overtime Policies in Reliability Theory' highlights the key benefits to be gained by adopting this new approach and shows how they can be applied to inspection policies, parallel systems and cumulative damage models. Utilizing the latest research in replacement overtime by internationally recognized experts, readers are introduced to new topics and methods, and learn how to practically apply this knowledge to actual reliability models. This book will serve as an essential guide to a new subject of study for graduate students and researchers and also provides a...

  11. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  12. Reliable software systems via chains of object models with provably correct behavior

    International Nuclear Information System (INIS)

    Yakhnis, A.; Yakhnis, V.

    1996-01-01

    This work addresses specification and design of reliable safety-critical systems, such as nuclear reactor control systems. Reliability concerns are addressed in complimentary fashion by different fields. Reliability engineers build software reliability models, etc. Safety engineers focus on prevention of potential harmful effects of systems on environment. Software/hardware correctness engineers focus on production of reliable systems on the basis of mathematical proofs. The authors think that correctness may be a crucial guiding issue in the development of reliable safety-critical systems. However, purely formal approaches are not adequate for the task, because they neglect the connection with the informal customer requirements. They alleviate that as follows. First, on the basis of the requirements, they build a model of the system interactions with the environment, where the system is viewed as a black box. They will provide foundations for automated tools which will (a) demonstrate to the customer that all of the scenarios of system behavior are presented in the model, (b) uncover scenarios not present in the requirements, and (c) uncover inconsistent scenarios. The developers will work with the customer until the black box model will not possess scenarios (b) and (c) above. Second, the authors will build a chain of several increasingly detailed models, where the first model is the black box model and the last model serves to automatically generated proved executable code. The behavior of each model will be proved to conform to the behavior of the previous one. They build each model as a cluster of interactive concurrent objects, thus they allow both top-down and bottom-up development

  13. Methodology for Designing Models Predicting Success of Infertility Treatment

    OpenAIRE

    Alireza Zarinara; Mohammad Mahdi Akhondi; Hojjat Zeraati; Koorsh Kamali; Kazem Mohammad

    2016-01-01

    Abstract Background: The prediction models for infertility treatment success have presented since 25 years ago. There are scientific principles for designing and applying the prediction models that is also used to predict the success rate of infertility treatment. The purpose of this study is to provide basic principles for designing the model to predic infertility treatment success. Materials and Methods: In this paper, the principles for developing predictive models are explained and...

  14. A generic methodology for developing fuzzy decision models

    NARCIS (Netherlands)

    Bosma, R.; Berg, van den J.; Kaymak, U.; Udo, H.; Verreth, J.

    2012-01-01

    An important paradigm in decision-making models is utility-maximization where most models do not include actors’ motives. Fuzzy set theory on the other hand offers a method to simulate human decisionmaking. However, the literature describing expert-driven fuzzy logic models, rarely gives precise

  15. A generic methodology for developing fuzzy decision models

    NARCIS (Netherlands)

    Bosma, R.H.; Berg, van den J.; Kaymak, Uzay; Udo, H.M.J.; Verreth, J.A.J.

    2012-01-01

    An important paradigm in decision-making models is utility-maximization where most models do not include actors’ motives. Fuzzy set theory on the other hand offers a method to simulate human decision-making. However, the literature describing expert-driven fuzzy logic models, rarely gives precise

  16. A methodology for constructing the calculation model of scientific spreadsheets

    NARCIS (Netherlands)

    Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are

  17. Validation of multi-body modelling methodology for reconfigurable underwater robots

    DEFF Research Database (Denmark)

    Nielsen, M.C.; Eidsvik, O. A.; Blanke, Mogens

    2016-01-01

    This paper investigates the problem of employing reconfigurable robots in an underwater setting. The main results presented is the experimental validation of a modelling methodology for a system consisting of N dynamically connected robots with heterogeneous dynamics. Two distinct types...... of experiments are performed, a series of hydrostatic free-decay tests and a series of open-loop trajectory tests. The results are compared to a simulation based on the modelling methodology. The modelling methodology shows promising results for usage with systems composed of reconfigurable underwater modules...

  18. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    International Nuclear Information System (INIS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-01-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading

  19. On modeling human reliability in space flights - Redundancy and recovery operations

    Science.gov (United States)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  20. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.

    Science.gov (United States)

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vives-Rego, Josep

    2009-08-31

    Predictive microbiology is the area of food microbiology that attempts to forecast the quantitative evolution of microbial populations over time. This is achieved to a great extent through models that include the mechanisms governing population dynamics. Traditionally, the models used in predictive microbiology are whole-system continuous models that describe population dynamics by means of equations applied to extensive or averaged variables of the whole system. Many existing models can be classified by specific criteria. We can distinguish between survival and growth models by seeing whether they tackle mortality or cell duplication. We can distinguish between empirical (phenomenological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors and constraints on the microbial community. Recently, the use of spatially explicit Individual-based Models (IbMs) has spread through predictive microbiology, due to the current technological capacity of performing measurements on single individual cells and thanks to the consolidation of computational modelling. Spatially explicit IbMs are bottom-up approaches to microbial communities that build bridges between the description of micro-organisms at the cell level and macroscopic observations at the population level. They provide greater insight into the mesoscale phenomena that link unicellular and population levels. Every model is built in response to a particular question and with different aims. Even so, in this research we conducted a SWOT (Strength, Weaknesses, Opportunities and Threats) analysis of the different approaches (population continuous modelling and Individual-based Modelling), which we hope will be helpful for current and future

