WorldWideScience

Sample records for reliable lung region

  1. Quantification of ventilation distribution in regional lung injury by electrical impedance tomography and xenon computed tomography

    International Nuclear Information System (INIS)

    Elke, Gunnar; Weiler, Norbert; Frerichs, Inéz; Fuld, Matthew K; Halaweish, Ahmed F; Hoffman, Eric A; Grychtol, Bartłomiej

    2013-01-01

    Validation studies of electrical impedance tomography (EIT) based assessment of regional ventilation under pathological conditions are required to prove that EIT can reliably quantify heterogeneous ventilation distribution with sufficient accuracy. The objective of our study was to validate EIT measurements of regional ventilation through a comparison with xenon-multidetector-row computed tomography (XeCT) in an animal model of sub-lobar lung injury. Nine anesthetized mechanically ventilated supine pigs were examined before and after the induction of lung injury in two adjacent sub-lobar segments of the right lung by saline lavage or endotoxin instillation. Regional ventilation was determined in 32 anteroposterior regions of interest in the right and left lungs and the ventilation change quantified by difference images between injury and control. Six animals were included in the final analysis. Measurements of regional ventilation by EIT and XeCT correlated well before (r s = 0.89 right, r s = 0.90 left lung) and after local injury (r s = 0.79 and 0.92, respectively). No bias and narrow limits of agreement were found during both conditions. The ventilation decrease in the right injured lung was correspondingly measured by both modalities (5.5%±1.1% by EIT and 5.4%±1.9% by XeCT, p = 0.94). EIT was inferior to clearly separate the exact anatomical location of the regional injuries. Regional ventilation was overestimated (<2%) in the most ventral and dorsal regions and underestimated (2%) in the middle regions by EIT compared to XeCT. This study shows that EIT is able to reliably discern even small ventilation changes on sub-lobar level. (paper)

  2. Forward lunge as a functional performance test in ACL deficient subjects: test-retest reliability

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Henriksen, Marius; Dyhre-Poulsen, Poul

    2009-01-01

    The forward lunge movement may be used as a functional performance test of anterior cruciate ligament (ACL) deficient and reconstructed subjects. The purposes were 1) to determine the test-retest reliability of a forward lunge in healthy subjects and 2) to determine the required numbers...... of repetitions necessary to yield satisfactory reliability. Nineteen healthy subjects performed four trials of a forward lunge on two different days. The movement time, impulses of the ground reaction forces (IFz, IFy), knee joint kinematics and dynamics during the forward lunge were calculated. The relative...... reliability was determined by calculation of Intraclass Correlation Coefficients (ICC). The IFz, IFy and the positive work of the knee extensors showed excellent reliability (ICC >0.75). All other variables demonstrated acceptable reliability (0.4>ICCreliability increased when more than...

  3. Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability.

    Directory of Open Access Journals (Sweden)

    Bertram J Jobst

    Full Text Available Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lung MRI protocol in COPD.20 prospectively enrolled COPD patients (GOLD I-IV underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging, consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed.Median global scores [10(Q1:8.00;Q3:16.00 vs.11(Q1:6.00;Q3:15.00] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (ĸ = 0.86, 95%CI = 0.81-0.91. Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (ĸ = 0.64-1.00, whereas the agreement for the diagnosis of dystelectasis/effusion (ĸ = 0.42, 95%CI = 0.00-0.93 was "moderate" and of tracheal abnormalities (ĸ = 0.21, 95%CI = 0.00-0.75 "fair". Most MRI acquisitions showed at least diagnostic quality at

  4. Reliability and smallest real difference of the ankle lunge test post ankle fracture.

    Science.gov (United States)

    Simondson, David; Brock, Kim; Cotton, Susan

    2012-02-01

    This study aimed to determine the reliability and the smallest real difference of the Ankle Lunge test in an ankle fracture patient population. In the post immobilisation stage of ankle fracture, ankle dorsiflexion is an important measure of progress and outcome. The Ankle Lunge test measures weight bearing dorsiflexion, resulting in negative scores (knee to wall distance) and positive scores (toe to wall distance), for which the latter has proven reliability in normal subjects only. A consecutive sample of ankle fracture patients with permission to commence weight bearing, were recruited to the study. Three measurements of the Ankle Lunge Test were performed each by two raters, one senior and one junior physiotherapist. These occurred prior to therapy sessions in the second week after plaster removal. A standardised testing station was utilised and allowed for both knee to wall distance and toe to wall distance measurement. Data was collected from 10 individuals with ankle fracture, with an average age of 36 years (SD 14.8). Seventy seven percent of observations were negative. Intra and inter-rater reliability yielded intra class correlations at or above 0.97, p Ankle Lunge test is a practical and reliable tool for measuring weightbearing dorsiflexion post ankle fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Regional assessment of treatment in lung cancer using lung perfusion and ventilation images

    International Nuclear Information System (INIS)

    Horikoshi, Masaki; Teshima, Takeo; Yanagimachi, Tomohiro; Ogata, Yuuko; Nukiwa, Toshihiro

    2000-01-01

    In 30 patients with lung cancer undergoing non-surgical treatment, we performed perfusion lung imaging using 99m Tc-MAA and inhalation lung studies using Technegas before and after treatment and evaluated regional perfusion and ventilation status in the lung regions where bronchogenic carcinoma was located. Regional ventilation status was preserved rather than perfusion counterpart (V>P) in 18 patients (18/30=60.0%) before treatment, while the former was better than the latter in 27 patients (27/30=90.0%) after treatment, indicating that regional ventilation status improved more significantly than regional perfusion counterpart after treatment (P=0.005). We also classified the therapeutic effect for regional perfusion and ventilation status as improved, unchanged, or worsened, respectively; improvement in regional perfusion status was observed in 17 patients (56.7%) and that in regional ventilation status in 24 patients (80.0%). There was a statistically significant correlation between improved regional perfusion and ventilation status (P=0.0018) when therapeutic effect was recognized. The patients who showed improvement in regional perfusion status after treatment always showed improved regional ventilation status, but 7 patients showed either unchanged or worsened regional perfusion status after treatment, although regional ventilation status was improved. In conclusion the pulmonary vascular beds seem more vulnerable to bronchogenic carcinoma and improvement in regional perfusion status was revealed to be more difficult than that in regional ventilation status after treatment. (author)

  6. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Garg, Kavita [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  7. Estimation of regional lung expansion via 3D image registration

    Science.gov (United States)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  8. Quantitative and regional evaluation methods for lung scintigraphs

    International Nuclear Information System (INIS)

    Fichter, J.

    1982-01-01

    For the evaluation of perfusion lung scintigraphs with regard to the quantitative valuation and also with regard to the choice of the regions new criteria were presented. In addition to the usual methods of sectioning each lung lobe into upper, middle and lower level and the determination of the per cent activity share of the total activity the following values were established: the median of the activity distribution and the differences of the per cent counting rate as well as of the median of the corresponding regions of the right and left lung. The individual regions should describe the functional structures (lobe and segment structure). A corresponding computer program takes over the projection of lobe and segment regions in a simplified form onto the scintigraph with consideration of individual lung stretching. With the help of a clinical study on 60 patients and 18 control persons with 99mTc-MAA and 133 Xe-gas lung scintigraphs the following results could be determined: depending on the combination of the 32 parameters available for evaluation and the choice of regions between 4 and 20 of the 60 patients were falsely negatively classified and 1 to 2 of the 18 controls were falsely positive. The accuracy of the Tc-scintigraph proved to be better. All together using the best possible parameter combinations comparative results were attained. (TRV) [de

  9. The reliability of lung crackle characteristics in cystic fibrosis and bronchiectasis patients in a clinical setting

    International Nuclear Information System (INIS)

    Marques, Alda; Bruton, Anne; Barney, Anna

    2009-01-01

    Lung sounds provide useful information for assessing and monitoring respiratory patients, but standard auscultation is subjective. Computer aided lung sound analysis (CALSA) enables the quantification and characterisation of added lung sounds (e.g. crackles). At present, little is known about the reliability of these sound characteristics. Therefore, the aim of this study was to explore the reliability of crackle initial deflection width (IDW) and two-cycle deflection (2CD) in a clinical population. Fifty-four subjects (37 bronchiectasis, 17 cystic fibrosis) were recruited from out-patient clinics. Three repeated lung sound recordings were taken at seven anatomical sites with a digital stethoscope connected to a laptop computer. The intra-subject reliability of crackle IDW and 2CD was found to be 'good' to 'excellent', estimated by the analysis of variance, intraclass correlation coefficient (IDW 0.76;0.85, 2CD 0.83;0.94), Bland and Altman 95% limits of agreement (IDW −0.50;0.47 ms, 2CD −2.12;1.87 ms) and smallest real difference (IDW 0.30;0.66 ms, 2CD 1.57;2.42 ms). Crackle 2CD was found to be more reliable than IDW. It is concluded that crackle IDW and 2CD characterized by CALSA have good test–retest reliability. This technique requires further evaluation since CALSA has potential to diagnose or monitor respiratory conditions, and provide an objective physiological measure for respiratory interventions

  10. Reliability of sternal instability scale (SIS) for transverse sternotomy in lung transplantation (LTX).

    Science.gov (United States)

    Fuller, Louise M; El-Ansary, Doa; Button, Brenda; Bondarenko, Janet; Marasco, Silvana; Snell, Greg; Holland, Anne E

    2018-01-25

    A surgical incision for bilateral sequential lung transplantation (BSLTX) is the "clam shell" (CSI) approach via bilateral anterior thoracotomies and a transverse sternotomy to allow for sequential replacement of the lungs. This can be associated with significant post-operative pain, bony overriding or sternal instability. The sternal instability scale (SIS) is a non-invasive manual assessment tool that can be used to detect early bony non-union or instability following CSI; however, its reliability is unknown. This prospective blinded reliability study aimed to assess intra-rater and inter-rater reliability of the SIS following lung transplantation. Participants post BSLTX aged older than 18 years underwent sternal assessment utilizing the SIS. Two assessors examined the sternum using a standardized protocol at two separate time points with a test-re-test time of 48 hours. The outcome measure was SIS tool using four categories from 0 (clinically stable) to 3 (separated sternum with overriding). In total, 20 participants (75% female) with a mean age of 48 years (SD 17) and mean pain score of 3 out of 10 were included, 60% having well healed wounds and 25% reporting symptoms of sternal clicking. The most painful self-reported painful activity was coughing. The SIS demonstrated excellent reliability with a kappa = 0.91 by different assessors on the same day, and kappa = 0.83 for assessments by the same assessor on different days. The SIS is a reliable manual assessment tool for evaluation of sternal instability after CSI following BSLTX and may facilitate the timely detection and management of sternal instability.

  11. Study of regional lung function with xenon 133

    International Nuclear Information System (INIS)

    Devaux, D.; Wagner, R.; Germain, M.; Chardon, G.

    1975-01-01

    Exploration of regional lung function includes study of the closed circuit perfusion and ventilation respectively by injection and inhalation of xenon 133. The radiation is measured across the chest using 4 fixed scintillation counters, placed opposite the subject's back, 2 per lung field. Theoretical regional values using 15 normal young subjects are determined. Three cases justified the practical interest of this method. The percentage of variation for the parameters studied was about 10%. The method proved very useful for the clinician to whom it provides a numerical assessment of regional ventilation and perfusion [fr

  12. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    Science.gov (United States)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  13. Determinants of regional differences in lung cancer mortality in the Netherlands

    NARCIS (Netherlands)

    A.E. Kunst (Anton); C.W.N. Looman (Caspar); J.P. Mackenbach (Johan)

    1993-01-01

    textabstractAlthough regional differences in lung cancer mortality are likely to be attributable to regional differences in tobacco smoking, studies in various countries found only weak relationships. This paper aimed at explaining regional differences in lung cancer mortality in the

  14. Changes in regional and overall lung function after bronchography

    International Nuclear Information System (INIS)

    Richez, M.; Ravez, P.; Godart, G.; Halloy, J.L.; Robience, Y.

    1980-01-01

    This investigation compares the effects of unilateral bronchography on classical pulmonary function paramerts (spirometry, CO transfer, flowvolume curve, and arterial blood gases)and radioisotopic measurements by means of 99 sup(m)Tc-labeled microspheres and 81 sup(m)Kr. The regional changes of ventilation and perfusion were quantified by a radioisotopic index, which was established for each zone of interest: explored lung and unexplored lung. The quantitative study of regional perfusion and ventilation reveals significant reduction of ventilation for lung bases, but not for lung apices. The radioisotopic measurements show a reduction of perfusion parallel to the reduction of ventilation. There is no significant correlation between traditional pulmonary function parameters and isotopic indices. Radioisotopy proved a sensitive tool for investigation of unilateral alterations. (orig.) [de

  15. Determinants of regional differences in lung cancer mortality in The Netherlands

    NARCIS (Netherlands)

    Kunst, A. E.; Looman, C. W.; Mackenbach, J. P.

    1993-01-01

    Although regional differences in lung cancer mortality are likely to be attributable to regional differences in tobacco smoking, studies in various countries found only weak relationships. This paper aimed at explaining regional differences in lung cancer mortality in the Netherlands. In a first

  16. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    Science.gov (United States)

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  17. Measurement of the Inter-Rater Reliability Rate Is Mandatory for Improving the Quality of a Medical Database: Experience with the Paulista Lung Cancer Registry.

    Science.gov (United States)

    Lauricella, Leticia L; Costa, Priscila B; Salati, Michele; Pego-Fernandes, Paulo M; Terra, Ricardo M

    2018-06-01

    Database quality measurement should be considered a mandatory step to ensure an adequate level of confidence in data used for research and quality improvement. Several metrics have been described in the literature, but no standardized approach has been established. We aimed to describe a methodological approach applied to measure the quality and inter-rater reliability of a regional multicentric thoracic surgical database (Paulista Lung Cancer Registry). Data from the first 3 years of the Paulista Lung Cancer Registry underwent an audit process with 3 metrics: completeness, consistency, and inter-rater reliability. The first 2 methods were applied to the whole data set, and the last method was calculated using 100 cases randomized for direct auditing. Inter-rater reliability was evaluated using percentage of agreement between the data collector and auditor and through calculation of Cohen's κ and intraclass correlation. The overall completeness per section ranged from 0.88 to 1.00, and the overall consistency was 0.96. Inter-rater reliability showed many variables with high disagreement (>10%). For numerical variables, intraclass correlation was a better metric than inter-rater reliability. Cohen's κ showed that most variables had moderate to substantial agreement. The methodological approach applied to the Paulista Lung Cancer Registry showed that completeness and consistency metrics did not sufficiently reflect the real quality status of a database. The inter-rater reliability associated with κ and intraclass correlation was a better quality metric than completeness and consistency metrics because it could determine the reliability of specific variables used in research or benchmark reports. This report can be a paradigm for future studies of data quality measurement. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Regional lung function evaluation with nitrogen-13

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, B; Brownell, G L; Hales, C; Kazemi, H

    1981-10-01

    Regional ventilation and perfusion studies are routinely performed with molecular nitrogen-13 (a short-lived positron emitter), a multicrystal positron camera, and a computer. These studies have the advantage of viewing with equal sensitivity all sections of the lung simultaneously. Nitrogen-13 is less soluble than xenon in blood and therefore allows more accurate ventilation imaging. The short half-life of the radiopharmaceutical allows simultaneous ventilation and perfusion scintigraphy of the lung. Unlike other imaging techniques in which the residual radioactivity persists in the lung for hours, nitrogen-13 is rapidly cleared allowing repetitive imaging. Ventilation and perfusion studies are part of the routine preoperative evaluation for lung cancer resection or for bullectomy in patients with chronic obstructive pulmonary disease and for assessment of pulmonary emboli in the presence of chronic obstructive disease.

  19. Relation between radiation-induced whole lung functional loss and regional structural changes in partial irradiated rat lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Novakova-Jiresova, Alena; Faber, Hette; Steneker, Marloes N.J.; Kampinga, Harm H.; Meertens, Haarm; Coppes, Robert P.

    2006-01-01

    Purpose: Radiation-induced pulmonary toxicity is characterized by dose, region, and time-dependent severe changes in lung morphology and function. This study sought to determine the relation between the structural and functional changes in the irradiated rat lung at three different phases after irradiation. Materials and Methods: Six groups of animals were irradiated to 16-22 Gy to six different lung regions, each containing 50% of the total lung volume. Before and every 2 weeks after irradiation, the breathing rate (BR) was measured, and at Weeks 8, 26, and 38 CT was performed. From the computed tomography scans, the irradiated lung tissue was delineated using a computerized algorithm. A single quantitative measure for structural change was derived from changes of the mean and standard deviation of the density within the delineated lung. Subsequently, this was correlated with the BR in the corresponding phase. Results: In the mediastinal and apex region, the BR and computed tomography density changes did not correlate in any phase. After lateral irradiation, the density changes always correlated with the BR; however, in all other regions, the density changes only correlated significantly (r 2 = 0.46-0.85, p < 0.05) with the BR in Week 26. Conclusion: Changes in pulmonary function correlated with the structural changes in the absence of confounding heart irradiation

  20. Late regional density changes of the lung after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Vagane, Randi; Danielsen, Turi; Fossa, Sophie Dorothea; Lokkevik, Erik; Olsen, Dag Rune

    2009-01-01

    Background and purpose: To investigate density changes in lung tissue, 3-4 years after postoperative adjuvant radiotherapy for breast cancer, based on dose dependence and regional differences. Material and methods: Sixty-one breast cancer patients, who had received computed tomography (CT) based postoperative radiotherapy, were included. CT scans were performed 35-51 months after start of radiotherapy. Dose information and CT scans from before and after radiotherapy were geometrically aligned in order to analyse changes in air-filled fraction (derived from CT density) as a function of dose for different regions of the lung. Results: Dose-dependent reduction of the air-filled fraction was shown to vary between the different regions of the lung. For lung tissue receiving about 50 Gy, the largest reduction in air-filled fraction was found in the cranial part of the lung. An increased air-filled fraction was observed for lung tissue irradiated to doses below 20 Gy, indicating compensatory response. Conclusions: The treatment-induced change in whole-lung density is a weighted response, involving the different regions, the irradiated volumes, and dose levels to these volumes. Simplistic models may therefore not be appropriate for describing the whole-lung dose-volume-response relationship following inhomogeneous irradiation

  1. 76 FR 23470 - Version One Regional Reliability Standard for Transmission Operations

    Science.gov (United States)

    2011-04-27

    ...; Order No. 752] Version One Regional Reliability Standard for Transmission Operations AGENCY: Federal... Power Act, the Federal Energy Regulatory Commission approves regional Reliability Standard TOP-007-WECC... purpose of this regional Reliability Standard is to ensure that actual flows and associated scheduled...

  2. Use of sup(81m)Kr gas for the measurement of absolute regional lung ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Nosil, J; Bajzer, Z; Spaventi, S [Mladen Stojanovic Clinical Hospital, Zagreb (Yugoslavia). Dept. of Nuclear Medicine and Oncology; Institut Rudjer Boskovic, Zagreb (Yugoslavia))

    1977-02-01

    In this paper a new method of using sup(81m)Kr for the measurement of specific absolute regional lung ventilation is described. Experimental data suitable for the calculation of quantitative regional ventilation are provided using an adequate respiratory system for sup(81m)Kr dosage and a scintillation gamma camera interfaced to a digital computer. A simple mathematical lung model for the inhalation of sup(81m)Kr is used to determine the specific ventilation and the parameters proportional to the ventilation for the whole lung and different lung regions in patients and in healthy subjects. The lung count rate for a given region correlated well with the ventilation of that region. Clinical examples are given and discussed.

  3. Distribution of microspheres to regions of dog lung compares well with regional flow of red blood cells

    International Nuclear Information System (INIS)

    Beck, K.C.; Rehder, K.

    1986-01-01

    Dorso-caudal areas of dog lungs are better perfused than ventral regions, independent of gravity. Could this be an artifact due to regional bias in lodging of MS. The costal surfaces of 5 isolated blood perfused left lungs of dogs [constant blood flow (F), Ppa, Ppv and Palv] were imaged (gamma camera) first after injection of 141 Ce-labeled MS (15 μ), then in 0.4 sec intervals after a bolus injection of 99 Tc-labeled red blood cells (RBC). Count rates were analyzed in 6 regions. Regional flow measured by MS (flowMS) is F times regional counts divided by total counts in the first image. Regional flow measured by RBC (flowRBC) is F times peak regional counts divided by peak total counts in the 0.4 sec images. The ratio flowMS/flow RBC was greater than 1.0 (P<0.001), suggesting a systematic difference between 1.0 (P<0.001), suggesting a systematic difference between flowMS and flow RBC. More importantly, there was no difference in flowMS/flow RBC among lung regions, allowing the authors to conclude there was no regional bias of flows

  4. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  5. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  6. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  7. A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury.

    Science.gov (United States)

    Gómez-Laberge, Camille; Arnold, John H; Wolf, Gerhard K

    2012-03-01

    Patients with acute lung injury or acute respiratory distress syndrome (ALI/ARDS) are vulnerable to ventilator-induced lung injury. Although this syndrome affects the lung heterogeneously, mechanical ventilation is not guided by regional indicators of potential lung injury. We used electrical impedance tomography (EIT) to estimate the extent of regional lung overdistension and atelectasis during mechanical ventilation. Techniques for tidal breath detection, lung identification, and regional compliance estimation were combined with the Graz consensus on EIT lung imaging (GREIT) algorithm. Nine ALI/ARDS patients were monitored during stepwise increases and decreases in airway pressure. Our method detected individual breaths with 96.0% sensitivity and 97.6% specificity. The duration and volume of tidal breaths erred on average by 0.2 s and 5%, respectively. Respiratory system compliance from EIT and ventilator measurements had a correlation coefficient of 0.80. Stepwise increases in pressure could reverse atelectasis in 17% of the lung. At the highest pressures, 73% of the lung became overdistended. During stepwise decreases in pressure, previously-atelectatic regions remained open at sub-baseline pressures. We recommend that the proposed approach be used in collaborative research of EIT-guided ventilation strategies for ALI/ARDS.

  8. The effect of patient-specific factors on radiation-induced regional lung injury

    International Nuclear Information System (INIS)

    Garipagaoglu, Melahat; Munley, Michael T.; Hollis, Donna; Poulson, Jean M.; Bentel, Gunilla C.; Sibley, Gregory; Anscher, Mitchell S.; Fan Ming; Jaszczak, Ronald J.; Coleman, R. Edward; Marks, Lawrence B.

    1999-01-01

    Purpose: To assess the impact of patient-specific factors on radiation (RT)-induced reductions in regional lung perfusion. Methods: Fifty patients (32 lung carcinoma, 7 Hodgkin's disease, 9 breast carcinoma and 2 other thoracic tumors) had pre-RT and ≥24-week post-RT single photon emission computed tomography (SPECT) perfusion images to assess the dose dependence of RT-induced reductions in regional lung perfusion. The SPECT data were analyzed using a normalized and non-normalized approach. Furthermore, two different mathematical methods were used to assess the impact of patient-specific factors on the dose-response curve (DRC). First, DRCs for different patient subgroups were generated and compared. Second, in a more formal statistical approach, individual DRCs for regional lung injury for each patient were fit to a linear-quadratic model (reduction = coefficient 1 x dose + coefficient 2 x dose 2 ). Multiple patient-specific factors including tobacco history, pre-RT diffusion capacity to carbon monoxide (DLCO), transforming growth factor-beta (TGF-β), chemotherapy exposure, disease type, and mean lung dose were explored in a multivariate analysis to assess their impact on the coefficients. Results: None of the variables tested had a consistent impact on the radiation sensitivity of regional lung (i.e., the slope of the DRC). In the formal statistical analysis, there was a suggestion of a slight increase in radiation sensitivity in the dose range >40 Gy for nonsmokers (vs. smokers) and in those receiving chemotherapy (vs. no chemotherapy). However, this finding was very dependent on the specific statistical and normalization method used. Conclusion: Patient-specific factors do not have a dramatic effect on RT-induced reduction in regional lung perfusion. Additional studies are underway to better clarify this issue. We continue to postulate that patient-specific factors will impact on how the summation of regional injury translates into whole organ injury

  9. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR) labeling of arterial regions (QUASAR).

    Science.gov (United States)

    Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki

    2014-01-01

    Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  10. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi

    2004-01-01

    In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n=15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9±3.1 mm vs 19.0±9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases. (orig.)

  11. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    Directory of Open Access Journals (Sweden)

    Jiwoong Choi

    Full Text Available Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells through interactions with host cells. We explored this with serial inspiratory computed tomography (CT and image matching to assess regional changes in lung expansion.We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05.Lung regions of metastatic sarcoma patients (but not the normal control group demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05. There was also evidence of increased lung "tissue" volume (non-air components in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions.This new quantitative CT (QCT method for linking

  12. Interaction of dependent and non-dependent regions of the acutely injured lung during a stepwise recruitment manoeuvre

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Rettig, Jordan S; Arnold, John H; Wolf, Gerhard K; Smallwood, Craig D; Boyd, Theonia K

    2013-01-01

    The benefit of treating acute lung injury with recruitment manoeuvres is controversial. An impediment to settling this debate is the difficulty in visualizing how distinct lung regions respond to the manoeuvre. Here, regional lung mechanics were studied by electrical impedance tomography (EIT) during a stepwise recruitment manoeuvre in a porcine model with acute lung injury. The following interaction between dependent and non-dependent regions consistently occurred: atelectasis in the most dependent region was reversed only after the non-dependent region became overdistended. EIT estimates of overdistension and atelectasis were validated by histological examination of lung tissue, confirming that the dependent region was primarily atelectatic and the non-dependent region was primarily overdistended. The pulmonary pressure–volume equation, originally designed for modelling measurements at the airway opening, was adapted for EIT-based regional estimates of overdistension and atelectasis. The adaptation accurately modelled the regional EIT data from dependent and non-dependent regions (R 2 > 0.93, P < 0.0001) and predicted their interaction during recruitment. In conclusion, EIT imaging of regional lung mechanics reveals that overdistension in the non-dependent region precedes atelectasis reversal in the dependent region during a stepwise recruitment manoeuvre. (paper)

  13. Study of regional lung ventilation and perfusion by xenon 133

    International Nuclear Information System (INIS)

    Lombard, Yves.

    1976-01-01

    The present work consists of a regional lung exploration after injection of xenon 133, dissolved in physiological serum, followed a few minutes later by that of 99m Tc-labelled serumalbumin microspheres. The aim is three fold: first of all to study perfusion and ventilation by xenon 133, next to compare the results obtained after xenon 133 and 99 m Tc-labelled microsphere injection, lastly to establish the value of the technique and its routine application. This examination has not solved all problems of lung exploration by xenon 133. For example we deliberately kept to intraveinous injection of the gas dissolved in physiological serum, leaving aside the breathing test. Xenon 133 scintigraphy in our opinion will not tend to replace 99m Tc-labelled microsphere scintigraphy, which has irreplaceable morphological qualities, but will serve as an excellent complement. The basic advantage of xenon 133 is the regional ventilation estimate it provides allowing any anomaly of the lung parenchyma to be located immediately or conversely the functional value of the healthy lung to be established with a view to a surgical removal of a diseased zone [fr

  14. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Q; Kavanagh, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans to guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  15. 75 FR 14103 - Version One Regional Reliability Standard for Resource and Demand Balancing

    Science.gov (United States)

    2010-03-24

    ... current regional Reliability Standard was developed and used under a manual interchange transaction...] Version One Regional Reliability Standard for Resource and Demand Balancing March 18, 2010. AGENCY... section 215 of the Federal Power Act, the Commission proposes to remand a revised regional Reliability...

  16. Surgical results of lung cancer with sarcoid reaction in regional lymph nodes

    International Nuclear Information System (INIS)

    Tomimaru, Yoshito; Higashiyama, Masahiko; Okami, Jiro; Oda, Kazuyuki; Takami, Koji; Kodama, Ken; Tsukamoto, Yoshitane

    2007-01-01

    There have been few reports of sarcoid reaction in the regional lymph nodes associated with lung cancer. The purpose of this study was to analyze the surgical results of lung cancer with sarcoid reaction. Of 1733 lung cancer patients undergoing surgical treatment in our institute from 1990 to 2004, we reviewed 22 patients (1.3%) with sarcoid reaction in the regional lymph nodes of lung cancer. On pre-operative computed tomography (CT), mediastinal lymph node swelling was detected in 19 patients (86%) as clinical N3 disease (c-N3) in six or as c-N2 in 13, while three patients were classified as c-N0. To these 19 patients, lymph node status was histologically checked by mediastinoscopy in four patients, sternotomy approach in two and open mini-thoracotomy in 13. Because the sampling-biopsy nodes showed no tumor metastasis, radical surgery was promptly performed. However, four patients (18%) were finally judged to have pathological lymph node positive disease. Five patients were in pathological stage (p-stage) IA, nine in p-stage IB, five in p-stage IIB, two in p-stage IIIA, and one in stage IIIB. The overall 3-, and 5-year survival rates of these patients were 85.2 and 77.7%, respectively, with no significant difference compared to those of the remaining patients without sarcoid reaction. Because lung cancer patients with sarcoid reaction in the regional lymph nodes frequently show mediastinal lymph node swelling on CT, radical resection should be performed after confirming the node status by appropriate sampling biopsy. It seems that surgical results of lung cancers with sarcoid reaction in the regional nodes are not prognostically different from those without sarcoid reaction. (author)

  17. Smoking and Lung Cancer: A Geo-Regional Perspective.

    Science.gov (United States)

    Rahal, Zahraa; El Nemr, Shaza; Sinjab, Ansam; Chami, Hassan; Tfayli, Arafat; Kadara, Humam

    2017-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents the most frequently diagnosed subtype of this morbid malignancy. NSCLC is causally linked to tobacco consumption with more than 500 million smokers worldwide at high risk for this fatal malignancy. We are currently lagging in our knowledge of the early molecular (e.g., genomic) effects of smoking in NSCLC pathogenesis that would constitute ideal markers for early detection. This limitation is further amplified when considering the variable etiologic factors in NSCLC pathogenesis among different regions around the globe. In this review, we present our current knowledge of genomic alterations arising during early stages of smoking-induced lung cancer initiation and progression, including discussing the premalignant airway field of injury induced by smoking. The review also underscores the wider spectra and higher age-adjusted rates of tobacco (e.g., water-pipe smoke) consumption, along with elevated environmental carcinogenic exposures and relatively poorer socioeconomic status, in low-middle income countries (LMICs), with Lebanon as an exemplar. This "cocktail" of carcinogenic exposures warrants the pressing need to understand the complex etiology of lung malignancies developing in LMICs such as Lebanon.

  18. Smoking and Lung Cancer: A Geo-Regional Perspective

    Directory of Open Access Journals (Sweden)

    Zahraa Rahal

    2017-09-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC represents the most frequently diagnosed subtype of this morbid malignancy. NSCLC is causally linked to tobacco consumption with more than 500 million smokers worldwide at high risk for this fatal malignancy. We are currently lagging in our knowledge of the early molecular (e.g., genomic effects of smoking in NSCLC pathogenesis that would constitute ideal markers for early detection. This limitation is further amplified when considering the variable etiologic factors in NSCLC pathogenesis among different regions around the globe. In this review, we present our current knowledge of genomic alterations arising during early stages of smoking-induced lung cancer initiation and progression, including discussing the premalignant airway field of injury induced by smoking. The review also underscores the wider spectra and higher age-adjusted rates of tobacco (e.g., water-pipe smoke consumption, along with elevated environmental carcinogenic exposures and relatively poorer socioeconomic status, in low-middle income countries (LMICs, with Lebanon as an exemplar. This “cocktail” of carcinogenic exposures warrants the pressing need to understand the complex etiology of lung malignancies developing in LMICs such as Lebanon.

  19. Signs of Gas Trapping in Normal Lung Density Regions in Smokers.

    Science.gov (United States)

    Bodduluri, Sandeep; Reinhardt, Joseph M; Hoffman, Eric A; Newell, John D; Nath, Hrudaya; Dransfield, Mark T; Bhatt, Surya P

    2017-12-01

    A substantial proportion of subjects without overt airflow obstruction have significant respiratory morbidity and structural abnormalities as visualized by computed tomography. Whether regions of the lung that appear normal using traditional computed tomography criteria have mild disease is not known. To identify subthreshold structural disease in normal-appearing lung regions in smokers. We analyzed 8,034 subjects with complete inspiratory and expiratory computed tomographic data participating in the COPDGene Study, including 103 lifetime nonsmokers. The ratio of the mean lung density at end expiration (E) to end inspiration (I) was calculated in lung regions with normal density (ND) by traditional thresholds for mild emphysema (-910 Hounsfield units) and gas trapping (-856 Hounsfield units) to derive the ND-E/I ratio. Multivariable regression analysis was used to measure the associations between ND-E/I, lung function, and respiratory morbidity. The ND-E/I ratio was greater in smokers than in nonsmokers, and it progressively increased from mild to severe chronic obstructive pulmonary disease severity. A proportion of 26.3% of smokers without airflow obstruction had ND-E/I greater than the 90th percentile of normal. ND-E/I was independently associated with FEV 1 (adjusted β = -0.020; 95% confidence interval [CI], -0.032 to -0.007; P = 0.001), St. George's Respiratory Questionnaire scores (adjusted β = 0.952; 95% CI, 0.529 to 1.374; P smokers without airflow obstruction, and it is associated with respiratory morbidity. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  20. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  1. Regional Lung Density Changes After Radiation Therapy for Tumors in and Around Thorax

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2010-01-01

    Purpose: To study the temporal nature of regional lung density changes and to assess whether the dose-dependent nature of these changes is associated with patient- and treatment-associated factors. Methods and Materials: Between 1991 and 2004, 118 patients with interpretable pre- and post-radiation therapy (RT) chest computed tomography (CT) scans were evaluated. Changes in regional lung density were related to regional dose to define a dose-response curve (DRC) for RT-induced lung injury using three-dimensional planning tools and image fusion. Multiple post-RT follow-up CT scans were evaluated by fitting linear-quadratic models of density changes on dose with time as the covariate. Various patient- and treatment-related factors were examined as well. Results: There was a dose-dependent increase in regional lung density at nearly all post-RT follow-up intervals. The population volume-weighted changes evolved over the initial 6-month period after RT and reached a plateau thereafter (p < 0.001). On univariate analysis, patient age greater than 65 years (p = 0.003) and/or the use of pre-RT surgery (p < 0.001) were associated with significantly greater changes in CT density at both 6 and 12 months after RT, but the magnitude of this effect was modest. Conclusions: There appears to be a temporal nature for the dose-dependent increases in lung density. Nondosimetric clinical factors tend to have no, or a modest, impact on these changes.

  2. Pulmonary lymphangioleiomyomatosis: Analysis of disease manifestation by region-based quantification of lung parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Theilig, D., E-mail: dorothea.theilig@charite.de [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Doellinger, F. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Kuhnigk, J.M. [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); Temmesfeld-Wollbrueck, B.; Huebner, R.H. [Charité, Department of Pneumology, Augustenburger Platz 1, 13353 Berlin (Germany); Schreiter, N.; Poellinger, A. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2015-04-15

    Highlights: •The distribution of cystic lesions in LAM was evaluated with quantitative CT. •There were more cystic lesions in the central lung compared to peripheral areas. •Cystic changes were more frequent in apical two thirds compared to lower third. •Results might help to obviate the need for biopsy in more cases. -- Abstract: Purpose: Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). Materials and methods: CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a “peel” and “core” of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <−950 HU to the total number of voxels in the lung. Results: Cystic changes accounted for 0.1–39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p = 0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower

  3. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Schubert, Leah; Diot, Quentin; Waxweiller, Timothy; Koo, Phillip; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Rusthoven, Chad; Gaspar, Laurie; Kavanagh, Brian; Miften, Moyed

    2016-01-01

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assess each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance

  4. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Schubert, Leah; Diot, Quentin; Waxweiller, Timothy [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Koo, Phillip [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas (United States); Castillo, Edward; Guerrero, Thomas [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Rusthoven, Chad; Gaspar, Laurie; Kavanagh, Brian; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)

    2016-07-15

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assess each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional

  5. Radiation-Induced Reductions in Regional Lung Perfusion: 0.1-12 Year Data From a Prospective Clinical Study

    International Nuclear Information System (INIS)

    Zhang Junan; Ma Jinli; Zhou Sumin; Hubbs, Jessica L.; Wong, Terence Z.; Folz, Rodney J.; Evans, Elizabeth S.; Jaszczak, Ronald J.; Clough, Robert; Marks, Lawrence B.

    2010-01-01

    Purpose: To assess the time and regional dependence of radiation therapy (RT)-induced reductions in regional lung perfusion 0.1-12 years post-RT, as measured by single photon emission computed tomography (SPECT) lung perfusion. Materials/Methods: Between 1991 and 2005, 123 evaluable patients receiving RT for tumors in/around the thorax underwent SPECT lung perfusion scans before and serially post-RT (0.1-12 years). Registration of pre- and post-RT SPECT images with the treatment planning computed tomography, and hence the three-dimensional RT dose distribution, allowed changes in regional SPECT-defined perfusion to be related to regional RT dose. Post-RT follow-up scans were evaluated at multiple time points to determine the time course of RT-induced regional perfusion changes. Population dose response curves (DRC) for all patients at different time points, different regions, and subvolumes (e.g., whole lungs, cranial/caudal, ipsilateral/contralateral) were generated by combining data from multiple patients at similar follow-up times. Each DRC was fit to a linear model, and differences statistically analyzed. Results: In the overall groups, dose-dependent reductions in perfusion were seen at each time post-RT. The slope of the DRC increased over time up to 18 months post-RT, and plateaued thereafter. Regional differences in DRCs were only observed between the ipsilateral and contralateral lungs, and appeared due to tumor-associated changes in regional perfusion. Conclusions: Thoracic RT causes dose-dependent reductions in regional lung perfusion that progress up to ∼18 months post-RT and persists thereafter. Tumor shrinkage appears to confound the observed dose-response relations. There appears to be similar dose response for healthy parts of the lungs at different locations.

  6. Regional distribution of perfusion and ventilation in hamartoangiomyomatosis of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Shigeru; Ohsaka, Tomohisa; Nanbu, Masashi; Toyoda, Keiko; Mori, Yutaka; Kawakami, Kenji; Inatomi, Keiko; Kira, Shiro

    1989-01-01

    We investigated regional distribution of perfusion and ventilation in three cases of hamartoangiomyomatosis (HAM) by /sup 133/Xe gas and /sup 99m/Tc-MAA. In two cases, /sup 133/Xe washout were dominantly delayed in middle lung field and in the third case, it was delayed in upper lung field. This distribution was different from the result in the other chronic obstructive pulmonary disease (COPD). In most cases of COPD, /sup 133/Xe washout was prominently delayed in the lower lung field. Distribution of pulmonary perfusion in HAM were consistent with that of ventilation as in COPD.

  7. 78 FR 71448 - Regional Reliability Standard BAL-002-WECC-2-Contingency Reserve

    Science.gov (United States)

    2013-11-29

    ...; Order No. 789] Regional Reliability Standard BAL-002-WECC-2--Contingency Reserve AGENCY: Federal Energy... (Contingency Reserve). The North American Electric Reliability Corporation (NERC) and Western Electricity... Region and is meant to specify the quantity and types of [[Page 71449

  8. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography

    International Nuclear Information System (INIS)

    Bläser, D; Becher, T; Schädler, D; Elke, G; Weiler, N; Frerichs, I; Pulletz, S

    2014-01-01

    Several studies have shown the ability of electrical impedance tomography (EIT) to assess regional ventilation distribution in human lungs. Fluid accumulation in the pleural space as in empyema, typically occurring on one chest side, may influence the distribution of ventilation and the corresponding EIT findings. The aim of our study was to examine this effect on the assessment of regional ventilation by EIT. Six patients suffering from unilateral empyema and intubated with a double-lumen endotracheal tube were studied. EIT data were acquired during volume-controlled ventilation with bilateral (tidal volume (V T ): 800 ml) and unilateral ventilation (V T : 400 ml) of the right and left lungs. Mean tidal amplitudes of the EIT signal were calculated in all image pixels. The sums of these values, expressed as relative impedance change (rel. ΔZ), were then determined in whole images and functionally defined regions-of-interest (ROI). The sums of rel. ΔZ calculated during the two cases of one-lung ventilation either on the affected or unaffected side were significantly smaller than during bilateral ventilation. However, in contrast to previous findings in patients with no pleural pathology, very low values of rel. ΔZ were found when the lung on the affected side was ventilated. ROI-based analysis rendered higher values than the whole-image analysis in this case, nonetheless, the values were significantly smaller than when the unaffected side was ventilated in spite of identical V T . In conclusion, our results indicate that the presence of empyema may affect the quantitative evaluation of regional lung ventilation by EIT. (paper)

  9. Assessment and Improving Methods of Reliability Indices in Bakhtar Regional Electricity Company

    Directory of Open Access Journals (Sweden)

    Saeed Shahrezaei

    2013-04-01

    Full Text Available Reliability of a system is the ability of a system to do prospected duties in future and the probability of desirable operation for doing predetermined duties. Power system elements failures data are the main data of reliability assessment in the network. Determining antiseptic parameters is the goal of reliability assessment by using system history data. These parameters help to recognize week points of the system. In other words, the goal of reliability assessment is operation improving and decreasing of the failures and power outages. This paper is developed to assess reliability indices of Bakhtar Regional Electricity Company up to 1393 and the improving methods and their effects on the reliability indices in this network. DIgSILENT Power Factory software is employed for simulation. Simulation results show the positive effect of improving methods in reliability indices of Bakhtar Regional Electricity Company.

  10. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    Science.gov (United States)

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  11. Regional lung function (133Xe-radiospirometry) in bronchial cancer

    International Nuclear Information System (INIS)

    Arborelius, M.; Kristersson, S.; Lindell, S.E.

    1976-01-01

    In a prospective study of all patients with bronchial cancer in the city of Malmoe, all patients considered for surgery were examined with regard to overall function (conventional spirometry) and regional lung function (133-Xe-radiospirometry). Out of 116 consecutive cases examined with 133-Xe-radiospirometry before surgery,

  12. Single-Lung Transplant Results in Position Dependent Changes in Regional Ventilation: An Observational Case Series Using Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Kollengode Ramanathan

    2016-01-01

    Full Text Available Background. Lung transplantation is the optimal treatment for end stage lung disease. Donor shortage necessitates single-lung transplants (SLT, yet minimal data exists regarding regional ventilation in diseased versus transplanted lung measured by Electrical Impedance Tomography (EIT. Method. We aimed to determine regional ventilation in six SLT outpatients using EIT. We assessed end expiratory volume and tidal volumes. End expiratory lung impedance (EELI and Global Tidal Variation of Impedance were assessed in supine, right lateral, left lateral, sitting, and standing positions in transplanted and diseased lungs. A mixed model with random intercept per subject was used for statistical analysis. Results. EELI was significantly altered between diseased and transplanted lungs whilst lying on right and left side. One patient demonstrated pendelluft between lungs and was therefore excluded for further comparison of tidal variation. Tidal variation was significantly higher in the transplanted lung for the remaining five patients in all positions, except when lying on the right side. Conclusion. Ventilation to transplanted lung is better than diseased lung, especially in lateral positions. Positioning in patients with active unilateral lung pathologies will be implicated. This is the first study demonstrating changes in regional ventilation, associated with changes of position between transplanted and diseased lung.

  13. Measurements of regional lung water with 0-15 labeled water and CO-15 labeled carboxyhemoglobin

    International Nuclear Information System (INIS)

    Helmeke, H.J.; Schober, O.; Lehr, L.; Junker, D.; Meyer, G.J.; Fitschen, J.; Bossaller, C.; Hundeshagen, H.

    1982-01-01

    Determination of regional vascular lung water is only practicable by external imaging since it is the only method which allows analysis of many regions. 0-15 was produced by our medical cyclotron (MC-35) via the N-14(d,n)0-15 reaction and processed to H 2 O-15 as the diffusible and to CO-15-hemiglobin autologous erythrocytes - as the intravascular tracer. The activity over both lungs applied as a bolus into the right atrium (5-10 mCi/1 sec) was followed by a positron camera (4200; Cycl. Corp.). Data acquisition and analysis was done in a pdp 11-55 computer system. Mean transit times were computed by the 'height over area' and the 'ratio of moments' method. The extravascular lung water per unit of plasma volume (ELW/Vp) was calculated according to Fazio et al. (1976).The lungs were divided into six zones. 47 investigations in 27 patients were caried out (controls, patients with heart failure, and critically ill with respiratory distress). As expected critically ill patients (ELW/Vp = 0.39+-0.19/0.66+-0.21) demonstrated a higher ELW/Vp than those suffering from myocardial insufficiency (ELW/V = 0.30+-0.13) or controls (ELW/Vp = 0.22+-0.11). Various factors involved in the measurement of lung water are mentioned. Because of methodological considerations and the worse discrimination concerning of the 'ratio of moments' method we prefer the 'height over area' analysis in the determination of transit times. The scintigraphic estimation of the so defind regional lung water is possible as the discrimination of groups is; the follow up or quantification of regional lung water of a patient in clinical routine work seems to be not yet established under the demonstrated conditions. (Author)

  14. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Science.gov (United States)

    2010-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... 10 Energy 4 2010-01-01 2010-01-01 false Electric regions-electric region groupings for reliability... of electric regions for use with regard to the Act. The regions are identified by FERC Power Supply...

  15. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    Science.gov (United States)

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  16. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    Science.gov (United States)

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  17. Lung cancer in hilar region: the resectability evaluation with dual phase enhanced EBCT scan

    International Nuclear Information System (INIS)

    Tan Guosheng; Zhou Xuhui; Li Xiangmin; Fan Miao; Meng Quanfei; Peng Qian; Tan Zhiyu

    2005-01-01

    Objective: To explore the clinical value of duralphase enhanced electronic beam computed tomography (EBCT) scans in resectability evaluation of lung cancer located in hilar region. Methods: Dual phase enhanced EBCT scans were available for 40 cases that were initially diagnosed as 'carcinoma of lung' in hilar region. The relations between masses and trachea, bronchi, hilar and mediastinal great vessels were analyzed and compared with operation. Results: 38 cases in our series confirmed by operation and pathological examination were divided two groups: respectable (28 cases) and non-resectable (10 cases) groups. 25 cases in the former group were consistent with operation, accounting for 89.3%, and 8 cases, in the latter group, accounting for 80%. The sensitivity, specificity and accuracy of dural-phase enhanced EBCT scan evaluating the relations between masses and hilar and mediastinal structure were as follows: 92.6%, 72.7% and 86.8%. Conclusion: Dural-phase enhanced EBCT scans can provide precise and feasible pre-operative evaluation of lung cancer in hilar region. (authors)

  18. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    Science.gov (United States)

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  19. Dutch Lung Surgery Audit: A National Audit Comprising Lung and Thoracic Surgery Patients.