  1. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  2. Proposal for product development model focused on ce certification methodology

    Directory of Open Access Journals (Sweden)

    Nathalia Marcia Goulart Pinheiro

    2015-09-01

    Full Text Available This paper presents a critical analysis comparing 21 product development models in order to identify whether these structures meet the demands Product Certification of the European Community (CE. Furthermore, it presents a product development model, comprising the steps in the models analyzed, including improvements in activities for referred product certification. The proposed improvements are justified by the growing quest for the internationalization of products and processes within companies.

  3. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  4. Stochastic models and reliability parameter estimation applicable to nuclear power plant safety

    International Nuclear Information System (INIS)

    Mitra, S.P.

    1979-01-01

    A set of stochastic models and related estimation schemes for reliability parameters are developed. The models are applicable for evaluating reliability of nuclear power plant systems. Reliability information is extracted from model parameters which are estimated from the type and nature of failure data that is generally available or could be compiled in nuclear power plants. Principally, two aspects of nuclear power plant reliability have been investigated: (1) The statistical treatment of inplant component and system failure data; (2) The analysis and evaluation of common mode failures. The model inputs are failure data which have been classified as either the time type of failure data or the demand type of failure data. Failures of components and systems in nuclear power plant are, in general, rare events.This gives rise to sparse failure data. Estimation schemes for treating sparse data, whenever necessary, have been considered. The following five problems have been studied: 1) Distribution of sparse failure rate component data. 2) Failure rate inference and reliability prediction from time type of failure data. 3) Analyses of demand type of failure data. 4) Common mode failure model applicable to time type of failure data. 5) Estimation of common mode failures from 'near-miss' demand type of failure data

  5. Designing the database for a reliability aware Model-Based System Engineering process

    International Nuclear Information System (INIS)

    Cressent, Robin; David, Pierre; Idasiak, Vincent; Kratz, Frederic

    2013-01-01

    This article outlines the need for a reliability database to implement model-based description of components failure modes and dysfunctional behaviors. We detail the requirements such a database should honor and describe our own solution: the Dysfunctional Behavior Database (DBD). Through the description of its meta-model, the benefits of integrating the DBD in the system design process is highlighted. The main advantages depicted are the possibility to manage feedback knowledge at various granularity and semantic levels and to ease drastically the interactions between system engineering activities and reliability studies. The compliance of the DBD with other reliability database such as FIDES is presented and illustrated. - Highlights: ► Model-Based System Engineering is more and more used in the industry. ► It results in a need for a reliability database able to deal with model-based description of dysfunctional behavior. ► The Dysfunctional Behavior Database aims to fulfill that need. ► It helps dealing with feedback management thanks to its structured meta-model. ► The DBD can profit from other reliability database such as FIDES.

  6. New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E

    2014-09-01

    This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Value-Added Models for Teacher Preparation Programs: Validity and Reliability Threats, and a Manageable Alternative

    Science.gov (United States)

    Brady, Michael P.; Heiser, Lawrence A.; McCormick, Jazarae K.; Forgan, James

    2016-01-01

    High-stakes standardized student assessments are increasingly used in value-added evaluation models to connect teacher performance to P-12 student learning. These assessments are also being used to evaluate teacher preparation programs, despite validity and reliability threats. A more rational model linking student performance to candidates who…

  8. Methodologies for quantitative systems pharmacology (QSP) models : Design and Estimation

    NARCIS (Netherlands)

    Ribba, B.; Grimm, Hp; Agoram, B.; Davies, M.R.; Gadkar, K.; Niederer, S.; van Riel, N.; Timmis, J.; van der Graaf, Ph.

    2017-01-01

    With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a workshop was held at Roche Pharma Research and Early

  9. Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation

    NARCIS (Netherlands)

    Ribba, B.; Grimm, H. P.; Agoram, B.; Davies, M. R.; Gadkar, K.; Niederer, S.; van Riel, N.; Timmis, J.; van der Graaf, P. H.

    2017-01-01

    With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a workshop was held at Roche Pharma Research and Early

  10. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  11. Life cycle reliability assessment of new products—A Bayesian model updating approach

    International Nuclear Information System (INIS)

    Peng, Weiwen; Huang, Hong-Zhong; Li, Yanfeng; Zuo, Ming J.; Xie, Min

    2013-01-01

    The rapidly increasing pace and continuously evolving reliability requirements of new products have made life cycle reliability assessment of new products an imperative yet difficult work. While much work has been done to separately estimate reliability of new products in specific stages, a gap exists in carrying out life cycle reliability assessment throughout all life cycle stages. We present a Bayesian model updating approach (BMUA) for life cycle reliability assessment of new products. Novel features of this approach are the development of Bayesian information toolkits by separately including “reliability improvement factor” and “information fusion factor”, which allow the integration of subjective information in a specific life cycle stage and the transition of integrated information between adjacent life cycle stages. They lead to the unique characteristics of the BMUA in which information generated throughout life cycle stages are integrated coherently. To illustrate the approach, an application to the life cycle reliability assessment of a newly developed Gantry Machining Center is shown