    Science.gov (United States)

    Berge, Martijn Ten; Beck, Naomi; Heineman, David Jonathan; Damhuis, Ronald; Steup, Willem Hans; van Huijstee, Pieter Jan; Eerenberg, Jan Peter; Veen, Eelco; Maat, Alexander; Versteegh, Michel; van Brakel, Thomas; Schreurs, Wilhemina Hendrika; Wouters, Michel Wilhelmus

    2018-04-21

    The nationwide Dutch Lung Surgery Audit (DLSA) started in 2012 to monitor and evaluate the quality of lung surgery in the Netherlands as an improvement tool. This outline describes the establishment, structure and organization of the audit by the Dutch Society of Lung Surgeons (NVvL) and the Dutch Society of Cardiothoracic Surgeons (NVT), in collaboration with the Dutch Institute for Clinical Auditing (DICA). In addition, first four-year results are presented. The NVvL and NVT initiated a web-based registration including weekly updated online feedback for participating hospitals. Data verification by external data managers is performed on regular basis. The audit is incorporated in national quality improvement programs and participation in the DLSA is mandatory by health insurance organizations and the National Healthcare Inspectorate. Between 1 January 2012 and 31 December 2015, all hospitals performing lung surgery participated and a total of 19,557 patients were registered from which almost half comprised lung cancer patients. Nationwide the guideline adherence increased over the years and 96.5% of lung cancer patients were discussed in preoperative multidisciplinary teams. Overall postoperative complications and mortality after non-small cell lung cancer surgery were 15.5% and 2.0%, respectively. The audit provides reliable benchmarked information for caregivers and hospital management with potential to start local, regional or national improvement initiatives. Currently, the audit is further completed with data from non-surgical lung cancer patients including treatment data from pulmonary oncologists and radiation oncologists. This will ultimately provide a comprehensive overview of lung cancer treatment in The Netherlands. Copyright © 2018. Published by Elsevier Inc.

  20. Assessment of regional lung ventilation by electrical impedance tomography in a patient with unilateral bronchial stenosis and a history of tuberculosis.

    Science.gov (United States)

    Marinho, Liégina Silveira; Sousa, Nathalia Parente de; Barros, Carlos Augusto Barbosa da Silveira; Matias, Marcelo Silveira; Monteiro, Luana Torres; Beraldo, Marcelo do Amaral; Costa, Eduardo Leite Vieira; Amato, Marcelo Britto Passos; Holanda, Marcelo Alcantara

    2013-01-01

    Bronchial stenosis can impair regional lung ventilation by causing abnormal, asymmetric airflow limitation. Electrical impedance tomography (EIT) is an imaging technique that allows the assessment of regional lung ventilation and therefore complements the functional assessment of the lungs. We report the case of a patient with left unilateral bronchial stenosis and a history of tuberculosis, in whom regional lung ventilation was assessed by EIT. The EIT results were compared with those obtained by ventilation/perfusion radionuclide imaging. The patient was using nasal continuous positive airway pressure (CPAP) for the treatment of obstructive sleep apnea syndrome. Therefore, we studied the effects of postural changes and of the use of nasal CPAP. The EIT revealed heterogeneous distribution of regional lung ventilation, the ventilation being higher in the right lung, and this distribution was influenced by postural changes and CPAP use. The EIT assessment of regional lung ventilation produced results similar to those obtained with the radionuclide imaging technique and had the advantage of providing a dynamic evaluation without radiation exposure.

  1. Assessment of regional lung ventilation by electrical impedance tomography in a patient with unilateral bronchial stenosis and a history of tuberculosis

    Directory of Open Access Journals (Sweden)

    Liégina Silveira Marinho

    2013-12-01

    Full Text Available Bronchial stenosis can impair regional lung ventilation by causing abnormal, asymmetric airflow limitation. Electrical impedance tomography (EIT is an imaging technique that allows the assessment of regional lung ventilation and therefore complements the functional assessment of the lungs. We report the case of a patient with left unilateral bronchial stenosis and a history of tuberculosis, in whom regional lung ventilation was assessed by EIT. The EIT results were compared with those obtained by ventilation/perfusion radionuclide imaging. The patient was using nasal continuous positive airway pressure (CPAP for the treatment of obstructive sleep apnea syndrome. Therefore, we studied the effects of postural changes and of the use of nasal CPAP. The EIT revealed heterogeneous distribution of regional lung ventilation, the ventilation being higher in the right lung, and this distribution was influenced by postural changes and CPAP use. The EIT assessment of regional lung ventilation produced results similar to those obtained with the radionuclide imaging technique and had the advantage of providing a dynamic evaluation without radiation exposure.

  2. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  3. SURVIVAL OF LUNG CANCER PATIENTS RESIDING IN TOMSK REGION (2004–2013

    Directory of Open Access Journals (Sweden)

    E. L. Choynzonov

    2017-01-01

    Full Text Available A 10-year survival of 3482 lung cancer patients residing in Tomsk region was studied. Based on the populationbased cancer registry data, the observed, corrected and relative survival rates were calculated by the actuarial method taking into consideration age, sex, disease stage and place of residence of the patients. Survival rates were lower in males than in females: the difference in the overall observed survival (OS rate was from 5.1 % (8-year OS to 7.3 % (2-year OS. An inverse relationship between survival and cancer spread was observed. Survival rates were higher for urban populations than for rural populations. The analysis indicated that most lung cancer cases were diagnosed at an advanced stage. Survival rates demonstrated relatively equal levels of cancer care in different regions of Russia. When comparing survival rates in Tomsk region with those in Europe and the USA, it was shown that one-year survival was lower in Tomsk region than in Europe and the USA, thus indicating more effective cancer screening programs in European countries and the USA.

  4. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    Science.gov (United States)

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro; Loo, Billy W Jr; Keall, Paul J [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Stanford, CA 94305-5847 (United States); Kabus, Sven; Lorenz, Cristian; Von Berg, Jens; Blaffert, Thomas [Department of Digital Imaging, Philips Research Europe, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Klinder, Tobias, E-mail: Tokihiro@stanford.edu [Clinical Informatics, Interventional, and Translational Solutions, Philips Research North America, Briarcliff Manor, NY 10510 (United States)

    2011-04-07

    A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIR{sup sur}) and volumetric (DIR{sup vol}), and two metrics: Hounsfield unit (HU) change (V{sub HU}) and Jacobian determinant of deformation (V{sub Jac}), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. V{sub HU} resulted in statistically significant differences for both DIR{sup sur} (0.14 {+-} 0.14 versus 0.29 {+-} 0.16, p = 0.01) and DIR{sup vol} (0.13 {+-} 0.13 versus 0.27 {+-} 0.15, p < 0.01). However, V{sub Jac} resulted in non-significant differences for both DIR{sup sur} (0.15 {+-} 0.07 versus 0.17 {+-} 0.08, p = 0.20) and DIR{sup vol} (0.17 {+-} 0.08 versus 0.19 {+-} 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A

  6. Assessing regional lung mechanics by combining electrical impedance tomography and forced oscillation technique.

    Science.gov (United States)

    Ngo, Chuong; Spagnesi, Sarah; Munoz, Carlos; Lehmann, Sylvia; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2017-08-29

    There is a lack of noninvasive pulmonary function tests which can assess regional information of the lungs. Electrical impedance tomography (EIT) is a radiation-free, non-invasive real-time imaging that provides regional information of ventilation volume regarding the measurement of electrical impedance distribution. Forced oscillation technique (FOT) is a pulmonary function test which is based on the measurement of respiratory mechanical impedance over a frequency range. In this article, we introduce a new measurement approach by combining FOT and EIT, named the oscillatory electrical impedance tomography (oEIT). Our oEIT measurement system consists of a valve-based FOT device, an EIT device, pressure and flow sensors, and a computer fusing the data streams. Measurements were performed on five healthy volunteers at the frequencies 3, 4, 5, 6, 7, 8, 10, 15, and 20 Hz. The measurements suggest that the combination of FOT and EIT is a promising approach. High frequency responses are visible in the derivative of the global impedance index ΔZeit(t,fos). $\\Delta {Z_{{\\text{eit}}}}(t,{f_{{\\text{os}}}}).$ The oEIT signals consist of three main components: forced oscillation, spontaneous breathing, and heart activity. The amplitude of the oscillation component decreases with increasing frequency. The band-pass filtered oEIT signal might be a new tool in regional lung function diagnostics, since local responses to high frequency perturbation could be distinguished between different lung regions.

  7. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  8. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  9. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Zhao, Zhanqi; Pulletz, Sven; Frerichs, Inéz; Müller-Lisse, Ullrich; Möller, Knut

    2014-02-06

    The electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Up to now, the GI index was evaluated for plausibility but the analysis of how it is influenced by various physiological factors is still missing. The aim of our study was to evaluate the influence of proportion of open lung regions measured by EIT on the GI index. A constant low-flow inflation maneuver was performed in 18 acute respiratory distress syndrome (ARDS) patients (58 ± 14 years, mean age ± SD) and 8 lung-healthy patients (41 ± 12 years) under controlled mechanical ventilation. EIT raw data were acquired at 25 scans/s and reconstructed offline. Recruited lung regions were identified as those image pixels of the lung regions within the EIT scans where local impedance amplitudes exceeded 10% of the maximum amplitude during the maneuver. A series of GI indices was calculated during mechanical lung inflation, based on the differential images obtained between different time points. Respiratory system elastance (Ers) values were calculated at 10 lung volume levels during low-flow maneuver. The GI index decreased during low-flow inflation, while the percentage of open lung regions increased. The values correlated highly in both ARDS (r2 = 0.88 ± 0.08, p EIT. The GI index may prove to be a useful EIT-based index to guide ventilation therapy.

  10. 75 FR 36385 - Reliability Standards Development and NERC and Regional Entity Enforcement Supplemental Notice of...

    Science.gov (United States)

    2010-06-25

    ... Standards Development and NERC and Regional Entity Enforcement Supplemental Notice of Technical Conference... development and enforcement of mandatory Reliability Standards for the Bulk-Power System by the North American Electric Reliability Corporation and the Regional Entities. The conference will be held on Tuesday, July 6...

  11. A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability

    International Nuclear Information System (INIS)

    Wen, Zhixun; Pei, Haiqing; Liu, Hai; Yue, Zhufeng

    2016-01-01

    The sequential Kriging reliability analysis (SKRA) method has been developed in recent years for nonlinear implicit response functions which are expensive to evaluate. This type of method includes EGRA: the efficient reliability analysis method, and AK-MCS: the active learning reliability method combining Kriging model and Monte Carlo simulation. The purpose of this paper is to improve SKRA by adaptive sampling regions and parallelizability. The adaptive sampling regions strategy is proposed to avoid selecting samples in regions where the probability density is so low that the accuracy of these regions has negligible effects on the results. The size of the sampling regions is adapted according to the failure probability calculated by last iteration. Two parallel strategies are introduced and compared, aimed at selecting multiple sample points at a time. The improvement is verified through several troublesome examples. - Highlights: • The ISKRA method improves the efficiency of SKRA. • Adaptive sampling regions strategy reduces the number of needed samples. • The two parallel strategies reduce the number of needed iterations. • The accuracy of the optimal value impacts the number of samples significantly.

  12. Region of interest-based versus whole-lung segmentation-based approach for MR lung perfusion quantification in 2-year-old children after congenital diaphragmatic hernia repair

    International Nuclear Information System (INIS)

    Weis, M.; Sommer, V.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W.; Zoellner, F.G.; Zahn, K.; Schaible, T.

    2016-01-01

    With a region of interest (ROI)-based approach 2-year-old children after congenital diaphragmatic hernia (CDH) show reduced MR lung perfusion values on the ipsilateral side compared to the contralateral. This study evaluates whether results can be reproduced by segmentation of whole-lung and whether there are differences between the ROI-based and whole-lung measurements. Using dynamic contrast-enhanced (DCE) MRI, pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) were quantified in 30 children after CDH repair. Quantification results of an ROI-based (six cylindrical ROIs generated of five adjacent slices per lung-side) and a whole-lung segmentation approach were compared. In both approaches PBF and PBV were significantly reduced on the ipsilateral side (p always <0.0001). In ipsilateral lungs, PBF of the ROI-based and the whole-lung segmentation-based approach was equal (p=0.50). In contralateral lungs, the ROI-based approach significantly overestimated PBF in comparison to the whole-lung segmentation approach by approximately 9.5 % (p=0.0013). MR lung perfusion in 2-year-old children after CDH is significantly reduced ipsilaterally. In the contralateral lung, the ROI-based approach significantly overestimates perfusion, which can be explained by exclusion of the most ventral parts of the lung. Therefore whole-lung segmentation should be preferred. (orig.)

  13. Region of interest-based versus whole-lung segmentation-based approach for MR lung perfusion quantification in 2-year-old children after congenital diaphragmatic hernia repair

    Energy Technology Data Exchange (ETDEWEB)

    Weis, M.; Sommer, V.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W. [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Zoellner, F.G. [Heidelberg University, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim (Germany); Zahn, K. [University of Heidelberg, Department of Paediatric Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Schaible, T. [Heidelberg University, Department of Paediatrics, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany)

    2016-12-15

    With a region of interest (ROI)-based approach 2-year-old children after congenital diaphragmatic hernia (CDH) show reduced MR lung perfusion values on the ipsilateral side compared to the contralateral. This study evaluates whether results can be reproduced by segmentation of whole-lung and whether there are differences between the ROI-based and whole-lung measurements. Using dynamic contrast-enhanced (DCE) MRI, pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) were quantified in 30 children after CDH repair. Quantification results of an ROI-based (six cylindrical ROIs generated of five adjacent slices per lung-side) and a whole-lung segmentation approach were compared. In both approaches PBF and PBV were significantly reduced on the ipsilateral side (p always <0.0001). In ipsilateral lungs, PBF of the ROI-based and the whole-lung segmentation-based approach was equal (p=0.50). In contralateral lungs, the ROI-based approach significantly overestimated PBF in comparison to the whole-lung segmentation approach by approximately 9.5 % (p=0.0013). MR lung perfusion in 2-year-old children after CDH is significantly reduced ipsilaterally. In the contralateral lung, the ROI-based approach significantly overestimates perfusion, which can be explained by exclusion of the most ventral parts of the lung. Therefore whole-lung segmentation should be preferred. (orig.)

  14. Discovery and Evaluation of Polymorphisms in the and Promoter Regions for Risk of Korean Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jae Sook Sung

    2012-09-01

    Full Text Available AKT is a signal transduction protein that plays a central role in the tumorigenesis. There are 3 mammalian isoforms of this serine/threonine protein kinase-AKT1, AKT2, and AKT3-showing a broad tissue distribution. We first discovered 2 novel polymorphisms (AKT2 -9826 C/G and AKT3 -811 A/G, and we confirmed 6 known polymorphisms (AKT2 -9473 C/T, AKT2 -9151 C/T, AKT2 -9025 C/T, AKT2 -8618G/A, AKT3 -675 A/-, and AKT3 -244 C/T of the AKT2 and AKT3 promoter region in 24 blood samples of Korean lung cancer patients using direct sequencing. To evaluate the role of AKT2 and AKT3 polymorphisms in the risk of Korean lung cancer, genotypes of the AKT2 and AKT3 polymorphisms (AKT2 -9826 C/G, AKT2 -9473 C/T, AKT2 -9151 C/T, AKT2 -9025 C/T, AKT2 -8618G/A, and AKT3 -675 A/- were determined in 360 lung cancer patients and 360 normal controls. Statistical analyses revealed that the genotypes and haplotypes in the AKT2 and AKT3 promoter regions were not significantly associated with the risk of lung cancer in the Korean population. These results suggest that polymorphisms of the AKT2 and AKT3 promoter regions do not contribute to the genetic susceptibility to lung cancer in the Korean population.

  15. Lung ultrasonography to diagnose pneumothorax of the newborn.

    Science.gov (United States)

    Liu, Jing; Chi, Jing-Han; Ren, Xiao-Ling; Li, Jie; Chen, Ya-Juan; Lu, Zu-Lin; Liu, Ying; Fu, Wei; Xia, Rong-Ming

    2017-09-01

    To explore the reliability and accuracy of lung ultrasound for diagnosing neonatal pneumothorax. This study was divided into two phases. (1) In the first phase, from January 2013 to June 2015, 40 patients with confirmed pneumothorax had lung ultrasound examinations performed to identify the sonographic characteristics of neonatal pneumothorax. (2) In the second phase, from July 2015 to August 2016, lung ultrasound was undertaken on 50 newborn infants with severe lung disease who were suspected of having pneumothorax, to evaluate the sonographic accuracy and reliability to diagnose pneumothorax. (1) The main ultrasonic manifestations of pneumothorax are as follows: ① lung sliding disappearance, which was observed in all patients (100%); ② the existence of the pleural line and the A-line, which was also observed in all patients (100%); ③ the lung point, which was found in 75% of the infants with mild-moderate pneumothorax but not found to exist in 25% of the severe pneumothorax patients; ④ the absence of B-lines in the area of the pneumothorax (100% of the pneumothorax patients); and ⑤ no lung consolidation existed in the area of the pneumothorax (100% of the pneumothorax patients). (2) The accuracy and reliability of the lung sonographic signs of lung sliding disappearance as well as the existence of the pleural line and the A-line in diagnosing pneumothorax were as follows: 100% sensitivity, 100% specificity, 100% positive predictive value, and 100% negative predictive value. When the lung point exists, the diagnosis is mild-moderate pneumothorax, whereas if no lung point exists, the diagnosis is severe pneumothorax. Lung ultrasound is accurate and reliable in diagnosing and ruling out neonatal pneumothorax and, in our study, was found to be as accurate as chest X-ray. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Computed tomography in evaluation of regional metastases of lung cancer

    International Nuclear Information System (INIS)

    Frolova, I.G.; Velichko, S.A.; Zyryanov, B.N.

    1999-01-01

    The rate of metastatic spread of different groups of intrathoracic lymph nodes has been studied in depending on localization of the tumor by the nodes using CT method. CT-semiotic of metastatic lymph nodes was studied. The indices of the efficiency of diagnostic imaging when using CT were analyzed as well. The analysis of data obtained has shown that CT has great possibilities in evaluation of regional metastases of lung cancer

  17. Reliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Luan; Wu, Fu-Zong; Wang, Yen-Chi [Kaohsiung Veterans General Hospital, Department of Radiology, Kaohsiung 813 (China); National Yang Ming University, Faculty of Medicine, School of Medicine, Taipei (China); Ju, Yu-Jeng [National Taiwan University, Department of Psychology, Taipei (China); Mar, Guang-Yuan [Kaohsiung Veterans General Hospital, Division of Cardiology, Department of Medicine, Kaohsiung 813 (China); Chuo, Chiung-Chen [Kaohsiung Veterans General Hospital, Department of Radiology, Kaohsiung 813 (China); Lin, Huey-Shyan [Fooyin University, School of Nursing, Kaohsiung (China); Wu, Ming-Ting [Kaohsiung Veterans General Hospital, Department of Radiology, Kaohsiung 813 (China); National Yang Ming University, Faculty of Medicine, School of Medicine, Taipei (China); National Yang Ming University, Institute of Clinical Medicine, Taipei (China)

    2013-05-15

    To validate the reliability of the visual coronary artery calcification score (VCACS) on low-dose CT (LDCT) for concurrent screening of CAC and lung cancer. We enrolled 401 subjects receiving LDCT for lung cancer screening and ECG-gated CT for the Agatston score (AS). LDCT was reconstructed with 3- and 5-mm slice thickness (LDCT-3mm and LDCT-5mm respectively) for VCACS to obtain VCACS-3mm and VCACS-5mm respectively. After a training session comprising 32 cases, two observers performed four-scale VCACS (absent, mild, moderate, severe) of 369 data sets independently, the results were compared with four-scale AS (0, 1-100, 101-400, >400). CACs were present in 39.6 % (146/369) of subjects. The sensitivity of VCACS-3mm was higher than for VCACS-5mm (83.6 % versus 74.0 %). The median of AS of the 24 false-negative cases in VCACS-3mm was 2.3 (range 1.1-21.1). The false-negative rate for detecting AS {>=} 10 on LDCT-3mm was 1.9 %. VCACS-3mm had higher concordance with AS than VCACS-5mm (k = 0.813 versus k = 0.685). An extended test of VCACS-3mm for four junior observers showed high inter-observer reliability (intra-class correlation = 0.90) and good concordance with AS (k = 0.662-0.747). This study validated the reliability of VCACS on LDCT for lung cancer screening and showed that LDCT-3mm was more feasible than LDCT-5mm for CAD risk stratification. (orig.)

  18. Chromogenic in situ hybridization is a reliable assay for detection of ALK rearrangements in adenocarcinomas of the lung.

    Science.gov (United States)

    Schildhaus, Hans-Ulrich; Deml, Karl-Friedrich; Schmitz, Katja; Meiboom, Maren; Binot, Elke; Hauke, Sven; Merkelbach-Bruse, Sabine; Büttner, Reinhard

    2013-11-01

    Reliable detection of anaplastic lymphoma kinase (ALK) rearrangements is a prerequisite for personalized treatment of lung cancer patients, as ALK rearrangements represent a predictive biomarker for the therapy with specific tyrosine kinase inhibitors. Currently, fluorescent in situ hybridization (FISH) is considered to be the standard method for assessing formalin-fixed and paraffin-embedded tissue for ALK inversions and translocations. However, FISH requires a specialized equipment, the signals fade rapidly and it is difficult to detect overall morphology and tumor heterogeneity. Chromogenic in situ hybridization (CISH) has been successfully introduced as an alternative test for the detection of several genetic aberrations. This study validates a newly developed ALK CISH assay by comparing FISH and CISH signal patterns in lung cancer samples with and without ALK rearrangements. One hundred adenocarcinomas of the lung were included in this study, among them 17 with known ALK rearrangement. FISH and CISH were carried out and evaluated according to the manufacturers' recommendations. For both assays, tumors were considered positive if ≥15% of tumor cells showed either isolated 3' signals or break-apart patterns or a combination of both. A subset of tumors was exemplarily examined by using a novel EML4 (echinoderm microtubule-associated protein-like 4) CISH probe. Red, green and fusion CISH signals were clearcut and different signal patterns were easily recognized. The percentage of aberrant tumor cells was statistically highly correlated (PCISH. On the basis of 86 samples that were evaluable by ALK CISH, we found a 100% sensitivity and 100% specificity of this assay. Furthermore, EML4 rearrangements could be recognized by CISH. CISH is a highly reliable, sensitive and specific method for the detection of ALK gene rearrangements in pulmonary adenocarcinomas. Our results suggest that CISH might serve as a suitable alternative to FISH, which is the current gold

  19. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC

    International Nuclear Information System (INIS)

    Bernchou, Uffe; Schytte, Tine; Bertelsen, Anders; Bentzen, Søren M.; Hansen, Olfred; Brink, Carsten

    2013-01-01

    Purpose: This study investigates the clinical radiobiology of radiation induced lung disease in terms of regional computed tomography (CT) density changes following intensity modulated radiotherapy (IMRT) for non-small-cell lung cancer (NSCLC). Methods: A total of 387 follow-up CT scans in 131 NSCLC patients receiving IMRT to a prescribed dose of 60 or 66 Gy in 2 Gy fractions were analyzed. The dose-dependent temporal evolution of the density change was analyzed using a two-component model, a superposition of an early, transient component and a late, persistent component. Results: The CT density of healthy lung tissue was observed to increase significantly (p 12 months. Conclusions: The radiobiology of lung injury may be analyzed in terms of CT density change. The initial transient change in density is consistent with radiation pneumonitis, while the subsequent stabilization of the density is consistent with pulmonary fibrosis

  20. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    Science.gov (United States)

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  1. Trends in incidence of lung cancer in Croatia from 2001 to 2013: gender and regional differences.

    Science.gov (United States)

    Siroglavić, Katarina Josipa; Polić Vižintin, Marina; Tripković, Ingrid; Šekerija, Mario; Kukulj, Suzana

    2017-10-31

    To provide an overview of the lung cancer incidence trends in the City of Zagreb (Zagreb), Split-Dalmatia County (SDC), and Croatia in the period from 2001 to 2013. Incidence data were obtained from the Croatian National Cancer Registry. For calculating incidence rates per 100 000 population, we used population estimates for the period 2001-2013 from the Croatian Bureau of Statistics. Age-standardized rates of lung cancer incidence were calculated by the direct standardization method using the European Standard Population. To describe incidence trends, we used joinpoint regression analysis. Joinpoint analysis showed a statistically significant decrease in lung cancer incidence in men in all regions, with an annual percentage change (APC) of -2.2% for Croatia, 1.9% for Zagreb, and -2.0% for SDC. In women, joinpoint analysis showed a statistically significant increase in the incidence for Croatia, with APC of 1.4%, a statistically significant increase of 1.0% for Zagreb, and no significant change in trend for SDC. In both genders, joinpoint analysis showed a significant decrease in age-standardized incidence rates of lung cancer, with APC of -1.3% for Croatia, -1.1% for Zagreb, and -1.6% for SDC. There was an increase in female lung cancer incidence rate and a decrease in male lung cancer incidence rate in Croatia in 2001-20013 period, with similar patterns observed in all the investigated regions. These results highlight the importance of smoking prevention and cessation policies, especially among women and young people.

  2. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Science.gov (United States)

    2010-04-01

    ... RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric... Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water...

  3. Computer program for regional assessment of lung perfusion defect. Part II - verification of the algorithm

    International Nuclear Information System (INIS)

    Stefaniak, B.

    2002-01-01

    As described earlier, a dedicated computer program was developed for quantitative evaluation of regional lung perfusion defects, visualized by pulmonary scintigraphy. The correctness of the basic assumptions accepted to construct the algorithms and of the all program functions needed to be checked, before application of the program into the clinical routine. The aim of this study was to verified the program using various software instruments and physical models. Evaluation of the proposed method was performed using software procedures, physical lung phantom, and selected lung image.The reproducibility of lung regions, defined by the program was found excellent. No significant distortion of registered data was observed after ROI transformation into the circle and retransformation into the original shape. The obtained results comprised parametric presentation of activity defects as well as a set of numerical indices which defined extent and intensity of decreased counts density. Among these indices PD2 and DM* were proved the most suitable for the above purposes. The obtained results indicate that the algorithms used for the program construction were correct and suitable for the aim of the study. The above algorithms enable function under study to be presented graphically with true imaging of activity distribution, as well as numerical indices, defining extent and intensity of activity defects to calculated. (author)

  4. [The Evaluation of Medical Demographic and Economic Losses of the Region Conditioned by Mortality of Lung Cancer].

    Science.gov (United States)

    Zukov, R A; Modestov, A A; Safontsev, I P; Slepov, E V; Narkevich, A N

    2017-11-01

    The article presents evaluation of medical demographic and economic losses of population of the Krasnoyarskii kraii conditioned by mortality of lung cancer in 2010-2014 using DALY technology. In the Krasnoyarskii kraii, during 2010-2014 64,712 individuals died because of lung cancer. The mortality of male population surpasses corresponding indices of mortality of females up to 3.9 times. In the region, the standardized indicator mortality of lung cancer among males annually surpasses the same indicator among females at maximum up to 8.1 times. The DALY maximal absolute losses of among males were registered in 2010 and 2013 and fell on age group of 55-59 years and among females on the age group of 60-64 years in 2014. The maximal (up to 5.2 times) difference in values of DALY indicator was established in 2010 between male and female population. the maximal gap in in DALY indices between male and female population was established in the age of 55-59 years. Almost half of DALY losses among males was established in 2013 and among females in 2014. The total losses of gross regional product in the region because of mortality conditioned by lung cancer made up to 29.8 billions of rubles in 2010-2014.

  5. Prediction of postoperative lung function after pulmonary resection

    International Nuclear Information System (INIS)

    Yoshikawa, Koichi

    1988-01-01

    Lung scintigraphy and ordinary lung function test as well as split lung function test by using bronchospirometry was performed in 78 patients with primary lung cancer and clinical significance of ventilation and perfusion scintigraphy was evaluated. Results obtained from this study are as follows. 1) The ratio of right VC to total VC obtained by preoperative bronchospirometry was well correlated to the ratio of right lung count to the total lung count obtained by ventiration and/or perfusion scintigraphy (r = 0.84, r = 0.69). 2) Evaluation of the data obtained from the patients undergoing pneumonectomy indicated that the right and left VC obtained preoperatively by bronchospirometry have their clinical significance only in the form of left to right ratio not in the form their absolure value. 3) As to the reliability of predicting the residual vital capacity after pneumonectomy on the basis of left-to-right of lung scintigraphy, ventilation scintigraphy is more reliable than perfusion scintigraphy. 4) Irrespective of using ventilation scintigraphy or perfusion scintigraphy, Ali's formular showed high reliability in predicting the residual vital capacity as well as FEV 1.0 after lobectomy. 5) Reduction of the perfusion rate in the operated side of the lung is more marked than of the ventilation rate, resulting in a significant elevation of ventilation/perfusion ratio of the operated side of the lung. From the results descrived above, it can be said that lung ventilation and perfusion scintigraphy are very useful method to predict the residual lung function as well as the change of ventilation/perfusion ratio after pulmonary resection. (author)

  6. 75 FR 40819 - Reliability Standards Development and NERC and Regional Entity Enforcement; Notice Soliciting...

    Science.gov (United States)

    2010-07-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD10-14-000] Reliability Standards Development and NERC and Regional Entity Enforcement; Notice Soliciting Comments July 7, 2010... technical conference to explore issues pertaining to the development of mandatory Reliability Standards for...

  7. Clinico-pathology of lung cancer in a regional cancer center in Northeastern India.

    Science.gov (United States)

    Mandal, Sanjeet Kumar; Singh, Thaudem Tomcha; Sharma, Takhenchangbam Dhaneshor; Amrithalingam, Venkatesan

    2013-01-01

    Globally, there have been important changes in trends amongst gender, histology and smoking patterns of lung cancer cases. This retrospective study was conducted on 466 patients with lung cancer who were registered in Regional Cancer Center, Regional Institute of Medical Sciences, Manipur from January 2008 to December 2012. Most were more than 60 years of age (67.8%) with a male: female ratio of 1.09:1. Some 78.8% of patients were chronic smokers with male smoker to female smoker ratio of 1.43:1. Consumption of alcohol was found in 29.4%, both smoking and alcohol in 27.5%, betel nut chewing in 37.9% and tobacco chewing in 25.3%. A history of tuberculosis was present in 16.3% of patients. The most frequent symptom was coughing (36.6%) and most common radiological presentation was a mass lesion (70%). Most of the patients had primary lung cancer in the right lung (60.3%). The most common histological subtype was squamous cell carcinoma (49.1%), also in the 40-60 year age group (45.9%), more than 60 year age group (51.6%), males (58.1%) and females (41.8%). As many as 91.9% of squamous cell carcinoma patients had a history of smoking. About 32.5% of patients had distant metastasis at presentation with brain (23.8%) and positive malignant cells in pleural effusions (23.1%) as common sites. The majority of patients were in stage III (34.4%), stage IV (32.5%) and stage II (30.2%). Our analysis suggests that the gender gap has been narrowed such that about half of the patients diagnosed with lung cancer are women in this part of India. This alarming rise in female incidence is mainly attributed to an increased smoking pattern. Squamous cell carcinoma still remains the commonest histological subtype. Most of the patients were elderly aged and presented at locally or distantly advanced stages.

  8. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  9. Aspergillus spp. colonization in exhaled breath condensate of lung cancer patients from Puglia Region of Italy.

    Science.gov (United States)

    Carpagnano, Giovanna E; Lacedonia, Donato; Palladino, Grazia Pia; Logrieco, Giuseppe; Crisetti, Elisabetta; Susca, Antonia; Logrieco, Antonio; Foschino-Barbaro, Maria P

    2014-02-18

    Airways of lung cancer patients are often colonized by fungi. Some of these colonizing fungi, under particular conditions, produce cancerogenic mycotoxins. Given the recent interest in the infective origin of lung cancer, with this preliminary study we aim to give our small contribution to this field of research by analysing the fungal microbiome of the exhaled breath condensate of lung cancer patients from Puglia, a region of Italy. We enrolled 43 lung cancer patients and 21 healthy subjects that underwent exhaled breath condensate and bronchial brushing collection. The fungal incidence and nature of sample collected were analysed by using a selected media for Aspergillus species. For the first time we were able to analyse the fungal microbioma of the exhaled breath condensate. 27.9% of lung cancer patients showed a presence of Aspergillus niger, or A. ochraceus or Penicillium ssp. while none of the healthy subjects did so. The results confirmed the high percentage of fungal colonization of the airways of lung cancer patients from Puglia, suggesting the need to conduct further analyses in this field in order to evaluate the exact pathogenetic role of these fungi in lung cancer as well as to propose efficient, empirical therapy.

  10. WE-AB-202-02: Incorporating Regional Ventilation Function in Predicting Radiation Fibrosis After Concurrent Chemoradiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lan, F; Jeudy, J; Tseng, H; Zhou, J; D’Souza, W; Zhang, H [University of Maryland, Baltimore, MD (United States); Senan, S; Sornsen de Koste, J van [VU University Medical Center, Amsterdam (Netherlands)

    2016-06-15

    Purpose: To investigate the incorporation of pre-therapy regional ventilation function in predicting radiation fibrosis (RF) in stage III non-small-cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: 37 stage III NSCLC patients were retrospectively studied. Patients received one cycle of cisplatin-gemcitabine, followed by two to three cycles of cisplatin-etoposide concurrently with involved-field thoracic radiotherapy between 46 and 66 Gy (2 Gy per fraction). Pre-therapy regional ventilation images of the lung were derived from 4DCT via a density-change-based image registration algorithm with mass correction. RF was evaluated at 6-months post-treatment using radiographic scoring based on airway dilation and volume loss. Three types of ipsilateral lung metrics were studied: (1) conventional dose-volume metrics (V20, V30, V40, and mean-lung-dose (MLD)), (2) dose-function metrics (fV20, fV30, fV40, and functional mean-lung-dose (fMLD) generated by combining regional ventilation and dose), and (3) dose-subvolume metrics (sV20, sV30, sV40, and subvolume mean-lung-dose (sMLD) defined as the dose-volume metrics computed on the sub-volume of the lung with at least 60% of the quantified maximum ventilation status). Receiver operating characteristic (ROC) curve analysis and logistic regression analysis were used to evaluate the predictability of these metrics for RF. Results: In predicting airway dilation, the area under the ROC curve (AUC) values for (V20, MLD), (fV20, fMLD), and (sV20, and sMLD) were (0.76, 0.70), (0.80, 0.74) and (0.82, 0.80), respectively. The logistic regression p-values were (0.09, 0.18), (0.02, 0.05) and (0.004, 0.006), respectively. With regard to volume loss, the corresponding AUC values for these metrics were (0.66, 0.57), (0.67, 0.61) and (0.71, 0.69), and p-values were (0.95, 0.90), (0.43, 0.64) and (0.08, 0.12), respectively. Conclusion: The inclusion of regional ventilation function improved

  11. The Japan Lung Cancer Society–Japanese Society for Radiation Oncology consensus-based computed tomographic atlas for defining regional lymph node stations in radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Itazawa, Tomoko; Tamaki, Yukihisa; Komiyama, Takafumi; Nishimura, Yasumasa; Nakayama, Yuko; Ito, Hiroyuki; Ohde, Yasuhisa; Kusumoto, Masahiko; Sakai, Shuji; Suzuki, Kenji; Watanabe, Hirokazu; Asamura, Hisao

    2017-01-01

    The purpose of this study was to develop a consensus-based computed tomographic (CT) atlas that defines lymph node stations in radiotherapy for lung cancer based on the lymph node map of the International Association for the Study of Lung Cancer (IASLC). A project group in the Japanese Radiation Oncology Study Group (JROSG) initially prepared a draft of the atlas in which lymph node Stations 1–11 were illustrated on axial CT images. Subsequently, a joint committee of the Japan Lung Cancer Society (JLCS) and the Japanese Society for Radiation Oncology (JASTRO) was formulated to revise this draft. The committee consisted of four radiation oncologists, four thoracic surgeons and three thoracic radiologists. The draft prepared by the JROSG project group was intensively reviewed and discussed at four meetings of the committee over several months. Finally, we proposed definitions for the regional lymph node stations and the consensus-based CT atlas. This atlas was approved by the Board of Directors of JLCS and JASTRO. This resulted in the first official CT atlas for defining regional lymph node stations in radiotherapy for lung cancer authorized by the JLCS and JASTRO. In conclusion, the JLCS–JASTRO consensus-based CT atlas, which conforms to the IASLC lymph node map, was established.

  12. Radon and lung cancer in the Ardennes and Eifel region

    International Nuclear Information System (INIS)

    Wichmann, H.E.; Poffijn, C.

    1993-01-01

    The objectives of the project are to perform epidemiological studies on the role of radon in the etiology of lung cancer in the Ardennes-Eifel region and in Brittany. In each of the participating countries, Belgium, France, Germany and Luxemburg cases and controls were collected in a series of hospitals. The radon exposure for the last 35 years was reconstructed through 6 months measurements in the living and bedrooms of the different dwellings. The objectives and results of the eight contributions to the project for the reporting period are presented. (R.P.) 1 ref

  13. Classification of hospital pathways in the management of cancer: application to lung cancer in the region of burgundy.

    Science.gov (United States)

    Nuemi, G; Afonso, F; Roussot, A; Billard, L; Cottenet, J; Combier, E; Diday, E; Quantin, C

    2013-10-01

    The evaluation of national cancer plans is an important aspect of their implementation. For this evaluation, the principal actors in the field (doctors, nurses, etc.) as well as decision-makers must have access to information that is reliable, synthetic and easy to interpret, and which reflects the implementation process in the field. We propose here a methodology to make this type of information available in the context of reducing inequalities with regard to access to healthcare for patients with lung cancer in the region of Burgundy. We used the national medico-administrative DRG-type database, which gathers together all hospital stays. By using this database, it was possible to identify and reconstruct the care management history of these patients. That is, by linking together all attended hospitals, sorted chronologically. Eligible patients were at least 18 years old, whatever the gender and had undergone surgery for their lung cancer. They had to be residents of Burgundy at the time of the first operation between 2006 and 2008. Patient's pathway was defined as the sequence of all attended hospitals (hospital stays) during the year of follow up linked together using an anonymised patient identifier. We then constructed a pathway typology of pathway using an unsupervised clustering method, and conducted a spatial analysis of this typology. Between 2006 and 2008, we selected 495 patients in the 4 administrative departments of the Burgundy region. They accounted for a total of 3821 stays during the year of follow-up. There were 393 men (79%) and the mean age was 64 (95% confidence interval: 63-65) years. We reconstructed 94 pathways (about five per patient). Here, neighbourhood's cares accounted for 41% of them, while 44% included a surgical intervention outside the region of Burgundy. We constructed a pathway typology with five classes. Spatial analysis showed that the vast majority of initial surgeries took place in the major regional centres. The construction

  14. A polymorphism in miR-1262 regulatory region confers the risk of lung cancer in Chinese population.

    Science.gov (United States)

    Xie, Kaipeng; Chen, Mengxi; Zhu, Meng; Wang, Cheng; Qin, Na; Liang, Cheng; Song, Ci; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Lin, Dongxin; Ma, Hongxia; Hu, Zhibin

    2017-09-01

    It has been proposed that the majority of disease-associated loci identified by genome-wide association studies (GWAS) are enriched in non-coding regions, such as the promoter, enhancer or non-coding RNA genes. Thus, we performed a two-stage case-control study to systematically evaluate the association of genetic variants in miRNA regulatory regions (promoter and enhancer) with lung cancer risk in 7,763 subjects (discovery stage: 2,331 cases and 3,077 controls; validation stage: 1,065 cases and 1,290 controls). As a result, we identified that rs12740674 (C > T) in miR-1262 enhancer was significantly associated with the increased risk of lung cancer (additive model in discovery stage: adjusted OR = 1.31, 95%CI = 1.13-1.53, p = 3.846 × 10 -4 in Nanjing GWAS; adjusted OR = 1.20, 95%CI = 1.00-1.44, p = 0.041 in Beijing GWAS; validation stage: adjusted OR = 1.20, 95%CI = 1.03-1.41, p = 0.024). In meta-analysis, the p value for the association between rs12740674 and lung cancer risk reached 6.204 × 10 -6 (adjusted OR = 1.24, 95%CI = 1.13-1.36). Using 3DSNP database, The Cancer Genome Atlas (TCGA) data and functional assays, we observed that the risk T allele of rs12740674 reduced the expression level of miR-1262 in lung tissue through chromosomal looping, and overexpression of miR-1262 inhibited lung cancer cell proliferation probably through targeting the expression levels of ULK1 and RAB3D. Our findings confirmed the important role that genetic variants of noncoding sequence play in lung cancer susceptibility and indicated that rs12740674 in miR-1262 may be biologically relevant to lung carcinogenesis. © 2017 UICC.

  15. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    Science.gov (United States)

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Regional process redesign of lung cancer care: a learning health system pilot project.

    Science.gov (United States)

    Fung-Kee-Fung, M; Maziak, D E; Pantarotto, J R; Smylie, J; Taylor, L; Timlin, T; Cacciotti, T; Villeneuve, P J; Dennie, C; Bornais, C; Madore, S; Aquino, J; Wheatley-Price, P; Ozer, R S; Stewart, D J

    2018-02-01

    The Ottawa Hospital (toh) defined delay to timely lung cancer care as a system design problem. Recognizing the patient need for an integrated journey and the need for dynamic alignment of providers, toh used a learning health system (lhs) vision to redesign regional diagnostic processes. A lhs is driven by feedback utilizing operational and clinical information to drive system optimization and innovation. An essential component of a lhs is a collaborative platform that provides connectivity across silos, organizations, and professions. To operationalize a lhs, we developed the Ottawa Health Transformation Model (ohtm) as a consensus approach that addresses process barriers, resistance to change, and conflicting priorities. A regional Community of Practice (cop) was established to engage stakeholders, and a dedicated transformation team supported process improvements and implementation. The project operationalized the lung cancer diagnostic pathway and optimized patient flow from referral to initiation of treatment. Twelve major processes in referral, review, diagnostics, assessment, triage, and consult were redesigned. The Ottawa Hospital now provides a diagnosis to 80% of referrals within the provincial target of 28 days. The median patient journey from referral to initial treatment decreased by 48% from 92 to 47 days. The initiative optimized regional integration from referral to initial treatment. Use of a lhs lens enabled the creation of a system that is standardized to best practice and open to ongoing innovation. Continued transformation initiatives across the continuum of care are needed to incorporate best practice and optimize delivery systems for regional populations.

  17. Lung region extraction based on the model information and the inversed MIP method by using chest CT images

    International Nuclear Information System (INIS)

    Tomita, Toshihiro; Miguchi, Ryosuke; Okumura, Toshiaki; Yamamoto, Shinji; Matsumoto, Mitsuomi; Tateno, Yukio; Iinuma, Takeshi; Matsumoto, Toru.

    1997-01-01

    We developed a lung region extraction method based on the model information and the inversed MIP method in the Lung Cancer Screening CT (LSCT). Original model is composed of typical 3-D lung contour lines, a body axis, an apical point, and a convex hull. First, the body axis. the apical point, and the convex hull are automatically extracted from the input image Next, the model is properly transformed to fit to those of input image by the affine transformation. Using the same affine transformation coefficients, typical lung contour lines are also transferred, which correspond to rough contour lines of input image. Experimental results applied for 68 samples showed this method quite promising. (author)

  18. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  19. 75 FR 65964 - Version One Regional Reliability Standard for Resource and Demand Balancing

    Science.gov (United States)

    2010-10-27

    ... this record and, thus, does not persuade us.\\35\\ \\33\\ WECC's analysis shows that, over the past 15... notes that the currently approved regional Reliability Standard was established through negotiations in...

  20. Automatic Classification of Normal and Cancer Lung CT Images Using Multiscale AM-FM Features

    Directory of Open Access Journals (Sweden)

    Eman Magdy

    2015-01-01

    Full Text Available Computer-aided diagnostic (CAD systems provide fast and reliable diagnosis for medical images. In this paper, CAD system is proposed to analyze and automatically segment the lungs and classify each lung into normal or cancer. Using 70 different patients’ lung CT dataset, Wiener filtering on the original CT images is applied firstly as a preprocessing step. Secondly, we combine histogram analysis with thresholding and morphological operations to segment the lung regions and extract each lung separately. Amplitude-Modulation Frequency-Modulation (AM-FM method thirdly, has been used to extract features for ROIs. Then, the significant AM-FM features have been selected using Partial Least Squares Regression (PLSR for classification step. Finally, K-nearest neighbour (KNN, support vector machine (SVM, naïve Bayes, and linear classifiers have been used with the selected AM-FM features. The performance of each classifier in terms of accuracy, sensitivity, and specificity is evaluated. The results indicate that our proposed CAD system succeeded to differentiate between normal and cancer lungs and achieved 95% accuracy in case of the linear classifier.

  1. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  2. AUTOMATIC LUNG NODULE DETECTION BASED ON STATISTICAL REGION MERGING AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Elaheh Aghabalaei Khordehchi

    2017-06-01

    Full Text Available Lung cancer is one of the most common diseases in the world that can be treated if the lung nodules are detected in their early stages of growth. This study develops a new framework for computer-aided detection of pulmonary nodules thorough a fully-automatic analysis of Computed Tomography (CT images. In the present work, the multi-layer CT data is fed into a pre-processing step that exploits an adaptive diffusion-based smoothing algorithm in which the parameters are automatically tuned using an adaptation technique. After multiple levels of morphological filtering, the Regions of Interest (ROIs are extracted from the smoothed images. The Statistical Region Merging (SRM algorithm is applied to the ROIs in order to segment each layer of the CT data. Extracted segments in consecutive layers are then analyzed in such a way that if they intersect at more than a predefined number of pixels, they are labeled with a similar index. The boundaries of the segments in adjacent layers which have the same indices are then connected together to form three-dimensional objects as the nodule candidates. After extracting four spectral, one morphological, and one textural feature from all candidates, they are finally classified into nodules and non-nodules using the Support Vector Machine (SVM classifier. The proposed framework has been applied to two sets of lung CT images and its performance has been compared to that of nine other competing state-of-the-art methods. The considerable efficiency of the proposed approach has been proved quantitatively and validated by clinical experts as well.

  3. Interactions of heart disease and lung disease on radionuclide tests of lung anatomy and function

    International Nuclear Information System (INIS)

    Pierson, R.N. Jr.; Barrett, C.R. Jr.; Yamashina, A.; Friedman, M.I.

    1984-01-01

    This paper considers the effects of heat diseases on lung anatomy, lung function, and pulmonary nuclear test procedures, and also the effects of lung diseases on cardiac function, with particular reference to radionuclide tests. Historically, pulmonary nuclear medicine has been focused on discovering and quantifying pulmonary embolism, but the potential of nuclear tracer techniques to carry out high-precision, regional, quantitative measurements of blood flow, air flow, and membrane transport promises a much more powerful and wide-ranging diagnostic application than the search for pulmonary emboli. The authors therefore define normal anatomy and function in a framework suitable to develop the relationships between cardiac and pulmonary function, with particular attention to regional differences in lung function, since regional measurements provide a special province for radionuclide lung studies

  4. Interrater Reliability of the Categorization of Late Radiographic Changes After Lung Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, Salman [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON (Canada); Giuliani, Meredith E., E-mail: meredith.giuliani@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON (Canada); Raziee, Hamid; Yap, Mei Ling [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON (Canada); Roberts, Heidi [Department of Radiology, University Health Network, Toronto, Ontario (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Brade, Anthony; Cho, John; Sun, Alexander; Bezjak, Andrea; Hope, Andrew J. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON (Canada)

    2014-08-01

    Purpose: Radiographic changes after lung stereotactic body radiation therapy (SBRT) have been categorized into 4 groups: modified conventional pattern (A), mass-like fibrosis; (B), scar-like fibrosis (C), and no evidence of increased density (D). The purpose of this study was to assess the interrater reliability of this categorization system in patients with early-stage non-small cell lung cancer (NSCLC). Methods and Materials: Seventy-seven patients were included in this study, all treated with SBRT for early-stage (T1/2) NSCLC at a single institution, with a minimum follow-up of 6 months. Six experienced clinicians familiar with post-SBRT radiographic changes scored the serial posttreatment CT images independently in a blinded fashion. The proportion of patients categorized as A, B, C, or D at each interval was determined. Krippendorff's alpha (KA), Multirater kappa (M-kappa), and Gwet's AC1 (AC1) scores were used to establish interrater reliability. A leave-one-out analysis was performed to demonstrate the variability among raters. Interrater agreement of the first and last 20 patients scored was calculated to explore whether a training effect existed. Results: The number of ratings ranged from 450 at 6 months to 84 at 48 months of follow-up. The proportion of patients in each category was as follows: A, 45%; B, 16%; C, 13%; and D, 26%. KA and M-kappa ranged from 0.17 to 0.34. AC1 measure range was 0.22 to 0.48. KA increased from 0.24 to 0.36 at 12 months with training. The percent agreement for pattern A peaked at 12 month with a 54% chance of having >50% raters in agreement and decreased over time, whereas that for patterns B and C increased over time to a maximum of 20% and 22%, respectively. Conclusion: This post-SBRT radiographic change categorization system has modest interrater agreement, and there is a suggestion of a training effect. Patterns of fibrosis evolve after SBRT and alternative categorization systems should be evaluated.

  5. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  6. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  7. Study of the ventilatory lung motion imaging in primary lung cancer

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie.

    1996-01-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  8. Study of the ventilatory lung motion imaging in primary lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). Shool of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie

    1996-12-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  9. Regional Emphysema Score Predicting Overall Survival, Quality of Life, and Pulmonary Function Recovery in Early-Stage Lung Cancer Patients.

    Science.gov (United States)

    Dai, Jie; Liu, Ming; Swensen, Stephen J; Stoddard, Shawn M; Wampfler, Jason A; Limper, Andrew H; Jiang, Gening; Yang, Ping

    2017-05-01

    Pulmonary emphysema is a frequent comorbidity in lung cancer, but its role in tumor prognosis remains obscure. Our aim was to evaluate the impact of the regional emphysema score (RES) on a patient's overall survival, quality of life (QOL), and recovery of pulmonary function in stage I to II lung cancer. Between 1997 and 2009, a total of 1073 patients were identified and divided into two surgical groups-cancer in the emphysematous (group 1 [n = 565]) and nonemphysematous (group 2 [n = 435]) regions-and one nonsurgical group (group 3 [n = 73]). RES was derived from the emphysematous region and categorized as mild (≤5%), moderate (6%-24%), or severe (25%-60%). In group 1, patients with a moderate or severe RES experienced slight decreases in postoperative forced expiratory volume in 1 second, but increases in the ratio of forced expiratory volume in 1 second to forced vital capacity compared with those with a mild RES (p < 0.01); however, this correlation was not observed in group 2. Posttreatment QOL was lower in patients with higher RESs in all groups, mainly owing to dyspnea (p < 0.05). Cox regression analysis revealed that patients with a higher RES had significantly poorer survival in both surgical groups, with adjusted hazard ratios of 1.41 and 1.43 for a moderate RES and 1.63 and 2.04 for a severe RES, respectively; however, this association was insignificant in the nonsurgical group (adjusted hazard ratio of 0.99 for a moderate or severe RES). In surgically treated patients with cancer in the emphysematous region, RES is associated with postoperative changes in lung function. RES is also predictive of posttreatment QOL related to dyspnea in early-stage lung cancer. In both surgical groups, RES is an independent predictor of survival. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. 76 FR 66057 - North American Electric Reliability Corporation; Order Approving Regional Reliability Standard

    Science.gov (United States)

    2011-10-25

    ... Reliability Standard that is necessitated by a physical difference in the Bulk-Power System.\\7\\ \\7\\ Order No... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g... electric system event analyses and thereby improve system reliability by promoting improved system design...

  11. Radiology compared with xenon—133 scanning and bronchoscopic lobar sampling as methods for assessing regional lung function in patients with emphysema

    Science.gov (United States)

    Barter, C. E.; Hugh-Jones, P.; Laws, J. W.; Crosbie, W. A.

    1973-01-01

    Regional lung function was assessed by radiographic methods, by regional function studies using xenon-133 scans, and by lobar sampling with a mass spectrometer flow-meter at bronchoscopy in 12 patients who subsequently had bullae resected at operation. The information given by these three methods of regional assessment was subsequently compared with the findings at operation. When only one lobe was abnormal on the radiographs, these alone were adequate to locate the major site of the emphysema and the regional tests gave relatively little extra information. The xenon scan was sometimes helpful in assessing the state of the remaining lung, but this information could be deduced from the radiographs and overall lung function tests, especially the carbon monoxide transfer and mechanical measurements. Bronchoscopic sampling was helpful in determining whether the affected lobe was acting as a ventilated dead-space. When more than one lobe was affected the regional function tests supplemented the radiographs in defining the site of bullous change as well as locating dead space. Xenon scans, although widely employed for such preoperative assessments, added little to the topographical information obtained by careful radiology. The combination of radiology, lobar sampling, and overall function tests is recommended for assessing which emphysematous patients are likely to benefit from surgery. Images PMID:4685209

  12. Electrical impedance tomography: A new monitoring of regional distribution of lung ventilation (principle of work and clinical application

    Directory of Open Access Journals (Sweden)

    Vuković Rade

    2017-01-01

    Full Text Available Soon after it's discovery in the 1980s, the Electrical Impedance Tomography (EIT, became the topic of interest, primarily regarding its applicability in different diagnostic procedures and monitoring. EIT is a non-invasive procedure, with no additional harmful radiation, which can be used continuously to monitor regional distribution of ventilation, in contrast to the computerized tomography and other diagnostic procedures that have a single image of the respiratory system and its function. Additionally, EIT allows continuous visualization of the lung function at the patient bedside, with an immediate assessment of the respiratory therapeutic maneuvers effects. The results obtained by EIT are complementary to other pulmonary diagnostic procedures, primarily from radiology. In general, EIT provides additional information to the conventional pulmonary monitoring. Crucial to the implementation of lung protective ventilation concept is to determine the ideal alveolar recruitment, which maintains open and functional alveoli during ventilation, meanwhile carrying a minimal risk for lung injury with excessive breathing volume ('over distension'. EIT may be considered as a good guide for optimal adjustment of respiratory support parameters and selection of the ventilation mode. Nowadays, the technical and technological development, hardware and software improvements and experimental validation of the results in animals and volunteers, have enabled practical clinical use of EIT, a useful monitor of regional distribution of lungs ventilation.

  13. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.

    Science.gov (United States)

    Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E

    2018-06-08

    The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.

  14. Quantitative evaluation of the lung cancer deaths attributable to residential radon: A simple method and results for all the 21 Italian Regions

    International Nuclear Information System (INIS)

    Bochicchio, F.; Antignani, S.; Venoso, G.; Forastiere, F.

    2013-01-01

    Pooled analyses of epidemiological case-control studies on lung cancer and residential radon have shown that radon exposure in dwellings increases lung cancer risk, and that the increase is statistically significant also for prolonged exposures to low-medium level of radon concentration, i.e. levels commonly found in many dwellings. In this paper, a simple method to evaluate the health burden due to the presence of radon in homes (i.e. the number of lung cancer deaths attributable to radon exposure in dwellings) was presented. This method is based on the following parameters: i) the excess relative risk per unit of exposure evaluated in case-control studies; ii) the average radon concentration that can be considered representative of population exposure in dwellings; iii) the total number of lung cancer deaths occurring each year. Moreover, the interaction between radon and cigarette smoking is needed to be taken into account: in fact, although most of the persons are non-smokers, most of the lung cancer deaths attributed to radon are actually due to the multiplicative effect of radon and cigarette smoking. To show this effect, the number of radon related lung cancer deaths estimated to occur among current, former and never smokers was calculated separately for males and females, taking into account the relative risk of lung cancer for the different smoking categories and the prevalence of smoking habits. The methodology described in this work was applied to all the 21 Italian Regions in order to illustrate it. The overall fraction of lung cancer deaths attributable to radon in Italy is about 10%, with values in individual Regions ranging from 4% to 16%. The greater part of the lung cancers attributable to radon is estimated to occur among current smokers for both males and females (72% and 60%, respectively, at national level). This is due to the synergistic effects of radon and cigarette smoking, which should therefore be taken into account in policies aimed to

  15. Reliability of the MODS assay decentralisation process in three health regions in Peru

    Science.gov (United States)

    Mendoza, A.; Castillo, E.; Gamarra, N.; Huamán, T.; Perea, M.; Monroi, Y.; Salazar, R.; Coronel, J.; Acurio, M.; Obregón, G.; Roper, M.; Bonilla, C.; Asencios, L.; Moore, D. A. J.

    2011-01-01

    OBJECTIVE To deliver rapid isoniazid (INH) and rifampicin (RMP) drug susceptibility testing (DST) close to the patient, we designed a decentralisation process for the microscopic observation drug susceptibility (MODS) assay in Peru and evaluated its reliability. METHODS After 2 weeks of training, laboratory staff processed ≥120 consecutive sputum samples each in three regional laboratories. Samples were processed in parallel with MODS testing at an expert laboratory. Blinded paired results were independently analysed by the Instituto Nacional de Salud (INS) according to predetermined criteria: concordance for culture, DST against INH and RMP and diagnosis of multidrug-resistant t uberculosis (MDR-TB) ≥ 95%, McNemar's P > 0.05, kappa index (κ) ≥ 0.75 and contamination 1–4%. Sensitivity and specificity for MDR-TB were calculated. RESULTS The accreditation process for Callao (126 samples, 79.4% smear-positive), Lima Sur (n = 130, 84%) and Arequipa (n = 126, 80%) took respectively 94, 97 and 173 days. Pre-determined criteria in all regional laboratories were above expected values. The sensitivity and specificity for detecting MDR-TB in regional laboratories were >95%, except for sensitivity in Lima Sur, which was 91.7%. Contamination was 1.0–2.3%. Mean delay to positive MODS results was 9.9–12.9 days. CONCLUSION Technology transfer of MODS was reliable, effective and fast, enabling the INS to accredit regional laboratories swiftly. PMID:21219684

  16. Outcome following radiotherapy for loco-regionally recurrent non-small cell lung cancer

    International Nuclear Information System (INIS)

    Foo, K.; Yeghiaian-Alvandi, R.; Foroudi, F.

    2005-01-01

    Local and regional recurrence of non-small cell lung cancer is reported to occur in 13-20% of treatment failures after resection. Reported post-recurrent median survival following radiotherapy ranges from 9 to 14 months. This study examines survival following radiotherapy alone for patients with loco-regionally recurring non-small cell lung cancer after initial surgery. Fifty-five patients, receiving radiotherapy at Westmead Hospital between 1979 and 1997, were eligible for study. Data were collected retrospectively by reviewing patient records. The end-point was overall survival. Symptom control was also recorded. Prognostic factors for analysis included age, sex, original presenting stage, disease-free interval (DFI), performance status, site of recurrence, treatment intent and dose. The median overall survival was 11.5 months (95% confidence interval: 8.1-13.0). Survival following treatment with radical intent was 26 months compared to 10.5 months for patients treated with palliative intent (P = 0.025). There was no significant difference in survival for short (<2 years) or long DFI, performance status, radiation dose, age, sex, site of recurrence or stage. Most patients (55%) had partial or complete resolution of symptoms. Radiotherapy results in overall post-recurrence median survival of nearly 1 year, consistent with previous published data. Radical treatment intent predicts better prognosis as a result of patient selection and higher dose. Radiotherapy is effective at palliating symptoms of this disease Copyright (2005) Blackwell Publishing Asia Pty Ltd

  17. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study.

    Science.gov (United States)

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-02-29

    While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Computer-based simulation model. Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Consequences of screening in lung cancer: development and dimensionality of a questionnaire

    DEFF Research Database (Denmark)

    Brodersen, John; Thorsen, Hanne; Kreiner, Svend

    2010-01-01

    The objective of this study was to extend the Consequences of Screening (COS) Questionnaire for use in a lung cancer screening by testing for comprehension, content coverage, dimensionality, and reliability.......The objective of this study was to extend the Consequences of Screening (COS) Questionnaire for use in a lung cancer screening by testing for comprehension, content coverage, dimensionality, and reliability....

  19. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    Science.gov (United States)

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  1. 77 FR 59151 - Regional Reliability Standard PRC-006-NPCC-1-Automatic Underfrequency Load Shedding

    Science.gov (United States)

    2012-09-26

    ... approval. The proposed regional Reliability Standard applies to generator owners, planning coordinators... Commission, Secretary of the Commission, 888 First Street NE., Washington, DC 20426. Instructions: For... Commission, 888 First Street NE., Washington, DC 20426, Telephone: (202) 502-6750, [email protected

  2. Oral mucosa and lung cancer: Are genetic changes in the oral ...

    African Journals Online (AJOL)

    2016-02-03

    Feb 3, 2016 ... to lung cancer, although other risk factors (such as genetic tendency) ... analysis of oral mucosa identifying individuals predisposed to lung cancer. ... of the study is that oral epithelial cells of smokers who have lung cancer are ... Stratec Molecular, Berlin, Germany). p53 codon 72 ..... Validity and reliability of.

  3. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    Science.gov (United States)

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.

  4. Current lung water measurement methods in man

    International Nuclear Information System (INIS)

    Basset, G.; Moreau, F.; Marsac, J.; Capitini, R.; Botter, F.

    1979-01-01

    Two kinds of tracer method are used to estimate the lung water pools differing by the tracer intake and the sector observed. Airborne intake gives an estimate of the tissues irrigated by the lung and bronchial circulation, whereas vascular intake only shows the sectors perfused by the lung flow. Either of these methods is suitable for a general or regional analysis. In general methods the tracer is followed at the lung exit on expired air for the first method, on peripheral arterial blood for the second. Regional methods imply partial or whole-lung external detection systems [fr

  5. Regional differences in prediction models of lung function in Germany

    Directory of Open Access Journals (Sweden)

    Schäper Christoph

    2010-04-01

    Full Text Available Abstract Background Little is known about the influencing potential of specific characteristics on lung function in different populations. The aim of this analysis was to determine whether lung function determinants differ between subpopulations within Germany and whether prediction equations developed for one subpopulation are also adequate for another subpopulation. Methods Within three studies (KORA C, SHIP-I, ECRHS-I in different areas of Germany 4059 adults performed lung function tests. The available data consisted of forced expiratory volume in one second, forced vital capacity and peak expiratory flow rate. For each study multivariate regression models were developed to predict lung function and Bland-Altman plots were established to evaluate the agreement between predicted and measured values. Results The final regression equations for FEV1 and FVC showed adjusted r-square values between 0.65 and 0.75, and for PEF they were between 0.46 and 0.61. In all studies gender, age, height and pack-years were significant determinants, each with a similar effect size. Regarding other predictors there were some, although not statistically significant, differences between the studies. Bland-Altman plots indicated that the regression models for each individual study adequately predict medium (i.e. normal but not extremely high or low lung function values in the whole study population. Conclusions Simple models with gender, age and height explain a substantial part of lung function variance whereas further determinants add less than 5% to the total explained r-squared, at least for FEV1 and FVC. Thus, for different adult subpopulations of Germany one simple model for each lung function measures is still sufficient.

  6. Objective and structured assessment of lung ultrasound competence

    DEFF Research Database (Denmark)

    Skaarup, Søren Helbo; Laursen, Christian B.; Bjerrum, Anne Sofie

    2017-01-01

    RATIONALE: Point-of-care lung ultrasound imaging has substantial diagnostic value and is widely used in respiratory, emergency and critical care medicine. Like other ultrasound examinations, lung ultrasound is operator-dependent. The current recommendations for competence in lung ultrasound sets...... a fixed number of ultrasound procedures to be performed without considering different learning rates. Recommendations do not consider different uses of lung ultrasound across specialties. OBJECTIVE: To create a reliable, valid and feasible instrument to assess lung ultrasound competence that includes...... 23 ultrasound operators of different competence levels. Examination time was measured and skill was rated by experienced observers using the assessment tool. Inter-rater agreement was examined by two observers in 9 lung ultrasound examinations. RESULTS: Consensus was obtained within 3 Delphi rounds...

  7. Risk assessment of nickel carcinogenicity and occupational lung cancer.

    OpenAIRE

    Shen, H M; Zhang, Q F

    1994-01-01

    Recent progress in risk assessment of nickel carcinogenicity and its correlation with occupational lung cancer in nickel-exposed workers is reviewed. Epidemiological investigations provide reliable data indicating the close relation between nickel exposure and high lung cancer risk, especially in nickel refineries. The nickel species-specific effects and the dose-response relationship between nickel exposure and lung cancer are among the main questions that are explored extensively. It is als...

  8. Analysis on Clinical Features of 2168 Patients with Lung Cancer Diagnosed by Bronchoscope

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-06-01

    Full Text Available Objective: To analyze the clinical features of lung cancer diagnosed by bronchoscopy. Methods: The clinical features of 2168 patients with lung cancer diagnosed by bronchoscopy were retrospectively analyzed, including gender, age, pathological type, diseased region, manifestations under bronchoscopy and methods of drawing materials. Results: The ratio of male/female was 4.8:1 and the peak onset age was 60 - 69 years old. The major pathological type was squamous cell carcinoma (44.5%, then adenocarcinoma (25.9% and small cell lung cancer (18.3%. The incidence of squamous cell carcinoma was the highest in males (50.6%, while that of adenocarcinoma in females (56.2%. The positive diagnostic rates of forceps biopsy, brush biopsy, bronchial alveolar lavage and transbronchial needle aspiration were 81.6%, 49.4%, 18.2% and 62.6%, respectively, whereas that of biopsy combined with brush biopsy came up to 89.0%. Conclusion: Bronchoscopy is an important method in diagnosis of lung cancer. Different ages and genders of patients with lung cancer have different onset, and the distribution of pathological types is diverse. Attaching more importance to bronchoscopy and improving biopsy technique can significantly improve the diagnostic rate and provide reliable evidences for clinical treatment.

  9. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    International Nuclear Information System (INIS)

    Ozekes, Serhat; Osman, Onur; Ucan, N.

    2008-01-01

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules

  10. 77 FR 43190 - Regional Reliability Standard PRC-006-SERC-01-Automatic Underfrequency Load Shedding Requirements

    Science.gov (United States)

    2012-07-24

    ..., Oklahoma, Arkansas, Louisiana, Texas and Florida). The SERC Region is currently geographically divided into... Requirement itself and directed NERC to make that requirement explicit in future versions of the Reliability..., 888 First Street NE., [[Page 43195

  11. Feasibility of using 'lung density' values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients.

    Science.gov (United States)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-06-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m(-3), pneumonia; 306 ± 38.6 kg m(-3), atelectasis; 497 ± 130 kg m(-3), pleural effusion; 467 ± 113 kg m(-3): Steel-Dwass test, p EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m(-3)) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT.

  12. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  13. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Lo, Fang-Yi; Nandi, Suvobroto; Salgia, Ravi; Wang, Yi-Ching; Chang, Jer-Wei; Chang, I-Shou; Chen, Yann-Jang; Hsu, Han-Shui; Huang, Shiu-Feng Kathy; Tsai, Fang-Yu; Jiang, Shih Sheng; Kanteti, Rajani

    2012-01-01

    Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68

  14. Study of regional lung function in patients with emphysema using Xe 133

    International Nuclear Information System (INIS)

    Laval, P.; Vigne, J.; Poirier, R.; Aristote, A.; Feliciano, J.M.; Kleisbauer, J.P.

    1976-01-01

    In six patients with emphysema and one healthy man, the ventilation with 133 Xenon and circulation with sup(99m)Tc, labeled Albumin Microspheres were explored. Each lung is explored in the seated position by the way of gamma-camera. Three regions (upper-middle and lower), in the median side are choiced for other calculations. The curves of Xenon washout are studied by the mean of T 1/2. In order to appreciate V/Q ratios regional percentages of Xenon ventilation and percentages of MAT circulation were correlated. In diffuse emphysema, the results are very closed of normal subject; this is due to the fact that in emphysema the alterations of ventilation and perfusion are correlated and diffused. In cystic emphysema, there is no rule, results are related with ventilation of the cyst. However it must be in mind that the small capillaries ( [fr

  15. The role of prophylactic cranial irradiation in regionally advanced non-small cell lung cancer. A Southwest Oncology Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, V.W.; Griffin, B.R.; Livingston, R.B. (Univ. of Washington, Seattle (USA))

    1989-10-01

    Lung cancer is the most common malignant disease in the United States. Only the few tumors detected very early are curable, but there has been some progress in the management of more advanced non-small cell lung cancer, particularly in regionally inoperable disease. Prevention of central nervous system relapse is an important issue in this group of patients because brain metastases ultimately develop in 20% to 25% of them. Seventy-three patients with regionally advanced non-small cell lung cancer were entered into a Phase II trial of neutron chest radiotherapy sandwiched between four cycles of chemotherapy including cisplatin, vinblastine, and mitomycin C. Prophylactic cranial irradiation was administered concurrently with chest radiotherapy (3000 cGy in 10 fractions in 15 patients; 3600 cGy in 18 fractions in the remaining 50 patients). Patients underwent computed tomographic scan of the brain before treatment and every 3 months after treatment. The initial overall response rate was 79%, but 65 of the 73 patients have subsequently died of recurrent disease. Median follow-up is 9 months for all 73 patients and 26 months for eight long-term survivors. No patient who completed the prophylactic cranial irradiation program had clinical or radiologic brain metastases. Toxic reactions to prophylactic cranial irradiation included reversible alopecia in all patients, progressive dementia in one patient, and possible optic neuritis in one patient. Both of these patients received 300 cGy per fraction of irradiation. The use of prophylactic cranial irradiation has been controversial, but its safety and efficacy in this trial supports its application in a group of patients at high risk for central nervous system relapse. Further evaluation of prophylactic cranial irradiation in clinical trials for regionally advanced non-small cell lung cancer is warranted.

  16. Reliable and valid assessment of competence in endoscopic ultrasonography and fine-needle aspiration for mediastinal staging of non-small cell lung cancer.

    Science.gov (United States)

    Konge, L; Vilmann, P; Clementsen, P; Annema, J T; Ringsted, C

    2012-10-01

    Fine-needle aspiration (FNA) guided by endoscopic ultrasonography (EUS) is important in mediastinal staging of non-small cell lung cancer (NSCLC). Training standards and implementation strategies of this technique are currently under discussion. The aim of this study was to explore the reliability and validity of a newly developed EUS Assessment Tool (EUSAT) designed to measure competence in EUS - FNA for mediastinal staging of NSCLC. A total of 30 patients with proven or suspected NSCLC underwent EUS - FNA for mediastinal staging by three trainees and three experienced physicians. Their performances were assessed prospectively by three experts in EUS under direct observation and again 2 months later in a blinded fashion using digital video-recordings. Based on the assessments, intra-rater reliability, inter-rater reliability, and construct validity were explored. The intra-rater reliability was good (Cronbach's α = 0.80), but comparison of results based on direct observations and blinded video-recordings indicated a significant bias favoring consultants (P = 0.022). Inter-rater reliability was very good (Cronbach's α = 0.93). However, one rater assessing five procedures or two raters each assessing four procedures were necessary to secure a generalizability coefficient of 0.80. The assessment tool demonstrated construct validity by discriminating between trainees and experienced physicians (P = 0.034). Competency in mediastinal staging of NSCLC using EUS and EUS - FNA can be assessed in a reliable and valid way using the EUSAT assessment tool. Measuring and defining competency and training requirements could improve EUS quality and benefit patient care. © Georg Thieme Verlag KG Stuttgart · New York.

  17. 75 FR 35021 - Reliability Standards Development and NERC and Regional Entity Enforcement; Notice of Technical...

    Science.gov (United States)

    2010-06-21

    ... Standards Development and NERC and Regional Entity Enforcement; Notice of Technical Conference June 15, 2010... Technical Conference to address industry perspectives on certain issues pertaining to the development and... Electric Reliability Organization's (ERO) standards development process; communication and interactions...

  18. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    Science.gov (United States)

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  19. Gadolinium-DTPA enhancement of regional lymph nodes of lung cancer in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Iwai, Naomichi; Yamaguchi, Yutaka

    1991-01-01

    Enhanced MR imagings were performed on thirty-one patients with lung cancer by intravenous administration of 0.1 mmol/kg Gadolinium-DTPA (Gd-DTPA). A spin-echo pulse sequence (SE 400/40) with 0.5-T MR system was used. The Gd-DTPA enhancement of lymph nodes was studied for 67 nodes (29 metastatic lymph nodes and 38 non-metastatic lymph nodes) on the hilar and mediastinal region. The mean signal intensity of metastatic lymph nodes was enhanced higher than that of non-metastatic lymph nodes (p<0.001). On the criterion of the signal intensity change (the cutoff point: 800 S.I) at 5 minutes after administration, the diagnostic rates on retrospective study showed a sensitivity of 79 %, a specificity of 84 % and an overall accuracy of 82%. These data show higher rates than those of the size criteria. This study suggests a significant potential for improved detection of lymph node metastasis of lung cancer with Gd-DTPA enhanced MR imaging. (author)

  20. Regional measurement of ventilation and perfusion to detect subtle lung abnormalities in coal miners

    International Nuclear Information System (INIS)

    Susskind, H.; Liu, J.; Brill, A.B.

    1986-01-01

    The relationship between regional pulmonary ventilation (V) and perfusion (Q) uniquely determines the amount of gas exchange that occurs in the lungs. Therefore, the pixel-by-pixel distributions of V and Q were measured with continuously inhaled Kr-81m and i.v. injected Tc-99m MAA, respectively, in a group of 71 subjects exposed to coal dust and then compared with those from a control group of 9 healthy volunteers. Each subject sat upright with his back against a large-field-of-view scintillation camera; 500,000 count images were obtained, analyzed by computer, and then displayed in a 64 x 64 matrix. Individual pixel values of V and Q were correlated by a best-fit regression line, whose slope was proportional to the overall V/Q ratio. The slopes of individual groups of nonsmokers, ex-smokers, and smokers (0.83-0.85) were significantly greater (p < 0.02) than the slope of the controls (0.70 +/- 0.07). In addition, the authors found that the skewness of plots of frequency distribution of V/Q and of V and Q vs V/Q for the individual patient groups was statistically different from that of the normals (p < 0.01). Statistical analysis of local and Q values therefore appears to be a potentially useful, non-invasive method to evaluate subtle regional lung impairment

  1. Dependent lung opacity at thin-section CT: evaluation by spirometrically-gated CT of the influence of lung volume

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W. Richard

    2002-01-01

    To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter

  2. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Science.gov (United States)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Duque, Duarte; Granja, Sara; Correia-Pinto, Jorge; Vilaça, João L.

    2014-01-01

    Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers. PMID:25250057

  3. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Directory of Open Access Journals (Sweden)

    Pedro L. Rodrigues

    2014-01-01

    Full Text Available Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

  4. Lung cancer risk and pollution in an industrial region of Northern Spain: a hospital-based case-control study.

    Science.gov (United States)

    López-Cima, María Felicitas; García-Pérez, Javier; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Tardón, Adonina; Pollán, Marina

    2011-01-25

    Asturias, an Autonomous Region in Northern Spain with a large industrial area, registers high lung cancer incidence and mortality. While this excess risk of lung cancer might be partially attributable to smoking habit and occupational exposure, the role of industrial and urban pollution also needs to be assessed. The objective was to ascertain the possible effect of air pollution, both urban and industrial, on lung cancer risk in Asturias. This was a hospital-based case-control study covering 626 lung cancer patients and 626 controls recruited in Asturias and matched by ethnicity, hospital, age, and sex. Distances from the respective participants' residential locations to industrial facilities and city centers were computed. Using logistic regression, odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance to urban and industrial pollution sources were calculated, with adjustment for sex, age, hospital area, tobacco consumption, family history of cancer, and occupation. Whereas individuals living near industries displayed an excess risk of lung cancer (OR = 1.49; 95%CI = 0.93-2.39), which attained statistical significance for small cell carcinomas (OR = 2.23; 95%CI = 1.01-4.92), residents in urban areas showed a statistically significant increased risk for adenocarcinoma (OR = 1.92; 95%CI = 1.09-3.38). In the Gijon health area, residents in the urban area registered a statistically significant increased risk of lung cancer (OR = 2.17; 95%CI = 1.25-3.76), whereas in the Aviles health area, no differences in risk were found by area of exposure. This study provides further evidence that air pollution is a moderate risk factor for lung cancer.

  5. Holistic segmentation of the lung in cine MRI.

    Science.gov (United States)

    Kovacs, William; Hsieh, Nathan; Roth, Holger; Nnamdi-Emeratom, Chioma; Bandettini, W Patricia; Arai, Andrew; Mankodi, Ami; Summers, Ronald M; Yao, Jianhua

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a childhood-onset neuromuscular disease that results in the degeneration of muscle, starting in the extremities, before progressing to more vital areas, such as the lungs. Respiratory failure and pneumonia due to respiratory muscle weakness lead to hospitalization and early mortality. However, tracking the disease in this region can be difficult, as current methods are based on breathing tests and are incapable of distinguishing between muscle involvements. Cine MRI scans give insight into respiratory muscle movements, but the images suffer due to low spatial resolution and poor signal-to-noise ratio. Thus, a robust lung segmentation method is required for accurate analysis of the lung and respiratory muscle movement. We deployed a deep learning approach that utilizes sequence-specific prior information to assist the segmentation of lung in cine MRI. More specifically, we adopt a holistically nested network to conduct image-to-image holistic training and prediction. One frame of the cine MRI is used in the training and applied to the remainder of the sequence ([Formula: see text] frames). We applied this method to cine MRIs of the lung in the axial, sagittal, and coronal planes. Characteristic lung motion patterns during the breathing cycle were then derived from the segmentations and used for diagnosis. Our data set consisted of 31 young boys, age [Formula: see text] years, 15 of whom suffered from DMD. The remaining 16 subjects were age-matched healthy volunteers. For validation, slices from inspiratory and expiratory cycles were manually segmented and compared with results obtained from our method. The Dice similarity coefficient for the deep learning-based method was [Formula: see text] for the sagittal view, [Formula: see text] for the axial view, and [Formula: see text] for the coronal view. The holistic neural network approach was compared with an approach using Demon's registration and showed superior performance. These

  6. Recent lung imaging studies

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented

  7. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Brendan J [ORNL

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second

  8. Follow-up of CT-derived airway wall thickness: Correcting for changes in inspiration level improves reliability

    Energy Technology Data Exchange (ETDEWEB)

    Pompe, Esther, E-mail: e.pompe@umcutrecht.nl [Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht (Netherlands); Rikxoort, Eva M. van [Department of Radiology, Radboud University Medical Center, Nijmegen (Netherlands); Mets, Onno M. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Charbonnier, Jean-Paul [Department of Radiology, Radboud University Medical Center, Nijmegen (Netherlands); Kuhnigk, Jan-Martin [Institute for Medical Image Computing, Fraunhofer MEVIS, Bremen (Germany); Koning, Harry J. de [Department of Public Health, Erasmus Medical Center, Rotterdam (Netherlands); Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Groningen, Department of Radiology (Netherlands); Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Groningen, Department of Radiology (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Zanen, Pieter; Lammers, Jan-Willem J. [Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht (Netherlands); Ginneken, Bram van [Department of Radiology, Radboud University Medical Center, Nijmegen (Netherlands); Jong, Pim A. de; Mohamed Hoesein, Firdaus A.A. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2016-11-15

    Objectives: Airway wall thickness (AWT) is affected by changes in lung volume. This study evaluated whether correcting AWT on computed tomography (CT) for differences in inspiration level improves measurement agreement, reliability, and power to detect changes over time. Methods: Participants of the Dutch-Belgian lung cancer screening trial who underwent 3-month repeat CT for an indeterminate pulmonary nodule were included. AWT on CT was calculated by the square root of the wall area at a theoretical airway with an internal perimeter of 10 mm (Pi10). The scan with the highest lung volume was labelled as the reference scan and the scan with the lowest lung volume was labelled as the comparison scan. Pi10 derived from the comparison scan was corrected by multiplying it with the ratio of CT lung volume of the comparison scan to CT lung volume on the reference scan. Agreement of uncorrected and corrected Pi10 was studied with the Bland-Altman method, reliability with intra-class correlation coefficients (ICC), and power to detect changes over time was calculated. Results: 315 male participants were included. Limit of agreement and reliability for Pi10 was −0.61 to 0.57 mm (ICC = 0.87), which improved to −0.38 to 0.37 mm (ICC = 0.94) after correction for inspiration level. To detect a 15% change over 3 months, 71 subjects are needed for Pi10 and 26 subjects for Pi10 adjusted for inspiration level. Conclusions: Correcting Pi10 for differences in inspiration level improves reliability, agreement, and power to detect changes over time.

  9. Spirometrically gated 133Xe ventilation imaging and phase analysis for assessment of regional lung function

    International Nuclear Information System (INIS)

    Inoue, Tomio

    1984-01-01

    The purpose of this study is to develop the technique of performing spirometrically gated 133 Xe ventilation imaging and to evaluate its clinical usefulness for the assessmentof regional ventilatory function in various lung diseases. Patients rebreathe d 133 Xe gas through the system with constant rates signaled by a metronom. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p<0.001) and down slope of flowvolume curve (r=0.55, p<0.001), and less prominently with %VC (r=0.42, p<0.01). Mean S.D. in patients with COPD (12.3+-6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3+-1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD. (J.P.N.)

  10. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  11. Sampling for stereology in lungs

    Directory of Open Access Journals (Sweden)

    J. R. Nyengaard

    2006-12-01

    Full Text Available The present article reviews the relevant stereological estimators for obtaining reliable quantitative structural data from the lungs. Stereological sampling achieves reliable, quantitative information either about the whole lung or complete lobes, whilst minimising the workload. Studies have used systematic random sampling, which has fixed and constant sampling probabilities on all blocks, sections and fields of view. For an estimation of total lung or lobe volume, the Cavalieri principle can be used, but it is not useful in estimating individual cell volume due to various effects from over- or underprojection. If the number of certain structures is required, two methods can be used: the disector and the fractionator. The disector method is a three-dimensional stereological probe for sampling objects according to their number. However, it may be affected on tissue deformation and, therefore, the fractionator method is often the preferred sampling principle. In this method, a known and predetermined fraction of an object is sampled in one or more steps, with the final step estimating the number. Both methods can be performed in a physical and optical manner, therefore enabling cells and larger lung structure numbers (e.g. number of alveoli to be estimated. Some estimators also require randomisation of orientation, so that all directions have an equal chance of being chosen. Using such isotropic sections, surface area, length, and diameter can be estimated on a Cavalieri set of sections. Stereology can also illustrate the potential for transport between two compartments by analysing the barrier width. Estimating the individual volume of cells can be achieved by local stereology using a two-step procedure that first samples lung cells using the disector and then introduces individual volume estimation of the sampled cells. The coefficient of error of most unbiased stereological estimators is a combination of variance from blocks, sections, fields

  12. Genetic variants in regulatory regions of microRNAs are associated with lung cancer risk.

    Science.gov (United States)

    Xie, Kaipeng; Wang, Cheng; Qin, Na; Yang, Jianshui; Zhu, Meng; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Ma, Hongxia; Hu, Zhibin

    2016-07-26

    Genetic variants in regulatory regions of some miRNAs might be associated with lung cancer risk and survival. We performed a case-control study including 1341 non-small cell lung cancer (NSCLC) cases and 1982 controls to evaluate the associations of 7 potentially functional polymorphisms in several differently expressed miRNAs with NSCLC risk. Each SNP was also tested for the association with overall survival of 1001 NSCLC patients. We identified that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a were significantly associated with NSCLC risk [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.06-1.30, P = 0.002; OR = 0.88, 95% CI = 0.80-0.98, P = 0.017; respectively]. However, no significant association between variants and NSCLC death risk was observed in survival analysis. Functional annotation showed that both rs9660710 and rs763354 were located in regulatory elements in lung cancer cells. Compared to normal tissues, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p and miR-429 were significantly increased in The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) tumors, whereas miR-30a-3p and miR-30a-5p were significantly decreased in tumors (all P < 0.05). Furthermore, we observed that rs9660710 is an expression quantitative trait locus (eQTL) or methylation eQTL for miR-429 expression in TCGA normal tissues. Our results indicated that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a might modify the susceptibility to NSCLC.

  13. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    Science.gov (United States)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  14. Improving Intensity-Based Lung CT Registration Accuracy Utilizing Vascular Information

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.

  15. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    Science.gov (United States)

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. The reliability of lung ultrasound in assessment of idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Manolescu D

    2018-03-01

    Full Text Available Diana Manolescu,1 Lavinia Davidescu,2 Daniel Traila,3 Cristian Oancea,3 Voicu Tudorache3 1Radiology Department, University of Medicine and Pharmacy “Victor Babes”, Timişoara, Romania; 2Department of Pulmonology, University of Medicine and Pharmacy Oradea, Oradea, Romania; 3Department of Pulmonology, University of Medicine and Pharmacy “Victor Babes”, Timişoara, Romania Abstract: Idiopathic pulmonary fibrosis (IPF is the severest form of idiopathic interstitial pneumonia, with a median survival time estimated at 2–5 years from the time of diagnosis. It occurs mainly in elderly adults, suggesting a strong link between the fibrosis process and aging. Although chest high-resolution computed tomography (HRCT is currently the method of choice in IPF assessment, diagnostic imaging with typical usual interstitial pneumonia (UIP provides definitive results in only 55%, requiring an invasive surgical procedure such as lung biopsy or cryobiopsy for the final diagnostic analysis. Lung ultrasound (LUS as a noninvasive, non-radiating examination is very sensitive to detect subtle changes in the subpleural space. The evidence of diffuse, multiple B-lines defined as vertical, hyperechoic artifacts is the hallmark of interstitial syndrome. A thick, irregular, fragmented pleura line is associated with subpleural fibrotic scars. The total numbers of B-lines are correlated with the extension of pulmonary fibrosis on HRCT, being an LUS marker of severity. The average distance between two adjacent B-lines is an indicator of a particular pattern on HRCT. It is used to appreciate a pure reticular fibrotic pattern as in IPF compared with a predominant ground glass pattern seen in fibrotic nonspecific interstitial pattern. The distribution of the LUS artifacts has a diagnostic value. An upper predominance of multiple B-lines associated with the thickening of pleura line is an LUS feature of an inconsistent UIP pattern, excluding the IPF diagnosis. LUS is a

  17. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  18. Regional Inequalities in Lung Cancer Mortality in Belgium at the Beginning of the 21st Century: The Contribution of Individual and Area-Level Socioeconomic Status and Industrial Exposure.

    Directory of Open Access Journals (Sweden)

    Paulien Hagedoorn

    Full Text Available Being a highly industrialized country with one of the highest male lung cancer mortality rates in Europe, Belgium is an interesting study area for lung cancer research. This study investigates geographical patterns in lung cancer mortality in Belgium. More specifically it probes into the contribution of individual as well as area-level characteristics to (sub-district patterns in lung cancer mortality. Data from the 2001 census linked to register data from 2001-2011 are used, selecting all Belgian inhabitants aged 65+ at time of the census. Individual characteristics include education, housing status and home ownership. Urbanicity, unemployment rate, the percentage employed in mining and the percentage employed in other high-risk industries are included as sub-district characteristics. Regional variation in lung cancer mortality at sub-district level is estimated using directly age-standardized mortality rates. The association between lung cancer mortality and individual and area characteristics, and their impact on the variation of sub-district level is estimated using multilevel Poisson models. Significant sub-district variations in lung cancer mortality are observed. Individual characteristics explain a small share of this variation, while a large share is explained by sub-district characteristics. Individuals with a low socioeconomic status experience a higher lung cancer mortality risk. Among women, an association with lung cancer mortality is found for the sub-district characteristics urbanicity and unemployment rate, while for men lung cancer mortality was associated with the percentage employed in mining. Not just individual characteristics, but also area characteristics are thus important determinants of (regional differences in lung cancer mortality.

  19. Pattern of loco-regional failure after definitive radiotherapy for non-small cell lung cancer

    DEFF Research Database (Denmark)

    Schytte, Tine; Nielsen, Tine Bjørn; Brink, Carsten

    2014-01-01

    , and occurrence of distant metastasis. It is challenging to evaluate loco-regional control after definitive radiotherapy for NSCLC since it is difficult to distinguish between radiation-induced damage to the lung tissue and tumour progression/recurrence. In addition it may be useful to distinguish between...... intrapulmonary failure and mediastinal failure to be able to optimize radiotherapy in order to improve loco-regional control even though it is not easy to discriminate between the two sites of failure. Material and methods. This study is a retrospective analysis of 331 NSCLC patients treated with definitive...... with mediastinal relapse. Conclusion. We conclude that focus should be on increasing doses to intrapulmonary tumour volume, when dose escalation is applied to improve local tumour control in NSCLC patients treated with definitive radiotherapy, since most recurrences are located here....

  20. Automatic lung segmentation in the presence of alveolar collapse

    Directory of Open Access Journals (Sweden)

    Noshadi Areg

    2017-09-01

    Full Text Available Lung ventilation and perfusion analyses using chest imaging methods require a correct segmentation of the lung to offer anatomical landmarks for the physiological data. An automatic segmentation approach simplifies and accelerates the analysis. However, the segmentation of the lungs has shown to be difficult if collapsed areas are present that tend to share similar gray values with surrounding non-pulmonary tissue. Our goal was to develop an automatic segmentation algorithm that is able to approximate dorsal lung boundaries even if alveolar collapse is present in the dependent lung areas adjacent to the pleura. Computed tomography data acquired in five supine pigs with injured lungs were used for this purpose. First, healthy lung tissue was segmented using a standard 3D region growing algorithm. Further, the bones in the chest wall surrounding the lungs were segmented to find the contact points of ribs and pleura. Artificial boundaries of the dorsal lung were set by spline interpolation through these contact points. Segmentation masks of the entire lung including the collapsed regions were created by combining the splines with the segmentation masks of the healthy lung tissue through multiple morphological operations. The automatically segmented images were then evaluated by comparing them to manual segmentations and determining the Dice similarity coefficients (DSC as a similarity measure. The developed method was able to accurately segment the lungs including the collapsed regions (DSCs over 0.96.

  1. Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients

    International Nuclear Information System (INIS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-01-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m"−"3, pneumonia; 306 ± 38.6 kg m"−"3, atelectasis; 497 ± 130 kg m"−"3, pleural effusion; 467 ± 113 kg m"−"3: Steel–Dwass test, p < 0.05). In addition, in order to compare lung density with CT image pixels, the image resolution of CT images, which was originally 512 × 512 pixels, was changed to 16 × 16 pixels to match that of the EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m"−"3) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT. (paper)

  2. Evaluation of the regional lung function revealed in radioaerosol scintigram of chronic obstructive pulmonary disease, 1

    International Nuclear Information System (INIS)

    Suzuki, Teruyasu

    1980-01-01

    We classified the findings of radioaerosol inhalation scintigrams of patients with various stages of obstructive pulmonary disease (COPD) into 4 grades, according to the extent of peripheral irregularity and central hot spot formation; Stage I represents normal homogeneous distribution, stage II represents peripheral irregularity, stage III represents additional hot spot formation and stage IV represents further regional defect. This aerosol grading criteria was then compared with routine and specific lung function tests. The aerosol grading criterion correlated well with FEV sub(1.0)% which is a good indicator of the severity of COPD. The central hot spot formation correlated well with FEV sub(1.0)% and respiratory resistance (R.p.) determined by the oscillation method, both of which are good indicators of abnormality in central airway resistance. Peripheral irregularity correlated well with: 1) flows at 50%VC and 25%VC in a maximum forced expiratory flow volume curve; 2) closing volume (CV/VC%); 3) delta N 2 %/l in N 2 single washout test; and 4) the regional delay of 133 Xe washout process, all of which are sensitive indicators of small airway disease. It is therefore reasonable to conclude that the radioaerosol scintigram reveals the regional lung function both in terms of airway resistance (R) and compliance (C). This criterion was useful in quantitatively evaluating the regional ventilation distribution of COPD and the therapeutic effect on bronchial asthma. The mechanism of aerosol praticle deposition related to characteristic central hot spot formation accompanied with peripheral irregularity in a radioaerosol scintigram of COPD, needs further exploration concerning the aerodynamic behavior of aerosol particles in the airways both during inspiration and expiration. (author)

  3. Consequences of screening in lung cancer: development and dimensionality of a questionnaire.

    Science.gov (United States)

    Brodersen, John; Thorsen, Hanne; Kreiner, Svend

    2010-08-01

    The objective of this study was to extend the Consequences of Screening (COS) Questionnaire for use in a lung cancer screening by testing for comprehension, content coverage, dimensionality, and reliability. In interviews, the suitability, content coverage, and relevance of the COS were tested on participants in a lung cancer screening program. The results were thematically analyzed to identify the key consequences of abnormal and false-positive screening results. Item Response Theory and Classical Test Theory were used to analyze data. Dimensionality, objectivity, and reliability were established by item analysis, examining the fit between item responses and Rasch models. Eight themes specifically relevant for participants in lung cancer screening results were identified: "self-blame,"focus on symptoms,"stigmatization,"introvert,"harm of smoking,"impulsivity,"empathy," and "regretful of still smoking." Altogether, 26 new items for part I and 16 new items for part II were generated. These themes were confirmed to fit a partial-credit Rasch model measuring different constructs including several of the new items. In conclusion, the reliability and the dimensionality of a condition-specific measure with high content validity for persons having abnormal or false-positive lung cancer screening results have been demonstrated. This new questionnaire called Consequences of Screening in Lung Cancer (COS-LC) covers in two parts the psychosocial experience in lung cancer screening. Part I: "anxiety,"behavior,"dejection,"sleep,"self-blame,"focus on airway symptoms,"stigmatization,"introvert," and "harm of smoking." Part II: "calm/relax,"social network,"existential values,"impulsivity,"empathy," and "regretful of still smoking."

  4. Lung segmentation from HRCT using united geometric active contours

    Science.gov (United States)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  5. Monotonicity-based electrical impedance tomography for lung imaging

    Science.gov (United States)

    Zhou, Liangdong; Harrach, Bastian; Seo, Jin Keun

    2018-04-01

    This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.

  6. The Danish Lung Cancer Registry

    DEFF Research Database (Denmark)

    Jakobsen, Erik; Rasmussen, Torben Riis

    2016-01-01

    AIM OF DATABASE: The Danish Lung Cancer Registry (DLCR) was established by the Danish Lung Cancer Group. The primary and first goal of the DLCR was to improve survival and the overall clinical management of Danish lung cancer patients. STUDY POPULATION: All Danish primary lung cancer patients since...... 2000 are included into the registry and the database today contains information on more than 50,000 cases of lung cancer. MAIN VARIABLES: The database contains information on patient characteristics such as age, sex, diagnostic procedures, histology, tumor stage, lung function, performance...... the results are commented for local, regional, and national audits. Indicator results are supported by descriptive reports with details on diagnostics and treatment. CONCLUSION: DLCR has since its creation been used to improve the quality of treatment of lung cancer in Denmark and it is increasingly used...

  7. Genetic variants affecting cross-sectional lung function in adults show little or no effect on longitudinal lung function decline

    DEFF Research Database (Denmark)

    John, Catherine; Soler Artigas, María; Hui, Jennie

    2017-01-01

    BACKGROUND: Genome-wide association studies have identified numerous genetic regions that influence cross-sectional lung function. Longitudinal decline in lung function also includes a heritable component but the genetic determinants have yet to be defined. OBJECTIVES: We aimed to determine whether...... regions associated with cross-sectional lung function were also associated with longitudinal decline and to seek novel variants which influence decline. METHODS: We analysed genome-wide data from 4167 individuals from the Busselton Health Study cohort, who had undergone spirometry (12 695 observations...... across eight time points). A mixed model was fitted and weighted risk scores were calculated for the joint effect of 26 known regions on baseline and longitudinal changes in FEV1 and FEV1/FVC. Potential additional regions of interest were identified and followed up in two independent cohorts. RESULTS...