  12. A Simulation Model for Machine Efficiency Improvement Using Reliability Centered Maintenance: Case Study of Semiconductor Factory

    Directory of Open Access Journals (Sweden)

    Srisawat Supsomboon

    2014-01-01

    Full Text Available The purpose of this study was to increase the quality of product by focusing on the machine efficiency improvement. The principle of the reliability centered maintenance (RCM was applied to increase the machine reliability. The objective was to create preventive maintenance plan under reliability centered maintenance method and to reduce defects. The study target was set to reduce the Lead PPM for a test machine by simulating the proposed preventive maintenance plan. The simulation optimization approach based on evolutionary algorithms was employed for the preventive maintenance technique selection process to select the PM interval that gave the best total cost and Lead PPM values. The research methodology includes procedures such as following the priority of critical components in test machine, analyzing the damage and risk level by using Failure Mode and Effects Analysis (FMEA, calculating the suitable replacement period through reliability estimation, and optimizing the preventive maintenance plan. From the result of the study it is shown that the Lead PPM of test machine can be reduced. The cost of preventive maintenance, cost of good product, and cost of lost product were decreased.

  13. Model of load balancing using reliable algorithm with multi-agent system

    Science.gov (United States)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  14. Methodology for maintenance analysis based on hydroelectric power stations reliability; Metodologia para realizar analisis de mantenimiento basado en confiabilidad en centrales hidroelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Calixto Rodriguez, Roberto; Sandoval Valenzuela, Salvador; Velasco Flores, Rocio; Garcia Lizarraga, Maria del Carmen [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-07-01

    A methodology to carry out Reliability Centered Maintenance (RCM) studies for hydroelectric power plants is presented. The methodology is an implantation/extension of the guidelines proposed by the Engineering Society for Advanced Mobility Land, Sea and Space in the SAE-JA1012 standard. With the purpose of answering the first five questions, that are set out in that standard, the use of standard ISO14224 is strongly recommended. This approach standardizes failure mechanisms and homogenizes RCM studies with the process of collecting failure and maintenance data. The use of risk matrixes to rank the importance of each failure based on a risk criteria is also proposed. [Spanish] Se presenta una metodologia para realizar estudios de mantenimiento Basado en Confiabilidad (RCM) aplicados a la industria hidroelectrica. La metodologia es una implantacion/ extension realizada por los autores de este trabajo, de los lineamientos propuestos por la Engineering Society for Advanced Mobility Land, Sea and Space en el estandar SAE-JA1012. Para contestar las primeras cinco preguntas del estandar se propone tomar como base los modos y mecanismos de fallas de componentes documentados en la guia para recopilar datos de falla en el estandar ISO-14224. Este enfoque permite estandarizar la descripcion de mecanismos de fallas de los equipos, tanto en el estudio RCM como en el proceso de recopilacion de datos de falla y de mantenimiento, lo que permite retroalimentar el ciclo de mejora continua de los procesos RCM. Tambien se propone el uso de matrices de riesgo para jerarquizar la importancia de los mecanismos de falla con base en el nivel de riesgo.

  15. A changing climate: impacts on human exposures to O3 using an integrated modeling methodology

    Science.gov (United States)

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposu...

  16. Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Beven, K.J.; Jensen, Jacob Birk

    2008-01-01

    of combined sewer overflow. The GLUE methodology is used to test different conceptual setups in order to determine if one model setup gives a better goodness of fit conditional on the observations than the other. Moreover, different methodological investigations of GLUE are conducted in order to test......In the present paper an uncertainty analysis on an application of the commercial urban drainage model MOUSE is conducted. Applying the Generalized Likelihood Uncertainty Estimation (GLUE) methodology the model is conditioned on observation time series from two flow gauges as well as the occurrence...... if the uncertainty analysis is unambiguous. It is shown that the GLUE methodology is very applicable in uncertainty analysis of this application of an urban drainage model, although it was shown to be quite difficult of get good fits of the whole time series....

  17. Business Cases for Microgrids: Modeling Interactions of Technology Choice, Reliability, Cost, and Benefit

    Science.gov (United States)