  8. Experimental estimation of regional lung water volume by histogram of pulmonary CT numbers

    International Nuclear Information System (INIS)

    Kato, Shiro; Momoki, Shigeru; Asai, Toshihiko; Shimada, Takeshi; Tamano, Masahiro; Nakamoto, Takaaki; Yoshimura, Masaharu

    1989-01-01

    Both in vitro and in vivo experiments were made to assess the ability of pulmonary CT numbers to quantitatively determine regional water volume in cases of pulmonary congestion or edema associated with left heart failure. In vitro experiment revealed a good linear correlation between the volume of injected water and the determined CT number of polyethylene tube packed with sponge. In the subsequent in vivo experiment with 10 adult mongrel dogs, lung water volumes obtained by pulmonary CT numbers were found to be consistent with the actual volumes. Pulmonary CT numbers for water volume proved to become parameters to quantitatively evaluate pulmonary congestion or edema. (Namekawa, K)

  9. Unevenness on aerosol inhalation lung images and lung function

    International Nuclear Information System (INIS)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Ebina, Akio; Shiraishi, Koichiro; Konno, Kiyoshi

    1985-01-01

    The unevenness or inhomogeneity of aerosol deposition patterns on radioaerosol inhalation lung images has been interpreted rather qualitatively in the clinical practice. We have reported our approach to quantitatively analyze the radioactive count distribution on radioaerosol inhalation lung images in relation to the actual lung function data. We have defined multiple indexes to express the shape and the unevenness of the count distribution of the lung images. To reduce as much as possible the number of indexes to be used in the regression functions, the method of selection of variables was introduced to the multiple regression analysis. Because some variables showed greater coefficients of simple correlation, while others did not, multicollinearity of variables had to be taken into consideration. For this reason, we chose a principal components regression analysis. The multiple regression function for each item of pulmonary function data thus established from analysis of 67 subjects appeared usable as a predictor of the actual lung function: for example, % VC (vital capacity) could be estimated by using four indexes out of the multiple ones with a coefficient of multiple correlation (R) of 0.753, and FEVsub(1.0) % (forced expiratory volume in one second divided by forced expiratory volume), by 7 indexes with R = 0.921. Pulmonary function data regarding lung volumes and lung mechanics were estimated more accurately with greater R's than those for lung diffusion, but even in the latter the prediction was still statistically significant at p less than 0.01. We believe the multiple regression functions thus obtained are useful for estimating not only the overall but also the regional function of the lungs. (author)

  10. [Alveolar ventilation and recruitment under lung protective ventilation].

    Science.gov (United States)

    Putensen, Christian; Muders, Thomas; Kreyer, Stefan; Wrigge, Hermann

    2008-11-01

    Goal of mechanical ventilation is to improve gas exchange and reduce work of breathing without contributing to further lung injury. Besides providing adequate EELV and thereby arterial oxygenation PEEP in addition to a reduction in tidal volume is required to prevent cyclic alveolar collapse and tidal recruitment and hence protective mechanical ventilation. Currently, there is no consensus if and if yes at which price alveolar recruitment with high airway pressures should be intended ("open up the lung"), or if it is more important to reduce the mechanical stress and strain to the lungs as much as possible ("keep the lung closed"). Potential of alveolar recruitment differs from patient to patient but also between lung regions. Potential for recruitment depends probably more on regional lung mechanics - especially on lung elastance - than on the underlying disease. Based on available data neither high PEEP nor other methods used for alveolar recruitment could demonstrate a survival benefit in patients with ARDS. These results may support an individualized titration of PEEP or other manoeuvres used for recruitment taking into consideration the regional effects. Bedside imaging techniques allowing titration of PEEP or other manoeuvres to prevent end-expiratory alveolar collapse (tidal recruitment) and inspiratory overinflation may be a promising development.

  11. Spirometrically gated /sup 133/Xe ventilation imaging and phase analysis for assessment of regional lung function

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tomio (Kanto Teishin Hospital, Tokyo (Japan))

    1984-10-01

    The purpose of this study is to develop the technique of performing spirometrically gated /sup 133/Xe ventilation imaging and to evaluate its clinical usefulness for the assessment of regional ventilatory function in various lung diseases. Patients rebreathed /sup 133/Xe gas through the system with constant rates signaled by a metronome. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p < 0.001) and down slope of flow-volume curve (r=0.55, p < 0.001), and less prominently with %VC (r=0.42, p < 0.01). Mean S.D. in patients with COPD (12.3 +- 6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3 +- 1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD.

  12. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Directory of Open Access Journals (Sweden)

    Xue Ke Zhao

    Full Text Available Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs. Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population.A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival.Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02, rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04, rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04 and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04. All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage

  13. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Science.gov (United States)

    Zhao, Xue Ke; Mao, Yi Min; Meng, Hui; Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun; Wang, Li Dong

    2017-01-01

    Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type

  14. The histopathologic reliability of tissue taken from cadavers within the gross anatomy laboratory.

    Science.gov (United States)

    Rae, Guenevere; Newman, William P; McGoey, Robin; Donthamsetty, Supriya; Karpinski, Aryn C; Green, Jeffrey

    2018-03-01

    The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students' dissection course was completed. All of the cadavers were embalmed in a formalin-based fixative solution. The tissue was processed, embedded in paraffin, sectioned at six micrometers, and stained with H&E. The microscope slides were evaluated by a board certified pathologist to determine whether the cellular components of the tissues were preserved at a high enough quality to allow for histopathologic diagnosis. There was a statistically significant relationship between ratings and organ groups. Across all organs, there was a smaller proportion of "poor" ratings. The lung group had the highest percentage of "poor" ratings (23.1%). The heart group had the least "poor" ratings (0.0%). The largest percentage of "satisfactory" ratings were in the lung group (52.8%), and the heart group contained the highest percentage of "good" ratings (58.5%) The lung group had the lowest percentage of "good" ratings (24.2%). These results indicate that heart tissue is more reliable than lung, kidney, or liver tissue when utilizing tissue from the gross anatomy laboratory for research and/or educational purposes. This information advises educators and researchers about the quality and histopathologic reliability of tissue samples obtained from the gross anatomy laboratory. Anat Sci Educ 11: 207-214. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  15. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  16. Epidemiology of Lung Cancer.

    Science.gov (United States)

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.

  17. Dosimetric lung models

    International Nuclear Information System (INIS)

    James, A.C.; Roy, M.

    1986-01-01

    The anatomical and physiological factors that vary with age and influence the deposition of airborne radionuclides in the lung are reviewed. The efficiency with which aerosols deposit in the lung for a given exposure at various ages from birth to adulthood is evaluated. Deposition within the lung is considered in relation to the clearance mechanisms acting in different regions or compartments. The procedure for evaluating dose to sensitive tissues in lung and transfer to other organs that is being considered by the Task Group established by ICRP to review the Lung Model is outlined. Examples of the application of this modelling procedure to evaluate lung dose as a function of age are given, for exposure to radon daughters in dwellings, and for exposure to an insoluble 239 Pu aerosol. The former represents exposure to short-lived radionuclides that deliver relatively high doses to bronchial tissue. In this case, dose rates are marginally higher in children than in adults. Plutonium exposure represents the case where dose is predominantly delivered to respiratory tissue and lymph nodes. In this case, the life-time doses tend to be lower for exposure in childhood. Some of the uncertainties in this modelling procedure are noted

  18. Evaluation of lung injury induced by pingyangmycin with 99Tcm-HMPAO lung imaging

    International Nuclear Information System (INIS)

    Zhao Changjiu; Yang Zhijie; Fu Peng; Zhang Rui

    2005-01-01

    Objective: To investigate the lung uptake of 99 Tc m -hexamethyl propylene amine oxime (HMPAO) in pingyangmycin-induced lung injury and its mechanism. Methods: 24 white rabbits were randomly divided into 4 groups. Group I: the control with normal diet. In group II, III and IV 0.2, 0.3 and 0.5 mg/kg pingyangmycin were given respectively by marginal vein of ear every other day. 99 Tc m -HMPAO static lung imaging was performed before and 8, 16, 24, 32 d after injection of pingyangmycin. 7 pixel x 5 pixel regions of interest (ROIs) were drawn on the right lung(R) and right upper limb(B), R/B were calculated. Also, 2 ml venous blood was withdrawn for measurement of endothelin by radioimmunoassay. 16 d after pingyangmycin in group IV and 32 d in group I, II and III, all the rabbits were sacrificed. Both lungs were examined immediately under light and electron microscopy. Results: Compared with the control group, there were statistical differences of 99 Tc m -HMPAO lung uptake in group II, III and IV (P 99 Tc m -HMPAO lung imaging can detect early pingyangmycin-induced lung injury. The endothelium of lung microcapillary is presumably the main location site of 99 Tc m -HMPAO abnormal concentration. (authors)

  19. Diffuse cavitary lung lesions

    Energy Technology Data Exchange (ETDEWEB)

    Grunzke, Mindy; Garrington, Timothy [University of Colorado Denver, Department of Pediatrics, Aurora, CO (United States); The Children' s Hospital, Rick Wilson Center for Cancer and Blood Disorders, Aurora, CO (United States); Hayes, Kari [The Children' s Hospital, Pediatric Radiology, Aurora, CO (United States); Bourland, Wendy [Children' s Hospital at St. Francis, Warren Clinic, Inc., Tulsa, OK (United States)

    2010-02-15

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for {sup 18}F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  20. Diffuse cavitary lung lesions

    International Nuclear Information System (INIS)

    Grunzke, Mindy; Garrington, Timothy; Hayes, Kari; Bourland, Wendy

    2010-01-01

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for 18 F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  1. Application of positron emission tomography in the lung

    International Nuclear Information System (INIS)

    Valind, S.O.; Wollmer, P.E.; Rhodes, C.G.

    1985-01-01

    The early application of positron emission tomography in the lung was mainly concerned with the investigation of the regional volume of the vascular and extravascular compartments, using measurements of fractional blood volume and lung density. However, in addition to its passive role in the exchange of oxygen and carbon dioxide, the lung exerts a number of active, metabolic functions such as the inactivation of circulating vasoactive compounds and the synthesis and release of biologically active substances. Furthermore, many of the pulmonary disorders originate at a cellular or metabolic level, or have metabolic consequences. Many of the substrates of biochemical reactions and the biologically active compounds, or their analogs, can be labeled with positron-emitting radioisotopes without disturbing their biological or biochemical characteristics. In combination with the development of the appropriate physiological and biochemical models, the quantitative measurements possible with PET provide a unique opportunity of regionally studying the metabolic processes of the lung of man in vivo. Hence, a range of different expressions of metabolism and of lung function can be evaluated and their interdependence can be studied regionally

  2. AUTOMATIC LUNG NODULE SEGMENTATION USING AUTOSEED REGION GROWING WITH MORPHOLOGICAL MASKING (ARGMM AND FEATURE EX-TRACTION THROUGH COMPLETE LOCAL BINARY PATTERN AND MICROSCOPIC INFORMATION PATTERN

    Directory of Open Access Journals (Sweden)

    Senthil Kumar

    2015-04-01

    Full Text Available An efficient Autoseed Region Growing with Morphological Masking(ARGMM is imple-mented in this paper on the Lung CT Slice to segment the 'Lung Nodules',which may be the potential indicator for the Lung Cancer. The segmentation of lung nodules car-ried out in this paper through Multi-Thresholding, ARGMM and Level Set Evolution. ARGMM takes twice the time compared to Level Set, but still the number of suspected segmented nodules are doubled, which make sure that no potential cancerous nodules go unnoticed at the earlier stages of diagnosis. It is very important not to panic the patient by finding the presence of nodules from Lung CT scan. Only 40 percent of nod-ules can be cancerous. Hence, in this paper an efficient Shape and Texture analysis is computed to quantitatively describe the segmented lung nodules. The Frequency spectrum of the lung nodules is developed and its frequency domain features are com-puted. The Complete Local binary pattern of lung nodules is computed in this paper by constructing the combine histogram of Sign and Magnitude Local Binary Patterns. Lo-cal Configuration Pattern is also determined in this work for lung nodules to numeri-cally model the microscopic information of nodules pattern.

  3. Effects of lung protective mechanical ventilation associated with permissive respiratory acidosis on regional extra-pulmonary blood flow in experimental ARDS.

    Science.gov (United States)

    Hering, Rudolf; Kreyer, Stefan; Putensen, Christian

    2017-10-27

    Lung protective mechanical ventilation with limited peak inspiratory pressure has been shown to affect cardiac output in patients with ARDS. However, little is known about the impact of lung protective mechanical ventilation on regional perfusion, especially when associated with moderate permissive respiratory acidosis. We hypothesized that lung protective mechanical ventilation with limited peak inspiratory pressure and moderate respiratory acidosis results in an increased cardiac output but unequal distribution of blood flow to the different organs of pigs with oleic-acid induced ARDS. Twelve pigs were enrolled, 3 died during instrumentation and induction of lung injury. Thus, 9 animals received pressure controlled mechanical ventilation with a PEEP of 5 cmH 2 O and limited peak inspiratory pressure (17 ± 4 cmH 2 O) versus increased peak inspiratory pressure (23 ± 6 cmH 2 O) in a crossover-randomized design and were analyzed. The sequence of limited versus increased peak inspiratory pressure was randomized using sealed envelopes. Systemic and regional hemodynamics were determined by double indicator dilution technique and colored microspheres, respectively. The paired student t-test and the Wilcoxon test were used to compare normally and not normally distributed data, respectively. Mechanical ventilation with limited inspiratory pressure resulted in moderate hypercapnia and respiratory acidosis (PaCO 2 71 ± 12 vs. 46 ± 9 mmHg, and pH 7.27 ± 0.05 vs. 7.38 ± 0.04, p respiratory acidosis was associated with an increase in cardiac output. However, the better systemic blood flow was not uniformly directed to the different organs. This observation may be of clinical interest in patients, e.g. with cardiac, renal and cerebral pathologies.

  4. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  5. Radiographic and microscopic correlation of diffuse interstitial and bronchointerstitial pulmonary patterns in the caudodorsal lung of adult Thoroughbred horses in race training

    International Nuclear Information System (INIS)

    Wisner, E.R.; O'Brien, T.R.; Lakritz, J.; Pascoe, J.R.; Wilson, D.W.; Tyler, W.S.

    1993-01-01

    Complete thoracic radiographic examinations were performed on 7 horses ranging in age from 24 to 60 months, followed by in-situ lung fixation. Radiographs were examined by 3 radiologists for the presence, degree and distribution of generalised pulmonary patterns within a region of interest in the caudodorsal lung. Pulmonary tissue was obtained from 12 sites within a designated volume of interest in the caudodorsal lung, corresponding to the area of interest evaluated radiographically, and examined for the presence, character and severity of microscopic lesions. Radiographic findings within the volume of interest consisted of mild to moderate bronchial, bronchointerstitial, or interstitial pulmonary patterns. Interstitial and bronchointerstitial radiographic findings were related to severity of peribronchiolar mononuclear cell infiltrates, the degree of bronchiolar mucosal plication, and alveolar capillary and peribronchial blood vessel erythrocyte content. The severity of the interstitial radiographic pattern was inversely associated with the perceived diagnostic quality of the radiographic examinations. There was no evidence of spatial variation in the severity of the microscopic changes examined in this limited pulmonary region. Inter-rater reliability between radiologists was good in the assessment of diagnostic quality of the radiographic examinations but poor in assessing severity of the primary generalised pulmonary patterns within the radiographic region of interest

  6. Measurement of radon concentration in dwellings in the region of highest lung cancer incidence in India

    International Nuclear Information System (INIS)

    Zoliana, B.; Rohmingliana, P.C.; Sahoo, B.K.; Mayya, Y.S.

    2015-01-01

    Monitoring of radon exhalation from soil and its concentration in indoor is found to be helpful in many investigations such as health risk assessment and others as radiation damage to bronchial cells which eventually can be the second leading cause of lung cancer next to smoking. The fact that Aizawl District, Mizoram, India has the highest lung cancer incidence rates among males and females in Age Adjusted Rate (AAR) in India as declared by Population Based Cancer Registry Report 2008 indicates the need for quantification of radon and its anomalies attached to it. Measurement of radon concentration had been carried out inside the dwellings in Aizawl district, Mizoram. A time integrated method of measurement was employed by using a solid state nuclear track detector (SSNTD) type (LR-115 films) kept in a twin cup dosimeter for measurement of concentration of radon and thoron. The dosimeters were suspended over bed rooms or living rooms in selected dwellings. They were deployed for a period of about 120 days at a time in 63 houses which were selected according to their place of location viz. fault region, places where fossil remains were found and geologically unidentified region. After the desired period of exposure, the detectors were retrieved and chemically etched which were then counted by using a spark counter. The recorded nuclear tract densities are then converted into air concentrations of Radon and Thoron

  7. Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden

    Science.gov (United States)

    Gilham, Clare; Rake, Christine; Burdett, Garry; Nicholson, Andrew G; Davison, Leslie; Franchini, Angelo; Carpenter, James; Hodgson, John; Darnton, Andrew; Peto, Julian

    2016-01-01

    Background We have conducted a population-based study of pleural mesothelioma patients with occupational histories and measured asbestos lung burdens in occupationally exposed workers and in the general population. The relationship between lung burden and risk, particularly at environmental exposure levels, will enable future mesothelioma rates in people born after 1965 who never installed asbestos to be predicted from their asbestos lung burdens. Methods Following personal interview asbestos fibres longer than 5 µm were counted by transmission electron microscopy in lung samples obtained from 133 patients with mesothelioma and 262 patients with lung cancer. ORs for mesothelioma were converted to lifetime risks. Results Lifetime mesothelioma risk is approximately 0.02% per 1000 amphibole fibres per gram of dry lung tissue over a more than 100-fold range, from 1 to 4 in the most heavily exposed building workers to less than 1 in 500 in most of the population. The asbestos fibres counted were amosite (75%), crocidolite (18%), other amphiboles (5%) and chrysotile (2%). Conclusions The approximate linearity of the dose–response together with lung burden measurements in younger people will provide reasonably reliable predictions of future mesothelioma rates in those born since 1965 whose risks cannot yet be seen in national rates. Burdens in those born more recently will indicate the continuing occupational and environmental hazards under current asbestos control regulations. Our results confirm the major contribution of amosite to UK mesothelioma incidence and the substantial contribution of non-occupational exposure, particularly in women. PMID:26715106

  8. Association Between RT-Induced Changes in Lung Tissue Density and Global Lung Function

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2009-01-01

    Purpose: To assess the association between radiotherapy (RT)-induced changes in computed tomography (CT)-defined lung tissue density and pulmonary function tests (PFTs). Methods and Materials: Patients undergoing incidental partial lung RT were prospectively assessed for global (PFTs) and regional (CT and single photon emission CT [SPECT]) lung function before and, serially, after RT. The percent reductions in the PFT and the average changes in lung density were compared (Pearson correlations) in the overall group and subgroups stratified according to various clinical factors. Comparisons were also made between the CT- and SPECT-based computations using the Mann-Whitney U test. Results: Between 1991 and 2004, 343 patients were enrolled in this study. Of these, 111 patients had a total of 203 concurrent post-RT evaluations of changes in lung density and PFTs available for the analyses, and 81 patients had a total of 141 concurrent post-RT SPECT images. The average increases in lung density were related to the percent reductions in the PFTs, albeit with modest correlation coefficients (range, 0.20-0.43). The analyses also indicated that the association between lung density and PFT changes is essentially equivalent to the corresponding association with SPECT-defined lung perfusion. Conclusion: We found a weak quantitative association between the degree of increase in lung density as defined by CT and the percent reduction in the PFTs.

  9. Fibrobronchoscopy in the lung neoplasia

    International Nuclear Information System (INIS)

    Machin Gonzalez, Victoriano; Vieito Espinneira, Rodolfo; Freyre Serentill, Juan C.; Benito Soler, Isabel

    1997-01-01

    160 patients with a clinical-radiological picture suggesting lung neoplasia was conducted. Fibrobronchoscopy was performed as a reliable method to detect this disease. Punch biopsy, exfoliative cytology, and bronchial lavage Webre used to obtain specimens for the histological study. Of all the patients studied, 112 cases Webre positive and a proper diagnosis by biopsy was attained in 90 of them

  10. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  11. Relation of occupations to the regional differences of lung cancer motality in Fukuoka Prefecture.

    Science.gov (United States)

    Shigematsu, T; Yamasaki, M

    1977-07-01

    Geographic pattern of lung cancer mortality in Fukuoka Prefecture showed elevated mortalities among males in the Chikuho district where many coal-mines had long been operated as one of the biggest coal-mining areas in Japan. The analysis in relations of occupations to lung cancer mortality revealed that consistently significant correlations exist between lung cancer mortality, and mining and quarrying occupations in every census year after World War II. No other occupations showed consistent relations to lung cancer though a few significant correlations were found only in the recent years. The results appear to suggest that elevated risk of lung cancer among coal-mining workers may exist and deserve further analytical study.

  12. Dosimetry of inhaled plutonium-239 dioxide in rodent lung: a morphometric study

    International Nuclear Information System (INIS)

    Rhoads, K.

    1979-06-01

    Morphometric analysis of rat and hamster lung did not demonstrate any extensive changes in lung composition or structure following inhalation exposure to 239 Pu0 2 at levels near that for maximum tumor yield in rats. The problem of dosimetry for this compound thus appears to be relatively uncomplicated by any major radiation-induced pathological alterations in the lung. Rat and hamster lung were found to be similar in structure and composition, with few significant differences which could be directly related to the different tumor responses. The distribution of 239 Pu0 2 particles was not uniform in all regions of the lung; thus estimation of the dose to specific tissues or regions within the lung requires a correction for this effect. Species differences were found for particle distribution in the subpleural region and major airways, and in the spatial association of particles, both of which may affect the tumor development process. These regions contain the principal target cells for tumor production and serve as foci for the origin of tumors. Different dose distributions within these regions may therefore explain, at least in part, the difference in tumor response to inhaled 239 Pu0 2 for rats and hamsters

  13. Postperfusion lung syndrome: Respiratory mechanics, respiratory indices and biomarkers

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2015-01-01

    Full Text Available Postperfusion lung syndrome is rare but lethal. Secondary inflammatory response was the popularly accepted theory for the underlying etiology. Respiratory index (RI and arterial oxygen tension/fractional inspired oxygen can be reliable indices for the diagnosis of this syndrome as X-ray appearance is always insignificant at the early stage of the onset. Evaluations of extravascular lung water content and pulmonary compliance are also helpful in the definite diagnosis. Multiorgan failure and triple acid-base disturbances that might develop secondary to postperfusion lung syndrome are responsible for the poor prognosis and increased mortality rather than postperfusion lung syndrome itself. Mechanical ventilation with low tidal volume (TV and proper positive end-expiratory pressure can be an effective treatment strategy. Use of ulinastatin and propofol may benefit the patients through different mechanisms.

  14. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Heil, R.; Hofmann, W. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Hussain, M. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Higher Education Commission of Pakistan, Islamabad (Pakistan)

    2015-05-15

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM{sup -1}. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas. (orig.)

  15. The use of the Kalman filter in the automated segmentation of EIT lung images

    International Nuclear Information System (INIS)

    Zifan, A; Chapman, B E; Liatsis, P

    2013-01-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging. (paper)

  16. The use of the Kalman filter in the automated segmentation of EIT lung images.

    Science.gov (United States)

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  17. North American Electric Reliability Council (NERC) Reliability Coordinators

    Data.gov (United States)

    Department of Homeland Security — ERC is an international regulatory authority that works to improve the reliability of the bulk power system in North America. NERC works with many different regional...

  18. The clearance of uranium after deposition of the nitrate and bicarbonate in different regions of the rat lung

    International Nuclear Information System (INIS)

    Ellender, M.

    1987-01-01

    This study investigated the tissue distribution and excretion of uranium after its deposition as either the nitrate or bicarbonate in the three regions of the respiratory system of the rat. Results confirm the recommendations of ICRP that uranyl nitrate and bicarbonate should be treated as class D compounds; but imply that some of the parameters used in the ICRP lung model are not applicable to soluble uranium compounds. (author)

  19. Mass Preserving Registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Loeve, Martin

    2009-01-01

    intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration...... and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger...

  20. Pharmacological studies of the lung with PET

    International Nuclear Information System (INIS)

    Syrota, A.

    1986-10-01

    Positron emission tomography (PET), known to be used for lung ventilation and perfusion studies, can also be used in pharmacology to obtain information that is otherwise not available. The lung takes up biologically active substances which can be inactivated or activated, and synthesises and releases others. Such information in man has been obtained from samples of human lungs, or from in vivo first-pass studies, invasive or not, as well as from in vivo kinetic studies using external detection methods with scintillation cameras. PET provides now quantitative regional data in the human lung

  1. Intermittent cranial lung herniation in two dogs.

    Science.gov (United States)

    Guglielmini, Carlo; De Simone, Antonio; Valbonetti, Luca; Diana, Alessia

    2007-01-01

    Two aged dogs with chronic obstructive airway disease were evaluated because of intermittent swelling of the ventral cervical region. Radiographs made at expiration and caudal positioning of the forelimbs allowed identification of intermittent cervical lung herniation of the left and right cranial lung lobe in both dogs. Pulmonary hyperinflation, increased expiratory effort, and chronic coughing were considered responsible for the lung herniation. Cervical lung hernia should be included in the differential diagnoses of intermittent cervical swelling in dogs with chronic respiratory disorders associated with increased expiratory effort and chronic coughing.

  2. Predictions of lung cancer based on county averages for indoor radon versus the historic incidence of regional lung cancer

    International Nuclear Information System (INIS)

    Mose, D.G.; Chrosniak, C.E.; Mushrush, G.W.

    1992-01-01

    After a decade of effort to determine the health risk associated with indoor radon, the efforts of the US Environmental Protection Agency have prevailed in the US, and 4 pCi/1 is commonly used as an Action Level. Proposals by other groups supporting lower or higher Action Levels have failed, largely due to paucity of information supporting any particular level of indoor radon. The authors' studies have compared indoor radon for zip code and county size areas with parameters such as geology, precipitation and home construction. Their attempts to verify the relative levels of lung cancer using US-EPA estimates of radon-vs-cancer have not been supportive of the EPA risk estimates. In general, when they compare the number of lung cancer cases in particular geological or geographical areas with the indoor radon levels in that area, they find the EPA predicted number of lung cancer cases to exceed the total number of lung cancer cases from all causes. Comparisons show a correlation between the incidence of lung cancer and indoor radon, but the level of risk is about 1/10 that proposed by the US-EPA. Evidently the assumptions used in their studies are flawed. Even though they find lower risk estimates using many counties in several states, fundamental flaws must be present in this type of investigation. Care must be taken in presenting health risks to the general population in cases, such as in indoor radon, where field data do not support risk estimates obtained by other means

  3. Regional quantification of lung function in cystic fibrosis using hyperpolarized xenon-129 and chemical shift imaging

    OpenAIRE

    Fernandes, Carolina Campanha

    2012-01-01

    Tese de mestrado em Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012 Cystic fibrosis (CF) is a genetic disorder in which the defective gene causes the production of unusually thick and viscous mucus that builds-up in the airways, leading to impaired ventilation and infection of lung structures. Currently, there is a lack of methods capable of routinely assessing, in a regional manner, basic p...

  4. The Agreement between Auscultation and Lung Ultrasound in Hemodialysis Patients: The LUST Study.

    Science.gov (United States)

    Torino, Claudia; Gargani, Luna; Sicari, Rosa; Letachowicz, Krzysztof; Ekart, Robert; Fliser, Danilo; Covic, Adrian; Siamopoulos, Kostas; Stavroulopoulos, Aristeidis; Massy, Ziad A; Fiaccadori, Enrico; Caiazza, Alberto; Bachelet, Thomas; Slotki, Itzchak; Martinez-Castelao, Alberto; Coudert-Krier, Marie-Jeanne; Rossignol, Patrick; Gueler, Faikah; Hannedouche, Thierry; Panichi, Vincenzo; Wiecek, Andrzej; Pontoriero, Giuseppe; Sarafidis, Pantelis; Klinger, Marian; Hojs, Radovan; Seiler-Mussler, Sarah; Lizzi, Fabio; Siriopol, Dimitrie; Balafa, Olga; Shavit, Linda; Tripepi, Rocco; Mallamaci, Francesca; Tripepi, Giovanni; Picano, Eugenio; London, Gérard Michel; Zoccali, Carmine

    2016-11-07

    Accumulation of fluid in the lung is the most concerning sequela of volume expansion in patients with ESRD. Lung auscultation is recommended to detect and monitor pulmonary congestion, but its reliability in ESRD is unknown. In a subproject of the ongoing Lung Water by Ultra-Sound Guided Treatment to Prevent Death and Cardiovascular Complications in High Risk ESRD Patients with Cardiomyopathy Trial, we compared a lung ultrasound-guided ultrafiltration prescription policy versus standard care in high-risk patients on hemodialysis. The reliability of peripheral edema was tested as well. This study was on the basis of 1106 pre- and postdialysis lung ultrasound studies (in 79 patients) simultaneous with standardized lung auscultation (crackles at the lung bases) and quantification of peripheral edema. Lung congestion by crackles, edema, or a combination thereof poorly reflected the severity of congestion as detected by ultrasound B lines in various analyses, including standard regression analysis weighting for repeated measures in individual patients (shared variance of 12% and 4% for crackles and edema, respectively) and κ-statistics (κ ranging from 0.00 to 0.16). In general, auscultation had very low discriminatory power for the diagnosis of mild (area under the receiver operating curve =0.61), moderate (area under the receiver operating curve =0.65), and severe (area under the receiver operating curve =0.68) lung congestion, and the same was true for peripheral edema (receiver operating curve =0.56 or lower) and the combination of the two physical signs. Lung crackles, either alone or combined with peripheral edema, very poorly reflect interstitial lung edema in patients with ESRD. These findings reinforce the rationale underlying the Lung Water by Ultra-Sound Guided Treatment to Prevent Death and Cardiovascular Complications in High Risk ESRD Patients with Cardiomyopathy Trial, a trial adopting ultrasound B lines as an instrument to guide interventions aimed at

  5. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  6. Effects of ventilation strategy on distribution of lung inflammatory cell activity

    Science.gov (United States)

    2013-01-01

    Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic

  7. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  8. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  9. Reliability and accuracy of Crystaleye spectrophotometric system.

    Science.gov (United States)

    Chen, Li; Tan, Jian Guo; Zhou, Jian Feng; Yang, Xu; Du, Yang; Wang, Fang Ping

    2010-01-01

    to develop an in vitro shade-measuring model to evaluate the reliability and accuracy of the Crystaleye spectrophotometric system, a newly developed spectrophotometer. four shade guides, VITA Classical, VITA 3D-Master, Chromascop and Vintage Halo NCC, were measured with the Crystaleye spectrophotometer in a standardised model, ten times for 107 shade tabs. The shade-matching results and the CIE L*a*b* values of the cervical, body and incisal regions for each measurement were automatically analysed using the supporting software. Reliability and accuracy were calculated for each shade tab both in percentage and in colour difference (ΔE). Difference was analysed by one-way ANOVA in the cervical, body and incisal regions. range of reliability was 88.81% to 98.97% and 0.13 to 0.24 ΔE units, and that of accuracy was 44.05% to 91.25% and 1.03 to 1.89 ΔE units. Significant differences in reliability and accuracy were found between the body region and the cervical and incisal regions. Comparisons made among regions and shade guides revealed that evaluation in ΔE was prone to disclose the differences. measurements with the Crystaleye spectrophotometer had similar, high reliability in different shade guides and regions, indicating predictable repeated measurements. Accuracy in the body region was high and less variable compared with the cervical and incisal regions.

  10. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao.cmu@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Song, Yuan, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Yasuhiro, E-mail: songyuan1107@163.com [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Arashidani, Keiichi, E-mail: arashi@snow.ocn.ne.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Seiichi, E-mail: syoshida@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Liu, Boying, E-mail: boyingliu321@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Nishikawa, Masataka, E-mail: mnishi@nies.go.jp [Environmental Chemistry Division, National Institute for Environmental Studies, 305-8506 Tsukuba, Ibaraki (Japan); Takano, Hirohisa, E-mail: htakano@health.env.kyoto-u.ac.jp [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  11. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa

    2013-01-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 2 (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO 2 . - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1 2 (ASD1 > ASD2). • The ASD2 aggravating effects on lung

  12. Application of the homology method for quantification of low-attenuation lung region in patients with and without COPD

    Directory of Open Access Journals (Sweden)

    Nishio M

    2016-09-01

    Full Text Available Mizuho Nishio,1 Kazuaki Nakane,2 Yutaka Tanaka3 1Clinical PET Center, Institute of Biomedical Research and Innovation, Hyogo, Japan; 2Department of Molecular Pathology, Osaka University Graduate School of Medicine and Health Science, Osaka, Japan; 3Department of Radiology, Chibune General Hospital, Osaka, Japan Background: Homology is a mathematical concept that can be used to quantify degree of contact. Recently, image processing with the homology method has been proposed. In this study, we used the homology method and computed tomography images to quantify emphysema.Methods: This study included 112 patients who had undergone computed tomography and pulmonary function test. Low-attenuation lung regions were evaluated by the homology method, and homology-based emphysema quantification (b0, b1, nb0, nb1, and R was performed. For comparison, the percentage of low-attenuation lung area (LAA% was also obtained. Relationships between emphysema quantification and pulmonary function test results were evaluated by Pearson’s correlation coefficients. In addition to the correlation, the patients were divided into the following three groups based on guidelines of the Global initiative for chronic Obstructive Lung Disease: Group A, nonsmokers; Group B, smokers without COPD, mild COPD, and moderate COPD; Group C, severe COPD and very severe COPD. The homology-based emphysema quantification and LAA% were compared among these groups.Results: For forced expiratory volume in 1 second/forced vital capacity, the correlation coefficients were as follows: LAA%, -0.603; b0, -0.460; b1, -0.500; nb0, -0.449; nb1, -0.524; and R, -0.574. For forced expiratory volume in 1 second, the coefficients were as follows: LAA%, -0.461; b0, -0.173; b1, -0.314; nb0, -0.191; nb1, -0.329; and R, -0.409. Between Groups A and B, difference in nb0 was significant (P-value = 0.00858, and those in the other types of quantification were not significant.Conclusion: Feasibility of the

  13. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  14. Association of non-traumatic complex regional pain syndrome with adenocarcinoma lung on 99mTc-MDP bone scan

    International Nuclear Information System (INIS)

    Damle, Nishikant A.; Tripathi, Madhavi; Singhal, Abhinav; Bal, Chandrasekhar; Praveen Kumar; Kandasamy, Devasenathipathi; Jana, Manisha

    2012-01-01

    Complex regional pain syndrome (CRPS) is usually associated with trauma. Rarely, it may be seen in association with malignancies. We present here the bone scan and X-ray findings in the case of a 56-year-male-patient with adenocarcinoma lung who also had non-traumatic CRPS without involvement of the stellate ganglion. The case highlights the fact that spontaneous development of reflex sympathetic dystrophy may be associated with a neoplastic etiology. (author)

  15. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    International Nuclear Information System (INIS)

    Pinkham, D; Schueler, E; Diehn, M; Mittra, E; Loo, B; Maxim, P; Negahdar, M; Yamamoto, T

    2016-01-01

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered to each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to

  16. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Pinkham, D; Schueler, E; Diehn, M; Mittra, E; Loo, B; Maxim, P [Stanford University School of Medicine, Palo Alto, California (United States); Negahdar, M [IBM Research Center, San Jose, California (United States); Yamamoto, T [University of California Davis Medical Center, Sacramento, CA (United States)

    2016-06-15

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered to each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to

  17. Critical study of the diagnostic value of lung scans using 67 gallium in respiratory diseases

    International Nuclear Information System (INIS)

    Perrin-Fayolle, M.; Brun, J.; Moret, R.; Kofman, J.; Ortonne, J.P.; Petigny, C.

    1975-01-01

    70 lungs scans using gallium 67 were carried out. Among the 41 malignant lesions, an uptake of the radio-isotope by the tumour in 51% of cases was noted. Among the 29 benign lesions, there were also 34% of cases which took up gallium 67. Their lack of reliability and selectivity make gallium 67 lung scans unsuitable for the recognition of the malignant nature of lung diseases [fr

  18. PPARGC1A is upregulated and facilitates lung cancer metastasis.

    Science.gov (United States)

    Li, Jin-Dong; Feng, Qing-Chuan; Qi, Yu; Cui, Guanghui; Zhao, Song

    2017-10-15

    Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. Peroxisome proliferator-activated receptor gamma (PPARGC1A) was uniformly the topmost overexpressed gene in all three human non-small cell lung cancer (NSCLC) patient samples. Further evaluation in human normal lung and metastatic lung cancer cell lines revealed that the expression of PPARGC1A was upregulated in metastatic lung cancer cell lines. Metagenomic analysis revealed direct correlation among PPARGC1A, zinc-finger transcription factor snail homolog 1 (SNAI1), and metastatic lung disease. Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis. Copyright © 2017. Published by Elsevier Inc.

  19. Smoking produced mucus and clearance of particulates in the lung

    International Nuclear Information System (INIS)

    Sterling, T.D.; Poland, T.M.

    1992-01-01

    Some studies of miners have shown a lesser relative lung-cancer risk for smokers than for nonsmokers. For example, experiments by Cross and associates with dogs have shown an apparent protective effect of cigarette smoke against radon-daughter and dust exposure. One reason for these changes may be the thickened mucus layer in the tracheobronchial region of smokers. Physiological changes in the lung due to smoking may decrease the effects of radioactive particles in cancers in the bronchial region by apparently promoting faster clearance, in that region, of radioactive particles and by decreasing the radiation dose through reduced penetration to the sensitive basal epithelial cells. Because of the short half-life of radon daughters, even if there is possible tobacco-related delay of particle clearance from the alveolar region it cannot affect radon clearance. Therefore, the possible mitigating effect of tobacco on radon-produced cancer appears to be limited to the tracheobronchial region. It would be of value to a number of occupations if the same changes in the lungs due to smoking could be produced in exposed workers in the absence of cigarette-smoking. Beta-carotene and vitamin A, which affect maintenance and secretion of the mucosal lining, appear to thicken mucus, thereby providing protection against radon-induced lung cancers that is similar to smoking-related changes in the lung

  20. 18FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases

    International Nuclear Information System (INIS)

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-01-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased 18 F-fluorodeoxy-D-glucose ( 18 FDG) uptake. Though the possible utility of 18 FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung 18 FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between 18 FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from 18 FDG PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and 18 FDG uptake between the control and ILD cases were tested. The CT density and 18 FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung 18 FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung 18 FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases. (author)

  1. Uncertainties on lung doses from inhaled plutonium.

    Science.gov (United States)

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  2. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, M; Chen, T; Yue, N; Zou, J [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Proton and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.

  3. A brief measure of Smokers' knowledge of lung cancer screening with low-dose computed tomography

    Directory of Open Access Journals (Sweden)

    Lisa M. Lowenstein

    2016-12-01

    Full Text Available We describe the development and psychometric properties of a new, brief measure of smokers' knowledge of lung cancer screening with low-dose computed tomography (LDCT. Content experts identified key facts smokers should know in making an informed decision about lung cancer screening. Sample questions were drafted and iteratively refined based on feedback from content experts and cognitive testing with ten smokers. The resulting 16-item knowledge measure was completed by 108 heavy smokers in Houston, Texas, recruited from 12/2014 to 09/2015. Item difficulty, item discrimination, internal consistency and test-retest reliability were assessed. Group differences based upon education levels and smoking history were explored. Several items were dropped due to ceiling effects or overlapping constructs, resulting in a 12-item knowledge measure. Additional items with high item uncertainty were retained because of their importance in informed decision making about lung cancer screening. Internal consistency reliability of the final scale was acceptable (KR-20 = 0.66 and test-retest reliability of the overall scale was 0.84 (intraclass correlation. Knowledge scores differed across education levels (F = 3.36, p = 0.04, while no differences were observed between current and former smokers (F = 1.43, p = 0.24 or among participants who met or did not meet the 30-pack-year screening eligibility criterion (F = 0.57, p = 0.45. The new measure provides a brief, valid and reliable indicator of smokers' knowledge of key concepts central to making an informed decision about lung cancer screening with LDCT, and can be part of a broader assessment of the quality of smokers' decision making about lung cancer screening.

  4. Navigating financial and supply reliability tradeoffs in regional drought management portfolios

    Science.gov (United States)

    Zeff, Harrison B.; Kasprzyk, Joseph R.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2014-06-01

    Rising development costs and growing concerns over environmental impacts have led many communities to explore more diversified water management strategies. These "portfolio"-style approaches integrate existing supply infrastructure with other options such as conservation measures or water transfers. Diversified water supply portfolios have been shown to reduce the capacity and costs required to meet demand, while also providing greater adaptability to changing hydrologic conditions. However, this additional flexibility can also cause unexpected reductions in revenue (from conservation) or increased costs (from transfers). The resulting financial instability can act as a substantial disincentive to utilities seeking to implement more innovative water management techniques. This study seeks to design portfolios that employ financial tools (e.g., contingency funds and index insurance) to reduce fluctuations in revenues and costs, allowing these strategies to achieve improved performance without sacrificing financial stability. This analysis is applied to the development of coordinated regional supply portfolios in the "Research Triangle" region of North Carolina, an area comprising four rapidly growing municipalities. The actions of each independent utility become interconnected when shared infrastructure is utilized to enable interutility transfers, requiring the evaluation of regional tradeoffs in up to five performance and financial objectives. Diversified strategies introduce significant tradeoffs between achieving reliability goals and introducing burdensome variability in annual revenues and/or costs. Financial mitigation tools can mitigate the impacts of this variability, allowing for an alternative suite of improved solutions. This analysis provides a general template for utilities seeking to navigate the tradeoffs associated with more flexible, portfolio-style management approaches.

  5. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    International Nuclear Information System (INIS)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-01-01

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z eff ), iodine concentration (ρ I ) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z eff and normalized mean Z eff to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  6. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings.

    Science.gov (United States)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-10-01

    To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Zeff), iodine concentration (ρI) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Zeff and normalized mean Zeff to be statistically significant (p=0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54-0.80) and 0.72 (CI 95%, 0.60-0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Mathematics of Ventilator-induced Lung Injury.

    Science.gov (United States)

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  8. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  9. 78 FR 44909 - Regional Reliability Standard BAL-002-WECC-2-Contingency Reserve

    Science.gov (United States)

    2013-07-25

    ...\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242...-002-WECC-2 (Contingency Reserve). The North American Electric Reliability Corporation (NERC) and... (Technical Information), Office of Electric Reliability, Division of Reliability Standards, Federal Energy...

  10. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  11. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  12. Radioaerosol lung imaging - history and pharmaceuticals

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The first use of a radioactive tracer to study lung function was made by Knipping and others in 1955. They used radioactive 133 Xe (xenon) gas as an inhalation agent in a patient with lung cancer and found that distal to a tumor no radioactivity was detected indicating no ventilation although chest x-rays appeared as if there was active ventilation. Subsequently with advance in technology a number of radioactive gases such as 81m Kr (krypton) and cyclotron produced 15 O 2 (oxygen), 11 C (carbon) and 13 N 2 (nitrogen) became available to assess regional lung function. The advantages of these gases are manifold, but their utility is mostly limited due to high cost. An alternative to the use of radioactive gases to study regional ventilation is the use of particulate radioactive aerosol. Radioaerosol inhalation lung imaging technique was developed in 1965 almost simultaneously by Taplin and others and Pircher and others just 2 years following Taplin's invention of 131 I-MAA for perfusion lung imaging. Their main aim was to use 131 I-human serum albumin (HSA), and 99m Tc-HSA, 131 I-rose bengal, 197 Hg-chlormerodrin and colloidal 198 Au as agents for radioaerosol generation, and Taplin himself preferred 198 Au colloids for serial studies from economical reasons. Already in 1965, however, Taplin said that the best agent would be 99m Tc-HSA. Pircher used 131 I-HSA aerosol. Taplin already noted at that time that the inhaled aerosol was removed from the lungs mainly by ciliary action and that it was not absorbed either from the lungs or the intestine. Anyway it is noteworthy that the idea of radioaerosol inhalation lung imaging was proposed soon after the advent of perfusion lung imaging. Besides 131 I-HSA and colloidal 198 Au, the following agents have been or are currently being used. The superiority of 99m TC over other radioisotopes used in the past is beyond dispute

  13. Improved electrode positions for local impedance measurements in the lung-a simulation study.

    Science.gov (United States)

    Orschulik, Jakob; Petkau, Rudolf; Wartzek, Tobias; Hochhausen, Nadine; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2016-12-01

    Impedance spectroscopy can be used to analyze the dielectric properties of various materials. In the biomedical domain, it is used as bioimpedance spectroscopy (BIS) to analyze the composition of body tissue. Being a non-invasive, real-time capable technique, it is a promising modality, especially in the field of lung monitoring. Unfortunately, up to now, BIS does not provide any regional lung information as the electrodes are usually placed in hand-to-hand or transthoracic configurations. Even though transthoracic electrode configurations are in general capable of monitoring the lung, no focusing to specific regions is achieved. In order to resolve this issue, we use a finite element model (FEM) of the human body to study the effect of different electrode configurations on measured BIS data. We present evaluation results and show suitable electrode configurations for eight lung regions. We show that, using these optimized configurations, BIS measurements can be focused to desired regions allowing local lung analysis.

  14. Lung lobe collapse: pathophysiology and radiologic significance

    International Nuclear Information System (INIS)

    Lord, P.F.; Gomez, J.A.

    1985-01-01

    The radiographic changes caused by collapse of lung lobes in pulmonary disease, pneumothorax, and pleural effusion depend on the lobar recoiling force and local pleural pressure. Differences in the tendency of normal lung lobes or regions to collapse depend on the relative surface-to-volume ratio, determined by shape and size of the region or lobe. This ratio affects the physiologic parameters of pulmonary interdependence, compliance, and collateral air flow. Pulmonary surfactant increases compliance, particularly at low volumes, maintains alveolar stability, and assists in maintaining capillary patency and preventing pulmonary edema. Its loss due to lung injury increases collapsing forces. In the presence of pneumothorax or pleural effusion, diseases that cause lobar collapse produce localized air or fluid entrapment that is a diagnostic sign of the presence of the underlying pulmonary disease

  15. Automated bony region identification using artificial neural networks: reliability and validation measurements

    International Nuclear Information System (INIS)

    Gassman, Esther E.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Shivanna, Kiran H.; Powell, Stephanie M.; Magnotta, Vincent A.; Ramme, Austin J.; Adams, Brian D.; Grosland, Nicole M.

    2008-01-01

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  16. Automated bony region identification using artificial neural networks: reliability and validation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gassman, Esther E.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Shivanna, Kiran H. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States); Powell, Stephanie M. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Ramme, Austin J. [University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Adams, Brian D. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Orthopaedics and Rehabilitation, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Orthopaedics and Rehabilitation, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States)

    2008-04-15

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  17. Lung ultrasound for the diagnosis of community-acquired pneumonia in children.

    Science.gov (United States)

    Stadler, Jacob A M; Andronikou, Savvas; Zar, Heather J

    2017-10-01

    Ultrasound (US) has been proposed as an alternative first-line imaging modality to diagnose community-acquired pneumonia in children. Lung US has the potential benefits over chest radiography of being radiation free, subject to fewer regulatory requirements, relatively lower cost and with immediate bedside availability of results. However, the uptake of lung US into clinical practice has been slow and it is not yet included in clinical guidelines for community-acquired pneumonia in children. The aim of this review is to give an overview of the equipment and techniques used to perform lung US in children with suspected pneumonia and the interpretation of relevant sonographic findings. We also summarise the current evidence of diagnostic accuracy and reliability of lung US compared to alternative imaging modalities in children and critically consider the strengths and limitations of lung US for use in children presenting with suspected community-acquired pneumonia.

  18. Measurement of lung water with SPECT

    International Nuclear Information System (INIS)

    Chu, R.Y.L.; Ficken, V.J.; Ekeh, S.U.; Ryals, C.J.; Allen, E.W.; Basmadjian, G.

    1990-01-01

    This paper investigates the use of iodoantipyrine (IAP) labeled with radioactive iodine (I-123) and single photon emission tomography (SPECT) to measure lung water. I-123 IAP was injected intravenously to six New Zealand White rabbits under anesthesia. After 1 hour, Tc-99m macroaggregates of albumin (MAA) were injected. SPECT imaging was performed in dual-energy mode. After a blood sample was drawn, the animals were sacrificed, and the lungs were removed. Blood samples were assayed for radioactivity. The lungs were weighed, dried, and weighted again to determine water content. The product of area defined by MAA in a tomogram and IAP count rate of central pixels of that region in the corresponding tomogram was taken as the relative amount of IAP in each lung

  19. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  20. Evaluation of the regional lung function revealed in radioaerosol scintigram of chronic obstructive pulmonary disease, 1. The comparison of radioaerosol scintigram with the lung function tests in chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T [Kyoto Univ. (Japan). Faculty of Medicine

    1980-02-01

    We classified the findings of radioaerosol inhalation scintigrams of patients with various stages of obstructive pulmonary disease (COPD) into 4 grades, according to the extent of peripheral irregularity and central hot spot formation; Stage I represents normal homogeneous distribution, stage II represents peripheral irregularity, stage III represents additional hot spot formation and stage IV represents further regional defect. This aerosol grading criteria was then compared with routine and specific lung function tests. The aerosol grading criterion correlated well with FEV sub(1.0)% which is a good indicator of the severity of COPD. The central hot spot formation correlated well with FEV sub(1.0)% and respiratory resistance (R.p.) determined by the oscillation method, both of which are good indicators of abnormality in central airway resistance. Peripheral irregularity correlated well with: 1) flows at 50%VC and 25%VC in a maximum forced expiratory flow volume curve; 2) closing volume (CV/VC%); 3) delta N/sub 2/%/l in N/sub 2/ single washout test; and 4) the regional delay of /sup 133/Xe washout process, all of which are sensitive indicators of small airway disease. It is therefore reasonable to conclude that the radioaerosol scintigram reveals the regional lung function both in terms of airway resistance (R) and compliance (C). This criterion was useful in quantitatively evaluating the regional ventilation distribution of COPD and the therapeutic effect on bronchial asthma. The mechanism of aerosol particle deposition related to characteristic central hot spot formation accompanied with peripheral irregularity in a radioaerosol scintigram of COPD, needs further exploration concerning the aerodynamic behavior of aerosol particles in the airways both during inspiration and expiration.

  1. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    Science.gov (United States)

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  2. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics

    International Nuclear Information System (INIS)

    Eichinger, Monika; Tetzlaff, Ralf; Puderbach, Michael; Woodhouse, Neil; Kauczor, H.-U.

    2007-01-01

    Since many pulmonary diseases present with a variable regional involvement, modalities for assessment of regional lung function gained increasing attention over the last years. Together with lung perfusion and gas exchange, ventilation, as a result of the interaction of the respiratory pump and the lungs, is an indispensable component of lung function. So far, this complex mechanism is still mainly assessed indirectly and globally. A differentiation between the individual determining factors of ventilation would be crucial for precise diagnostics and adequate treatment. By dynamic imaging of the respiratory pump, the mechanical components of ventilation can be assessed regionally. Amongst imaging modalities applicable to this topic, magnetic resonance imaging (MRI), as a tool not relying on ionising radiation, is the most attractive. Recent advances in MRI technology have made it possible to assess diaphragmatic and chest wall motion, static and dynamic lung volumes, as well as regional lung function. Even though existing studies show large heterogeneity in design and applied methods, it becomes evident that MRI is capable to visualise pulmonary function as well as diaphragmatic and thoracic wall movement, providing new insights into lung physiology. Partly contradictory results and conclusions are most likely caused by technical limitations, limited number of studies and small sample size. Existing studies mainly evaluate possible imaging techniques and concentrate on normal physiology. The few studies in patients with lung cancer and emphysema already give a promising outlook for these techniques from which an increasing impact on improved and quantitative disease characterization as well as better patient management can be expected

  3. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  4. Reliability of Oronasal Fistula Classification.

    Science.gov (United States)

    Sitzman, Thomas J; Allori, Alexander C; Matic, Damir B; Beals, Stephen P; Fisher, David M; Samson, Thomas D; Marcus, Jeffrey R; Tse, Raymond W

    2018-01-01

    Objective Oronasal fistula is an important complication of cleft palate repair that is frequently used to evaluate surgical quality, yet reliability of fistula classification has never been examined. The objective of this study was to determine the reliability of oronasal fistula classification both within individual surgeons and between multiple surgeons. Design Using intraoral photographs of children with repaired cleft palate, surgeons rated the location of palatal fistulae using the Pittsburgh Fistula Classification System. Intrarater and interrater reliability scores were calculated for each region of the palate. Participants Eight cleft surgeons rated photographs obtained from 29 children. Results Within individual surgeons reliability for each region of the Pittsburgh classification ranged from moderate to almost perfect (κ = .60-.96). By contrast, reliability between surgeons was lower, ranging from fair to substantial (κ = .23-.70). Between-surgeon reliability was lowest for the junction of the soft and hard palates (κ = .23). Within-surgeon and between-surgeon reliability were almost perfect for the more general classification of fistula in the secondary palate (κ = .95 and κ = .83, respectively). Conclusions This is the first reliability study of fistula classification. We show that the Pittsburgh Fistula Classification System is reliable when used by an individual surgeon, but less reliable when used among multiple surgeons. Comparisons of fistula occurrence among surgeons may be subject to less bias if they use the more general classification of "presence or absence of fistula of the secondary palate" rather than the Pittsburgh Fistula Classification System.

  5. CYP1A1 gene polymorphisms increase lung cancer risk in a high-incidence region of Spain: a case control study

    Directory of Open Access Journals (Sweden)

    San Jose Carmen

    2010-08-01

    Full Text Available Abstract Background A rural region in south-west Spain has one of the highest lung cancer incidence rates of the country, as revealed by a previous epidemiological 10-year follow-up study. The present work was undertaken to ascertain the role of CYP1A1 gene polymorphisms and their interaction with tobacco smoking in the development of the disease in this location. Methods One-hundred-and-three cases of lung cancer and 265 controls participated in the study. The participants were screened for the presence of four CYP1A1 polymorphisms, namely MspI, Ile462Val, T3205C, and Thr461Asn. Lung cancer risk was estimated as odds ratios (OR and 95% confidence intervals (CI using unconditional logistic regression models adjusting for age, sex, and smoking. Results The distribution of the variant CYP1A1 alleles was different from that described for other Caucasian populations, with CYP1A1*2A showing an uncommonly high frequency (p CYP1A1*2B allele (carrying MspI and Ile462Val mutations was strongly associated with high lung cancer risk (OR = 4.59, CI:1.4-12.6, p p p = 0.04. Moreover, the Thr461Asn polymorphism was found to be associated with SCLC in a Caucasian population for the first time to our knowledge (OR = 8.33, CI: 1.3-15.2, p = 0.04. Conclusion The results suggest that CYP1A1 polymorphisms contribute to increase lung cancer susceptibility in an area with an uncommon high incidence rate.

  6. Evaluation of imaging of the ventilatory lung motion in pulmonary diseases

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Tanaka, Masao; Hirayama, Jiro; Handa, Kenjiro

    1988-01-01

    Using perfusion lung scintigram with 99m Tc-macroaggregated albumin at maximal expiration (E) and inspiration (I), images of the motion of the regional pulmonary areas and lung margins during ventilation ((E-I)/I) was obtained in patients with various respiratory diseases. The image of (E-I)/I consisted of positive and negative components. The former component visualized the motion of the regional pulmonary areas that corresponded with the ventilatory amplitude of the videodensigram. The sum of the positive component of (E-I)/I in both lungs correlated with the vital capacity (n = 50, r = 0.62). It was 163.5 ± 52.5 in cases with a vital capacity of more than 3.01, 94.1 ± 61.5 in primary lung cancer, 89.2 ± 44.7 in chronic obstructive lung diseases and 69.0 ± 27.5 in diffuse interstitial pneumonia. The distribution pattern of pulmonary perfusion and the positive component of (E-I)/I matched fairly in many cases, but did not match in some cases. The negative component of (E-I)/I demonstrated the ventilatory motion of the lung margin and its decreased activity was shown in cases with hypoventilation of various causes including pleural diseases. The sum of the negative component of (E-I)/I in the both lungs correlated with the vital capacity (n = 50, r = 0.44). These results suggest that this technique is useful to estimate the regional pulmonary ventilatioin and motion of the lung margins. (author)

  7. How reliable are Functional Movement Screening scores? A systematic review of rater reliability.

    Science.gov (United States)

    Moran, Robert W; Schneiders, Anthony G; Major, Katherine M; Sullivan, S John

    2016-05-01

    Several physical assessment protocols to identify intrinsic risk factors for injury aetiology related to movement quality have been described. The Functional Movement Screen (FMS) is a standardised, field-expedient test battery intended to assess movement quality and has been used clinically in preparticipation screening and in sports injury research. To critically appraise and summarise research investigating the reliability of scores obtained using the FMS battery. Systematic literature review. Systematic search of Google Scholar, Scopus (including ScienceDirect and PubMed), EBSCO (including Academic Search Complete, AMED, CINAHL, Health Source: Nursing/Academic Edition), MEDLINE and SPORTDiscus. Studies meeting eligibility criteria were assessed by 2 reviewers for risk of bias using the Quality Appraisal of Reliability Studies checklist. Overall quality of evidence was determined using van Tulder's levels of evidence approach. 12 studies were appraised. Overall, there was a 'moderate' level of evidence in favour of 'acceptable' (intraclass correlation coefficient ≥0.6) inter-rater and intra-rater reliability for composite scores derived from live scoring. For inter-rater reliability of composite scores derived from video recordings there was 'conflicting' evidence, and 'limited' evidence for intra-rater reliability. For inter-rater reliability based on live scoring of individual subtests there was 'moderate' evidence of 'acceptable' reliability (κ≥0.4) for 4 subtests (Deep Squat, Shoulder Mobility, Active Straight-leg Raise, Trunk Stability Push-up) and 'conflicting' evidence for the remaining 3 (Hurdle Step, In-line Lunge, Rotary Stability). This review found 'moderate' evidence that raters can achieve acceptable levels of inter-rater and intra-rater reliability of composite FMS scores when using live ratings. Overall, there were few high-quality studies, and the quality of several studies was impacted by poor study reporting particularly in relation to

  8. LUNG FUNCTION TESTING IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Matjaž Fležar

    2004-03-01

    Full Text Available Background. Lung function testing in children above five years old is standardised similarly as is in adult population (1. Nevertheless bronchial provocation testing can be more hazardous since the calibre and reactivity of childhood airway is different. We analysed the frequency of different lung function testing procedures and addressed the safety issues of bronchial provocation testing in children.Methods. We analysed lung function testing results in 517 children, older than 5 years, tested in our laboratory in threeyear period. Spirometry was done in every patient, metacholine provocation test was used as a part of diagnostic work-up in suspected asthma. In case of airway obstruction, bronchodilator test with salbutamol was used instead of a metacholine provocation test.Results. The most common procedure in children was spirometry with bronchial provocation test as a part of diagnostic work-up of obstructive syndrome (mostly asthma. 291 children required metacholine test and 153 tests were interpreted as positive. The decline in expiratory flows (forced expiratory flow in first second – FEV1 in positive tests was greater than in adult population as was the dose of metacholine, needed to induce bronchoconstriction. The compliance of children was better than in adults.Conclusions. Lung function testing in children is reliable and safe and can be done in a well-standardised laboratory that follows the regulations of such testing in adults.

  9. Automated quantification of emphysema in CT studies of the lung

    International Nuclear Information System (INIS)

    Archer, D.C.; deKemp, R.A.; Coblentz, C.L.; Nahmias, C.

    1991-01-01

    Emphysema by definition is a pathologic diagnosis. Recently, in vivo quantification of emphysema from CT with point counting and with a GE 9800 CT scanner program called Density Mask has been described. These methods are laborious and time-consuming, making them unsuitable for screening. The propose of this paper is to create a screening test for emphysema. The authors developed a computer program that quantifies the amount of emphysema from standard CT-scans. The computer was programmed to recognize the lung edges on each section by identifying abrupt changes in CT numbers; grow regions within each lung to identify and separate the lungs from other structures; count regions of lung containing CT numbers measuring <-900 HU corresponding to areas of emphysema; and calculation the percentage of emphysema present from the volume of normal emphysematous lung. The programs were written in C and urn on a Sun 4/100 workstation

  10. Perfusion study in the pulmonary hilar region by SPECT

    International Nuclear Information System (INIS)

    Satoh, Katashi; Tanabe, Masatada; Kawase, Yoshiro

    1990-01-01

    Alveoli in the hilar region comprise the peripheral area containing daughter branches from subsegmental or one more divisional peripheral bronchi. Pulmonary perfusion in hilar region was examined by SPECT (single photon emission CT) in ten normal volunteers. ROI (region of interest) in the axial images were set in the hilar region, the upper, middle and lower lung fields with 10.8 mm thickness. Counts/one pixel (C/P) were calculated in these ROI. There was a tendency of C/P increase from upper to lower lung field. And there were no significant differences in C/P increase between hilar region and other axial fields. In the chronic obstructive pulmonary diseases, however, ventilation studies in the previous reports using Xe dynamic CT or PET (positron emission tomography) showed differences between outer region and hilar region. This method will be expected to evaluate the pulmonary perfusion not only in the whole lung but in different lung areas, including the hilar region in the chronic obstructive pulmonary diseases. (author)

  11. [Study for lung sound acquisition module based on ARM and Linux].

    Science.gov (United States)

    Lu, Qiang; Li, Wenfeng; Zhang, Xixue; Li, Junmin; Liu, Longqing

    2011-07-01

    A acquisition module with ARM and Linux as a core was developed. This paper presents the hardware configuration and the software design. It is shown that the module can extract human lung sound reliably and effectively.

  12. Is the omega sign a reliable landmark for the neurosurgical team? An anatomical study about the central sulcus region

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2015-11-01

    Full Text Available ABSTRACTThe central sulcus region is an eloquent area situated between the frontal and parietal lobes. During neurosurgical procedures, it is sometimes difficult to understand the cortical anatomy of this region.Objective Find alternative ways to anatomically navigate in this region during neurosurgical procedures.Method We analyzed eighty two human hemispheres using a surgical microscope and completed a review of the literature about central sulcus region.Results In 68/82 hemispheres, the central sulcus did not reach the posterior ramus of the lateral sulcus. A knob on the second curve of the precentral gyrus was reliably identified in only 64/82 hemispheres.Conclusion The morphometric data presented in this article can be useful as supplementary method to identify the central sulcus region landmarks.

  13. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  14. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  15. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  16. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  17. Positioning effects on lung ventilation in older normal subjects: a technegas study

    International Nuclear Information System (INIS)

    Krieg, S.; McCarren, B.; Alison, J.; Cowell, S.F.; Leiper, C.; Bankstown-Lidcombe Hospital, Sydney, NSW; El Zein, H.

    2002-01-01

    Full text: While the effects of positioning on the distribution of ventilation in the lungs of younger subjects has been relatively well investigated, this is not so in the older age group. Known age-associated changes in the respiratory system are proposed to alter the distribution of ventilation in the lungs of older people. The aim of the present study was therefore to determine the effects of positioning on the distribution of ventilation in the lungs of older normal subjects. The distribution of ventilation in upright sitting and right side lying was measured in ten subjects using Technegas lung ventilation during tidal breathing. In the upright sitting position ventilation was preferentially distributed to the middle and basal regions (dependent regions). Right side lying ventilation was preferentially distributed to the right lung (dependent region). These results suggest that preferential distribution of ventilation to the dependent lung regions in older subjects is mainly due to the gravity-dependent gradient in pleural pressure. It is proposed that this distribution may partly result from loss of elasticity in the lungs with ageing. Predominantly, the distribution of ventilation in the lungs of older normal subjects in our study is similar to that previously described in younger subjects (Amis et al., 1984, Kaneko et al, 1966, Milic-Emili et al, 1966. This suggests that a similar pleural pressure gradient may exist in the lungs of older and younger subjects. This is an important implication as the majority of patients that physiotherapists treat with cardiopulmonary dysfunction are in the older age group. Further research is required to determine the effects of positioning on the distribution of ventilation in older patients with cardiopulmonary dysfunction to enable direct clinical implications to be made. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  18. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    Science.gov (United States)

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  19. Differentiating lung abscess and empyema: radiography and computed tomography

    International Nuclear Information System (INIS)

    Stark, D.D.; Federle, M.P.; Goodman, P.C.; Podrasky, A.E.; Webb, W.R.

    1983-01-01

    Conventional chest radiographs and computed tomographic (CT) scans of 70 inflammatory thoracic lesions in 63 patients were reviewed and scored for diagnostic features. Pathologic confirmation of the final diagnosis was available in 42% (5/12) of lung abscesses and 31% (18/58) of empyemas. CT alone was sufficient to correctly diagnose 100% (70/70) of cases. Diagnostic information not available from conventional chest radiographs was obtained in 47% (33/70) of cases; in an additional 34% of patients, CT more accurately defined the extent of disease. The most reliable CT features for the differential diagnosis of lung abscess and empyema were wall characteristics, pleural separation, and lung compression. Conventional radiographic features such as size, shape, and the angle of the lesion with the chest wall were less helpful, though also best assessed by CT

  20. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  1. Changes in lung volume and ventilation during surfactant treatment in ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2011-01-01

    The immediate and regional effects of exogenous surfactant in open lung high-frequency oscillatory ventilated (HFOV) preterm infants are unknown. To assess regional changes in lung volume, mechanics, and ventilation during and after surfactant administration in HFOV preterm infants with respiratory

  2. Automating the expert consensus paradigm for robust lung tissue classification

    Science.gov (United States)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  3. Detecting regional lung properties using audio transfer functions of the respiratory system.

    Science.gov (United States)

    Mulligan, K; Adler, A; Goubran, R

    2009-01-01

    In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.

  4. Microdosimetric approach for lung dose assessments

    International Nuclear Information System (INIS)

    Hofmann, W.; Steinhausler, F.; Pohl, E.; Bernroider, G.

    1980-01-01

    In the macroscopic region the term ''organ dose'' is related to an uniform energy deposition within a homogeneous biological target. Considering the lung, inhaled radioactive nuclides, however, show a significant non-uniform distribution pattern throughout the respiratory tract. For the calculation of deposition and clearance of inhaled alpha-emitting radionuclides within different regions of this organ, a detailed compartment model, based on the Weibel model A was developed. Since biological effects (e.g. lung cancer initiation) are primarily caused at the cellular level, the interaction of alpha particles with different types of cells of the lung tissue was studied. The basic approach is to superimpose alpha particle tracks on magnified images of randomly selected tissue slices, simulating alpha emitting sources. Particle tracks are generated by means of a specially developed computer program and used as input data for an on-line electronic image analyzer (Quantimet-720). Using adaptive pattern recognition methods the different cells in the lung tissue can be identified and their distribution within the whole organ determined. This microdosimetric method is applied to soluble radon decay products as well as to insoluble, highly localized, plutonium particles. For a defined microdistribution of alpha emitters, the resulting dose, integrated over all cellular dose values, is compared to the compartmental doses of the ICRP lung model. Furthermore this methodology is also applicable to other organs and tissues of the human body for dose calculations in practical health physics. (author)

  5. Kinetics of badminton lunges in four directions.

    Science.gov (United States)

    Hong, Youlian; Wang, Shao Jun; Lam, Wing Kai; Cheung, Jason Tak Man

    2014-02-01

    The lunge is the most fundamental skill in badminton competitions. Fifteen university-level male badminton players performed lunge maneuvers in four directions, namely, right-forward, left-forward, right-backward, and left-backward, while wearing two different brands of badminton shoes. The test compared the kinetics of badminton shoes in performing typical lunge maneuvers. A force plate and an insole measurement system measured the ground reaction forces and plantar pressures. These measurements were compared across all lunge maneuvers. The left-forward lunge generated significantly higher first vertical impact force (2.34 ± 0.52 BW) than that of the right-backward (2.06 ± 0.60 BW) and left-backward lunges (1.78 ± 0.44 BW); higher second vertical impact force (2.44 ± 0.51 BW) than that of the left-backward lunge (2.07 ± 0.38 BW); and higher maximum anterior-posterior shear force (1.48 ± 0.36 BW) than that of the left-backward lunge (1.18 ± 0.38 BW). Compared with other lunge directions, the left-forward lunge showed higher mean maximum vertical impact anterior-posterior shear forces and their respective maximum loading rates, and the plantar pressure at the total foot and heel regions. Therefore, the left-forward lunge is a critical maneuver for badminton biomechanics and related footwear research because of the high loading magnitude generated during heel impact.

  6. Reliability of up-to-date risk factor between residential radon and lung cancer

    International Nuclear Information System (INIS)

    Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Kobayashi, Yosuke; Yoshinaga, Shinji; Quanfu, Sun; Akiba, Suminori

    2008-01-01

    Full text: The WHO launched an international radon project in January, 2005 because two major scientific articles on the residential-radon-and-lung-cancer risk have been published. Furthermore, the ICRP has just issued a new recommendation (Publ. 103). In the publication, radon issues have been mentioned using these references. They show that there is a significant correlation between radon exposures and lung cancer risks even with a somewhat lower radon concentration than an internationally recommended level (200 Bq m -3 ). In most cases, residential radon concentrations were measured by passive integrating radon monitors based on the alpha track detection techniques in their studies. We examined detection responses for the presence of thoron with some typical alpha track detectors (Kf K: Germany, Radtrak: USA and NRPB: UK), which were widely used in many epidemiological studies. In addition, we measured indoor radon and thoron concentrations in cave dwellings in Gansu Province, China, in which the National Cancer Institute (NCI) conducted a large-scale epidemiological study. The NCI concluded that there was also a significant correlation between the two aforementioned parameters, which was a similar value to recently acceptable one. However, our results on radon concentrations were obviously different from them because there was much thoron in that area. The present study demonstrates whether these risk factors are really correct throughout our data or not. Tokonami (2005) has pointed out that some of popular alpha track detectors are sensitive to thoron ( 220 Rn). This finding implies that radon readings will be overestimated and consequently may lead to biased estimates of lung cancer risk. The present study describes thoron interference on accurate radon measurements from the viewpoint of both experimental studies and field experiences. (author)

  7. Buccal Epithelium, Cigarette Smoking, and Lung Cancer: Review of the Literature.

    Science.gov (United States)

    Saba, Raya; Halytskyy, Oleksandr; Saleem, Nasir; Oliff, Ira A

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related mortality among men and women in the United States, and optimal screening methods are still lacking. The field effect is a well-supported phenomenon wherein a noxious stimulus triggers genetic, epigenetic and molecular changes that are widespread throughout the entire exposed organ system. The buccal epithelium is an easily accessible part of the respiratory tree that has good potential of yielding a surrogate marker for the field effect in cigarette smokers, and thus, a noninvasive, reliable lung cancer screening method. Herein, we review the literature on the relationship between the buccal epithelium, cigarette smoking, and lung cancer. © 2017 S. Karger AG, Basel.

  8. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers

    Science.gov (United States)

    Proença, Martin; Adler, Andy; Riedel, Thomas; Thiran, Jean-Philippe; Solà, Josep

    2018-01-01

    Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of −1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations. PMID:29373611

  9. Auscultation of the lung: past lessons, future possibilities.

    Science.gov (United States)

    Murphy, R L

    1981-01-01

    Review of the history of auscultation of the lung reveals few scientific investigations. The majority of these have led to inconclusive results. The mechanism of production of normal breath sounds remains uncertain. Hypotheses for the generation of adventitious sounds are unproven. Advances in instrumentation for lung sound recording and analysis have provided little of clinical value. There has been a recent resurgence of interest in lung sounds. Space-age technology has improved methodology for sonic analysis significantly. Lung sounds are complex signals that probably reflect regional lung pathophysiology. If they were understood more clearly important non-invasive diagnostic tools could be devised and the value of clinical auscultation could be improved. A multidisciplinary effort will be required to achieve this. PMID:7268687

  10. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    González-Pérez, Víctor [Dept Radiophysics, Foundation IVO, Valencia (Spain); Arana, Estanislao, E-mail: aranae@uv.es [Dept Radiology, Foundation IVO, Valencia (Spain); Barrios, María [Dept Radiology, Foundation IVO, Valencia (Spain); Bartrés, Albert [Dept Radiophysics, Foundation IVO, Valencia (Spain); Cruz, Julia [Dept Pathology, Foundation IVO, Valencia (Spain); Montero, Rafael [GE Healthcare Diagnostic Imaging, Iberia (Spain); González, Manuel; Deltoro, Carlos [Dept Radiology, Foundation IVO, Valencia (Spain); Martínez-Pérez, Encarnación [Dept Pneumology, Foundation IVO, Valencia (Spain); De Aguiar-Quevedo, Karol; Arrarás, Miguel [Dept Thoracic Surgery, Foundation IVO, Valencia (Spain)

    2016-10-15

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z{sub eff}), iodine concentration (ρ{sub I}) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z{sub eff} and normalized mean Z{sub eff} to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  11. Data-driven classification of ventilated lung tissues using electrical impedance tomography

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Hogan, Matthew J; Elke, Gunnar; Weiler, Norbert; Frerichs, Inéz; Adler, Andy

    2011-01-01

    Current methods for identifying ventilated lung regions utilizing electrical impedance tomography images rely on dividing the image into arbitrary regions of interest (ROI), manually delineating ROI, or forming ROI with pixels whose signal properties surpass an arbitrary threshold. In this paper, we propose a novel application of a data-driven classification method to identify ventilated lung ROI based on forming k clusters from pixels with correlated signals. A standard first-order model for lung mechanics is then applied to determine which ROI correspond to ventilated lung tissue. We applied the method in an experimental study of 16 mechanically ventilated swine in the supine position, which underwent changes in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (F I O 2 ). In each stage of the experimental protocol, the method performed best with k = 4 and consistently identified 3 lung tissue ROI and 1 boundary tissue ROI in 15 of the 16 subjects. When testing for changes from baseline in lung position, tidal volume, and respiratory system compliance, we found that PEEP displaced the ventilated lung region dorsally by 2 cm, decreased tidal volume by 1.3%, and increased the respiratory system compliance time constant by 0.3 s. F I O 2 decreased tidal volume by 0.7%. All effects were tested at p < 0.05 with n = 16. These findings suggest that the proposed ROI detection method is robust and sensitive to ventilation dynamics in the experimental setting

  12. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    Science.gov (United States)

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  13. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    Science.gov (United States)

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung

  14. Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH)

    International Nuclear Information System (INIS)

    Kapp, Karin Sigrid; Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter

    2010-01-01

    Purpose: Comparison of the amount of irradiated lung tissue volume and mass in patients with breast cancer treated with an optimized tangential-field technique with and without a deep inspiration breath-hold (DIBH) technique and its impact on the normal-tissue complication probability (NTCP). Material and Methods: Computed tomography datasets of 60 patients in normal breathing (NB) and subsequently in DIBH were compared. With a Real-Time Position Management Respiratory Gating System (RPM), anteroposterior movement of the chest wall was monitored and a lower and upper threshold were defined. Ipsilateral lung and a restricted tangential region of the lung were delineated and the mean and maximum doses calculated. Irradiated lung tissue mass was computed based on density values. NTCP for lung was calculated using a modified Lyman-Kutcher-Burman (LKB) model. Results: Mean dose to the ipsilateral lung in DIBH versus NB was significantly reduced by 15%. Mean lung mass calculation in the restricted area receiving ≤ 20 Gy (M 20 ) was reduced by 17% in DIBH but associated with an increase in volume. NTCP showed an improvement in DIBH of 20%. The correlation of individual breathing amplitude with NTCP proved to be independent. Conclusion: The delineation of a restricted area provides the lung mass calculation in patients treated with tangential fields. DIBH reduces ipsilateral lung dose by inflation so that less tissue remains in the irradiated region and its efficiency is supported by a decrease of NTCP. (orig.)

  15. MRI of interstitial lung diseases. What is possible?

    International Nuclear Information System (INIS)

    Biederer, J.; Wielpuetz, M.O.; Jobst, B.J.; Dinkel, J.

    2014-01-01

    Magnetic resonance imaging (MRI) of the lungs is becoming increasingly appreciated as a third diagnostic imaging modality besides chest x-ray and computed tomography (CT). Its value is well acknowledged for pediatric patients or for scientific use particularly when radiation exposure should be strictly avoided. However, the diagnosis of interstitial lung disease is the biggest challenge of all indications. The objective of this article is a summary of the current state of the art for diagnostic MRI of interstitial lung diseases. This article reflects the results of a current search of the literature and discusses them against the background of the authors own experience with lung MRI. Due to its lower spatial resolution and a higher susceptibility to artefacts MRI does not achieve the sensitivity of CT for the detection of small details for pattern recognition (e.g. fine reticulation and micronodules) but larger details (e.g. coarse fibrosis and honeycombing) can be clearly visualized. Moreover, it could be shown that MRI has the capability to add clinically valuable information on regional lung function (e.g. ventilation, perfusion and mechanical properties) and inflammation with native signal and contrast dynamics. In its present state MRI can be used for comprehensive cardiopulmonary imaging in patients with sarcoidosis or for follow-up of lung fibrosis after initial correlation with CT. Far more indications are expected when the capabilities of MRI for the assessment of regional lung function and activity of inflammation can be transferred into robust protocols for clinical use. (orig.) [de

  16. Reliability analysis of visual ranking of coronary artery calcification on low-dose CT of the thorax for lung cancer screening: comparison with ECG-gated calcium scoring CT.

    Science.gov (United States)

    Kim, Yoon Kyung; Sung, Yon Mi; Cho, So Hyun; Park, Young Nam; Choi, Hye-Young

    2014-12-01

    Coronary artery calcification (CAC) is frequently detected on low-dose CT (LDCT) of the thorax. Concurrent assessment of CAC and lung cancer screening using LDCT is beneficial in terms of cost and radiation dose reduction. The aim of our study was to evaluate the reliability of visual ranking of positive CAC on LDCT compared to Agatston score (AS) on electrocardiogram (ECG)-gated calcium scoring CT. We studied 576 patients who were consecutively registered for health screening and undergoing both LDCT and ECG-gated calcium scoring CT. We excluded subjects with an AS of zero. The final study cohort included 117 patients with CAC (97 men; mean age, 53.4 ± 8.5). AS was used as the gold standard (mean score 166.0; range 0.4-3,719.3). Two board-certified radiologists and two radiology residents participated in an observer performance study. Visual ranking of CAC was performed according to four categories (1-10, 11-100, 101-400, and 401 or higher) for coronary artery disease risk stratification. Weighted kappa statistics were used to measure the degree of reliability on visual ranking of CAC on LDCT. The degree of reliability on visual ranking of CAC on LDCT compared to ECG-gated calcium scoring CT was excellent for board-certified radiologists and good for radiology residents. A high degree of association was observed with 71.6% of visual rankings in the same category as the Agatston category and 98.9% varying by no more than one category. Visual ranking of positive CAC on LDCT is reliable for predicting AS rank categorization.

  17. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers.

    Science.gov (United States)

    Park, Yu Rang; Bae, Soo Hyeon; Ji, Wonjun; Seo, Eul Ju; Lee, Jae Cheol; Kim, Hyeong Ryul; Jang, Se Jin; Choi, Chang Min

    2017-11-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. © 2017 The Korean Academy of Medical Sciences.

  18. Transplantes cardiopulmonar e pulmonar com doador em localidade distante Distant donor procurement for heart-lung and lung transplantation

    Directory of Open Access Journals (Sweden)

    Luis Sérgio Fragomeni

    1988-12-01

    Full Text Available Em situações específicas, os transplantes clínicos cardiopulmonar e pulmonar são, hoje, formas estabelecidas de tratamento para estágio final de doença cardiopulmonar e pulmonar. A obtenção de doadores adequados permanece o maior problema e a remoção de órgãos em localidades distantes é, hoje, uma necessidade. Embora muitos métodos de preservação pulmonar possam ser empregados, para períodos isquémicos de até 5 horas, a hipotermia e o uso de solução cardioplégica com infusão da solução de Collins modificada no tronco pulmonar tem sido método simples e eficiente para preservação do bloco coração-pulmão. Descrevemos, aqui, o método corrente que empregamos, com o qual os transplantes cardiopulmonar e pulmonar combinados foram sucedidos de excelente função cárdio-respiratória.In special situations, clinical heart-lung and lung transplantation are today established methods of therapy for end stage cardiopulmonary and pulmonary disease. Adequate donor availability remains a major problem and distant organ procurement is today a necessity. Although many methods of lung preservation can be used, for periods of up to 5 hours, hypothermic storage with cardioplegic arrest and pulmonary artery flush with modified Collins solution has proven to be a simple and reliable method of heart-lung preservation. We here describe our current method of heart-lung block protection, in which heart-lung and double lung transplantation were performed followed by excelent cardiac and pulmonary function.

  19. Scintiscanning of lung cancer with 67Ga-citrate

    International Nuclear Information System (INIS)

    Abe, Mitsunobu; Ohyama, Shiro; Ohtsuka, Hassau; Hoshina, Toshifumi; Takanashi, Shuko

    1982-01-01

    The clinical value of scintigram with 67 Ga-citrate in 58 patients with primary lung cancer was investigated and discussed. The results are as follows: 1) Positive 67 Ga-scintigram was obtained in 83% of patients with primary lung cancer. The histologically confirmed positive ratios were 74% in adenocarcinoma, 94% in squamous cell carcinoma, 80% in small cell carcinoma and 100% in large cell carcinoma. 2) The positive ratios according to T category of TNM classification was 0% (0/1) in T1, 83% (20/24) in T2 and 85% (28/33) in T3. 3) According to rules for classification of lung cancer (TNM UICC 1978,) T2 cases were divided into two groups. a) In patients with hilar involvements on chest X-ray, positive accumulation to the hilar region was 88% (7/8). b) In patients without the evidence of hilar involvements on chest X-ray, the positive accumulation to the hilar region was 81% (13/16). 4) All cases extending to the mediastinum showed abnormal 67 Ga-citrate accumulation regardless of histological type. 67 Ga-citrate scanning is useful in evaluating the extent of lung cancer, especially with hilar and mediastinal involvements. Therefore 67 Ga-citrate scanning seems to be very useful for planning the radiotherapy for lung cancer. (author)

  20. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Stirrat, Elaine [Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); McKenzie, Charles [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Schulte, Rolf F. [General Electric Global Research, Munich 85748 (Germany); Santyr, Giles E. [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G1L7 (Canada)

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  1. Studies on pulmonary ventilation-perfusion scintigraphy with Xe-133 in primary lung cancer, 1

    International Nuclear Information System (INIS)

    Oshibuchi, Masao

    1984-01-01

    Regional lung ventilation-perfusion scintigraphy by xenon gas was performed on 14 normal cases (normal group) and 86 cases of primary lung cancer (lung cancer group). The patients were measured in a sitting position using a scintillation camera. In normal group, the value of V, Q was higher in the lower lung field than in the upper lung field, the value of MTT was rather delayed in the upper lung field than in the lower lung field, proving to that lung clearance was better in the lower lung field than in the upper lung field. In lung cancer group, VQ match (pattern I, II) was 61 cases (71%) and VQ mismatch (pattern III, IV) was 25 cases (29%). The pattern II (VQ matched defect) accounted for 63% in lung cancer group. In this pattern, the region of disorder of V and Q was corresponded respectively, but disorder grade was not always accorded. The pattern III (normal V and disordered Q) was mainly seen in AH group (hilar type) and D group (lymph node swelling type). The V/Q in lung cancer group was widely distributed to the range of 0 to 5.8. The value of MTT was rather delayed in all cases of lung cancer group than in the normal group, because delayed MTT in focal lesion was markedly affected to whole lung. (author)

  2. Long Noncoding RNAs in Lung Cancer.

    Science.gov (United States)

    Roth, Anna; Diederichs, Sven

    2016-01-01

    Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.

  3. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  4. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  5. Linking the generation of DNA adducts to lung cancer.

    Science.gov (United States)

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    Science.gov (United States)

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  7. Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma

    DEFF Research Database (Denmark)

    Daugaard, Iben; Dominguez, Diana; Kjeldsen, Tina E

    2016-01-01

    -adjacent normal lung tissue from four lung adenocarcinoma (LAC) patients using DNA methylation microarrays and identified 74 differentially methylated regions (DMRs). Eighteen DMRs were selected for validation in a cohort comprising primary tumors from 52 LAC patients and tumor-adjacent normal lung tissue from 32...... patients by methylation-sensitive high resolution melting (MS-HRM) analysis. Significant increases in methylation were confirmed for 15 DMRs associated with the genes and genomic regions: OSR1, SIM1, GHSR, OTX2, LOC648987, HIST1H3E, HIST1H3G/HIST1H2BI, HIST1H2AJ/HIST1H2BM, HOXD10, HOXD3, HOXB3/HOXB4, HOXA3...

  8. Spatial Analysis of Regional Factors and Lung Cancer Mortality in China, 1973-2013.

    Science.gov (United States)

    Shen, Xiaoping; Wang, Limin; Zhu, Li

    2017-04-01

    Background: China's lung cancer crude death rate has increased 6.9-fold from 1973 to 2014. During this time, the country experienced extremely rapid economic growth and social change. It is important to understand the effects of risk factors on lung cancer mortality (LCM) for better allocation of limited resources of cancer prevention and control in China. Methods: Using three nationwide mortality surveys from 1973 to 2005, Global Health Data Exchange data in 2013, three nationwide smoking surveys from 1984 to 2013, four population censuses from 1964 to 2000, and other datasets, we have compiled datasets and developed spatial random effect models to assess the association of various area-level-contributing factors on LCM. Spatial scan statistics are used to detect high-risk clusters of LCM. Results: LCM is higher in urban and more industrialized areas (RR = 1.17) compared with those in rural areas. The level of industrial development's effect is higher for men, which accounts for about 70% of all LCM. Smoking is positively associated with regional variation of LCM rates, and the effect is higher for women than for men. Conclusions: The geographic pattern of high LCM in China is different from that of Western countries. LCM is positively associated with higher socioeconomic status, with more urbanized areas at a higher level of industrial development. Impact: There is a need to further explore additional risk in the high-risk clusters. The study is about China, but this situation may happen in other countries experiencing rapid industrialization and other developing countries. Cancer Epidemiol Biomarkers Prev; 26(4); 569-77. ©2017 AACR See all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences." ©2017 American Association for Cancer Research.

  9. Development and validation of a self-efficacy scale for postoperative rehabilitation management of lung cancer patients.

    Science.gov (United States)

    Huang, Fei-Fei; Yang, Qing; Han, Xuan Ye; Zhang, Jing-Ping; Lin, Ting

    2017-08-01

    The purpose of this study was to develop a Self-Efficacy Scale for Rehabilitation Management designed specifically for postoperative lung cancer patients (SESPRM-LC) and to evaluate its psychometric properties. Based on the concept of self-management of chronic disease, items were developed from literature review and semistructured interviews of 10 lung cancer patients and screened by expert consultation and pilot testing. Psychometric evaluation was done with 448 postoperative lung cancer patients recruited from 5 tertiary hospitals in Fuzhou, China, by incorporating classical test theory and item response theory methods. A 6-factor structure was illustrated by exploratory factor analysis and confirmed by confirmatory factor analysis, explaining 60.753% of the total variance. The SESPRM-LC achieved Cronbach's α of 0.694 to 0.893, 2-week test-retest reliability of 0.652 to 0.893, and marginal reliability of 0.565 to 0.934. The predictive and criterion validities were demonstrated by significant association with theoretically supported quality-of-life variables (r = 0.211-0.392, P theory analysis showed that the SESPRM-LC offers information about a broad range of self-efficacy measures and discriminates well between patients with high and low levels of self-efficacy. We demonstrated initial support for the reliability and validity of the 27-item SESPRM-LC, as a developmentally appropriate instrument for assessing self-efficacy among lung cancer patients during postoperative rehabilitation. Copyright © 2016 John Wiley & Sons, Ltd.

  10. The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy

    OpenAIRE

    Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham

    2013-01-01

    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, e...

  11. A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES

    Directory of Open Access Journals (Sweden)

    Mehdi Alilou

    2014-03-01

    Full Text Available Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9. Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.

  12. CT diagnosis of primary lung cancer coexisting with pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Kim, Sun Joo; Kim, Young Sook; Oh, Jae Hee; Kim, Eun Kyoung; Kim, Young Chul

    1992-01-01

    When bronchogenic carcinoma is coexisting with pulmonary tuberculosis, it is difficult to differentiate bronchogenic carcinoma from pulmonary tuberculosis radiographically. Thus, the object of this study is to define differential diagnosis of bronchogenic carcinoma by computed tomography. We analyzed CT scans of 27 patients with radiologic findings of pulmonary tuberculosis and mass of which twelve cases were pulmonary tuberculosis and fifteen cases were primary lung cancer. The location of parenchymal infiltration and the mass was the same in 60%(9/15) of the primary lung cancer in cases and 83%(10/12) of the pulmonary tuberculosis cases. The common location of the mass was the both upper lobes in 92%(11/12) of the pulmonary tuberculosis cases and 53%(8/15) of the primary lung cancer cases. The common locations of the mediastinal lymphadenopathy were 4R, 2R of the pulmonary tuberculosis cases and 4R, 10R of the primary lung cancer cases. In the feature of post enhanced lymph nodes, homogenous increased density was more frequent in primary lung cancer. Measurements of the maximum thickness part of the cavity wall was not a reliable indication of malignancy

  13. The diagnostic accuracy of physical examination compared to lung ultrasound for determining lung congestion in hemodialysis patients who have reached their dry weight

    Science.gov (United States)

    Rahardjo, K. D.; Dharmaeizar; Nainggolan, G.; Harimurti, K.

    2017-08-01

    Research has shown that hemodialysis patients with lung congestion have high morbidity and mortality. Patients were assumed to be free of lung congestion if they had reached their post-dialysis dry weight. Most often, to determine if the patient was free of lung congestion, physical examination was used. However, the accuracy of physical examination in detecting lung congestion has not been established. To compare the capabilities of physical examination and lung ultrasound in detection of lung congestion, cross-sectional data collection was conducted on hemodialysis patients. Analysis was done to obtain proportion, sensitivity, specificity, positive predictive value, negative predictive value, and positive likelihood ratio. Sixty patients participated in this study. The inter observer variation of 20 patients revealed a kappa value of 0.828. When all 60 patients were taken into account, we found that 36 patients (57.1%) had lung congestion. Mild lung congestion was found in 24 (38.1%), and 12 (19%) had a moderate degree of congestion. In the analysis comparing jugular venous pressure to lung ultrasound, we found that sensitivity was 0.47 (0.31-0.63), specificity was 0.73 (0.54-0.86), positive predictive value (PPV) was 0.51 (0.36-0.67), negative predictive value (NPV) was 0.70 (0.49-0.84), positive likelihood ratio (PLR) was 1.75 (0.88-3.47), and the negative likelihood ratio (NLR) was 0.72 (0.47-1.12). In terms of lung auscultation, we found that sensitivity was 0.56 (0.39-0.71), specificity was 0.54 (0.35-0.71), PPV was 0.61 (0.44-0.76), NPV was 0.48 (0.31-0.66), PLR was 1.21 (0.73-2.0), and NLR was 0.82 (0.49-1.38). The results of our study showed that jugular venous distention and lung auscultation examination are not reliable means of detecting lung congestion.

  14. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    International Nuclear Information System (INIS)

    Korfiatis, P; Costaridou, L; Kalogeropoulou, C; Petsas, T; Daoussis, D; Adonopoulos, A

    2009-01-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  15. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    Science.gov (United States)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  16. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    Directory of Open Access Journals (Sweden)

    Xiaoyue Hu

    Full Text Available Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton.Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements.The maximum force (MF on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW. The MF and peak pressures (PP on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa.These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  17. Quantification of regional early stage gas exchange changes using hyperpolarized "1"2"9Xe MRI in a rat model of radiation-induced lung injury

    International Nuclear Information System (INIS)

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F.; Santyr, Giles E.

    2016-01-01

    Purpose: To assess the feasibility of hyperpolarized (HP) "1"2"9Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a "6"0Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L_P_T) and relative blood volume (V_R_B_C) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L_P_T and V_R_B_C were observed between the irradiated and non-irradiated cohorts. In particular, L_P_T of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V_R_B_C of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both

  18. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  19. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  20. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  1. Design and validation of a self-administered questionnaire as an aid to detection of occupational exposure to lung carcinogens.

    Science.gov (United States)

    Pélissier, C; Dutertre, V; Fournel, P; Gendre, I; Michel Vergnon, J; Kalecinski, J; Tinquaut, F; Fontana, L; Chauvin, F

    2017-02-01

    Ten to thirty percent of lung cancer is thought to be of occupational origin. Lung cancer is under-declared as an occupational disease in Europe, and most declarations of occupational disease concern asbestos. The purpose of this study was to design and validate a short, sensitive self-administered questionnaire, as an aid for physicians in detecting occupational exposure to asbestos and other lung carcinogens in order to remedy occupational lung cancer under-declaration. Cross-sectional study. A short (30-question) self-administered questionnaire was drawn up by oncologist-pneumologists and occupational physicians, covering situations of exposure to proven and probable lung carcinogens. Understanding and acceptability were assessed on 15 lung cancer patients. Validity and reliability were assessed on 70 lung cancer patients by comparison against a semi-directive questionnaire considered as gold standard. Sensitivity and specificity were assessed by comparing responses to items on the two questionnaires. Reliability was assessed by analysing the kappa concordance coefficient for items on the two questionnaires. Sensitivity was 0.85 and specificity 0.875. Concordance between responses on the two questionnaires was 85.7%, with a kappa coefficient of 0.695 [0.52-0.87]. Mean self-administration time was 3.1 min (versus 8.12 min to administer the gold-standard questionnaire). In 16 patients, the self-administered questionnaire detected lung carcinogen exposure meeting the criteria for occupational disease. The present short, easy-to-use self-administered questionnaire should facilitate detection of occupational exposure to lung carcinogens. It could be used in occupational lung cancer screening and increase the presently low rate of application for recognition of lung cancer as an occupational disease. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury

    NARCIS (Netherlands)

    Kunst, P. W.; Böhm, S. H.; Vazquez de Anda, G.; Amato, M. B.; Lachmann, B.; Postmus, P. E.; de Vries, P. M.

    2000-01-01

    OBJECTIVE: A new noninvasive method, electrical impedance tomography (EIT), was used to make pressure-impedance (PI) curves in a lung lavage model of acute lung injury in pigs. The lower inflection point (LIP) and the upper deflection point (UDP) were determined from these curves and from the

  3. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  4. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Pulmonary microRNA profiling: implications in upper lobe predominant lung disease.