    Hanna, Ryan

    Distributed energy resources (DERs), and increasingly microgrids, are becoming an integral part of modern distribution systems. Interest in microgrids--which are insular and autonomous power networks embedded within the bulk grid--stems largely from the vast array of flexibilities and benefits they can offer stakeholders. Managed well, they can improve grid reliability and resiliency, increase end-use energy efficiency by coupling electric and thermal loads, reduce transmission losses by generating power locally, and may reduce system-wide emissions, among many others. Whether these public benefits are realized, however, depends on whether private firms see a "business case", or private value, in investing. To this end, firms need models that evaluate costs, benefits, risks, and assumptions that underlie decisions to invest. The objectives of this dissertation are to assess the business case for microgrids that provide what industry analysts forecast as two primary drivers of market growth--that of providing energy services (similar to an electric utility) as well as reliability service to customers within. Prototypical first adopters are modeled--using an existing model to analyze energy services and a new model that couples that analysis with one of reliability--to explore interactions between technology choice, reliability, costs, and benefits. The new model has a bi-level hierarchy; it uses heuristic optimization to select and size DERs and analytical optimization to schedule them. It further embeds Monte Carlo simulation to evaluate reliability as well as regression models for customer damage functions to monetize reliability. It provides least-cost microgrid configurations for utility customers who seek to reduce interruption and operating costs. Lastly, the model is used to explore the impact of such adoption on system-wide greenhouse gas emissions in California. Results indicate that there are, at present, co-benefits for emissions reductions when customers

  18. Reliability Measure Model for Assistive Care Loop Framework Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Venki Balasubramanian

    2010-01-01

    Full Text Available Body area wireless sensor networks (BAWSNs are time-critical systems that rely on the collective data of a group of sensor nodes. Reliable data received at the sink is based on the collective data provided by all the source sensor nodes and not on individual data. Unlike conventional reliability, the definition of retransmission is inapplicable in a BAWSN and would only lead to an elapsed data arrival that is not acceptable for time-critical application. Time-driven applications require high data reliability to maintain detection and responses. Hence, the transmission reliability for the BAWSN should be based on the critical time. In this paper, we develop a theoretical model to measure a BAWSN's transmission reliability, based on the critical time. The proposed model is evaluated through simulation and then compared with the experimental results conducted in our existing Active Care Loop Framework (ACLF. We further show the effect of the sink buffer in transmission reliability after a detailed study of various other co-existing parameters.

  19. A multi-state reliability evaluation model for P2P networks

    International Nuclear Information System (INIS)

    Fan Hehong; Sun Xiaohan

    2010-01-01

    The appearance of new service types and the convergence tendency of the communication networks have endowed the networks more and more P2P (peer to peer) properties. These networks can be more robust and tolerant for a series of non-perfect operational states due to the non-deterministic server-client distributions. Thus a reliability model taking into account of the multi-state and non-deterministic server-client distribution properties is needed for appropriate evaluation of the networks. In this paper, two new performance measures are defined to quantify the overall and local states of the networks. A new time-evolving state-transition Monte Carlo (TEST-MC) simulation model is presented for the reliability analysis of P2P networks in multiple states. The results show that the model is not only valid for estimating the traditional binary-state network reliability parameters, but also adequate for acquiring the parameters in a series of non-perfect operational states, with good efficiencies, especially for highly reliable networks. Furthermore, the model is versatile for the reliability and maintainability analyses in that both the links and the nodes can be failure-prone with arbitrary life distributions, and various maintainability schemes can be applied.

  20. Modeling Optimal Scheduling for Pumping System to Minimize Operation Cost and Enhance Operation Reliability

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2012-01-01

    Full Text Available Traditional pump scheduling models neglect the operation reliability which directly relates with the unscheduled maintenance cost and the wear cost during the operation. Just for this, based on the assumption that the vibration directly relates with the operation reliability and the degree of wear, it could express the operation reliability as the normalization of the vibration level. The characteristic of the vibration with the operation point was studied, it could be concluded that idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet spot (80 to 100 percent BEP to obtain low vibration levels in this shape, and the vibration also follows similar law with the square of the rotation speed without resonance phenomena. Then, the operation reliability could be modeled as the function of the capacity and rotation speed of the pump and add this function to the traditional model to form the new. And contrast with the tradition method, the result shown that the new model could fix the result produced by the traditional, make the pump operate in low vibration, then the operation reliability could increase and the maintenance cost could decrease.

  1. Reliability Analysis of Sealing Structure of Electromechanical System Based on Kriging Model

    Science.gov (United States)

    Zhang, F.; Wang, Y. M.; Chen, R. W.; Deng, W. W.; Gao, Y.

    2018-05-01

    The sealing performance of aircraft electromechanical system has a great influence on flight safety, and the reliability of its typical seal structure is analyzed by researcher. In this paper, we regard reciprocating seal structure as a research object to study structural reliability. Having been based on the finite element numerical simulation method, the contact stress between the rubber sealing ring and the cylinder wall is calculated, and the relationship between the contact stress and the pressure of the hydraulic medium is built, and the friction force on different working conditions are compared. Through the co-simulation, the adaptive Kriging model obtained by EFF learning mechanism is used to describe the failure probability of the seal ring, so as to evaluate the reliability of the sealing structure. This article proposes a new idea of numerical evaluation for the reliability analysis of sealing structure, and also provides a theoretical basis for the optimal design of sealing structure.

  2. An improved methodology for dynamic modelling and simulation of ...

    Indian Academy of Sciences (India)

    The diversity of the processes and the complexity of the drive system .... modelling the specific event, general simulation tools such as Matlab R provide the user with tools for creating ..... using the pulse width modulation (PWM) techniques.

  3. [Reliability study in the measurement of the cusp inclination angle of a chairside digital model].