    Science.gov (United States)

    Armstrong, David A; Nymon, Amanda B; Ringelberg, Carol S; Lesseur, Corina; Hazlett, Haley F; Howard, Louisa; Marsit, Carmen J; Ashare, Alix

    2017-01-01

    Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may contribute in the development of lung disease. MicroRNAs are ubiquitous regulators of human biology and emerging evidence indicates altered microRNA expression modulates respiratory disease processes. The objective of this study is to gain insight into the epigenetic and cellular mechanisms influencing regional differences in lung disease by investigating effect of hypoxia on regional microRNA expression in the lung. All studies were performed using primary alveolar macrophages ( n  = 10) or bronchoalveolar lavage fluid ( n  = 16) isolated from human subjects. MicroRNA was assayed via the NanoString nCounter microRNA assay. Divergent molecular patterns of microRNA expression were observed in alternate lung lobes, specifically noted was disparate expression of miR-93 and miR-4454 in alveolar macrophages along with altered expression of miR-451a and miR-663a in bronchoalveolar lavage fluid. Gene ontology was used to identify potential downstream targets of divergent microRNAs. Targets include cytokines and matrix metalloproteinases, molecules that could have a significant impact on pulmonary inflammation and fibrosis. Our findings show variant regional microRNA expression associated with hypoxia in alveolar macrophages and BAL fluid in the lung-upper vs lower lobe. Future studies should address whether these specific microRNAs may act intracellularly, in a paracrine/endocrine manner to direct the innate immune response or may ultimately be involved in pulmonary host-to-pathogen trans

  6. TU-H-CAMPUS-JeP2-03: Machine-Learning-Based Delineation Framework of GTV Regions of Solid and Ground Glass Opacity Lung Tumors at Datasets of Planning CT and PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, K; Arimura, H; Jin, Z; Yabuuchi, H; Sasaki, T; Honda, H; Sasaki, M [Kyushu University, Fukuoka, Fukuoka (Japan); Kuwazuru, J [Saiseikai Fukuoka General Hospital, Fukuoka, Fukuoka (Japan); Shioyama, Y [Saga Heavy Ion Medical Accelerator in Tosu, Tosu, Saga (Japan)

    2016-06-15

    Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree of GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.

  7. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    Science.gov (United States)

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  8. Evaluation of regional pulmonary function using short-lived radioactive gases

    Energy Technology Data Exchange (ETDEWEB)

    Ashitaka, Tsuyoshi [Toho Univ., Tokyo (Japan). School of Medicine

    1993-05-01

    We investigated the application of short-lived radioactive gases for the assessment of regional pulmonary function, particularly diffusing capacity, in patients with chronic obstructive lung disease and interstitial lung disease. Short-lived radioactive gases including C[sup 15]O-O, [sup 11]CO[sub 2], and [sup 11]CO were produced using a baby cyclotron for medical care. Using a [gamma] camera, breath-holding images were taken serially after inhalation of the radioactive gases. The first exponential component of time-activity curve was analyzed to obtain clearance rate, which was expressed as exponential coefficient ([lambda]). Moreover, we created a functional map which was calculated by the clearance rate of [sup 11]CO[sub 2] as a percentage. Regional clearance rates of each gas in normal volunteers revealed higher values in the lower lung field than in the upper lung field. Whole lung clearance rates ([lambda]) of each gas in patients correlated well with D[sub LCO]/V[sub A], which indicates diffusing capacity. The functional map showed decreased regional diffusion closely matched to the perfusion defects seen by [sup 99m]Tc-MAA perfusion images. However, in certain interstitial lung diseases decreased clearance of [sup 11]CO[sub 2] was observed in regions having no evidence of perfusion defects. We concluded the functional map display of [sup 11]CO[sub 2] is useful indicator of the regional diffusing capacity of both the normal and diseased lung, and that it is beneficial to analyze the pathogenic physiology of diseased lungs by making a comparison between the functional map of [sup 11]CO[sub 2] and [sup 99m]Tc-MAA perfusion images. (author).

  9. Variable flip angle 3D ultrashort echo time (UTE) T1 mapping of mouse lung: A repeatability assessment.

    Science.gov (United States)

    Alamidi, Daniel F; Smailagic, Amir; Bidar, Abdel W; Parker, Nicole S; Olsson, Marita; Hockings, Paul D; Lagerstrand, Kerstin M; Olsson, Lars E

    2018-03-08

    Lung T 1 is a potential translational biomarker of lung disease. The precision and repeatability of variable flip angle (VFA) T 1 mapping using modern 3D ultrashort echo time (UTE) imaging of the whole lung needs to be established before it can be used to assess response to disease and therapy. To evaluate the feasibility of regional lung T 1 quantification with VFA 3D-UTE and to investigate long- and short-term T 1 repeatability in the lungs of naive mice. Prospective preclinical animal study. Eight naive mice and phantoms. 3D free-breathing radial UTE (8 μs) at 4.7T. VFA 3D-UTE T 1 calculations were validated against T 1 values measured with inversion recovery (IR) in phantoms. Lung T 1 and proton density (S 0 ) measurements of whole lung and muscle were repeated five times over 1 month in free-breathing naive mice. Two consecutive T 1 measurements were performed during one of the imaging sessions. Agreement in T 1 between VFA 3D-UTE and IR in phantoms was assessed using Bland-Altman and Pearson 's correlation analysis. The T 1 repeatability in mice was evaluated using coefficient of variation (CV), repeated-measures analysis of variance (ANOVA), and paired t-test. Good T 1 agreement between the VFA 3D-UTE and IR methods was found in phantoms. T 1 in lung and muscle showed a 5% and 3% CV (1255 ± 63 msec and 1432 ± 42 msec, respectively, mean ± SD) with no changes in T 1 or S 0 over a month. Consecutive measurements resulted in an increase of 2% in both lung T 1 and S 0 . VFA 3D-UTE shows promise as a reliable T 1 mapping method that enables full lung coverage, high signal-to-noise ratio (∼25), and spatial resolution (300 μm) in freely breathing animals. The precision of the VFA 3D-UTE method will enable better design and powering of studies. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  10. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  11. On the reliability of seasonal climate forecasts

    Science.gov (United States)

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  12. Effects of plutonium redistribution on lung counting

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1976-01-01

    Early counts of Pu deposition in lungs will tend to overestimate lung contents since calibrations are performed with a uniform distribution and since a more favorable geometry exists in contaminated subjects because the activity is closer to the periphery of the lungs. Although the concentration into the outer regions of the lungs continues as evidenced by the autopsy studies, the counts performed by L X-rays will probably underestimate the lung content; because, simplistically, the geometry several years after exposure consists of a spherical shell with a point of activity in the center. This point of activity represents concentration in the lymph nodes from which the 60 keV gamma of 241 Am will be counted, but from which few of the L X-rays will be counted (this is an example of interorgan distribution). When a correction is made to the L X-ray intensity, the lymph node contribution will tend to increase the amount subtracted while correcting for 241 Am X-rays. It is doubtful that the relative increase in X-ray intensity by concentration in the pleural and sub-pleural regions will compensate for this effect. This will make the plutonium burden disappear while the 241 Am can still be detected. This effect has been observed in a case where counts with an intraesophageal probe indicated a substantial lymph node burden. In order to improve the accuracy of in vivo plutonium measurements, an improved understanding of pulmonary distribution and of distribution effects on in vivo counting are required

  13. Transmission reliability faces future challenges

    International Nuclear Information System (INIS)

    Beaty, W.

    1993-01-01

    The recently published Washington International Energy Group's 1993 Electric Utility Outlook states that nearly one-third (31 percent) of U.S. utility executives expect reliability to decrease in the near future. Electric power system stability is crucial to reliability. Stability analysis determines whether a system will stay intact under normal operating conditions, during minor disturbances such as load fluctuations, and during major disturbances when one or more parts of the system fails. All system elements contribute to reliability or the lack of it. However, this report centers on the transmission segment of the electric system. The North American Electric Reliability Council (NERC) says the transmission systems as planned will be adequate over the next 10 years. However, delays in building new lines and increasing demands for transmission services are serious concerns. Reliability concerns exist in the Mid-Continent Area Power Pool and the Mid-America Interconnected Network regions where transmission facilities have not been allowed to be constructed as planned. Portions of the transmission systems in other regions are loaded at or near their limits. NERC further states that utilities must be allowed to complete planned generation and transmission as scheduled. A reliable supply of electricity also depends on adhering to established operating criteria. Factors that could complicate operations include: More interchange schedules resulting from increased transmission services. Increased line loadings in portions of the transmission systems. Proliferation of non-utility generators

  14. Radon and lung cancer: protocol and procedures of the multicentre studies in the Ardennes-Eifel region, Brittany and the Massif Central region

    International Nuclear Information System (INIS)

    Poffijn, A.; Darby, S.

    1992-01-01

    As part of a European coordinated project, the Ardennes-Eifel study was set up. In this project the study area coincides more or less with a geological zone, situated partly in France, Belgium, Luxembourg and Germany. In a first phase, a common protocol was worked out, dealing with general items as the selection of cases and (hospital/community) controls, the residential criteria for inclusion in the study and the specifications of the radon measurements. Much attention was given to the disease for the hospital controls and a list of ineligible diseases, most strongly related to tobacco, was agreed upon. A common core questionnaire is used, including items such as residential history since birth, occupational history, exposure to passive smoke (for non-smokers and occasional smokers) and educational attainment of the partner. Each country is also free to include additional items of its own. In France, this case-control study is extended to the granitic region of Britanny and in a second period to the region of the Massif Central. In these studies as well as in the national German study on radon and lung cancer, a protocol in all points comparable to that of the Ardennes study is used. (author)

  15. Biochemical verification of the self-reported smoking status of screened male smokers of the Dutch-Belgian randomized controlled lung cancer screening trial.

    Science.gov (United States)

    van der Aalst, Carlijn M; de Koning, Harry J

    2016-04-01

    Smoking is the main cause of lung cancer, so data linked to smoking behaviour are important in lung cancer screening trials. However, self-reporting data concerning smoking behaviour are mainly used. The aim of this study was to biochemically determine the validity and reliability of self-reported smoking status among smokers at high risk for developing lung cancer participating in the Dutch-Belgian lung cancer screening (NELSON) trial. For this sub study, a random sample of 475 men was selected who were scheduled for the fourth screening round in the NELSON trial. They were asked to complete a short questionnaire to verify the smoking behaviour for the previous seven days and a blood sample was collected to measure the cotinine level. The validity (sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV)) and reliability (Kappa) of the self-reported smoking status compared to the cotinine level (as golden standard) were determined. Both a completed questionnaire as well as a cotinine level were available for 199 (41.9%) participants. Based on these data, Se and Sp were respectively 98% (95%-Confidence Interval (CI): 91-99) and 98% (95%-CI: 93-100). PPV and NPV were 98% and 96% and Kappa was 0.96. In conclusion, the validity of the self-reported smoking status turned out to be reliable amongst men at high risk for developing lung cancer who participate in the NELSON lung cancer screening trial. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. High-reliability microcontroller nerve stimulator for assistance in regional anaesthesia procedures.

    Science.gov (United States)

    Ferri, Carlos A; Quevedo, Antonio A F

    2017-07-01

    In the last decades, the use of nerve stimulators to aid in regional anaesthesia has been shown to benefit the patient since it allows a better location of the nerve plexus, leading to correct positioning of the needle through which the anaesthetic is applied. However, most of the nerve stimulators available in the market for this purpose do not have the minimum recommended features for a good stimulator, and this can lead to risks to the patient. Thus, this study aims to develop an equipment, using embedded electronics, which meets all the characteristics, for a successful blockade. The system is made of modules for generation and overall control of the current pulse and the patient and user interfaces. The results show that the designed system fits into required specifications for a good and reliable nerve stimulator. Linearity proved satisfactory, ensuring accuracy in electrical current amplitude for a wide range of body impedances. Field tests have proven very successful. The anaesthesiologist that used the system reported that, in all cases, plexus blocking was achieved with higher quality, faster anaesthetic diffusion and without needed of an additional dose when compared with same procedure without the use of the device.

  17. Lung pathology after radiotherapy. Radiation protection (Bibliographic study)

    International Nuclear Information System (INIS)

    Pellerin, A.J.F.

    1975-01-01

    The point of departure of this work is the book by Weir and Michaelson entitled 'Pulmonary Radiation Reactions', where the authors sum up present knowledge on lung reactions to ionizing radiation exposure from the anatomopathological, metabolic and chemical, functional, clinical and experimental viewpoints in turn. The aim is not to contribute anything new to lung cancerology or to specific lung radiotherapy but merely to attemps, from a survey of recent literature on the irradiated lung, to extract concrete elements liable to improve to some extent the survival conditions of patients subjected to strong lung irradiation during radiotherapy centred on the thorax. Publications over the last ten years alone are abundant and varied. Not all are mentioned since many studies and results overlap and finally some hundred of the most representative texts have been chosen. In any case the conclusion, with that of Weir and Michaelson, is that not enough radiobiological data are yet available to allow present radiotherapeutical treatments on the lung region to be improved with certainty [fr

  18. Mucoepidermoid Lung Carcinoma in Child

    African Journals Online (AJOL)

    usually includes asthma, pneumonia, atelectasis, middle lobe syndrome and pleural effusion. Recurrent pneumonia in the same region of the lung should raise clinical suspicion of an endobronchial lesion or mass, such as mucoepidermoid carcinoma.[1] Because MECs are most commonly found in the segmental or lobar ...

  19. Dissimilarity Representations in Lung Parenchyma Classification

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; de Bruijne, Marleen

    2009-01-01

    parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram...... and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal...... are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung...

  20. Lung split function test and pneumonectomy. A lower limit for operability

    DEFF Research Database (Denmark)

    Tønnesen, K H; Dige-Petersen, H; Lund, J O

    1978-01-01

    Regional 133Xe ventilation/perfusion studies were used to predict residual lung function after pulmonary resections. The accuracy of the method was good as checked by postoperative spirometry in 11 patients. In 25 patients with impaired lung function and pulmonary cancer, who were consecutively...

  1. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  2. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Taylor, Michael; Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick

    2012-01-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm 3 regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of “generic” tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  3. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2012-04-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  4. Extravascular Lung Water and Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Ritesh Maharaj

    2012-01-01

    Full Text Available Acute lung injury carries a high burden of morbidity and mortality and is characterised by nonhydrostatic pulmonary oedema. The aim of this paper is to highlight the role of accurate quantification of extravascular lung water in diagnosis, management, and prognosis in “acute lung injury” and “acute respiratory distress syndrome”. Several studies have verified the accuracy of both the single and the double transpulmonary thermal indicator techniques. Both experimental and clinical studies were searched in PUBMED using the term “extravascular lung water” and “acute lung injury”. Extravascular lung water measurement offers information not otherwise available by other methods such as chest radiography, arterial blood gas, and chest auscultation at the bedside. Recent data have highlighted the role of extravascular lung water in response to treatment to guide fluid therapy and ventilator strategies. The quantification of extravascular lung water may predict mortality and multiorgan dysfunction. The limitations of the dilution method are also discussed.

  5. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  6. Assessing the feasibility of a web-based registry for multiple orphan lung diseases: the Australasian Registry Network for Orphan Lung Disease (ARNOLD) experience.

    Science.gov (United States)

    Casamento, K; Laverty, A; Wilsher, M; Twiss, J; Gabbay, E; Glaspole, I; Jaffe, A

    2016-04-18

    We investigated the feasibility of using an online registry to provide prevalence data for multiple orphan lung diseases in Australia and New Zealand. A web-based registry, The Australasian Registry Network of Orphan Lung Diseases (ARNOLD) was developed based on the existing British Paediatric Orphan Lung Disease Registry. All adult and paediatric respiratory physicians who were members of the Thoracic Society of Australia and New Zealand in Australia and New Zealand were sent regular emails between July 2009 and June 2014 requesting information on patients they had seen with any of 30 rare lung diseases. Prevalence rates were calculated using population statistics. Emails were sent to 649 Australian respiratory physicians and 65 in New Zealand. 231 (32.4%) physicians responded to emails a total of 1554 times (average 7.6 responses per physician). Prevalence rates of 30 rare lung diseases are reported. A multi-disease rare lung disease registry was implemented in the Australian and New Zealand health care settings that provided prevalence data on orphan lung diseases in this region but was limited by under reporting.

  7. Regional respiratory inflation and deflation pressure-volume curves determined by electrical impedance tomography.

    Science.gov (United States)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-06-01

    Measurement of regional lung volume changes during a quasi-static pressure-volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation.

  8. Regional respiratory inflation and deflation pressure–volume curves determined by electrical impedance tomography

    International Nuclear Information System (INIS)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-01-01

    Measurement of regional lung volume changes during a quasi-static pressure–volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation. (paper)

  9. Reversible ventilation and perfusion abnormalities in unilateral obstructed lung

    International Nuclear Information System (INIS)

    Ward, H.E.; Jones, R.L.; King, E.G.; Sproule, B.J.; Fortune, R.L.

    1982-01-01

    An intraluminal carcinoid tumor obstructing the left mainstem bronchus produced hypoxemia through alteration in ventilation/perfusion matching. Studies of regional lung function using 133-xenon (/sup 133/Xe) and a multiprobe computerized instrumentation system documented a reduction of perfusion to 22 percent and ventilation to 6 percent of the total. There was negligible washout of intravenously injected /sup 133/Xe from the left lung consistent with air trapping. Four days after left mainstem bronchial sleeve resection, perfusion, ventilation and washout of injected xenon had significantly improved and by four months postresection, all measurements were virtually normal, although complete restoration of perfusion in relation to ventilation was delayed. Regional lung function studied with a multiprobe system in this patient provided a clinical model for the study of ventilation and perfusion inter-relationships in large airway obstruction and demonstrated that a prolonged time may be required for return of perfusion to normal

  10. Current status of oncothermia therapy for lung cancer.

    Science.gov (United States)

    Szasz, Andras

    2014-04-01

    Lung cancer is one of the most common malignant tumors, and it has the highest death rate. Oncothermia is a feasible and successful treatment for lung cancer. Results show a remarkable survival benefit for patients, with a good quality of life. The treatment has no, or in some cases mild, side-effects and could decrease the adverse effects of the complementary treatment. Applying oncothermia together with other treatment methods could increase the effects and result in better performance. A comparison of studies demonstrates a good correspondence in the data, which strengthens the reliability of the studies, and clearly shows the feasibility of the application of oncothermia to treating all kinds of pulmonary malignancies including non-small-cell and small-cell primary tumors, and all of the metastatic diseases of the pulmonary system.

  11. The Histopathologic Reliability of Tissue Taken from Cadavers within the Gross Anatomy Laboratory

    Science.gov (United States)

    Rae, Guenevere; Newman, William P., III; McGoey, Robin; Donthamsetty, Supriya; Karpinski, Aryn C.; Green, Jeffrey

    2018-01-01

    The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students' dissection course was completed. All of the cadavers were embalmed in a formalin-based fixative solution.…

  12. Coincidence of lung cancer and silicosis in Czechoslovak uranium miners

    International Nuclear Information System (INIS)

    Urban, S.; Urbanova, S.

    1988-01-01

    27 patients with established coincidence of lung cancer and silicosis from a group of 1607 cases of lung cancer from radioactive compounds, and 166 cases of pneumoconiosis were reported by the Occupational Diseases Ward of the works Institute of National Health in Uranium Industry in the 1962 to 1986 years. Lung cancer was found in 16% of reported silicosis patients, in 81% it was simple silicosis, in 50% of cases in was an epidermoid type of cancer. In two cases the malignant process originated in the silicotic node, in one case from a tuberculoma. Lung cancer occurred most frequently in the right lower lung region. The mean age of the silicosis group was 48.6 years and 56.0 years for the lung cancer group. No difference was thus seen from the mean age of patients with lung cancer from radioactive compounds diagnosed in the years 1976 to 1980 but it was significantly lower that the reported average age of patients with coincidence of lung cancer and pneumoconiosis in the population not exposed to ionizing radiation. (author). 2 figs., 1 tab., 18 refs

  13. Lung cancer

    International Nuclear Information System (INIS)

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer

  14. Radiotherapy for stage I-II non-small cell lung cancer

    International Nuclear Information System (INIS)

    Okamoto, Yoshiaki; Murakami, Masao; Mizowaki, Takashi; Nakajima, Toshifumi; Kuroda, Yasumasa

    1999-01-01

    Surgery has been regarded as the standard treatment for patients with non-small cell lung cancer in the early stage, while radiotherapy has become an effective alternative for medically inoperable patients and those who refuse surgery. We reviewed the records of 31 patients with stage I-II non-small cell lung cancer treated by radiotherapy between 1980 and 1997. There were 15 patients in stage I and 16 in stage II. The variables analyzed for influence on cause-specific survival and loco-regional control were: age, performance status, clinical stage, tumor size, tumor site, radiation field, radiation dose, and combination with chemotherapy. The overall and cause-specific 1-, 2-, 3-, and 5-years survival rates were 71% and 77%; 63% and 73%; 34% and 48%; and 17% and 32%, respectively. Five-year survival rate for patients with peripheral tumor in the lung was 72%, with 70% loco-regional control, while the 5-year survival rate of patients whose tumor originated in the central region was 20%, with 25% loco-regional control. These differences had marginal significance on univariate analysis (P=0.07), but only tumor site (central vs peripheral) showed marginal significant influence on cause-specific survival (P=0.08) and loco-regional control (P=0.07) on multivariate analysis. There were no fatal complications, including radiation-induced myelopathy. The present series showed satisfactory results with definitive radiotherapy for patients with medically inoperable stage I-II non-small cell lung cancer, with results similar to those in recent reports of radiotherapy. The only significant variable was that patients with peripheral tumors had a better prognosis than patients with central tumors. (author)

  15. Correlation between alveolar ventilation and electrical properties of lung parenchyma.

    Science.gov (United States)

    Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A

    2015-06-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

  16. Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors

    International Nuclear Information System (INIS)

    Chapet, Olivier; Fraass, Benedick A.; Haken, Randall K. ten

    2006-01-01

    Purpose: To evaluate whether increasing numbers of intensity-modulated radiation therapy (IMRT) fields enhance lung-tumor dose without additional predicted toxicity for difficult planning geometries. Methods and Materials: Data from 8 previous three dimensional conformal radiation therapy (3D-CRT) patients with tumors located in various regions of each lung, but with planning target volumes (PTVs) overlapping part of the esophagus, were used as input. Four optimized-beamlet IMRT plans (1 plan that used the 3D-CRT beam arrangement and 3 plans with 3, 5, or 7 axial, but predominantly one-sided, fields) were compared. For IMRT, the equivalent uniform dose (EUD) in the whole PTV was optimized simultaneously with that in a reduced PTV exclusive of the esophagus. Normal-tissue complication probability-based costlets were used for the esophagus, heart, and lung. Results: Overall, IMRT plans (optimized by use of EUD to judiciously allow relaxed PTV dose homogeneity) result in better minimum PTV isodose surface coverage and better average EUD values than does conformal planning; dose generally increases with the number of fields. Even 7-field plans do not significantly alter normal-lung mean-dose values or lung volumes that receive more than 13, 20, or 30 Gy. Conclusion: Optimized many-field IMRT plans can lead to escalated lung-tumor dose in the special case of esophagus overlapping PTV, without unacceptable alteration in the dose distribution to normal lung

  17. Micromechanical model of lung parenchyma hyperelasticity

    Science.gov (United States)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic

  18. Critical evaluation of lung scintigraphy in cystic fibrosis: study of 113 patients

    International Nuclear Information System (INIS)

    Piepsz, A.; Wetzburger, C.; Spehl, M.; Machin, D.; Dab, I.; Ham, H.R.; Vandevivere, J.; Baran, D.

    1980-01-01

    A long-term study has been performed on 285 lung perfusion scintigrams obtained from 113 patients with cystic fibrosis. Transverse and longitudinal comparisons with clinical and radiological scores, as well as retrospective analysis of the deceased patients, were the methods used in order to evaluate the importance of the scintigraphic images. It appears that lung scintigraphy is the best index of the regional lung impairment, and contributes, as does a chest radiograph, to the early detection of lung lesions, the two methods being complementary

  19. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    Science.gov (United States)

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  20. The effect of rib and lung heterogeneities on the computed dose to lung in Ir-192 High-Dose-Rate breast brachytherapy: Monte Carlo versus a treatment planning system

    Directory of Open Access Journals (Sweden)

    Hossein Salehi Yazdi

    2012-01-01

    Conclusions: Taking into account the ribs and entering the actual data for breasts, ribs, and lungs, revealed an average overestimation of the dose by a factor of 8% in the lung for TPS calculations. Therefore, the accuracy of the TPS results may be limited to regions near the implants where the treatment is planned, and is a more conservative approach for regions at boundaries with curvatures or tissues with a different material than that in the breast.

  1. Lung diffusion of soluble radioaerosols in scleroderma

    International Nuclear Information System (INIS)

    Chopra, S.K.; Taplin, G.V.; Tashkin, D.P.; Elam, D.

    1978-01-01

    Diffusion rates of soluble radioaerosols of sodium pertechnetate (/sup 99m/TcO 4 ; mol. wt. 163) and diethylentriaminepentaacetate (/sup 99m/Tc-DTPA; mol. wt. 492) were determined in ten normal subjects and ten patients with scleroderma having lung involvement. Twenty millicuries (mCi) each of /sup 99m/TcO 4 and /sup 99m/Tc-DTPA in 5 ml saline were aerosolized and inhaled on two different days. Initial lung retention after three minutes of administration was approximately 2 mCi. Two regions of interest over each posterior lung field were monitored with a scintillation camera and data were stored on magnetic tape. Decreasing levels of radioactivity were plotted semilogarithmically and half time (T 1 / 2 ) removal rates were calculated

  2. Acute esophagitis for patients with local-regional advanced non small cell lung cancer treated with concurrent chemoradiotherapy

    DEFF Research Database (Denmark)

    Pan, Yi; Brink, Carsten; Knap, Marianne

    2016-01-01

    PURPOSE: Esophagitis is common in patients treated with definitive radiotherapy for local-regional advanced non small cell lung cancer (NSCLC). The purpose of this study was to estimate the dose-effect relationship using clinical and dosimetric parameters in patients receiving intensity modulated...... significantly associated with esophagitis. The two models using the relative esophagus volume irradiated above 40Gy (V40, OR=2.18/10% volume) or the length of esophagus irradiated above 40Gy (L40, OR=4.03/5cm) were optimal. The upper part of esophagus was more sensitive and females experienced more toxicity...... than men. CONCLUSION: V40 and L40 were most effective dosimetric predictors of grade ⩾2 esophagitis. The upper part of esophagus was more sensitive....

  3. Pixel based statistical analysis of differences between lung SPECT images: methodological aspects

    International Nuclear Information System (INIS)

    Bendada, S.; Rocchisani, J.L.M.; Moretti, J.L.

    2002-01-01

    The statistical parametric mapping method is applied in Neurology for activation studies. We had adapted this powerful method on Lungs SPECT to help for the diagnosis and the follow-up of pulmonary embolism and other lung diseases. The SPECT slices of pairs of examination were normalized thanks to the total acquired counts, reconstruction background subtracted, smoothed and realigned. A parametric image of statistical differences was finally computed. We had thus obtained a 3D image showing regions of improved or altered region under treatment. A tuning of the various parameters could lead to more accurate image. This new approach of lung SPECT processing appears to be a promising useful tool for the physician. (author)

  4. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  5. Regional variance of visually lossless threshold in compressed chest CT images: Lung versus mediastinum and chest wall

    International Nuclear Information System (INIS)

    Kim, Tae Jung; Lee, Kyoung Ho; Kim, Bohyoung; Kim, Kil Joong; Chun, Eun Ju; Bajpai, Vasundhara; Kim, Young Hoon; Hahn, Seokyung; Lee, Kyung Won

    2009-01-01

    Objective: To estimate the visually lossless threshold (VLT) for the Joint Photographic Experts Group (JPEG) 2000 compression of chest CT images and to demonstrate the variance of the VLT between the lung and mediastinum/chest wall. Subjects and methods: Eighty images were compressed reversibly (as negative control) and irreversibly to 5:1, 10:1, 15:1 and 20:1. Five radiologists determined if the compressed images were distinguishable from their originals in the lung and mediastinum/chest wall. Exact tests for paired proportions were used to compare the readers' responses between the reversible and irreversible compressions and between the lung and mediastinum/chest wall. Results: At reversible, 5:1, 10:1, 15:1, and 20:1 compressions, 0%, 0%, 3-49% (p < .004, for three readers), 69-99% (p < .001, for all readers), and 100% of the 80 image pairs were distinguishable in the lung, respectively; and 0%, 0%, 74-100% (p < .001, for all readers), 100%, and 100% were distinguishable in the mediastinum/chest wall, respectively. The image pairs were less frequently distinguishable in the lung than in the mediastinum/chest wall at 10:1 (p < .001, for all readers) and 15:1 (p < .001, for two readers). In 321 image comparisons, the image pairs were indistinguishable in the lung but distinguishable in the mediastinum/chest wall, whereas there was no instance of the opposite. Conclusion: For JPEG2000 compression of chest CT images, the VLT is between 5:1 and 10:1. The lung is more tolerant to the compression than the mediastinum/chest wall.

  6. Regional variance of visually lossless threshold in compressed chest CT images: Lung versus mediastinum and chest wall

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jung [Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of)], E-mail: kholee@snubhrad.snu.ac.kr; Kim, Bohyoung; Kim, Kil Joong; Chun, Eun Ju; Bajpai, Vasundhara; Kim, Young Hoon [Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of); Hahn, Seokyung [Medical Research Collaborating Center, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Seoul National University College of Medicine (Korea, Republic of); Lee, Kyung Won [Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of)

    2009-03-15

    Objective: To estimate the visually lossless threshold (VLT) for the Joint Photographic Experts Group (JPEG) 2000 compression of chest CT images and to demonstrate the variance of the VLT between the lung and mediastinum/chest wall. Subjects and methods: Eighty images were compressed reversibly (as negative control) and irreversibly to 5:1, 10:1, 15:1 and 20:1. Five radiologists determined if the compressed images were distinguishable from their originals in the lung and mediastinum/chest wall. Exact tests for paired proportions were used to compare the readers' responses between the reversible and irreversible compressions and between the lung and mediastinum/chest wall. Results: At reversible, 5:1, 10:1, 15:1, and 20:1 compressions, 0%, 0%, 3-49% (p < .004, for three readers), 69-99% (p < .001, for all readers), and 100% of the 80 image pairs were distinguishable in the lung, respectively; and 0%, 0%, 74-100% (p < .001, for all readers), 100%, and 100% were distinguishable in the mediastinum/chest wall, respectively. The image pairs were less frequently distinguishable in the lung than in the mediastinum/chest wall at 10:1 (p < .001, for all readers) and 15:1 (p < .001, for two readers). In 321 image comparisons, the image pairs were indistinguishable in the lung but distinguishable in the mediastinum/chest wall, whereas there was no instance of the opposite. Conclusion: For JPEG2000 compression of chest CT images, the VLT is between 5:1 and 10:1. The lung is more tolerant to the compression than the mediastinum/chest wall.

  7. Interplay between the lung microbiome and lung cancer.

    Science.gov (United States)

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 18 CFR 39.13 - Regional Advisory Bodies.

    Science.gov (United States)

    2010-04-01

    ... THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.13 Regional Advisory Bodies. (a) The Commission will establish... same region; (2) Whether a Reliability Standard proposed to apply within the region is just, reasonable...

  9. Abnormalities by pulmonary regions studied with computer tomography following local or local-regional radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Lind, Pehr; Svane, Gunilla; Gagliardi, Giovanna; Svensson, Christer

    1999-01-01

    Purpose: To study pulmonary radiological abnormalities with computer tomography (CT) following different radiotherapy (RT) techniques for breast cancer with respect to regions and density, and their correlation to pulmonary complications and reduction in vital capacity (VC). Methods and Materials: CT scans of the lungs were performed prior to and 4 months following RT in 105 breast cancer patients treated with local or local-regional RT. The radiological abnormalities were analyzed with a CT-adapted modification of a classification system originally proposed by Arriagada, and scored according to increasing density (0-3) and affected lung regions (apical-lateral, central-parahilar, basal-lateral). The highest density grade in each region were added together to form scores ranging from 0-9. The patients were monitored for RT-induced pulmonary complications. VC was measured prior to and 5 months following RT. Results: Increasing CT scores were correlated with both local-regional RT and pulmonary complications (p < 0.001). The mean reduction of VC for patients scoring 4-9 (-202 ml) was larger than for patients scoring 0-3 (-2 ml) (p = 0.035). The effect of confounding factors on the radiological scoring was tested in the local-regional RT group. Scores of 4-9 were less frequently seen in the patients who had received adjuvant chemotherapy prior to RT. The importance of the respective lung regions on the outcome of pulmonary complications was tested. Only radiological abnormalities in the central-parahilar and apical-lateral regions were significantly correlated to pulmonary complications. Discussion: Radiological abnormalities detected on CT images and scored with a modification of Arriagada's classification system can be used as an objective endpoint for pulmonary side effects in breast cancer. The described model should, however, be expanded with information about the volume of lung affected in each region before definite conclusions can be drawn concerning each

  10. Usefulness of gallium imaging in the evaluation of lung cancer

    International Nuclear Information System (INIS)

    Alazraki, N.

    1980-01-01

    The current enthusiasm for gallium (Ga) citrate as a tumor imaging agent reflects the need of clinical medicine for a good tumor imaging agent. Ga-67 was most consistently and reliably taken up in lung tumors, with sensitivities of Ga imaging positivity in lung cancer ranging from 85 to 95%. Subsequent studies on Ga-67 led to the recognition of its preferential concentration in inflammatory lesions and abscess. These reports resulted in the clinical application of Ga-67 imaging as a diagnostic tool in the evaluation of patients with suspected abscesses. Mechanisms of Ga localization in tumor and inflammatory lesions are not currently well understood. Data regarding the thresholds of various factors which determine visibility of a lung tumor by Ga-67 imaging have been described in some detail. The factors include lesion size, depth in tissue, gallium concentration in tumor relative to background, type of film and instrumentation used, and count rates obtained

  11. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation

    International Nuclear Information System (INIS)

    Lee, J.Y.; Shank, B.; Bonfiglio, P.; Reid, A.

    1984-01-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung

  12. U-bearing particles in miners' and millers' lungs

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Singh, N.P.; Miller, S.C.; Jones, K.W.; Cholewa, M.; Hanson, A.L.; Saccomanno, G.

    1984-01-01

    The size distribution of uranium-bearing particles in air particulates in occupational areas of active uranium mines and mills is largely uninvestigated. Investigation of the size of residual uranium-bearing particles in uranium miners' and millers' lungs is warranted because significant inhalation of uranium can occur in certain occupational areas. Average uranium concentrations of about 0.3 ppM U in uranium miners' and millers' lungs have been reported. Local uranium concentrations in uranium-bearing particles inhaled and regionally deposited in the lungs of uranium miners and millers are orders of magnitude larger than the average uranium concentrations reported. The feasibility of using microPIXE (particle induced x-ray emission) techniques to search for such uranium-bearing particles embedded in lung tissues has been demonstrated. Proton microbeams 20 μm in diameter, scanning in 5 μm steps, were used to irradiate sections of lung tissues 10 to 40 μm thick. The paper will briefly describe the method, and present and discuss the results obtained in an extensive search for uranium-bearing particles embedded in lung tissues, collected at autopsy, of former uranium miners and millers. 13 references, 1 table

  13. Applications and interpretation of krypton 81m ventilation/technetium 99m macroaggregate perfusion lung scanning in childhood

    Science.gov (United States)

    Davies, Hugh Trevor Frimston

    Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image

  14. Risk considerations related to lung modeling

    International Nuclear Information System (INIS)

    Masse, R.; Cross, F.T.

    1989-01-01

    Improved lung models provide a more accurate assessment of dose from inhalation exposures and, therefore, more accurate dose-response relationships for risk evaluation and exposure limitation. Epidemiological data for externally irradiated persons indicate that the numbers of excess respiratory tract carcinomas differ in the upper airways, bronchi, and distal lung. Neither their histogenesis and anatomical location nor their progenitor cells are known with sufficient accuracy for accurate assessment of the microdosimetry. The nuclei of sensitive cells generally can be assumed to be distributed at random in the epithelium, beneath the mucus and tips of the beating cilia and cells. In stratified epithelia, basal cells may be considered the only cells at risk. Upper-airway tumors have been observed in both therapeutically irradiated patients and in Hiroshima-Nagasaki survivors. The current International Commission on Radiological Protection Lung-Model Task Group proposes that the upper airways and lung have a similar relative risk coefficient for cancer induction. The partition of the risk weighting factor, therefore, will be proportional to the spontaneous death rate from tumors, and 80% of the weighting factor for the respiratory tract should be attributed to the lung. For Weibel lung-model branching generations 0 to 16 and 17 to 23, the Task Group proposes an 80/20 partition of the risk, i.e., 64% and 16%, respectively, of the total risk. Regarding risk in animals, recent data in rats indicate a significantly lower effectiveness for lung-cancer induction at low doses from insoluble long-lived alpha-emitters than from Rn daughters. These findings are due, in part, to the fact that different regions of the lung are irradiated. Tumors in the lymph nodes are rare in people and animals exposed to radiation.44 references

  15. Follow-up of CT-derived airway wall thickness : Correcting for changes in inspiration level improves reliability

    NARCIS (Netherlands)

    Pompe, Esther; van Rikxoort, Eva M; Mets, Onno M; Charbonnier, Jean-Paul; Kuhnigk, Jan-Martin; de Koning, Harry J; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Zanen, Pieter; Lammers, Jan-Willem J; van Ginneken, Bram; de Jong, Pim A; Mohamed Hoesein, Firdaus A A

    2016-01-01

    OBJECTIVES: Airway wall thickness (AWT) is affected by changes in lung volume. This study evaluated whether correcting AWT on computed tomography (CT) for differences in inspiration level improves measurement agreement, reliability, and power to detect changes over time. METHODS: Participants of the

  16. Follow-up of CT-derived airway wall thickness : Correcting for changes in inspiration level improves reliability

    NARCIS (Netherlands)

    Pompe, Esther; van Rikxoort, Eva M.; Mets, Onno M.; Charbonnier, Jean-Paul; Kuhnigk, Jan-Martin; de Koning, Harry J.; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Zanen, Pieter; Lammers, Jan-Willem J.; van Ginneken, Bram; de Jong, Pim A.; Hoesein, Firdaus A. A. Mohamed

    2016-01-01

    Objectives: Airway wall thickness (AWT) is affected by changes in lung volume. This study evaluated whether correcting AWT on computed tomography (CT) for differences in inspiration level improves measurement agreement, reliability, and power to detect changes over time. Methods: Participants of the

  17. Reliability Correction for Functional Connectivity: Theory and Implementation

    Science.gov (United States)

    Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng

    2016-01-01

    Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163

  18. Lung inflammatory pseudo tumor

    International Nuclear Information System (INIS)

    Veliz, Elizabeth; Leone, Gaetano; Cano, Fernando; Sanchez, Jaime

    2005-01-01

    The inflammatory pseudo tumor is a non neoplastic process characterized by an irregular growth of inflammatory cells. We described the case of a 38 year-old patient, she went to our institute for a in situ cervix cancer and left lung nodule without breathing symptoms; valued by neumology who did bronchoscopy with biopsy whose result was negative for malignancy. She went to surgery in where we find intraparenquima nodule in felt lingula of approximately 4 cms, we remove it; the result was: Inflammatory pseudotumor. This pathology is a not very frequent, it can develop in diverse regions of the organism, it is frequent in lung. The image tests are not specific for the diagnose, which it is possible only with the biopsy. The treatment is the complete resection. (The author)

  19. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    International Nuclear Information System (INIS)

    Lee, S; Markel, D; Hegyi, G; El Naqa, I

    2016-01-01

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with a grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image

  20. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Markel, D; Hegyi, G [Medical Physics Unit, McGill University, Montreal, Quebec (Canada); El Naqa, I [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with a grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image

  1. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...... bp in the region coding for the active protein. Northern analysis showed lung-specific expression of three different isoforms of the SFTPB transcript. The expression level for the SFTPB gene is low in 50 days-old fetus and it increases during lung development. Quantitative real-time polymerase chain...

  2. LungMAP: The Molecular Atlas of Lung Development Program.

    Science.gov (United States)

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  3. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  4. New insights into lung diseases using hyperpolarized gas MRI.

    Science.gov (United States)

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  5. Marked pericardial inhomogeneity of specific ventilation at total lung capacity and beyond

    DEFF Research Database (Denmark)

    Sun, Yanping; Butler, James P; Lindholm, Peter

    2009-01-01

    uniform at FRC+1L, with a small non-gravitational cephalocaudal gradient of specific ventilation in the supine posture. Our observations at high lung volumes are consistent with the effect of high pleural tension in the concave pericardial region, which promotes expansion of the subjacent lung, leading...

  6. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress.

    Science.gov (United States)

    Scali, Maria Chiara; Zagatina, Angela; Simova, Iana; Zhuravskaya, Nadezhda; Ciampi, Quirino; Paterni, Marco; Marzilli, Mario; Carpeggiani, Clara; Picano, Eugenio

    2017-11-01

    Various lung ultrasound (LUS) scanning modalities have been proposed for the detection of B-lines, also referred to as ultrasound lung comets, which are an important indication of extravascular lung water at rest and after exercise stress echo (ESE). The aim of our study was to assess the lung water spatial distribution (comet map) at rest and after ESE. We performed LUS at rest and immediately after semi-supine ESE in 135 patients (45 women, 90 men; age 62 ± 12 y, resting left ventricular ejection fraction = 41 ± 13%) with known or suspected heart failure or coronary artery disease. B-lines were measured by scanning 28 intercostal spaces (ISs) on the antero-lateral chest, 2nd-5th IS, along with the midaxillary (MA), anterior axillary (AA), mid-clavicular (MC) and parasternal (PS) lines. Complete 28-region, 16-region (3rd and 4th IS), 8-region (3rd IS), 4-region (3rd IS, only AA and MA) and 1-region (left 3rd IS, MA) scans were analyzed. In each space, the B-lines were counted from 0 = black lung to 10 = white lung. Interpretable images were obtained in all spaces (feasibility = 100 %). B-lines (>0 in at least 1 space) were present at ESE in 93 patients (69%) and absent in 42. More B-lines were found in the 3rd IS and along AA and MA lines. The B-line cumulative distribution was symmetric at rest (right/left = 1.10) and asymmetric with left lung predominance during stress (right/left = 0.67). The correlation of per-patient B-line number between 28-S and 16-S (R 2  = 0.9478), 8-S (R 2  = 0.9478) and 4-S scan (R 2  = 0.9146) was excellent, but only good with 1-S (R 2  = 0.8101). The average imaging and online analysis time were 5 s per space. In conclusion, during ESE, the comet map of lung water accumulation follows a predictable spatial pattern with wet spots preferentially aligned with the third IS and along the AA and MA lines. The time-saving 4-region scan is especially convenient during stress, simply dismissing dry regions and

  7. Lung scintigraphy with Tc-99m-MIBI in diagnosis of active tuberculosis

    International Nuclear Information System (INIS)

    Raziei, G.; Fotouhi, F.; Masjedi, M.R.; Neshandar, E.

    2002-01-01

    Tuberculosis is highly contagious infection and one of the most important health problems in the world today, particularly in our country. Routine diagnostic procedures are sometimes unable to differentiated active from inactive cases particularly in elderly. Children, immunomedics patients, Chronic cases with recurrent actuate infection and in the patients unable to provide sputum for microbiological studies. Several radiopharmaceuticals have been used in the evaluation of active pulmonary TB. In this study Tc 99 m-MIBI lung scan was performed using a single head ADAC gamma camera. 62 patients including 34 APTB 915 male and 19 female) and 28 IPTB 99 male and 19 female) underwent six minutes anterior and posterior chest images 20 and minutes after injection of 10 mCi (370 MBq) of Tc 99 m-MIBI. Visual grading was generated by comparing uptake of lesion with neck soft tissue (sternoleidomastoid muscle) and myocardium. For semiquantitative analysis, regions of interest were draw over the lesion (L), non lesion (NL) and neck soft tissue (SCM) and mean count value of ROIs as well as L/NL, L/SCM values were obtained. Results: From 34 patients with APTB, 4 PTS had normal lung uptake (11.7%), 14 PTs+(41, 2%), 14 PTs++41.2%) and 2 PTS +++ (5.9%), therefore 30 PTs of APTB were positive in scintigraphy (88.2%). From 28 patients with IPTB 21 PTs had normal lung uptake (75%), 6 PTs+ (21.4%) and one PT ++ (3.5%). In the semi quantitative study L/NL ratio is calculated for + about 1.35 +/-0.15 and below from this range is considered with normal limit. The sensitivity, specificity, accuracy, PPV and NPV were 88.2% 75%, 82.2%, 81.1% and 84% respectively. From 100 CXR lesion in APTB, 60 had compatible positive scan and from 86 CXR lesions in IPTB 9 had compatible positive scan, where as incompatible positive findings were 12 and 2 respectively. This study indicates Tc 99 m - MIBI lung scan can be used as a reliable complementary study in diagnosis of APTB and differentiating from

  8. Relationship between competitive power markets and grid reliability : the PJM RTO experience

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.G. [PJM Interconnection LLC, Philadelphia, PA (United States)

    2005-07-01

    PJM is one of the largest grid operators in North America, serving 51 million people. This white paper examined the causes of the 2003 blackout in relation to grid management tools, operator training and system planning and analysis. The aim of the paper was to explain how competition and regional transmission offices (RTOs) are addressing these issues and doing more to help improve reliability and strengthen the grid. It was suggested that consumer savings can be achieved while enhancing, rather than diminishing the reliability and security of the electricity system. Changes in the electricity industry were reviewed. Issues concerning the lack of data to measure grid reliability were discussed. It was suggested that key influences on grid reliability are regional dispatch and scheduling practices, as well as RTO coordination and system operator training. Security constrained unit commitment was discussed, as well as various new technologies to improve reliability, including real-time contingency analysis and generation dispatch; real time voltage analysis; and visualization technology. Applications scales and scopes were discussed, as well as issues concerning RTO coordination. Issues concerning enhanced operator information through data transfer protocols were discussed, as well as the development of enhanced reliability tools through joint operating agreements. It was suggested that regional planning and large wholesale markets support regional reliability. It was concluded that regional RTO markets have evolved to produce economic efficiency and enhanced reliability in short-term and mid-term operations, and provide transparent regional information that will assist in providing data in the future, in order to address the long-term infrastructure investment concerns that exist on a national level.