    Science.gov (United States)

    Xinggang, Liu; Xiaoxian, Chen

    2018-02-01

    This study aims to evaluate the reliability of the software Picpick in the measurement of the cusp inclination angle of a digital model. Twenty-one trimmed models were used as experimental objects. The chairside digital impression was then used for the acquisition of 3D digital models, and the software Picpick was employed for the measurement of the cusp inclination of these models. The measurements were repeated three times, and the results were compared with a gold standard, which was a manually measured experimental model cusp angle. The intraclass correlation coefficient (ICC) was calculated. The paired t test value of the two measurement methods was 0.91. The ICCs between the two measurement methods and three repeated measurements were greater than 0.9. The digital model achieved a smaller coefficient of variation (9.9%). The software Picpick is reliable in measuring the cusp inclination of a digital model.

  4. Tornado missile simulation and design methodology. Volume 2: model verification and data base updates. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments

  5. Methodologic model to scheduling on service systems: a software engineering approach

    Directory of Open Access Journals (Sweden)

    Eduyn Ramiro Lopez-Santana

    2016-06-01

    Full Text Available This paper presents an approach of software engineering to a research proposal to make an Expert System to scheduling on service systems using methodologies and processes of software development. We use the adaptive software development as methodology for the software architecture based on the description as a software metaprocess that characterizes the research process. We make UML’s diagrams (Unified Modeling Language to provide a visual modeling that describes the research methodology in order to identify the actors, elements and interactions in the research process.

  6. Methodology for assessing electric vehicle charging infrastructure business models

    OpenAIRE

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, w...

  7. The methodology of energy policy-making in economical models

    Energy Technology Data Exchange (ETDEWEB)

    Poursina, B.

    1998-08-01

    Scrutiny and careful study in energy is a subject that in human science has been investigated from different point of view. The expansion of this research, because of its importance and effect in different dimensions of human life, has also arrived in the field of political and economic sciences. Economics evaluates the energy phenomenon at the side of elements such as labor, capital and technology in the production functions of firms. The nature of these discussions is mainly from the viewpoint of micro analyses. Nevertheless, the variation and challenges concerning energy and environment during the recent decades and the economists` detailed investigations in its analysis and evaluation have led to the arrival of energy discussions in a special shape in macro planning and large economic models. The paper compares various energy models - EFDM, MEDEE, MIDAS and HERMES. This extent of planning and consequently modelling which lacks a background in the processes of economic researches, deals with analysis of energy and economics reacting effects. Modelling of energy-economy interaction and energy policy in modeling macroeconomics large models are new ideas in energy studies and economics. 7 refs., 6 figs., 1 tab.

  8. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    Science.gov (United States)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  9. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes

    International Nuclear Information System (INIS)

    Pan Zhengqiang; Balakrishnan, Narayanaswamy

    2011-01-01

    Many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a product has two dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a bivariate degradation involving two performance characteristics, we propose to use a bivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function. Inferential method for the corresponding model parameters is then developed. Finally, for an illustration of the proposed model and method, a numerical example about fatigue cracks is discussed and some computational results are presented.

  10. Inter-arch digital model vs. manual cast measurements: Accuracy and reliability.

    Science.gov (United States)

    Kiviahde, Heikki; Bukovac, Lea; Jussila, Päivi; Pesonen, Paula; Sipilä, Kirsi; Raustia, Aune; Pirttiniemi, Pertti

    2017-06-28

    The purpose of this study was to evaluate the accuracy and reliability of inter-arch measurements using digital dental models and conventional dental casts. Thirty sets of dental casts with permanent dentition were examined. Manual measurements were done with a digital caliper directly on the dental casts, and digital measurements were made on 3D models by two independent examiners. Intra-class correlation coefficients (ICC), a paired sample t-test or Wilcoxon signed-rank test, and Bland-Altman plots were used to evaluate intra- and inter-examiner error and to determine the accuracy and reliability of the measurements. The ICC values were generally good for manual and excellent for digital measurements. The Bland-Altman plots of all the measurements showed good agreement between the manual and digital methods and excellent inter-examiner agreement using the digital method. Inter-arch occlusal measurements on digital models are accurate and reliable and are superior to manual measurements.

  11. Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

    Directory of Open Access Journals (Sweden)

    A. Campanile

    2018-01-01

    Full Text Available The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

  12. Job analysis of the instrument and control technician position for the nuclear power plant maintenance personnel reliability model

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Federman, P.J.

    1983-08-01

    This report is one of a series that is planned to describe the results of a program undertaken by the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, to define, develop, validate, and disseminate a methodology for the quantitative prediction of human reliability in the conduct of maintenance tasks in nuclear power plants (NPPs). ORNL has subcontracted portions of this effort to Applied Psychological Services, Inc. This report on the job analysis of the Instrument and Control technician (NUREG/CR-3274) and a report on the job analysis of the electrician position (NUREG/CR-3275) comprise a part of the initial efforts of the development phase of this program. With the publication of the job analysis of the electrician position, the series of job analyses reports addressing nuclear power plant maintenance personnel will be complete. Subsequent reports addressing model development and validation are planned

  13. Integrated modeling and analysis methodology for precision pointing applications

    Science.gov (United States)

    Gutierrez, Homero L.

    2002-07-01

    Space-based optical systems that perform tasks such as laser communications, Earth imaging, and astronomical observations require precise line-of-sight (LOS) pointing. A general approach is described for integrated modeling and analysis of these types of systems within the MATLAB/Simulink environment. The approach can be applied during all stages of program development, from early conceptual design studies to hardware implementation phases. The main objective is to predict the dynamic pointing performance subject to anticipated disturbances and noise sources. Secondary objectives include assessing the control stability, levying subsystem requirements, supporting pointing error budgets, and performing trade studies. The integrated model resides in Simulink, and several MATLAB graphical user interfaces (GUI"s) allow the user to configure the model, select analysis options, run analyses, and process the results. A convenient parameter naming and storage scheme, as well as model conditioning and reduction tools and run-time enhancements, are incorporated into the framework. This enables the proposed architecture to accommodate models of realistic complexity.

  14. Terminology and methodology in modelling for water quality management

    DEFF Research Database (Denmark)

    Carstensen, J.; Vanrolleghem, P.; Rauch, W.

    1997-01-01

    There is a widespread need for a common terminology in modelling for water quality management. This paper points out sources of confusion in the communication between researchers due to misuse of existing terminology or use of unclear terminology. The paper attempts to clarify the context...... of the most widely used terms for characterising models and within the process of model building. It is essential to the ever growing society of researchers within water quality management, that communication is eased by establishing a common terminology. This should not be done by giving broader definitions...... of the terms, but by stressing the use of a stringent terminology. Therefore, the goal of the paper is to advocate the use of such a well defined and clear terminology. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  15. A refined methodology for modeling volume quantification performance in CT

    Science.gov (United States)

    Chen, Baiyu; Wilson, Joshua; Samei, Ehsan

    2014-03-01

    The utility of CT lung nodule volume quantification technique depends on the precision of the quantification. To enable the evaluation of quantification precision, we previously developed a mathematical model that related precision to image resolution and noise properties in uniform backgrounds in terms of an estimability index (e'). The e' was shown to predict empirical precision across 54 imaging and reconstruction protocols, but with different correlation qualities for FBP and iterative reconstruction (IR) due to the non-linearity of IR impacted by anatomical structure. To better account for the non-linearity of IR, this study aimed to refine the noise characterization of the model in the presence of textured backgrounds. Repeated scans of an anthropomorphic lung phantom were acquired. Subtracted images were used to measure the image quantum noise, which was then used to adjust the noise component of the e' calculation measured from a uniform region. In addition to the model refinement, the validation of the model was further extended to 2 nodule sizes (5 and 10 mm) and 2 segmentation algorithms. Results showed that the magnitude of IR's quantum noise was significantly higher in structured backgrounds than in uniform backgrounds (ASiR, 30-50%; MBIR, 100-200%). With the refined model, the correlation between e' values and empirical precision no longer depended on reconstruction algorithm. In conclusion, the model with refined noise characterization relfected the nonlinearity of iterative reconstruction in structured background, and further showed successful prediction of quantification precision across a variety of nodule sizes, dose levels, slice thickness, reconstruction algorithms, and segmentation software.

  16. Development of Markov model of emergency diesel generator for dynamic reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young Ho; Choi, Sun Yeong; Yang, Joon Eon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The EDG (Emergency Diesal Generator) of nuclear power plant is one of the most important equipments in mitigating accidents. The FT (Fault Tree) method is widely used to assess the reliability of safety systems like an EDG in nuclear power plant. This method, however, has limitations in modeling dynamic features of safety systems exactly. We, hence, have developed a Markov model to represent the stochastic process of dynamic systems whose states change as time moves on. The Markov model enables us to develop a dynamic reliability model of EDG. This model can represent all possible states of EDG comparing to the FRANTIC code developed by U.S. NRC for the reliability analysis of standby systems. to access the regulation policy for test interval, we performed two simulations based on the generic data and plant specific data of YGN 3, respectively by using the developed model. We also estimate the effects of various repair rates and the fractions of starting failures by demand shock to the reliability of EDG. And finally, Aging effect is analyzed. (author). 23 refs., 19 figs., 9 tabs.

  17. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation

    Science.gov (United States)

    Rocha, Bruno Alves; Bueno, Paula Carolina Pires; Vaz, Mirela Mara de Oliveira Lima Leite; Nascimento, Andresa Piacezzi; Ferreira, Nathália Ursoli; Moreno, Gabriela de Padua; Rodrigues, Marina Rezende; Costa-Machado, Ana Rita de Mello; Barizon, Edna Aparecida; Campos, Jacqueline Costa Lima; de Oliveira, Pollyanna Francielli; Acésio, Nathália de Oliveira; Martins, Sabrina de Paula Lima; Tavares, Denise Crispim; Berretta, Andresa Aparecida

    2013-01-01

    Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays. PMID:23710228

  18. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2013-01-01

    Full Text Available Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE leading to little knowledge about the biological activities of propolis water extract (PWE. Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays.