  9. SU-E-J-149: Establishing the Relationship Between Pre-Treatment Lung Ventilation, Dose, and Toxicity Outcome

    International Nuclear Information System (INIS)

    Mistry, N; D'Souza, W; Sornsen de Koste, J; Senan, S

    2014-01-01

    Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity. Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique

  10. Monitoring lung contusion in a porcine polytrauma model using EIT: an application study.

    Science.gov (United States)

    Santos, Susana Aguiar; Wembers, Carlos Castelar; Horst, Klemens; Pfeifer, Roman; Simon, Tim-Philipp; Pape, Hans-Christoph; Hildebrand, Frank; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2017-07-26

    Lung contusion is the most common lung injury following blunt chest trauma which, in turn, is associated with high mortality rates (Gavelli et al 2002 Eur. Radiol. 12 1273-94). Lung contusion is characterized by hemorrhage and edema with consecutively reduced compliance. Objective and Approach: In this study, unilateral lung contusion and other traumata were induced in 12 pigs by using a bolt gun machine. To investigate the pathophysiological consequences of lung contusion, information on clinical parameters was collected and monitored regularly while animals were additionally monitored with electrical impedance tomography (EIT) before trauma, and at 4, 24, 48 and 72 h after polytrauma. Statistical analyses showed significant differences between the measurement time points in terms of lung compliance ([Formula: see text]) and in global EIT parameters, such as absolute global impedance (aGlobImp) ([Formula: see text]), tidal impedance variation (TIV) ([Formula: see text]) and the center of ventilation (CoV) ([Formula: see text]). Additionally, distinct analyses for the left (non-injured) and right (injured) lung were also performed. In this context, during the progress of lung contusion, significant changes were found for the injured lung in TIV ([Formula: see text]), global inhomogeneity ([Formula: see text]), regional ventilation delay ([Formula: see text]), CoV ([Formula: see text]) and in regions of non-ventilation (rNoVent) ([Formula: see text]). Furthermore, TIV and rNoVent were capable to differentiate the injured and the contralateral healthy lung at 4 and 24 h after injury (TIV: [Formula: see text] and [Formula: see text]; rNoVent: [Formula: see text] and [Formula: see text]). TIV reached a sensitivity of 82% (specificity of 100%) at 4 h and sensitivity of 82% (specificity of 82%) at 24 h after injury, in detecting lung contusion specific consequences. The results indicate that EIT might be a valuable tool to detect and to monitor lung injuries

  11. Argyrophilic nucleolar organizer region in MIB-1 positive cells in non-small cell lung cancer: clinicopathological significance and survival

    International Nuclear Information System (INIS)

    Kobyakov, Dmitriy Sergeevich; Avdalyan, Ashot Merudzhanovich; Lazarev, Aleksandr Fedorovich; Lushnikova, Elena Leonidovna; Nepomnyashchikh, Lev Moiseevich

    2014-01-01

    To evaluate the relation between argyrophilic nucleolar organizer region (AgNOR)-associated proteins and clinicopathological parameters and survival in non-small-cell lung cancer (NSCLC). A total of 207 surgical specimens diagnosed as NSCLC were included in this study. Double-staining procedures were performed using antigen Ki-67 (clone MIB-1) and silver nitrate by immunohistochemical and AgNOR-staining methods. The AgNOR area in MIB-1-positive cells of NSCLC is related to clinicopathological parameters under the TNM (tumor, node, and metastasis) system. The survival of patients with small AgNOR area in MIB-1-positive cells is better than that of patients with large AgNOR area. Molecular, biological (AgNOR area in MIB-1-positive cells), and clinicopathological (greatest tumor dimension, metastases to regional lymph nodes, histology, and differentiation) parameters are independent prognostic factors of NSCLC. The AgNOR area in MIB-1-positive cells is related to clinicopathological parameters and survival in NSCLC

  12. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    Science.gov (United States)

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; Ppulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  13. Magnetic Nanoparticles of Chitosan for Targeted Delivery System of Plasmids to the Lungs

    International Nuclear Information System (INIS)

    Baez, C.A.A.; Cruz, I.E.L.; Padilla, M.C.R.; Gonzalez, J.M.A.

    2014-01-01

    One of the major problems of gene therapy is the efficient, specific, and targeted delivery as well as the safety of the materials used in such systems. The specific targeted delivery of genes to the lung offers the possibility to treat a variety of specific diseases. We developed chitosan nanoparticles with the plasmid pCEM-Luc, which contains a promoter activated by magnetic field. Nanoparticles of 200-250 nm obtained by ionic gelation with a 99% retention rate were transfected in B16F10 cells and in vivo in the lungs of Balb/c mice by intratracheal administration. We observed that an external magnetic field increased the expression of the luciferase reporter gene in B16F10 cells transfected with magnetic nanoparticles and in homogenized lungs of mice which determined differences in levels of expression between different regions of the lungs (apical or distal and left or right). The highest levels of luciferase activity were observed in the apical left region. The magnetic nanoparticles prove an efficient delivery system to in vitro transfection of cells and lung tissue.

  14. Fast, reliable sexing of prosimian DNA

    DEFF Research Database (Denmark)

    Fredsted, Tina; Villesen, Palle

    2004-01-01

    to identify conserved regions in the amelogenin gene. Using these conserved regions, we can target species that have no sequence information. We designed a single, conserved primer pair that is useful for fast and reliable molecular sexing of prosimian primates. A single PCR yields two fragments in males...

  15. A comprehensive computational model of sound transmission through the porcine lung.

    Science.gov (United States)

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  16. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  17. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  18. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  19. Preparation of 99Tcm-CLP imaging probe of lung carcinoma

    International Nuclear Information System (INIS)

    Qiang Yonggang; Liao Yonghua

    2004-01-01

    The process of preparing an imaging micro-probe 99 Tc m -CLP from bovine nose cartilage is described in detail. Both labeled rate and radiochemical purity of 99 Tc m -CLP are greater than 90%, and KA is 1.12 x 10 9 L/mol in vitro. After the Balb/c nu/nu mice with lung cancer were intravenously injected by the 99 Tc m -CLP, the radioactivity was found to be well concentrated at the lung-cancer region, which suggests that the 99 Tc m -CLP micro-probe can be used in imaging study of lung carcinoma. (authors)

  20. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    Science.gov (United States)

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  1. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Farr, Katherina P; Khalil, Azza A; Møller, Ditte S

    2018-01-01

    BACKGROUND AND PURPOSE: To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS: NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy we...

  2. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    Science.gov (United States)

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  3. Basic and technical research on lung cancer

    International Nuclear Information System (INIS)

    Miyamoto, Tadaaki

    2004-01-01

    In association with clinical study of carbon beam therapy for lung cancer, the basic research for lung cancer and the patients with this disease has been carried out for the past 10 years. With regard to lung damage by the carbon beams, firstly pulmonary function was measured and analyzed for the patients with stage I non-small cell lung cancer. Force expiratory volume in 1 second (FVE 1.0) and TLC (total lung capacity) was found to be reduced significantly at 6 and 12 months after therapy but the reduction rate was a little, which can support the safety of this treatment modality. Secondly, the regional lung damage by the beams was investigated by using correct fusion of CT images with carbon beam dose distribution, diagnostic follow-up CT images and blood flow and ventilation spect images. It demonstrated the graded decrease blood flow by dose and the compensatory increase of blood flow in the adjacent lobe of lung unexposed to irradiation. On the other hand, the biological study of carbon beam effects on lung cancer cells and tumors line was conducted. Firstly, by using 7 or 4 human lung cancer cell line, the radiosensitivity of carbon beams was compared with that of photons by different histological patterns. It was found that there was no essential difference in the sensitivity pattern for lung cancer histology between the carbon beams and photons though the former doubled the later in power. Secondly, by using IA cell lines among them, the dynamic of clonogenic cells (clonogen) in a nude tumor and the changes in its morphology following irradiation was investigated, clarifying that the clonogen proliferating under anoxic or hypoxic conditions played a pivotal role for tumor regrowth and stemmed from the different clone which had been genetically selected and developed under these conditions. The finding of clonogen becomes one of the evidence supporting the superiority of a single-dose radiotherapy to fractionated radiotherapy. (author)

  4. Inflammatory/granulomatous diseases of the lung

    International Nuclear Information System (INIS)

    Ivancevic, V.; Munz, D.L.

    1998-01-01

    The term 'inflammatory' and 'granulomatous' lung disease represents a pool of many etiologically different diseases, the pathologic mechanisms of which are characterized by inflammatory reactions of varying intensity and cell composition. In sarcoidosis and other granulomatous diseases as well as in lung fibroses, gallium scintigraphy allows reliable non-invasive estimation of alveolitis activity and is suitable for therapy monitoring. Granulomatous diseases seem to be detectable sensitively by means of somatostatin receptor scintigraphy as well. It is yet uncertain, whether positron emission tomography with F-18 fluordeoxyglucose will play a role in quantitative assessment of disease activity in sarcoidosis. Gallium scintigraphy is very useful in the early detection of pulmonary complications in AIDS patients. Pneumocystis carinii pneumonia, which is important in this patient population, can also be detected by both Tc-99m and In-111 labelled polyclonal human immunoglobulin, and in future possibly with a monoclonal antibody fragment against Pneumocystis carinii as well. The significance of primary bacterial pneumonias has decreased and nuclear medicine procedures for diagnosing inflammation are needed only exceptionally in this indication. (orig.) [de

  5. Artificial life models in lung CTS

    International Nuclear Information System (INIS)

    Sorin, Cheran

    2006-01-01

    A new method for the analysis of 3D medical images is introduced. The algorithm is based on Biological Models of ants known as Artificial Life models. Test images (lung Computed Tomographies) undergo a 3D region growing procedure for the identification of the ribs cage. Active Contour Models (snakes) are used in order to build a confined area where ants are deployed. The ant-based approach, in which steps are allowed in any direction with different probabilities, allows a kind of tunneling effect for the successful identification of small 3D structures that are not clearly connected to the rest of the tree. The best approach is based on a gradient rule for the release of pheromone. A possible application, as part of a Computer Assisted Detection system for the identification of lung nodules, is the removal of the bronchial and vascular tree from lung CTs thus reducing the number of false positives a Nodule Hunter might report. (Full Text)

  6. Pulmonary Exacerbation Score in Cystlc Fibrosis Patients: Reliability and Validity Testing

    OpenAIRE

    Keller, F.

    2016-01-01

    Background: Lung disease in cystic fibrosis (CF) is characterized by recurrent pulmonary exacerbations (PEs), but consensus on diagnostic criteria for PE is lacking. The use of a consistent definition of PE as an outcome measure in CF clinical trials would allow meaningful comparison across centers. The aim of this study was to assess the reliability and validity of a simplified version of the Seattle Pulmonary Exacerbation Score (SPEX). Materials and Methods: A cross-sectional observational ...

  7. Open lung approach vs acute respiratory distress syndrome network ventilation in experimental acute lung injury.

    Science.gov (United States)

    Spieth, P M; Güldner, A; Carvalho, A R; Kasper, M; Pelosi, P; Uhlig, S; Koch, T; Gama de Abreu, M

    2011-09-01

    Setting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response. Eighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis. PEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH(2)O, range 14-18 cmH(2)O, compared with 12 cmH(2)O; 20.5 (sd 2.3) compared with 18 (1.4) cmH(2)O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [-0.02 (-0.09 to -0.01) compared with -0.08 (-0.12 to -0.06), dorsal-ventral gradients after 6 h, respectively]. According to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.

  8. Clearance of 99mTc-labeled albumin from lungs in anesthetized guinea pigs

    International Nuclear Information System (INIS)

    Connelly, J.C.; Peterson, B.T.

    1993-01-01

    Gamma imaging was used to measure the rate of clearance of aerosolized 99m Tc-human serum albumin (HSA) from the lungs of control guinea pigs and guinea pigs that received increased lung inflation or lung injury. Anesthetized guinea pigs were ventilated for 6 min with an aerosol of HSA and the radioactivity in the chest was monitored for 2 h with a gamma camera to determine whether the clearance rate would be a reliable assessment of lung epithelial permeability. Increased lung volumes were effected by application of 5 or 7 cm H 2 O positive end-expired pressure (5-PEEP and 7-PEEP, respectively). Lung injury was induced either by intravenous oleic acid (OA, 27-73 μl/kg) or inhalation of nitrogen dioxide (NO 2 , 80-100 ppm) for 2 h. Postmortem extravascular lung water volume (EVLW) provided an assessment of the degree of lung injury. Tracer clearance rates in animals receiving 5 or 7 cm H 2 O PEEP were not significantly different from controls (K = 0.15 ± 0.05 and 0.24 ± 0.10 vs 0.12 ± 0.03%/min, respectively, p > .05). Animals exposed to NO 2 had faster tracer clearance rates (K = 0.33 ± 0.21%/min, p 2 -exposed guinea pigs correlated well with injury as assessed by EVLW (r = .93, p 2 O PEEP (K = 0.58 ± 0.41%/min, EVLW = 8.1 ± 0.8 mL/g dry lung tissue, p < .05), but there was no correlation between these parameters in this injury model. It is concluded that imaging of the disappearance of radiolabeled HSA in the guinea pig can be a useful index of lung epithelial permeability, but this technique is limited to certain models of lung injury. 33 refs

  9. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  10. Role for Cela1 in Postnatal Lung Remodeling and AAT-deficient Emphysema

    DEFF Research Database (Denmark)

    Joshi, Rashika; Heinz, Andrea; Fan, Qiang

    2018-01-01

    RATIONALE: α1-antitrypsin (AAT) deficiency-related emphysema is the fourth leading indication for lung transplantation. Chymotrypsin-like elastase 1 (Cela1) is a digestive protease that is expressed during lung development in association with regions of elastin remodeling, exhibits stretch...... elastin similarly to pancreatic elastase. Cela1 promoter and protein sequences were phylogenetically distinct in the placental mammal lineage suggesting an adaptive role for lung-expressed Cela1 in this clade. A six-week antisense oligo mouse model of AAT deficiency resulted in emphysema with increased......-dependent expression during lung regeneration, and binds lung elastin in a stretch-dependent manner. AAT covalently neutralizes Cela1 in vitro. OBJECTIVES: We sought to determine the role of Cela1 in postnatal lung physiology, whether it interacted with AAT in vivo, and any effects it may have in the context of AAT...

  11. WE-AB-207B-05: Correlation of Normal Lung Density Changes with Dose After Stereotactic Body Radiotherapy (SBRT) for Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q; Devpura, S; Feghali, K; Liu, C; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the method of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian

  12. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L., E-mail: adamliss68@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kapadia, Nirav S. [Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (United States); McShan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Rogers, Virginia E. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Moran, Jean M.; Brock, Kristy K.; Schipper, Matt J.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Flaherty, Kevin R. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Frey, Kirk A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2017-02-01

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of

  13. Calculation of lung-heart ratios for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Soares, E.J.; King, M.A.; Glick, S.J.; Villegas, B.J.

    1996-01-01

    The authors investigate the effectiveness of simple iterative reconstruction techniques in calculating lung-heart activity ratios (LHRs). The LHR has been shown to be an effective indicator of the severity of coronary artery disease in cardiac SPECT. A study was conducted with a mathematical cardiac torso phantom that modelled uptake of 201 Tl in the heart and lung regions. The projection data included only the effects of nonuniform photon attenuation. The data were first reconstructed with zeroth-order Chang and a variant of the Bellini method, both of which utilize information from the nonuniform attenuation map. This nonuniform (NU) Bellini method compensates exactly for attenuation in the heart region, but is incorrect for other regions in the medium. These reconstructions were then used as the initial estimates in the iterative Chang, variable step-size (VSS) Chang, and Morozumi methods,m for one and five iterations. The average heart count (AHC) and average lung count (ALC) were calculated using region-of-interest (ROI) templates derived from the true activity map. The population mean LHR was tabulated as the ratio of the ALC to AHC. Using the same reconstruction procedure, the authors also calculated the sample mean LHR and standard deviation from 21 noisy 3D reconstructions

  14. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  15. Histological analysis of trachea and lung of newborn dogs

    Directory of Open Access Journals (Sweden)

    Andrezza Braga Soares da Silva

    2016-11-01

    Full Text Available The neonatology science is, in Veterinary Medicine, studying the post-birth to the development of certain characteristics of resistance, which for canines occurs until the second week of life. The newborn requires a precise approach given the particularities of their physiology and immunology extremely immature. The histological study elucidates problems morphological and functional abnormalities, as it provides a reliable and microscopic analysis. Aimed to analyze trachea and lung of newborn dogs through techniques of basic histology. We used five neonates that died postpartum. These were weighed, measured and dissected. Proceeded to the extraction of the trachea, bronchus and lung for submitting these samples to histological routine. The tracheal tissue presents a pseudostratified columnar ciliated epithelium with globet cells, a small amount of glands in the lamina propria and hyaline cartilage not fully developed. As regards the bronchial tissue may be observed well defined layers, pulmonary pseudostratified columnar ciliated epithelium with goblet cells in the lamina propria several bundles of smooth muscle and thick vascularized tissue. Likewise, the signs of bronchial cartilage present under development. The bronchioles also feature the common pulmonary epithelium and lamina propria also normal pens without smooth muscle. The bags alveolar lung cells showed typical. The lung tissues of newborn dogs present is still in development stage. It is possible to understand patterns of histogenesis and morphogenesis in newborn dogs.

  16. Correlation between alveolar ventilation and electrical properties of lung parenchyma

    OpenAIRE

    Roth, J. C., Ehrl, A., Becher, T., Frerichs, I., Schittny, J., Weller, N., Wall W. A.

    2016-01-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key towards understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-ba...

  17. Factors affecting regional pulmonary blood flow in chronic ischemic heart disease

    International Nuclear Information System (INIS)

    Pistolesi, M.; Miniati, M.; Bonsignore, M.

    1988-01-01

    To assess the effect of left heart disease on pulmonary blood flow distribution, we measured mean pulmonary arterial and wedge pressures, cardiac output, pulmonary vascular resistance, pulmonary blood volume, and arterial oxygen tension before and after treatment in 13 patients with longstanding ischemic heart failure and pulmonary edema. Pulmonary edema was evaluated by a radiographic score, and regional lung perfusion was quantified on a lung scan by the upper to lower third ratio (U:L ratio) of pulmonary blood flow per unit of lung volume. In all cases, redistribution of lung perfusion toward the apical regions was observed; this pattern was not affected by treatment. After treatment, pulmonary vascular pressures, resistance, and edema were reduced, while pulmonary blood volume did not change. At this time, pulmonary vascular resistance showed a positive correlation with the U:L ratio (r = 0.78; P less than 0.01), whereas no correlation was observed between U:L ratio and wedge pressure, pulmonary edema, or arterial oxygen tension. Hence, redistribution of pulmonary blood flow, in these patients, reflects chronic structural vascular changes prevailing in the dependent lung regions

  18. Lung Cancer Screening

    Science.gov (United States)

    ... factors increase or decrease the risk of lung cancer. Lung cancer is a disease in which malignant (cancer) ... following PDQ summaries for more information about lung cancer: Lung Cancer Prevention Non-Small Cell Lung Cancer Treatment ...

  19. Reliability of dose volume constraint inference from clinical data

    DEFF Research Database (Denmark)

    Lutz, C M; Møller, D S; Hoffmann, L

    2017-01-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background...... was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap...

  20. Lung Dose Calculation With SPECT/CT for 90Yittrium Radioembolization of Liver Cancer

    International Nuclear Information System (INIS)

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-01-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ( 99m Tc-MAA) single photon emission CT (SPECT)/CT for 90 Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of 99m Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on 99m Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended

  1. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Damlund, Dina S. M.; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    , the infection is not eradicated and the inflammatory response leads to gradual degradation of the lung tissue. In CF patients, a Th2-dominated adaptive immune response with a pronounced antibody response is correlated with poorer outcome. Dendritic cells (DCs) are crucial in bridging the innate immune system...... with the adaptive immune response. Once activated, the DCs deliver a set of signals to uncommitted T cells that induce development, such as expansion of regulatory T cells and polarization of Th1, Th2 or Th17 subsets. In this study, we characterized DCs in lungs and regional lymph nodes in BALB/c mice infected...... using intratracheal installation of P. aeruginosa embedded in seaweed alginate in the lungs. A significantly elevated concentration of DCs was detected earlier in the lungs than in the regional lymph nodes. To evaluate whether the chronic P. aeruginosa lung infection leads to activation of DCs...

  2. Lung boundary detection in pediatric chest x-rays

    Science.gov (United States)

    Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.

    2015-03-01

    Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

  3. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    Science.gov (United States)

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  4. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Ellen De Langhe

    method is reproducible with low inherent measurement variability. We show that it is a reliable quantitative tool to investigate experimental lung fibrosis and emphysema in mice. Its non-invasive nature has the unique benefit to allow dynamic 4D evaluation of disease processes and therapeutic interventions.

  5. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  6. 75 FR 15371 - Time Error Correction Reliability Standard

    Science.gov (United States)

    2010-03-29

    ... Electric Reliability Council of Texas (ERCOT) manages the flow of electric power to 22 million Texas customers. As the independent system operator for the region, ERCOT schedules power on an electric grid that... Coordinating Council (WECC) is responsible for coordinating and promoting bulk electric system reliability in...

  7. Nutrition for Lung Cancer

    Science.gov (United States)

    ... Become An Advocate Volunteer Ways To Give Lung Cancer www.lung.org > Lung Health and Diseases > Lung Disease Lookup > ... Cancer Learn About Lung Cancer What Is Lung Cancer Lung Cancer Basics Causes & Risk Factors Lung Cancer Staging ...

  8. Basic principles of pulmonary anatomy and physiology for CT interpretation of lung diseases

    International Nuclear Information System (INIS)

    Remy-Jardin, M.; Beigelman, C.; Desfontaines, C.; Dupont, S.; Remy, J.

    1989-01-01

    High resolution CT is now the method of choice in the diagnosis of lung diseases, especially in their early recognition. However, the radiologist must be aware of precise anatomic, pathologic and physiologic data which are observed when the patient is supine. This concept leads to a transversal analysis of lung diseases by CT, as previously proposed in the coronal and sagittal planes for conventional chest X Ray interpretation. The aim of the study is to demonstrate that these regional differences in the lung must be included in the method of chest scanning but also in the interpretation of lung diseases [fr

  9. Cardiac valve calcifications on low-dose unenhanced ungated chest computed tomography: inter-observer and inter-examination reliability, agreement and variability

    International Nuclear Information System (INIS)

    Hamersvelt, Robbert W. van; Willemink, Martin J.; Takx, Richard A.P.; Eikendal, Anouk L.M.; Budde, Ricardo P.J.; Leiner, Tim; Jong, Pim A. de; Mol, Christian P.; Isgum, Ivana

    2014-01-01

    To determine inter-observer and inter-examination variability for aortic valve calcification (AVC) and mitral valve and annulus calcification (MC) in low-dose unenhanced ungated lung cancer screening chest computed tomography (CT). We included 578 lung cancer screening trial participants who were examined by CT twice within 3 months to follow indeterminate pulmonary nodules. On these CTs, AVC and MC were measured in cubic millimetres. One hundred CTs were examined by five observers to determine the inter-observer variability. Reliability was assessed by kappa statistics (κ) and intra-class correlation coefficients (ICCs). Variability was expressed as the mean difference ± standard deviation (SD). Inter-examination reliability was excellent for AVC (κ = 0.94, ICC = 0.96) and MC (κ = 0.95, ICC = 0.90). Inter-examination variability was 12.7 ± 118.2 mm 3 for AVC and 31.5 ± 219.2 mm 3 for MC. Inter-observer reliability ranged from κ = 0.68 to κ = 0.92 for AVC and from κ = 0.20 to κ = 0.66 for MC. Inter-observer ICC was 0.94 for AVC and ranged from 0.56 to 0.97 for MC. Inter-observer variability ranged from -30.5 ± 252.0 mm 3 to 84.0 ± 240.5 mm 3 for AVC and from -95.2 ± 210.0 mm 3 to 303.7 ± 501.6 mm 3 for MC. AVC can be quantified with excellent reliability on ungated unenhanced low-dose chest CT, but manual detection of MC can be subject to substantial inter-observer variability. Lung cancer screening CT may be used for detection and quantification of cardiac valve calcifications. (orig.)

  10. The effect of cigarette smoking on neutrophil kinetics in human lungs [see comments

    International Nuclear Information System (INIS)

    MacNee, W.; Wiggs, B.; Belzberg, A.S.; Hogg, J.C.

    1989-01-01

    Neutrophils may play a part in the pathogenesis of the centrilobular emphysema associated with cigarette smoking. The capillary bed of the lungs concentrates neutrophils approximately 100-fold with respect to erythrocytes, producing a large pool of marginated cells. We examined the effect of cigarette smoking on the kinetics of this pool of cells, using 99mTc-labeled erythrocytes to measure regional blood velocity and 111In-labeled neutrophils to measure the removal of neutrophils during the first passage through the pulmonary circulation, their subsequent washout from the lungs, and the effect of local blood velocity on the number of neutrophils retained in each lung region. We observed no difference in these measurements between subjects who had never smoked (n = 6) and smokers who did not smoke during the study (n = 12). However, subjects who did smoke during the study (n = 12) had a significantly slower rate of washout of radiolabeled neutrophils from the lung (0.08 +/- 0.04 of the total per minute, as compared with 0.13 +/- 0.06 in smokers who did not smoke during the experiment and 0.14 +/- 0.08 in non-smokers) (P = 0.02). We also observed an increase in the regional retention of labeled neutrophils with respect to blood velocity in 5 of the 12 subjects who smoked during the study, but in none of the other subjects. We conclude that the presence of cigarette smoke in the lungs of some subjects increases the local concentration of neutrophils, and suggest that the lesions that characterize emphysema may be a result of the destruction of lung tissue by neutrophils that remain within pulmonary microvessels

  11. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; Wang, Jing; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  12. Improved dosimetry and risk assessment for plutonium-induced lung disease using a microdosimetric approach

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Hahn, F.F.; Guilmette, R.A. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States); Romanov, S.A.; Muksinova, K.N.; Nifatov, A.P.; Revina, V.S.

    2000-05-01

    The risk of developing radiation-induced lung cancer is currently estimated using models based on epidemiological data from populations exposed either to relatively uniform, low-LET radiation, or from uranium miners exposed to radon and its progeny. Because inhaled alpha-emitting radionuclides (e.g., Pu, Am) produce nonuniform, chronic irradiation of the parenchymal region of the lung, a better scientific basis is needed for assessing the risk of developing radiation-induced disease from these radionuclides. Scientists at FIB-1 and LRRI are using a unique resource at the FIB-1, i.e., a set of about 600 lung specimens fixed in 10% formalin, and obtained from a population of workers at the Mayak Production Association, many of whom inhaled significant quantities of Pu and other alpha-emitting radionuclides during their careers. The objectives of this research are to measure the microscopic distribution of Pu by quantitative autoradiography, to determine the spatial distribution of Pu in human lung tissue with respect to specific lung structures and to determine the effect of chronic tobacco-smoke exposure on the distribution of local Pu radiation dose. The approach to analyzing these lung samples is to utilize contemporary stereological sampling and analysis techniques together with quantitative alpha-particle autoradiography. Our initial results have validated the usefulness of these lung specimens for determining Pu particle distribution with respect to anatomic location, as well as identifying normal and diseased compartments in the lung. In brief, particles were most often found associated with parenchymal and nonparenchymal scars, with other particles in organized lymphoid tissue or the interstitium of the pulmonary parenchyma (respiratory bronchioles and alveolar region). Based on comparison of one lung from a smoker and one from a nonsmoker, there was an increased fraction of Pu particles associated with tissue scars in the smoker vs the nonsmoker, and this

  13. Single-Lung Ventilation with Contralateral Lung Deflation

    Science.gov (United States)

    Dallan, Luís Alberto O.; Lisboa, Luiz Augusto F.; Platania, Fernando; Oliveira, Sérgio A.; Stolf, Noedir A.

    2007-01-01

    There are many new alternative methods of minimally invasive myocardial revascularization that can be applied in selected patients who have multivessel coronary artery disease. However, these techniques often require new and expensive equipment. Most multivessel myocardial revascularization is performed via median sternotomy and involves the use of a conventional endotracheal tube. Both lungs are ventilated, and frequently the left pleural cavity is opened. In contrast, single-lung deflation naturally moves the mediastinum within the thorax toward the collapsed lung, without the need to open the pleural cavities. Herein, we describe a simple alternative procedure that facilitates off-pump multivessel coronary artery bypass grafting via complete median sternotomy: single-lung ventilation with contralateral lung deflation. This technique better exposes the more distal right and circumflex coronary artery branches with or without the opening of the pleural cavities. PMID:17622364

  14. Clinical assessment of mean washout time and lung functional image by ventilatory steady state measurement with /sup 133/Xe

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K; Hasegawa, T; Watanabe, H; Hasegawa, S; Oshima, M [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1981-04-01

    Ventilatory steady state measurement with /sup 133/Xe, using Ventil-Con (Radx) and a large area scintillation camera (Searle, LFOV) combined with a mini-computer system (Shimadzu, Scintipac 230) was employed to evaluate regional pulmonary function of 94 patients with chronic obstructive lung disease (COLD), fibrosis, carcinoma and other lung diseases. In the patients with COLD, mean washout times (anti t) were markedly prolonged in whole lung fields (anti m 130 +- 33 sec.) and ventilation indices (V*/V) (*: radical) and perfusion indices (Q*/V) (*: radical) were reduced in regional zones, especially in bilateral lower lung zones. For the patients with lung fibrosis, anti t values were short and the distribution of ventilation indices were uniform, and in contrast perfusion indices were reduced in the lower lung fields. In the area most affected by carcinoma, lung volumes (V) were reduced in parallel with the regional ventilation (V*) (*: radical) and perfusion (Q*) (*: radical). As the tumor approached the hilum, the relative ventilation and perfusion of cancerous side decreased remarkably in patients with obstructive findings on bronchoscopy. The mean washout times (anti t) for /sup 133/Xe, calculated by a modified height over area method without background subtraction, were significantly longer than indicated by the data yielded by the least squares curve fitting of initial washout curve after background subtraction. Although the accuracy of these data was limited, it appeared that the prolonged anti t is a good parameter of regional ventilatory disturbance because significant correlations were found between the whole lung anti t in patients with lung diseases and their FEV 1.0% r = -0.66, RV/TLC r = 0.64, % TLC r = 0.43, PaCO/sub 2/ r = 0.41, PaO/sub 2/ r = -0.35.

  15. NDE reliability and advanced NDE technology validation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Hutton, P.H.; Reid, L.D.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1989-01-01

    This paper reports on progress for three programs: (1) evaluation and improvement in nondestructive examination reliability for inservice inspection of light water reactors (LWR) (NDE Reliability Program), (2) field validation acceptance, and training for advanced NDE technology, and (3) evaluation of computer-based NDE techniques and regional support of inspection activities. The NDE Reliability Program objectives are to quantify the reliability of inservice inspection techniques for LWR primary system components through independent research and establish means for obtaining improvements in the reliability of inservice inspections. The areas of significant progress will be described concerning ASME Code activities, re-analysis of the PISC-II data, the equipment interaction matrix study, new inspection criteria, and PISC-III. The objectives of the second program are to develop field procedures for the AE and SAFT-UT techniques, perform field validation testing of these techniques, provide training in the techniques for NRC headquarters and regional staff, and work with the ASME Code for the use of these advanced technologies. The final program's objective is to evaluate the reliability and accuracy of interpretation of results from computer-based ultrasonic inservice inspection systems, and to develop guidelines for NRC staff to monitor and evaluate the effectiveness of inservice inspections conducted on nuclear power reactors. This program started in the last quarter of FY89, and the extent of the program was to prepare a work plan for presentation to and approval from a technical advisory group of NRC staff

  16. Isolated lung events following radiation for early stage breast cancer: incidence and predictors for primary lung vs metastatic breast cancer

    International Nuclear Information System (INIS)

    Van Buren, Teresa A; Harris, Jay R; Sugarbaker, David J; Schneider, Lindsey; Healey, Elizabeth A

    1995-01-01

    =0.027). Factors related to the initial breast cancer which were not predictive for diagnosis of the lung event included nodal status, prior local or regional recurrence, 2 vs 3 field RT technique and machine energy. Time to lung event appeared fairly constant over two year intervals up to 10 years and beyond for patients with both metastatic breast lesions and primary lung cancers. In particular, there did not appear to be a relative increase in the risk of lung cancer after 10 years. Eleven of the initial cohort of 1865 patients (0.6%) had an ultimate pathologic diagnosis of lung cancer. With respect to the irradiated breast, these lung cancers were located in the ipsilateral lung for 5, the contralateral lung for 5 and the location was unknown for one. Conclusions: 1) Isolated lung events following early stage breast cancer are uncommon. 2) Smoking history and presentation as a solitary pulmonary nodule were more likely to be associated with a diagnosis of lung cancer than a metastatic breast lesion. However, even with a biopsy, it is often impossible to distinguish with certainty between the two diagnoses. In these situations, management must be based on clinical judgment. 3) In this cohort, the development of lung cancer was a rare event. There was no demonstrable evidence of radiation-induced lung cancer through this time of follow-up based on laterality or radiation technique

  17. Two cases with giant lung abscess originating in the irradiated lung field following the concurrent chemo-radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Takeshi; Inui, Hiroyuki; Yukawa, Susumu; Nomoto, Hiroshi (Wakayama Medical Coll. (Japan)); Minakata, Yoshiaki; Yamagata, Toshiyuki

    1992-05-01

    Two patients with giant lung abscess originating in the irradiated lung field are reported. Lung abscesses occurred during the term of leukopenia following the concurrent chemo-radiotherapy of lung cancer. Both patients were diagnosed as small cell lung cancer, and were treated concurrently with chemotherapy (Cisplatin + Etoposide) and radiotherapy (total 40-50 Gy). Case 1 was a 59 years old male. Seven weeks after the first irradiation, a giant lung abscess was caused by methicillin resistant staphylococcus aureus (MRSA) originated in the lung field with radiation pneumonitis, and giant bronchial fistula was formed, that showed the specific bronchofiberscopic findings. Case 2 was a 67 years old male. Twelve weeks after the first irradiation, a giant lung abscess was caused by pseudomonas aeruginosa originated in the irradiated lung field following the formation of a pneumatocele. MRSA and pseudomonas aeruginosa are important as cause of hospital infection, and both can cause lung abscess. However, in our cases, lung abscess were formed just in the irradiated lung field and rapidly enlarged. These clinical findings suggested that myelosuppression and radiation injury of lung tissue might cause such giant lung abscess. (author).

  18. Two cases with giant lung abscess originating in the irradiated lung field following the concurrent chemo-radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Ikeda, Takeshi; Inui, Hiroyuki; Yukawa, Susumu; Nomoto, Hiroshi; Minakata, Yoshiaki; Yamagata, Toshiyuki.

    1992-01-01

    Two patients with giant lung abscess originating in the irradiated lung field are reported. Lung abscesses occurred during the term of leukopenia following the concurrent chemo-radiotherapy of lung cancer. Both patients were diagnosed as small cell lung cancer, and were treated concurrently with chemotherapy (Cisplatin + Etoposide) and radiotherapy (total 40-50 Gy). Case 1 was a 59 years old male. Seven weeks after the first irradiation, a giant lung abscess was caused by methicillin resistant staphylococcus aureus (MRSA) originated in the lung field with radiation pneumonitis, and giant bronchial fistula was formed, that showed the specific bronchofiberscopic findings. Case 2 was a 67 years old male. Twelve weeks after the first irradiation, a giant lung abscess was caused by pseudomonas aeruginosa originated in the irradiated lung field following the formation of a pneumatocele. MRSA and pseudomonas aeruginosa are important as cause of hospital infection, and both can cause lung abscess. However, in our cases, lung abscess were formed just in the irradiated lung field and rapidly enlarged. These clinical findings suggested that myelosuppression and radiation injury of lung tissue might cause such giant lung abscess. (author)

  19. Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease.

    Science.gov (United States)

    Kim, Guk Bae; Jung, Kyu-Hwan; Lee, Yeha; Kim, Hyun-Jun; Kim, Namkug; Jun, Sanghoon; Seo, Joon Beom; Lynch, David A

    2017-10-17

    This study aimed to compare shallow and deep learning of classifying the patterns of interstitial lung diseases (ILDs). Using high-resolution computed tomography images, two experienced radiologists marked 1200 regions of interest (ROIs), in which 600 ROIs were each acquired using a GE or Siemens scanner and each group of 600 ROIs consisted of 100 ROIs for subregions that included normal and five regional pulmonary disease patterns (ground-glass opacity, consolidation, reticular opacity, emphysema, and honeycombing). We employed the convolution neural network (CNN) with six learnable layers that consisted of four convolution layers and two fully connected layers. The classification results were compared with the results classified by a shallow learning of a support vector machine (SVM). The CNN classifier showed significantly better performance for accuracy compared with that of the SVM classifier by 6-9%. As the convolution layer increases, the classification accuracy of the CNN showed better performance from 81.27 to 95.12%. Especially in the cases showing pathological ambiguity such as between normal and emphysema cases or between honeycombing and reticular opacity cases, the increment of the convolution layer greatly drops the misclassification rate between each case. Conclusively, the CNN classifier showed significantly greater accuracy than the SVM classifier, and the results implied structural characteristics that are inherent to the specific ILD patterns.

  20. Communication about sexuality and intimacy in couples affected by lung cancer and their clinical-care providers.

    Science.gov (United States)

    Lindau, Stacy Tessler; Surawska, Hanna; Paice, Judith; Baron, Shirley R

    2011-02-01

    Little is known about the effects of lung cancer on intimate and sexual relationships. This study explores health-care provider, patient, and partner perspectives on: (1) the effects of lung cancer on physical and emotional intimacy, (2) the ways in which intimacy affects the experience of living with lung cancer, and (3) communication about intimacy and sexuality in the context of lung cancer. Qualitative, in-depth interviews with eight cancer-care providers and 13 married couples (ages 43-79) affected by lung cancer were conducted and audiotaped in the clinical setting. Interviews were transcribed, iteratively analyzed, and coded according to the above domains. Coding was performed independently by members of an interdisciplinary team; inter-rater reliability was assessed using the kappa statistic; and analyses were summarized by domain. Most cancer-care providers and couples affected by lung cancer believed intimacy and sexuality issues were salient, yet few reported discussing these. Couples described negative and positive effects of cancer on intimacy. Negative effects were driven by cancer or its treatment, including physical and psychological effects. Positive effects included an increase in non-coital physical closeness and appreciation of the spouse. Age was perceived as an important factor influencing the relationship between lung cancer and intimacy. Emotional intimacy and sexuality are important concerns for couples affected by lung cancer. The findings suggest previously unrecognized positive effects of lung cancer on emotional and physical intimacy. Couples affected by lung cancer and providers believe these issues are relevant for lung cancer care. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Communication about Sexuality and Intimacy in Couples Affected by Lung Cancer and their Clinical Care Providers

    Science.gov (United States)

    Lindau, Stacy Tessler; Surawska, Hanna; Paice, Judith; Baron, Shirley R.

    2012-01-01

    OBJECTIVE Little is known about the effects of lung cancer on intimate and sexual relationships. This study explores health care provider, patient, and partner perspectives on: 1) the effects of lung cancer on physical and emotional intimacy, 2) the ways in which intimacy affects the experience of living with lung cancer, and 3) communication about intimacy and sexuality in the context of lung cancer. METHODS Qualitative, in-depth interviews with 8 cancer care providers and 13 married couples (ages 43–79) affected by lung cancer were conducted and audiotaped in the clinical setting. Interviews were transcribed, iteratively analyzed, and coded according to the above domains. Coding was performed independently by members of an interdisciplinary team; inter-rater reliability was assessed using the kappa statistic; and analyses were summarized by domain. RESULTS Most cancer care providers and couples affected by lung cancer believed intimacy and sexuality issues were salient, yet few reported discussing these. Couples described negative and positive effects of cancer on intimacy. Negative effects were driven by cancer or its treatment, including physical and psychological effects. Positive effects included an increase in non-coital physical closeness and appreciation of the spouse. Age was perceived as an important factor influencing the relationship between lung cancer and intimacy. CONCLUSIONS Emotional intimacy and sexuality are important concerns for couples affected by lung cancer. The findings suggest previously unrecognized positive effects of lung cancer on emotional and physical intimacy. Couples affected by lung cancer and providers believe these issues are relevant for lung cancer care. PMID:20540168

  2. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test.

    Science.gov (United States)

    Williams, Cylie M; Caserta, Antoni J; Haines, Terry P

    2013-09-01

    The weight bearing lunge test is increasing being used by health care clinicians who treat lower limb and foot pathology. This measure is commonly established accurately and reliably with the use of expensive equipment. This study aims to compare the digital inclinometer with a free app, TiltMeter on an Apple iPhone. This was an intra-rater and inter-rater reliability study. Two raters (novice and experienced) conducted the measurements in both a bent knee and straight leg position to determine the intra-rater and inter-rater reliability. Concurrent validity was also established. Allied health practitioners were recruited as participants from the workplace. A preconditioning stretch was conducted and the ankle range of motion was established with the weight bearing lunge test position with firstly the leg straight and secondly with the knee bent. The measurement device and each participant were randomised during measurement. The intra-rater reliability and inter-rater reliability for the devices and in both positions were all over ICC 0.8 except for one intra-rater measure (Digital inclinometer, novice, ICC 0.65). The inter-rater reliability between the digital inclinometer and the tilmeter was near perfect, ICC 0.96 (CI: 0.898-0.983); Concurrent validity ICC between the two devices was 0.83 (CI: -0.740 to 0.445). The use of the Tiltmeter app on the iPhone is a reliable and inexpensive tool to measure the available ankle range of motion. Health practitioners should use caution in applying these findings to other smart phone equipment if surface areas are not comparable. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  4. Lung Emergencies

    Science.gov (United States)

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at increased risk of sudden lung ...

  5. Validity and reliability of transbronchial needle aspiration for diagnosing mediastinal adenopathies

    Directory of Open Access Journals (Sweden)

    González Ana

    2010-04-01

    Full Text Available Abstract Background The aim is to assess the validity and reliability of transbronchial needle aspiration (TBNA of mediastinal and hilar adenopathies and to evaluate factors predictive of TBNA outcome. Methods We performed an analysis of prospectively collected data of patients (n = 580 who underwent TBNA (n = 685 from January 1998 to December 2007 in our center. Validity and reliability were evaluated for the overall sample and according to specific pathology. Factors predicting the successful acquisition of diagnostic samples were analyzed by multivariate analysis. Results Overall sensitivity, specificity, accuracy, and positive and negative predictive (NPV values for TBNA were 68%, 100%, 68.8%, 100%, and 10%, respectively. The most sensitive and accurate TBNAs were obtained for patients with small cell lung carcinoma and the worst results were for patients with lymphomas. NPV were similar for all pathologies. The most predictive factors of outcome were adenopathy size and the presence of indirect signs at the puncture site. Conclusion The sensitivity and accuracy of TBNA are high in small cell lung cancer, followed by other types of carcinoma, sarcoidosis, and tuberculosis, and low for lymphoproliferative diseases. The NPV of TBNA for all individual pathologies is low. The size of the adenopathy and the presence of indirect signs at the puncture site predict the achievement of diagnostic samples.

  6. The 'fragmented' scintigraphic lung pattern in pulmonary lymphangitic carcinomatosis secondary to breast cancer.

    Science.gov (United States)

    Vattimo, A V; Burroni, L; Bertelli, P; Vella, A; Volterrani, D

    1998-01-01

    Pulmonary lymphangitic carcinomatosis (PLC) is an unusual presentation of diffuse infiltrative lung disease. In this report we present two cases secondary to breast cancer; the diagnosis was made by means of transbronchial lung biopsy or postmortem examination. The goal of this study was to analyze the scintigraphic pattern of pulmonary perfusion performed with technetium-99m macroaggregated albumin (99mTc-MAA) in the hope of achieving improved recognition of PLC and its subsequent diagnosis. Upon admission, both patients underwent routine clinical exams followed by chest X-rays. The second patient also underwent CT examination, and both were ultimately examined using pulmonary perfusion scintigraphy with 99mTc-MAA. In the various exams performed, the most reliable and easily identified diagnostic finding turned out to be a characteristic 'fragmented' lung pattern revealed with the perfusion lung scan. Unfortunately, in both cases the patients' conditions rapidly worsened and death occurred shortly following scintigraphy. We were able to conclude that the recognition of the mentioned fragmented scintigraphic lung pattern may be useful in suspected PLC, whereas the nonspecific clinical presentation of this pathology makes diagnosis extremely difficult, with the most significant results being achieved through a comparison of scintigraphic and high resolution CT data.

  7. The value of regional nodal radiotherapy (dose/volume) in the treatment of unresectable non-small cell lung cancer: an RTOG analysis

    International Nuclear Information System (INIS)

    Emami, Bahman; Scott, Charles; Byhardt, Roger; Graham, Mary V.; Andras, E. James; John, Madhu; Herskovic, Arnold; Urtasun, Raul C.; Asbell, Sucha O.; Perez, Carlos A.; Cox, James

    1996-01-01

    PURPOSE/OBJECTIVE: To evaluate whether or not the traditional practice of including all thoracic regional nodal areas in the radiotherapy volume in the treatment of unresectable lung cancer is of any therapeutic benefit. MATERIALS AND METHODS: A total of 1,705 patients from four large RTOG trials (78-11, 79-17, 83-11, 84-07) were analyzed for this purpose. Each of these trials had data on dose delivered to the nodal regions and assessment of nodal borders. The nodes were separated into mediastinal, contralateral hilar, ipsilateral hilar, and supraclavicular. Each node site was assessed for progression, defined as in-field or out-of-field, at the node site. In patients with adequate nodal field borders, the results were also analyzed according to the dose delivered. RESULTS: The majority (74%) of patients were between the age of 55 to 75. Forty-six percent of patients had KPS of 60 to 80 and 52% KPS of 90 to 100. Sixty percent of patients had a weight loss of less than 5%, and 40% had a weight loss of over 5% six months prior to diagnosis. Major variations from protocol in defining field borders (unacceptable field borders) were lowest for ipsilateral hilum ((42(727))) and the highest for mediastinal borders ((158(743))). Three groups had statistically significant differences in outcome (progression) between the per protocol and the unacceptable per protocol: ipsilateral hilar nodes (field borders), 14% versus 26% (p = 0.03); dose to mediastinal nodes in CALGB eligible patients, 9% versus 19% (p = 0.02); and ipsilateral hilar nodes (field borders) for high-dose patients assigned to greater than or equal to 69.6 Gy, 14% versus 31% (p = 0.007). CONCLUSION: These data suggest that inclusion of the ipsilateral hilar and mediastinal nodes affect outcome in unresectable non-small cell lung cancer. Exclusion of the other thoracic lymph node regions did not affect outcome in this study. These findings have important implications for combined modality therapy and three

  8. Lung Cancer

    International Nuclear Information System (INIS)

    Maghfoor, Irfan; Perry, M.C.

    2005-01-01

    Lung cancer is the leading cause of cancer-related mortality. Since tobacco smoking is the cause in vast majority of cases, the incidence of lung cancer is expected to rise in those countries with high or rising incidence of tobacco smoking. Even though population at a risk of developing lung cancer are easily identified, mass screening for lung cancer is not supported by currently available evidence. In case of non-small cell lung cancer, a cure may be possible with surgical resection followed by post-operative chemotherapy in those diagnosed at an early stage. A small minority of patients who present with locally advanced disease may also benefit from preoperative chemotherapy and/or radiation therapy to down stage the tumor to render it potentially operable. In a vast majority of patients, however, lung cancer presents at an advanced stage and a cure is not possible with currently available therapeutic strategies. Similarly small cell lung cancer confined to one hemi-thorax may be curable with a combination of chemotherapy and thoracic irradiation followed by prophylactic cranial irradiation, if complete remission is achieved at the primary site. Small cell lung cancer that is spread beyond the confines of one hemi-thorax is however, considered incurable. In this era of molecular targeted therapies, new agents are constantly undergoing pre-clinical and clinical testing with the aim of targeting the molecular pathways thought to involved in etiology and pathogenesis of lung cancer. (author)

  9. An Unusual Presentation of Lung Cancer Metastasis: Perianal Abscess

    OpenAIRE

    Murat Kilic

    2014-01-01

    Lung cancer is one of the most commonly diagnosed cancers in both men and women. Although the most frequent sites of distant metastasis of lung cancers are the pleura, liver, adrenal glands, skeletal system and brain, perianal region has been rarely reported as a metastasis site. A male patient was admitted to our emergency room with a long standing perianal abscess. During abscess drainage, a mass was noticed at the base of the abscess pouch, and thus a biopsy was taken. Pathologically, it w...

  10. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  11. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  12. Lung dose calculation with SPECT/CT for ⁹⁰Yittrium radioembolization of liver cancer.