  19. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Science.gov (United States)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  20. ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction

    International Nuclear Information System (INIS)

    Toledo, Maria Luíza Guerra de; Freitas, Marta A.; Colosimo, Enrico A.; Gilardoni, Gustavo L.

    2015-01-01

    An appropriate maintenance policy is essential to reduce expenses and risks related to equipment failures. A fundamental aspect to be considered when specifying such policies is to be able to predict the reliability of the systems under study, based on a well fitted model. In this paper, the classes of models Arithmetic Reduction of Age and Arithmetic Reduction of Intensity are explored. Likelihood functions for such models are derived, and a graphical method is proposed for model selection. A real data set involving failures in trucks used by a Brazilian mining is analyzed considering models with different memories. Parameters, namely, shape and scale for Power Law Process, and the efficiency of repair were estimated for the best fitted model. Estimation of model parameters allowed us to derive reliability estimators to predict the behavior of the failure process. These results are a valuable information for the mining company and can be used to support decision making regarding preventive maintenance policy. - Highlights: • Likelihood functions for imperfect repair models are derived. • A goodness-of-fit technique is proposed as a tool for model selection. • Failures in trucks owned by a Brazilian mining are modeled. • Estimation allowed deriving reliability predictors to forecast the future failure process of the trucks

  1. A Methodology for Validation of High Resolution Combat Models

    Science.gov (United States)

    1988-06-01

    TELEOLOGICAL PROBLEM ................................ 7 C. EPISTEMOLOGICAL PROBLEM ............................. 8 D. UNCERTAINTY PRINCIPLE...theoretical issues. "The Teleological Problem"--How a model by its nature formulates an explicit cause-and-effect relationship that excludes other...34experts" in establishing the standard for reality. Generalization from personal experience is often hampered by the parochial aspects of the

  2. Experimental animal models for COPD: a methodological review

    Directory of Open Access Journals (Sweden)

    Vahideh Ghorani

    2017-05-01

    The present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.

  3. An overview of erosion corrosion models and reliability assessment for corrosion defects in piping system

    International Nuclear Information System (INIS)

    Srividya, A.; Suresh, H.N.; Verma, A.K.; Gopika, V.; Santosh

    2006-01-01

    Piping systems are part of passive structural elements in power plants. The analysis of the piping systems and their quantification in terms of failure probability is of utmost importance. The piping systems may fail due to various degradation mechanisms like thermal fatigue, erosion-corrosion, stress corrosion cracking and vibration fatigue. On examination of previous results, erosion corrosion was more prevalent and wall thinning is a time dependent phenomenon. The paper is intended to consolidate the work done by various investigators on erosion corrosion in estimating the erosion corrosion rate and reliability predictions. A comparison of various erosion corrosion models is made. The reliability predictions based on remaining strength of corroded pipelines by wall thinning is also attempted. Variables in the limit state functions are modelled using normal distributions and Reliability assessment is carried out using some of the existing failure pressure models. A steady state corrosion rate is assumed to estimate the corrosion defect and First Order Reliability Method (FORM) is used to find the probability of failure associated with corrosion defects over time using the software for Component Reliability evaluation (COMREL). (author)

  4. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  5. Intra-observer reliability and agreement of manual and digital orthodontic model analysis.

    Science.gov (United States)

    Koretsi, Vasiliki; Tingelhoff, Linda; Proff, Peter; Kirschneck, Christian

    2018-01-23

    Digital orthodontic model analysis is gaining acceptance in orthodontics, but its reliability is dependent on the digitalisation hardware and software used. We thus investigated intra-observer reliability and agreement / conformity of a particular digital model analysis work-flow in relation to traditional manual plaster model analysis. Forty-eight plaster casts of the upper/lower dentition were collected. Virtual models were obtained with orthoX®scan (Dentaurum) and analysed with ivoris®analyze3D (Computer konkret). Manual model analyses were done with a dial caliper (0.1 mm). Common parameters were measured on each plaster cast and its virtual counterpart five times each by an experienced observer. We assessed intra-observer reliability within method (ICC), agreement/conformity between methods (Bland-Altman analyses and Lin's concordance correlation), and changing bias (regression analyses). Intra-observer reliability was substantial within each method (ICC ≥ 0.7), except for five manual outcomes (12.8 per cent). Bias between methods was statistically significant, but less than 0.5 mm for 87.2 per cent of the outcomes. In general, larger tooth sizes were measured digitally. Total difference maxilla and mandible had wide limits of agreement (-3.25/6.15 and -2.31/4.57 mm), but bias between methods was mostly smaller than intra-observer variation within each method with substantial conformity of manual and digital measurements in general. No changing bias was detected. Although both work-flows were reliable, the investigated digital work-flow proved to be more reliable and yielded on average larger tooth sizes. Averaged differences between methods were within 0.5 mm for directly measured outcomes but wide ranges are expected for some computed space parameters due to cumulative error. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  6. A simulation model for reliability evaluation of Space Station power systems

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kumar, Mudit; Wagner, H.

    1988-01-01

    A detailed simulation model for the hybrid Space Station power system is presented which allows photovoltaic and solar dynamic power sources to be mixed in varying proportions. The model considers the dependence of reliability and storage characteristics during the sun and eclipse periods, and makes it possible to model the charging and discharging of the energy storage modules in a relatively accurate manner on a continuous basis.

  7. A European test of pesticide-leaching models: methodology and major recommendations

    NARCIS (Netherlands)

    Vanclooster, M.; Boesten, J.J.T.I.; Trevisan, M.; Brown, C.D.; Capri, E.; Eklo, O.M.; Gottesbüren, B.; Gouy, V.; Linden, van der A.M.A.

    2000-01-01

    Testing of pesticide-leaching models is important in view of their increasing use in pesticide registration procedures in the European Union. This paper presents the methodology and major conclusions of a test of pesticide-leaching models. Twelve models simulating the vertical one-dimensional

  8. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud

    2014-01-01

    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  9. A Methodology for Modeling Confined, Temperature Sensitive Cushioning Systems

    Science.gov (United States)

    1980-06-01

    thickness of cushion T, and®- s temperature 0, and as a dependent variable, G, the peak acceleration. The initial model, Equation (IV-11), proved deficient ...k9) = TR * TCTH ALV(60) = Tk * TCTH AL2 V6)= Tk2 * FCTH V2 =TRk * TCrFH *AL V(6~3) =THZ * TC.TH AU! V(,34) =TRa * TCTH 141 Yj)=Tks * T(-Th * AL V(.4b

  10. Modeling postpartum depression in rats: theoretic and methodological issues

    Science.gov (United States)

    Ming, LI; Shinn-Yi, CHOU

    2016-01-01

    The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254

  11. Modeling postpartum depression in rats: theoretic and methodological issues

    Directory of Open Access Journals (Sweden)

    Ming LI

    2018-06-01

    Full Text Available The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions.

  12. Reliable gain-scheduled control of discrete-time systems and its application to CSTR model

    Science.gov (United States)

    Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.

    2016-10-01

    This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.

  13. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  14. Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models

    KAUST Repository

    Woessner, J.

    2012-07-14

    Static stress transfer is one physical mechanism to explain triggered seismicity. Coseismic stress-change calculations strongly depend on the parameterization of the causative finite-fault source model. These models are uncertain due to uncertainties in input data, model assumptions, and modeling procedures. However, fault model uncertainties have usually been ignored in stress-triggering studies and have not been propagated to assess the reliability of Coulomb failure stress change (ΔCFS) calculations. We show how these uncertainties can be used to provide confidence intervals for co-seismic ΔCFS-values. We demonstrate this for the MW = 5.9 June 2000 Kleifarvatn earthquake in southwest Iceland and systematically map these uncertainties. A set of 2500 candidate source models from the full posterior fault-parameter distribution was used to compute 2500 ΔCFS maps. We assess the reliability of the ΔCFS-values from the coefficient of variation (CV) and deem ΔCFS-values to be reliable where they are at least twice as large as the standard deviation (CV ≤ 0.5). Unreliable ΔCFS-values are found near the causative fault and between lobes of positive and negative stress change, where a small change in fault strike causes ΔCFS-values to change sign. The most reliable ΔCFS-values are found away from the source fault in the middle of positive and negative ΔCFS-lobes, a likely general pattern. Using the reliability criterion, our results support the static stress-triggering hypothesis. Nevertheless, our analysis also suggests that results from previous stress-triggering studies not considering source model uncertainties may have lead to a biased interpretation of the importance of static stress-triggering.

  15. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  16. Methodological aspects of journaling a dynamic adjusting entry model

    Directory of Open Access Journals (Sweden)

    Vlasta Kašparovská

    2011-01-01

    Full Text Available This paper expands the discussion of the importance and function of adjusting entries for loan receivables. Discussion of the cyclical development of adjusting entries, their negative impact on the business cycle and potential solutions has intensified during the financial crisis. These discussions are still ongoing and continue to be relevant to members of the professional public, banking regulators and representatives of international accounting institutions. The objective of this paper is to evaluate a method of journaling dynamic adjusting entries under current accounting law. It also expresses the authors’ opinions on the potential for consistently implementing basic accounting principles in journaling adjusting entries for loan receivables under a dynamic model.

  17. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  18. A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling

    Science.gov (United States)

    Tong, Cao; Gong, Haili

    2018-03-01

    This paper aims to reduce the computational cost of reliability analysis. A new hybrid algorithm is proposed based on PSO-optimized Kriging model and adaptive importance sampling method. Firstly, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of Kriging model. A typical function is fitted to validate improvement by comparing results of PSO-optimized Kriging model with those of the original Kriging model. Secondly, a hybrid algorithm for reliability analysis combined optimized Kriging model and adaptive importance sampling is proposed. Two cases from literatures are given to validate the efficiency and correctness. The proposed method is proved to be more efficient due to its application of small number of sample points according to comparison results.

  19. Methodology for modeling the microbial contamination of air filters.

    Science.gov (United States)

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  20. Methodology for modeling the microbial contamination of air filters.

    Directory of Open Access Journals (Sweden)

    Yun Haeng Joe

    Full Text Available In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.