    Science.gov (United States)

    Yu, Naichang; Srinivas, Shaym M; Difilippo, Frank P; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ((99m)Tc-MAA) single photon emission CT (SPECT)/CT for (90)Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Images of 71 patients who had SPECT/CT and PS images of (99m)Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on (99m)Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. CT analysis of lung cancer and coexistent emphysema

    International Nuclear Information System (INIS)

    Noh, Kyung Hee; Chung, Myung Hee; Sung, Mi Sook; Yoo, Won Jong; Son, Kyung Myung; Son, Jung Min; Park, Seog Hee

    2004-01-01

    To evaluate the relation of the location and cell type of lung cancer to the location and degree in coexistent emphysema on high-resolution computed tomography (HRCT) scans. Ninety-eight of 209 lung cancer patients having HRCT scans were retrospectively analyzed to assess the total lung emphysema and peritumoral regional emphysema. Single and primary lung cancers were included. The clinical data, including sex, age, smoking history and the pathologic cancer subtype, were recorded to correlate with the HRCT findings. The lobar distribution, central-peripheral predominance, surrounding parenchymal abnormality for cancer, cephalocaudal predominance, and subtype for emphysema were analyzed on HRCT. Using a CT scoring method, we scored the whole lung emphysema and peritumoral emphysema, and correlated the grading of emphysema with pulmonary functional values. Sixty-nine of 98 patients with lung cancer (71%) had emphysema. Lung cancer with emphysema was significantly higher in men than in women, and was significantly related to smoking. The mean age of cancer patients without emphysema was significantly lower than that of cancer patients with emphysema (68 yrs vs. 61 yrs, p= 0.0006). Emphysema of grade I (0-25%) was found in 52 cases, grade II (25-50%) in 15, and grade III (50-75%) in 2. Total emphysema score was paralleled to peritumoral emphysema score in 64.3%, while the remaining patients had a higher peritumoral emphysema score (grade II or III) than total emphysema score (grade 0 or I). There was no statistical correlation in the developmental location between the emphysema and the lung cancer (significant correlation was only noted in grade II group of total emphysema score). The incidence of non-small cell carcinoma tended to be higher than that of small cell carcinoma in the two groups. The possibility of lung cancer in patients with pulmonary nodule, coexisting emphysema, and especially in elderly patients having a history of smoking must be clarified on HRCT

  14. Lung Cancer—Patient Version

    Science.gov (United States)

    The two main types of lung cancer are non-small cell lung cancer and small cell lung cancer. Smoking causes most lung cancers, but nonsmokers can also develop lung cancer. Start here to find information on lung cancer treatment, causes and prevention, screening, research, and statistics on lung cancer.

  15. Linking audit and clinical effectiveness in the lung tumour service

    LENUS (Irish Health Repository)

    Gorman, Sharon

    2009-05-28

    Clinical Audit plays an important role in the evaluation of care and clinical outcomes for all patients. In conjunction with the respiratory nurse specialist a retrospective chart audit of the regional lung cancer service was undertaken at the Midlands Regional Hospital Mullingar (MRHM). The lung cancer service has been established for four years and has set its standards in line with NICE guidelines and Irish guidelines for the clinical management of lung cancer. An audit tool was developed by the audit facilitator in conjunction with the respiratory nurse specialist and key department personnel. The tool aimed to measure length of time taken for key steps in the patients care pathway. A pilot audit was carried out and the tool was evaluated. The audit tool provided accurate recording of information at key points in the patient’s care which allows for a thorough service evaluation. The data collected and analysed gives vital information on the quality of service, and showed where there are deficits in service provision that need to be addressed.

  16. Enhanced tumor growth in the remaining lung after major lung resection.

    Science.gov (United States)

    Sano, Fumiho; Ueda, Kazuhiro; Murakami, Junichi; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-05-01

    Pneumonectomy induces active growth of the remaining lung in order to compensate for lost lung tissue. We hypothesized that tumor progression is enhanced in the activated local environment. We examined the effects of mechanical strain on the activation of lung growth and tumor progression in mice. The mechanical strain imposed on the right lung after left pneumonectomy was neutralized by filling the empty space that remained after pneumonectomy with a polypropylene prosthesis. The neutralization of the strain prevented active lung growth. According to an angiogenesis array, stronger monocyte chemoattractant protein-1 (MCP-1) expression was found in the strain-induced growing lung. The neutralization of the strain attenuated the release of MCP-1 from the lung cells. The intravenous injection of Lewis lung cancer cells resulted in the enhanced development of metastatic foci in the strain-induced growing lung, but the enhanced development was canceled by the neutralization of the strain. An immunohistochemical analysis revealed the prominent accumulation of tumor-associated macrophages in tumors arising in the strain-induced growing lung, and that there was a relationship between the accumulation and the MCP-1 expression status. Our results suggested that mechanical lung strain, induced by pulmonary resection, triggers active lung growth, thereby creating a tumor-friendly environment. The modification of that environment, as well as the minimizing of surgical stress, may be a meaningful strategy to improve the therapeutic outcome after lung cancer surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cross-Disciplinary Analysis of Lymph Node Classification in Lung Cancer on CT Scanning.

    Science.gov (United States)

    El-Sherief, Ahmed H; Lau, Charles T; Obuchowski, Nancy A; Mehta, Atul C; Rice, Thomas W; Blackstone, Eugene H

    2017-04-01

    Accurate and consistent regional lymph node classification is an important element in the staging and multidisciplinary management of lung cancer. Regional lymph node definition sets-lymph node maps-have been created to standardize regional lymph node classification. In 2009, the International Association for the Study of Lung Cancer (IASLC) introduced a lymph node map to supersede all preexisting lymph node maps. Our aim was to study if and how lung cancer specialists apply the IASLC lymph node map when classifying thoracic lymph nodes encountered on CT scans during lung cancer staging. From April 2013 through July 2013, invitations were distributed to all members of the Fleischner Society, Society of Thoracic Radiology, General Thoracic Surgical Club, and the American Association of Bronchology and Interventional Pulmonology to participate in an anonymous online image-based and text-based 20-question survey regarding lymph node classification for lung cancer staging on CT imaging. Three hundred thirty-seven people responded (approximately 25% participation). Respondents consisted of self-reported thoracic radiologists (n = 158), thoracic surgeons (n = 102), and pulmonologists who perform endobronchial ultrasonography (n = 77). Half of the respondents (50%; 95% CI, 44%-55%) reported using the IASLC lymph node map in daily practice, with no significant differences between subspecialties. A disparity was observed between the IASLC definition sets and their interpretation and application on CT scans, in particular for lymph nodes near the thoracic inlet, anterior to the trachea, anterior to the tracheal bifurcation, near the ligamentum arteriosum, between the bronchus intermedius and esophagus, in the internal mammary space, and adjacent to the heart. Use of older lymph node maps and inconsistencies in interpretation and application of definitions in the IASLC lymph node map may potentially lead to misclassification of stage and suboptimal management of lung

  18. Lung Cancer Prevention

    Science.gov (United States)

    ... Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer ... following PDQ summaries for more information about lung cancer: Lung Cancer Screening Non-Small Cell Lung Cancer Treatment ...

  19. Abscess in the Lungs

    Science.gov (United States)

    ... Home Lung and Airway Disorders Abscess in the Lungs Abscess in the Lungs Causes Symptoms Diagnosis Treatment Resources ... here for the Professional Version Abscess in the Lungs Abscess in the Lungs A lung abscess is a ...

  20. Radon, smoking and human papilloma virus as risk factors for lung cancer in an environmental epidemiological study

    Directory of Open Access Journals (Sweden)

    G. P. Malinovsky

    2017-01-01

    Full Text Available The aim of the study: to analyze the risk of lung cancer caused by exposure to indoor radon using an environmental study, taking into account recent data on the possible effect of Human Papillomavirus, based on lung cancer mortality and radon exposure in the Russian regions.Materials and methods: in the analysis, linear dependencies of lung cancer against influencing factors were used. The average radon concentration for the regions of Russia was earlier reconstructed on the basis of the annual reports of the form 4-DOZ. Information on morbidity and mortality from malignant neoplasms in Russia was obtained from annual reports issued by the Р. Hertsen Moscow Oncology Research Institute. As a surrogate of the level of infection with Human Papillomavirus, the incidence of cervix cancer was used. The smoking prevalence was estimated applying data on the incidence of tongue cancer.Results: taking into account smoking and infection with Human Papillomavirus, it is possible to obtain estimates of lung cancer excess relative risk when induced by radon in dwellings consistent with the results of case-control studies.Conclusion: the analysis of regionally aggregated data on deaths from lung cancer in Russia, the average level of indoor radon concentrations and significant risk factors for lung cancer confirms the linear threshold-free concept of radiation-induced carcinogenesis.

  1. Radiotherapy dose compensation for lung patients

    International Nuclear Information System (INIS)

    Piyaratna, N.; Arnold, A.; Metcalfe, P.

    1999-01-01

    The purpose of the present paper is to provide a more homogeneous dose distribution in the target volume from compensated anterior and posterior fields while the healthy lung is spared by de-weighting the lateral fields. A compensation computation which used linear iterations to compute the most homogeneous dose distribution across the target volume was applied to produce optimum compensator designs. The equivalent tissue-air ratio (E-TAR) inhomogeneity correction was applied for the computations using a GE target series 11 planning computer. The compensators designed were tested for accuracy in a modified water/lung phantom using a scanning diode and an anthropomorphic phantom using thermoluminescent dosimeters. A comparison has been made between the compensated and uncompensated plans for the first nine patients who we have treated with this technique. The dose profiles produced by the computation agreed with the prediction of the computed isodose plans to within ± 2% at the target depth. The thermoluminescent dosimeter (TLD)-measured results in the anthropomorphic phantom agreed with the planning computer within ± 3%. A comparison of nine compensated plans of radiotherapy patients for large-volume targets in the lung region showed a maximum variation in the target to be 19% uncompensated versus 10% compensated. By providing compensated treatment fields from anterior and posterior treatment portals, a homogeneous dose that conforms well to the target volume is provided. As an added bonus, this enables the lateral lung fields to be significantly de-weighted and the healthy lung is spared considerable dose. Copyright (1999) Blackwell Science Pty Ltd

  2. Left Vocal Cord Paralysis Detected by PET/CT in a Case of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ali Ozan Oner

    2015-01-01

    Full Text Available We report a patient with lung cancer. The first PET/CT imaging revealed hypermetabolic mass in the left aortopulmonary region and hypermetabolic nodule in the anterior segment of the upper lobe of the left lung. After completing chemotherapy and radiotherapy against the primary mass in the left lung, the patient underwent a second PET/CT examination for evaluation of treatment response. This test demonstrated, compared with the first PET/CT, an increase in the size and metabolic activity of the primary mass in the left lung in addition to multiple, pathologic-sized, hypermetabolic metastatic lymph nodes as well as multiple metastatic sclerotic areas in bones. These findings were interpreted as progressive disease. In addition, an asymmetrical FDG uptake was noticed at the level of right vocal cord. During follow-up, a laryngoscopy was performed, which demonstrated left vocal cord paralysis with no apparent mass. Thus, we attributed the paralytic appearance of the left vocal cord to infiltration of the left recurrent laryngeal nerve by the primary mass located in the apical region of the left lung. In conclusion, the knowledge of this pitfall is important to avoid false-positive PET results.

  3. Lung nodules after whole lung radiation

    International Nuclear Information System (INIS)

    Cohen, M.D.; Mirkin, D.L.; Provisor, A.; Hornback, N.B.; Smith, J.A.; Slabaugh, R.D.

    1983-01-01

    It is essential to recognize radiation pneumonitis after whole lung irradiation, or nodular changes in response to chemotherapy, so that such conditions are not mistaken for tumor metastases, causing grave error in patient management and the possibility of further lung damage

  4. [Diagnosis of pulmonary hemorrhage of the newborn infants using lung ultrasonography].

    Science.gov (United States)

    Liu, J; Fu, W; Chen, S W; Wang, Y

    2017-01-02

    Objective: To investigate the accuracy and reliability of lung ultrasound in diagnosis of pulmonary hemorrhage of the newborn infants. Method: From January 2014 to May 2016, 142 neonates from the Army General Hospital of the Chinese PLA were enrolled in the study. They were divided into two groups: a study group of 42 neonates, who were diagnosed with pulmonary hemorrhage according to their medical history, clinical manifestations and chest X-ray findings, and a control group of 100 neonates with no lung disease. All subjects underwent bedside lung ultrasound in a quiet state in a supine, lateral or prone posture, performed by a single experienced physician. The ultrasound findings were compared between the two groups.Fisher's exact test was uesd for comparison between two groups. Result: The lung ultrasound main findings associated with pulmonary hemorrhage included: (1) Shred sign: which was seen in 40 patients(95%). (2) Lung consolidation with air bronchograms: which were seen in 35 patients(83%). (3) Pleural effusion: which was seen in 34 infants(81%), pleurocentesis confirmed that the fluid was really bleeding.(4)Atelectasis: which was seen in 14 cases(33%). (5) Pleural line abnormalities and disappearing A-lines with an incidence of 100%. (6) Alveolar-interstitial syndrome: 5 patients(12%)had the main manifestations of alveolar-interstitial syndrome. The above signs were not seen in normal controls (all P hemorrhage, which is suitable for routine application for the diagnosis of pulmonary hemorrhage in the neonatal intensive care unit.

  5. Increased mean lung density: Another independent predictor of lung cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola, E-mail: nicola.sverzellati@unipr.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Randi, Giorgia, E-mail: giorgia.randi@marionegri.it [Department of Epidemiology, Mario Negri Institute, Via La Masa 19, 20156 Milan (Italy); Spagnolo, Paolo, E-mail: paolo.spagnolo@unimore.it [Respiratory Disease Unit, Center for Rare Lung Disease, Department of Oncology, Hematology and Respiratory Disease, University of Modena and Reggio Emilia, Via del Pozzo 71, 44124 Modena (Italy); Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Silva, Mario, E-mail: mac.mario@hotmail.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Kuhnigk, Jan-Martin, E-mail: Jan-Martin.Kuhnigk@mevis.fraunhofer.de [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); La Vecchia, Carlo, E-mail: carlo.lavecchia@marionegri.it [Department of Occupational Health, University of Milan, Via Venezian 1, 20133 Milan (Italy); Zompatori, Maurizio, E-mail: maurizio.zompatori@unibo.it [Department of Radiology, Cardio-Thoracic Section, S. Orsola-Malpighi Hospital, Via Albertoni 15, 40138 Bologna (Italy); Pastorino, Ugo, E-mail: ugo.pastorino@istitutotumori.mi.it [Department of Surgery, Section of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy)

    2013-08-15

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV{sub 1}) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV{sub 1} < 60% vs. FEV{sub 1} ≥ 90%), and with increasing MLD independently of FEV{sub 1} (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV{sub 1} was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations.

  6. What Is Lung Cancer?

    Science.gov (United States)

    ... Shareable Graphics Infographics “African-American Men and Lung Cancer” “Lung Cancer Is the Biggest Cancer Killer in Both ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ...

  7. Lung Cancer: Glossary

    Science.gov (United States)

    ... professional support team today. Learn More . Find more lung cancer resources. Learn More Donate Today! What is Lung ... to Give How Your Support Helps Events Lung Cancer Awareness © Lung Cancer Alliance. The information presented in this website ...

  8. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  9. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  10. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...

  11. Open lung biopsy

    Science.gov (United States)

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia . This means you will be asleep and ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  12. Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

    Science.gov (United States)

    Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise

    2007-09-01

    Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.

  13. The relationship between lung function and indoor air pollution among rural women in the Niger Delta region of Nigeria

    Directory of Open Access Journals (Sweden)

    Victor Aniedi Umoh

    2014-01-01

    Full Text Available Background: Burning of biomass is widely used by the rural poor for energy generation. Long term exposure to biomass smoke is believed to affect lung function and cause respiratory symptoms. Materials and Methods: Women with long term occupational exposure to burning firewood were recruited from a rural fishing community in Nigeria. A questionnaire was used to obtain information on symptoms of chronic bronchitis and spirometery was performed to measure lung function. Data obtained from the subjects was compared with that from healthy controls. Results: Six hundred and eighty six women were recruited for this study made up of 342 subjects and 346 controls. Sixty eight (19.9% of the subjects had chronic bronchitis compared with eight (2.3% of the controls (χ2 = 54.0, P < 0.001. The subjects had lower values for the lung function as well as the percentage predicted values (P < 0.05. Fish smoking and chronic bronchitis were significantly associated with predicted lung volumes. Conclusion: Chronic exposure to biomass smoke is associated with chronic bronchitis and reduced lung functions in women engaged in fish smoking.

  14. Cardiac valve calcifications on low-dose unenhanced ungated chest computed tomography: inter-observer and inter-examination reliability, agreement and variability

    Energy Technology Data Exchange (ETDEWEB)

    Hamersvelt, Robbert W. van; Willemink, Martin J.; Takx, Richard A.P.; Eikendal, Anouk L.M.; Budde, Ricardo P.J.; Leiner, Tim; Jong, Pim A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Mol, Christian P.; Isgum, Ivana [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2014-07-15

    To determine inter-observer and inter-examination variability for aortic valve calcification (AVC) and mitral valve and annulus calcification (MC) in low-dose unenhanced ungated lung cancer screening chest computed tomography (CT). We included 578 lung cancer screening trial participants who were examined by CT twice within 3 months to follow indeterminate pulmonary nodules. On these CTs, AVC and MC were measured in cubic millimetres. One hundred CTs were examined by five observers to determine the inter-observer variability. Reliability was assessed by kappa statistics (κ) and intra-class correlation coefficients (ICCs). Variability was expressed as the mean difference ± standard deviation (SD). Inter-examination reliability was excellent for AVC (κ = 0.94, ICC = 0.96) and MC (κ = 0.95, ICC = 0.90). Inter-examination variability was 12.7 ± 118.2 mm{sup 3} for AVC and 31.5 ± 219.2 mm{sup 3} for MC. Inter-observer reliability ranged from κ = 0.68 to κ = 0.92 for AVC and from κ = 0.20 to κ = 0.66 for MC. Inter-observer ICC was 0.94 for AVC and ranged from 0.56 to 0.97 for MC. Inter-observer variability ranged from -30.5 ± 252.0 mm{sup 3} to 84.0 ± 240.5 mm{sup 3} for AVC and from -95.2 ± 210.0 mm{sup 3} to 303.7 ± 501.6 mm{sup 3} for MC. AVC can be quantified with excellent reliability on ungated unenhanced low-dose chest CT, but manual detection of MC can be subject to substantial inter-observer variability. Lung cancer screening CT may be used for detection and quantification of cardiac valve calcifications. (orig.)

  15. Pressure oscillation delivery to the lung: Computer simulation of neonatal breathing parameters.

    Science.gov (United States)

    Al-Jumaily, Ahmed M; Reddy, Prasika I; Bold, Geoff T; Pillow, J Jane

    2011-10-13

    Preterm newborn infants may develop respiratory distress syndrome (RDS) due to functional and structural immaturity. A lack of surfactant promotes collapse of alveolar regions and airways such that newborns with RDS are subject to increased inspiratory effort and non-homogeneous ventilation. Pressure oscillation has been incorporated into one form of RDS treatment; however, how far it reaches various parts of the lung is still questionable. Since in-vivo measurement is very difficult if not impossible, mathematical modeling may be used as one way of assessment. Whereas many models of the respiratory system have been developed for adults, the neonatal lung remains essentially ill-described in mathematical models. A mathematical model is developed, which represents the first few generations of the tracheo-bronchial tree and the 5 lobes that make up the premature ovine lung. The elements of the model are derived using the lumped parameter approach and formulated in Simulink™ within the Matlab™ environment. The respiratory parameters at the airway opening compare well with those measured from experiments. The model demonstrates the ability to predict pressures, flows and volumes in the alveolar regions of a premature ovine lung. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Measure of Truck Delay and Reliability at the Corridor Level

    Science.gov (United States)

    2018-04-01

    Freight transportation provides a significant contribution to our nations economy. A reliable and accessible freight network enables business in the Twin Cities to be more competitive in the Upper Midwest region. Accurate and reliable freight data...

  17. Preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types.

    Science.gov (United States)

    Li, Wei-Ling; Fu, Chang; Xuan, Ang; Shi, Da-Peng; Gao, Yong-Ju; Zhang, Jie; Xu, Jun-Ling

    2015-02-05

    Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. One hundred and twenty patients with primary untreated lung cancer, who visited People's Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases), squamous cell carcinoma (43 cases), and small-cell carcinoma (25 cases). The whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM) software, with 50 age-matched and gender-matched healthy controls for comparison. The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255) was larger than those in the adenocarcinoma group (total voxel value 1217) and squamous cell carcinoma group (total voxel value 1292). The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  18. Preliminary Study of Brain Glucose Metabolism Changes in Patients with Lung Cancer of Different Histological Types

    Directory of Open Access Journals (Sweden)

    Wei-Ling Li

    2015-01-01

    Full Text Available Background: Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. Methods: One hundred and twenty patients with primary untreated lung cancer, who visited People′s Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases, squamous cell carcinoma (43 cases, and small-cell carcinoma (25 cases. The whole body 18F-fluorodeoxyglucose (18F-FDG positron emission tomography (PET/computed tomography (CT of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM software, with 50 age-matched and gender-matched healthy controls for comparison. Results: The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255 was larger than those in the adenocarcinoma group (total voxel value 1217 and squamous cell carcinoma group (total voxel value 1292. Conclusions: The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  19. Pneumomediastinum as a complication of SABR for lung metastases

    International Nuclear Information System (INIS)

    Rodríguez-Ruiz, María Esperanza; Arévalo, Estefanía; Gil-Bazo, Ignacio; García, Alicia Olarte; Valtueña, German; Moreno-Jiménez, Marta; Arbea-Moreno, Leire; Aristu, Javier

    2015-01-01

    Stereotactic ablative body radiation (SABR) is a novel and sophisticated radiation modality that involves the irradiation of extracranial tumors through precise and very high doses in patients with oligometastatic lung disease and primary lung tumors. A 52-year-old female with subclinical idiopathic interstitial lung disease (ILD) and oligometastatic lung disease from squamous urethral cancer who was treated with SABR for a metastatic lesion located in the right lower pulmonary lobe. The patient received a hypo-fractionated course of SABR. A 3D-conformal multifield technique was used with six coplanar and one non-coplanar statics beams. A 48 Gy total dose in three fractions over six days was prescribed to the 95% of the PTV. The presence of idiopathic ILD and other identifiable underlying lung conditions were not taken into account as a constraint to prescribe a different than standard total dose or fractionation schedule. Six months after the SABR treatment, a CT-scan showed the presence of a pneumomediastinum with air outside the bronchial tree and within the subcutaneous tissue without co-existing pneumothorax. To our knowledge, this is the first case of pneumomediastinum appearing 6 months after SABR treatment for a lung metastasis located in the perihiliar/central tumors region as defined by the RTOG protocols as the proximal bronchial tree. Radiation oncologist should be aware of the potential risk of severe lung toxicity caused by SABR in patients with ILD, especially when chemotherapy-induced pulmonary toxicity is administered in a short time interval

  20. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  1. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    Science.gov (United States)

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  2. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    Science.gov (United States)

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  3. Lung needle biopsy

    Science.gov (United States)

    ... if you have certain lung diseases such as emphysema. Usually, a collapsed lung after a biopsy does not need treatment. But ... any type Bullae (enlarged alveoli that occur with emphysema) Cor pulmonale (condition ... of the lung High blood pressure in the lung arteries Severe ...

  4. Regional ventilation in infancy. Reversal of adult pattern

    International Nuclear Information System (INIS)

    Davies, H.; Kitchman, R.; Gordon, I.; Helms, P.

    1985-01-01

    There is evidence that in infants with unilateral lung disease, oxygenation improves when the good lung is uppermost--the reverse of the situation in adults. We performed krypton-81m ventilation scanning in 18 infants and very young children (11 days to 27 months old) with and without abnormal chest radiographs. Scanning was performed with the subject supine, in the left decubitus posture (right lung uppermost), and in the right decubitus posture (right lung dependent). Fractional ventilation to the right lung fell when that lung was dependent and rose when it was uppermost (P less than 0.001). This pattern was seen regardless of the appearance of the chest radiograph. The distribution of ventilation away from dependent lung regions represents a reversal of the adult pattern, which may be due to differences between infants and adults in lung mechanics and diaphragmatic function. This study adds further weight to the argument that infants and very young children with unilateral lung disease should be positioned with their normal lung uppermost to optimize gas exchange. It also offers a rational explanation for the observation that infants with unilateral gas trapping can be successfully treated by placing them so that the diseased lung is dependent

  5. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  6. Clinical chest CAD system for lung cancer, COPD, and osteoporosis based on MDCT images

    International Nuclear Information System (INIS)

    Matsuhiro, Mikio; Suzuki, Hidenobu; Saita, Shinsuke

    2011-01-01

    Lung cancer kills more people than any other cancer worldwide. Lung cancer screening using low-dose CT have been performed in many countries. Comparative reading of current and past CT images is important for evaluation of pulmonary nodules in lung cancer CT screening. However, primary problem in comparative reading is mismatch of slice and nodule positions caused by lung variation. It is hard for physicians to manually match slice positions, nodule positions, and evaluate the nodule's degree of change. A system to assist smooth comparative reading is necessary. We proposed a comparative reading system for lung cancer CT screening. A distinctive feature is highly accurate matching method of region of interest based on thoracic organs registration. Pulmonary blood vessels registration using analysis of the tree structure is performed. The system is evaluated by 1 mm and 2 mm slice thickness CT images obtained from lung cancer CT screening. We show how it is useful for lung cancer CT screening. (author)

  7. Repetitive Imaging of Reporter Gene Expression in the Lung

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Richard

    2003-10-01

    Full Text Available Positron emission tomographic imaging is emerging as a powerful technology to monitor reporter transgene expression in the lungs and other organs. However, little information is available about its usefulness for studying gene expression over time. Therefore, we infected 20 rats with a replication-deficient adenovirus containing a fusion gene encoding for a mutant Herpes simplex virus type-1 thymidine kinase and an enhanced green fluorescent protein. Five additional rats were infected with a control virus. Pulmonary gene transfer was performed via intratracheal administration of vector using a surfactant-based method. Imaging was performed 4–6 hr, and 4, 7, and 10 days after gene transfer, using 9-(4-[18F]-fluoro-3-hydroxymethylbutylguanine, an imaging substrate for the mutant kinase. Lung tracer uptake assessed with imaging was moderately but significantly increased 4–6 hr after gene transfer, was maximal after 4 days, and was no longer detectable by 10 days. The temporal pattern of transgene expression measured ex vivo with in vitro assays of thymidine kinase activity and green fluorescent protein was similar to imaging. In conclusion, positron emission tomography is a reliable new tool to evaluate the onset and duration of reporter gene expression noninvasively in the lungs of intact animals.

  8. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury.

    Science.gov (United States)

    Lehmann, Sylvia; Leonhardt, Steffen; Ngo, Chuong; Bergmann, Lukas; Schrading, Simone; Heimann, Konrad; Wagner, Norbert; Tenbrock, Klaus

    2018-01-01

    Electrical Impedance Tomography (EIT) is a tomographic, radiation-free technique based on the injection of a harmless alternating current. As electrical impedance strictly correlates with the variation of air content, EIT delivers highly dynamic information about global and regional ventilation. We want to demonstrate the potential of EIT individualizing ventilation by positioning. Gravity-dependent EIT findings were analyzed retrospectively in a critically ill mechanically ventilated pediatric patient with cystic fibrosis and coincident lung diseases. To further evaluate gravity-dependent changes in ventilation, six adult healthy and spontaneously breathing volunteers were investigated during simultaneous detection of EIT, breathing patterns, tidal volume (VT) and breathing frequency (BF). EIT findings in healthy lungs in five positions showed gravity-dependent effects of ventilation with overall ventilation of predominantly the right lung (except during left-side positioning) and with the ventral lung in supine, prone and upright position. These EIT-derived observations are in line with pathophysiological mechanisms and earlier EIT studies. Unexpectedly, the patient with cystic fibrosis and lobectomy of the right upper and middle lobe one year earlier, showed improvement of global and regional ventilation in the right position despite reduced lung volume and overinflation of this side. This resulted in individualized positioning and improvement of ventilation. Although therapeutic recommendations are available for gravitational influences of lung ventilation, they can be contradictory depending on the underlying lung disease. EIT has the potential to guide therapists in the positioning of patients according to their individual condition and disease, especially in case of multiple lung injury. © 2016 John Wiley & Sons Ltd.

  9. Lung scintigraphy

    International Nuclear Information System (INIS)

    Dalenz, Roberto.

    1994-01-01

    A review of lung scintigraphy, perfusion scintigraphy with SPECT, lung ventilation SPECT, blood pool SPECT. The procedure of lung perfusion studies, radiopharmaceutical, administration and clinical applications, imaging processing .Results encountered and evaluation criteria after Biello and Pioped. Recommendations and general considerations have been studied about relation of this radiopharmaceutical with other pathologies

  10. Assessing reliability in energy supply systems

    International Nuclear Information System (INIS)

    McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

    2007-01-01

    Reliability has always been a concern in the energy sector, but concerns are escalating as energy demand increases and the political stability of many energy supply regions becomes more questionable. But how does one define and measure reliability? We introduce a method to assess reliability in energy supply systems in terms of adequacy and security. It derives from reliability assessment frameworks developed for the electricity sector, which are extended to include qualitative considerations and to be applicable to new energy systems by incorporating decision-making processes based on expert opinion and multi-attribute utility theory. The method presented here is flexible and can be applied to any energy system. To illustrate its use, we apply the method to two hydrogen pathways: (1) centralized steam reforming of imported liquefied natural gas with pipeline distribution of hydrogen, and (2) on-site electrolysis of water using renewable electricity produced independently from the electricity grid

  11. The relationship of lung function with ambient temperature.

    Science.gov (United States)

    Collaco, Joseph M; Appel, Lawrence J; McGready, John; Cutting, Garry R

    2018-01-01

    Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health. To determine whether ambient air temperature is associated with lung function (FEV1) in the general population. Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES) periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression. The NHANES III (1988-94) cohort included 14,088 individuals (55.6% female) and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female), with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively. After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014). The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States. In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  12. The relationship of lung function with ambient temperature.

    Directory of Open Access Journals (Sweden)

    Joseph M Collaco

    Full Text Available Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health.To determine whether ambient air temperature is associated with lung function (FEV1 in the general population.Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression.The NHANES III (1988-94 cohort included 14,088 individuals (55.6% female and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female, with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively.After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014. The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States.In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  13. The role of lung imaging in pulmonary embolism

    Science.gov (United States)

    Mishkin, Fred S.; Johnson, Philip M.

    1973-01-01

    The advantages of lung scanning in suspected pulmonary embolism are its diagnostic sensitivity, simplicity and safety. The ability to delineate regional pulmonary ischaemia, to quantitate its extent and to follow its response to therapy provides valuable clinical data available by no other simple means. The negative scan effectively excludes pulmonary embolism but, although certain of its features favour the diagnosis of embolism, the positive scan inherently lacks specificity and requires angiographic confirmation when embolectomy, caval plication or infusion of a thrombolytic agent are contemplated. The addition of simple ventilation imaging techniques with radioxenon overcomes this limitation by providing accurate analog estimation or digital quantitation of regional ventilation: perfusion (V/Q) ratios fundamental to understanding the pathophysiologic consequences of embolism and other diseases of the lung. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7p495-bFig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13 PMID:4602128

  14. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro

    International Nuclear Information System (INIS)

    Sun, Yihua; Fang, Rong; Li, Chenguang; Li, Li; Li, Fei; Ye, Xiaolei; Chen, Haiquan

    2010-01-01

    Lung cancer is one of the most devastating diseases worldwide. RGS17 is previously shown to be over-expressed in human lung adenocarcinomas and plays an important role in lung tumor growth. Here we have identified a miRNA, has-mir-182, involved in the regulation of RGS17 expression through two conserved sites located in its 3' UTR region. Consistently, endogenous RGS17 expression level is regulated by hsa-mir-182 in human lung cancer cell lines. Similar to the knockdown of RGS17, ectopic expression of hsa-mir-182 significantly inhibits lung cancer cell proliferation and anchorage-independent cell growth, which can be rescued by re-expression of RGS17. Taken together, these data have provided the first evidence of miRNA regulation of RGS17 expression in lung cancer.

  15. Prediction of in vivo background in phoswich lung count spectra

    International Nuclear Information System (INIS)

    Richards, N.W.

    1999-01-01

    Phoswich scintillation counters are used to detect actinides deposited in the lungs. The resulting spectra, however, contain Compton background from the decay of 40 K, which occurs naturally in the striated muscle tissue of the body. To determine the counts due to actinides in a lung count spectrum, the counts due to 40 K scatter must first be subtracted out. The 40 K background in the phoswich NaI(Tl) spectrum was predicted from an energy region of interest called the monitor region, which is above the 238 Pu region and the 241 Am region, where photopeaks from 238 Pu and 241 Am region, where photopeaks from 238 Pu and 241 Am occur. Empirical models were developed to predict the backgrounds in the 238 Pu and 241 Am regions by testing multiple linear and nonlinear regression models. The initial multiple regression models contain a monitor region variable as well as the variables gender, (weight/height) α , and interaction terms. Data were collected from 64 male and 63 female subjects with no internal exposure. For the 238 Pu region, the only significant predictor was found to be the monitor region. For the 241 Am region, the monitor region was found to have the greatest effect on prediction, while gender was significantly only when weight/height was included in a model. Gender-specific models were thus developed. The empirical models for the 241 Am region that contain weight/height were shown to have the best coefficients of determination (R 2 ) and the lowest mean squares for error (MSE)

  16. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation

    International Nuclear Information System (INIS)

    Hanley, J.; Debois, M.M.; Raben, A.; Mageras, G.S.; Lutz, W.R.; Mychalczak, B.; Schwartz, L.H.; Gloeggler, P.J.; Leibel, S.A.; Fuks, Z.; Kutcher, G.J.

    1996-01-01

    Purpose/Objective: Lung tumors are subject to movement due to respiratory motion. Conventionally, a margin is applied to the clinical target volume (CTV) to account for this and other treatment uncertainties. The purpose of this study is to evaluate the dosimetric benefits of a deep inspiration breath-hold (DIBH) technique which has two distinct features - deep inspiration which reduces lung density and breath-hold which immobilizes lung tumors. Both properties can potentially reduce the mass of normal lung tissue in the high dose region, thus improving the possibility of dose escalation. Methods and Materials: To study the efficacy of the DIBH technique, CT scans are acquired for each patient under 4 respiration conditions: free-breathing; DIBH; shallow inspiration breath-hold; shallow expiration breath-hold. The free-breathing and DIBH scans are used to generate treatment plans for comparison of standard and DIBH techniques, while the shallow inspiration and expiration scans provide information on the maximum extent of tumor motion under free-breathing conditions. To acquire the breath-hold scans, the patients are brought to reproducible respiration levels using spirometry and slow vital capacity maneuvers. For the treatment plan comparison free-breathing and DIBH planning target volumes (PTVs) are constructed consisting of the CTV plus a margin for setup error and lung tumor motion. For both plans the margin for setup error is the same while the margin for lung tumor motion differs. The margin for organ motion in free-breathing is determined by the maximum tumor excursions in the shallow inspiration and expiration CT scans. For the DIBH, tumor motion is reduced to the extent to which DIBH can be maintained and the margin for any residual tumor motion is determined from repeat fluoroscopic movies, acquired with the patient monitored using spirometry. Three-dimensional treatment plans, generated using apertures based on the free-breathing and DIBH PTVs, are

  17. Healthy Lung Vessel Morphology Derived From Thoracic Computed Tomography

    Directory of Open Access Journals (Sweden)

    Michael Pienn

    2018-04-01

    Full Text Available Knowledge of the lung vessel morphology in healthy subjects is necessary to improve our understanding about the functional network of the lung and to recognize pathologic deviations beyond the normal inter-subject variation. Established values of normal lung morphology have been derived from necropsy material of only very few subjects. In order to determine morphologic readouts from a large number of healthy subjects, computed tomography pulmonary angiography (CTPA datasets, negative for pulmonary embolism, and other thoracic pathologies, were analyzed using a fully-automatic, in-house developed artery/vein separation algorithm. The number, volume, and tortuosity of the vessels in a diameter range between 2 and 10 mm were determined. Visual inspection of all datasets was used to exclude subjects with poor image quality or inadequate artery/vein separation from the analysis. Validation of the algorithm was performed manually by a radiologist on randomly selected subjects. In 123 subjects (men/women: 55/68, aged 59 ± 17 years, the median overlap between visual inspection and fully-automatic segmentation was 94.6% (69.2–99.9%. The median number of vessel segments in the ranges of 8–10, 6–8, 4–6, and 2–4 mm diameter was 9, 34, 134, and 797, respectively. Number of vessel segments divided by the subject's lung volume was 206 vessels/L with arteries and veins contributing almost equally. In women this vessel density was about 15% higher than in men. Median arterial and venous volumes were 1.52 and 1.54% of the lung volume, respectively. Tortuosity was best described with the sum-of-angles metric and was 142.1 rad/m (138.3–144.5 rad/m. In conclusion, our fully-automatic artery/vein separation algorithm provided reliable measures of pulmonary arteries and veins with respect to age and gender. There was a large variation between subjects in all readouts. No relevant dependence on age, gender, or vessel type was observed. These data may

  18. Lung deposition of sub-micron aerosols calculated as a function of age and breathing rate

    International Nuclear Information System (INIS)

    James, A.C.

    1978-01-01

    Experimental measurements of lung deposition and especially of regional deposition, of aerosols in the sub-micron size range have been so few that it is worthwhile establishing a method of calculation. A computer routine has therefore been developed to calculate aerosol deposition in successive bronchial and bronchiolar generations of the Weibel 'A' model of human lung for the sub-micron size range where deposition occurs solely by diffusion. This model can be scaled to represent lungs at various ages and vital capacities. Some calculated results are presented here and compared with measurements of lung deposition made under carefully controlled conditions in humans. (author)

  19. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    OpenAIRE

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  20. Immune complexes, gallium lung scans, and bronchoalveolar lavage in idiopathic interstitial pneumonitis-fibrosis

    International Nuclear Information System (INIS)

    Gelb, A.F.; Dreisen, R.B.; Epstein, J.D.; Silverthorne, J.D.; Bickel, Y.; Fields, M.; Border, W.A.; Taylor, C.R.

    1983-01-01

    We obtained results of lung immune complexes (LIC), circulating immune complexes (CIC), 48-hour gallium lung scans (scans), bronchoalveolar lavage (BAL), and pulmonary function tests in 20 patients with idiopathic interstitial pneumonitis-fibrosis. Sixteen patients had predominantly interstitial (13 cases UIP) and/or intraalveolar (3 cases DIP) cellular disease (group 1). Prior to corticosteroid therapy in group 1, scans were positive in 75 percent, CIC were elevated in 86 percent, LIC were present in 64 percent, and BAL was abnormal in 90 percent. Duration of follow-up after treatment was 3.5 +/- 1.0 year. In group 1 after treatment with corticosteroids in 13 patients and corticosteroids and penicillamine (three patients) and plasmapheresis (one patient), only four patients remain stable or improved. After corticosteroid therapy, elevated CIC returned to normal values despite progressive patient deterioration. In three patients, lung immune complexes were still detected after circulating immune complexes had returned to normal after corticosteroid therapy. In group 2 were four patients with fibrotic disease; scans and CIC were uniformly negative, LIC were weakly present in only one patient, and BAL was abnormal in all. Despite corticosteroid therapy, all have died or deteriorated. These results suggest that positive gallium lung scans, BAL, circulating immune complexes, and to a lesser extent, lung immune complexes are associated with the cellular phase of interstitial pneumonia, but do not reliably identify a corticosteroid-responsive group

  1. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    International Nuclear Information System (INIS)

    McClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B.T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-01-01

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  2. Pulmonary infections and risk of lung cancer among persons with AIDS.

    Science.gov (United States)

    Shebl, Fatma M; Engels, Eric A; Goedert, James J; Chaturvedi, Anil K

    2010-11-01

    Lung cancer risk is significantly increased among persons with AIDS (PWA), and increased smoking may not explain all of the elevated risk, suggesting a role for additional cofactors. We investigated whether AIDS-defining pulmonary infections (recurrent pneumonia, Pneumocystis jirovecii pneumonia, and pulmonary tuberculosis) affected the risk of subsequent lung cancer over 10 years after AIDS onset among 322,675 PWA, whose records were linked with cancer registries in 11 US regions. We assessed lung cancer hazard ratios (HRs) using Cox regression and indirectly adjusted HRs for confounding by smoking. Individuals with recurrent pneumonia (n = 5317) were at significantly higher lung cancer risk than those without [HR = 1.63, 95% confidence interval (CI) = 1.08 to 2.46, adjusted for age, race, sex, HIV acquisition mode, CD4 count, and AIDS diagnosis year]. This association was especially strong among young PWA (risk was unrelated to tuberculosis [(n = 13,878) HR = 1.12, 95% CI = 0.82 to 1.53] or Pneumocystis jirovecii pneumonia [(n = 69,771) HR = 0.97, 95% CI = 0.80 to 1.18]. The increased lung cancer risk associated with recurrent pneumonia supports the hypothesis that chronic pulmonary inflammation arising from infections contributes to lung carcinogenesis.

  3. GTV and CTV in radiation therapy: lung cancer

    International Nuclear Information System (INIS)

    Mornex, F.; Chapet, O.; Sentenac, I.; Loubeyre, P.; Giraud, P.; Van Houtte, P.; Bonnette, P.

    2001-01-01

    Radiotherapy plays a major role as a curative treatment of various stages non-small cell lung cancers (NSCLC): as an exclusive treatment in curative attempt for patients with unresectable stages I and II; as a preoperative treatment, which is often associated with chemotherapy, for patients with surgically stage IIIA NSCLC in clinical trials; in association with chemotherapy for unresectable stages IIIA and IIIB patients. Currently, three-dimensional conformal radiotherapy allows for some dose escalation, increasing radiation quality. However, the high inherent conformality of this radiotherapy technique requires a rigorous approach and an optimal quality of the preparation throughout the treatment procedure and specifically of the accurate definition of the safety margins (GTV, CTV...). Different questions remain specific to lung cancers: 1) Despite the absence of randomized trials, the irradiated lymph nodes volume should be only, for the majority of the authors, the visible macroscopically involved lymph nodal regions. However, local control remains low and solid arguments suggest the poor local control is due to an insufficient delivered dose. Therefore the goal of radiotherapy, in this particular location, is to improve local control by increasing the dose until the maximum normal tissue tolerance is achieved, which essentially depends on the dose to the organs at risk (OAR) and specifically for the lung, the esophagus and the spinal cord. For this reason, the irradiated volume should be as tiny as possible, leading to not including the macroscopically uninvolved lymph nodes regions in prophylactic view in the target volume; 2) The lung is one of the rare organs with extensive motion within the body, making lung tumors difficult to treat. This particular point is not specifically considered in the GTV and CTV definitions but it is important enough to be noted; 3) When radiation therapy starts after a good response to chemotherapy, the residual tumoral volume

  4. ESR/ERS white paper on lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von [University Hospital Heidelberg, Dept of Diagnostic and Interventional Radiology, Heidelberg (Germany); Member of the German Lung Research Center, Translational Lung Research Center, Heidelberg (Germany); Bonomo, Lorenzo [A. Gemelli University Hospital, Institute of Radiology, Rome (Italy); Gaga, Mina [Athens Chest Hospital, 7th Resp. Med. Dept and Asthma Center, Athens (Greece); Nackaerts, Kristiaan [KU Leuven-University of Leuven, University Hospitals Leuven, Department of Respiratory Diseases/Respiratory Oncology Unit, Leuven (Belgium); Peled, Nir [Tel Aviv University, Davidoff Cancer Center, Rabin Medical Center, Tel Aviv (Israel); Prokop, Mathias [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Remy-Jardin, Martine [Department of Thoracic Imaging, Hospital Calmette (EA 2694), CHRU et Universite de Lille, Lille (France); Sculier, Jean-Paul [Universite Libre de Bruxelles, Thoracic oncology, Institut Jules Bordet, Brussels (Belgium); Collaboration: on behalf of the European Society of Radiology (ESR) and the European Respiratory Society (ERS)

    2015-09-15

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  5. ESR/ERS white paper on lung cancer screening

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von; Bonomo, Lorenzo; Gaga, Mina; Nackaerts, Kristiaan; Peled, Nir; Prokop, Mathias; Remy-Jardin, Martine; Sculier, Jean-Paul

    2015-01-01

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  6. Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions.

    Science.gov (United States)

    Zhang, Jie; Patterson, Robert

    2014-01-01

    This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis.

  7. Estimation of 123I-metaiodobenzylguanidine lung uptake in heart and lung diseases. With reference to lung uptake ratio and decrease of lung uptake

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yoshikazu; Kitabayashi, Hiroshi; Koizumi, Tomonori; Sekiguchi, Morie; Gomi, Tsutomu; Yano, Kesato; Itoh, Atsuko.

    1997-01-01

    123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was performed in 64 patients with heart and lung diseases. Distribution of MIBG in the chest was evaluated by planar images, using counts ratios of the heart to the mediastinum (H/M) and the unilateral lung to the mediastinum (Lu/M). Most of patients with heart diseases showed obvious lung uptake of MIBG. The ratios of H/M were 1.75±0.20 in the group without heart failure and 1.55±0.19 in the group with heart failure. The ratios of Lu/M in the right and left lung were 1.56±0.16 and 1.28±0.16 in the group without heart failure. And those were 1.45±0.16 and 1.19±0.15 in the group with heart failure. But 3 patients complicated with chronic pulmonary emphysema and one patient with interstitial pneumonia due to dermatomyositis showed markedly decreased lung uptake. The ratios of Lu/M in the right and left lung of these patients were 1.20, 1.17; 1.17, 1.13; 1.01, 0.97 and 1.27, 0.94, respectively. These results suggest that the lung uptake of MIBG may reflect the state of pulmonary endothelial cell function in clinical situations, considering that it has been demonstrated that MIBG may be useful as a marker of pulmonary endothelial cell function in the isolated rat lung. (author)

  8. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  9. Diagnostic yield of preoperative computed tomography imaging and the importance of a clinical decision for lung cancer surgery

    International Nuclear Information System (INIS)

    Sato, Shuichi; Koike, Teruaki; Yamato, Yasushi

    2010-01-01

    This study aimed to evaluate the diagnostic yield of preoperative computed tomography (CT) imaging and the validity of surgical intervention based on the clinical decision to perform surgery for lung cancer or suspected lung cancer. We retrospectively evaluated 1755 patients who had undergone pulmonary resection for lung cancer or suspected lung cancer. CT scans were performed on all patients. Surgical intervention to diagnose and treat was based on a medical staff conference evaluation for the suspected lung cancer patients who were pathologically undiagnosed. We evaluated the relation between resected specimens and preoperative CT imaging in detail. A total of 1289 patients were diagnosed with lung cancer by preoperative pathology examination; another 466 were not pathologically diagnosed preoperatively. Among the 1289 patients preoperatively diagnosed with lung cancer, the diagnoses were confirmed postoperatively in 1282. Among the 466 patients preoperatively undiagnosed, 435 were definitively diagnosed with lung cancer, and there were 383 p-stage I disease patients. There were 38 noncancerous patients who underwent surgery with a diagnosis of confirmed or suspected lung cancer. Among the 1755 patients who underwent surgery, 1717 were pathologically confirmed with lung cancer, and the diagnostic yield of preoperative CT imaging was 97.8%. Among the 466 patients who were preoperatively undiagnosed, 435 were compatible with the predicted findings of lung cancer. Diagnostic yields of preoperative CT imaging based on clinical evaluation are sufficiently reliable. Diagnostic surgical intervention was acceptable when the clinical probability of malignancy was high and the malignancy was pathologically undiagnosed. (author)

  10. Nonrespiratory lung function

    Energy Technology Data Exchange (ETDEWEB)

    Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan)

    1994-07-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo.

  11. Nonrespiratory lung function

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo

  12. Risk of Lung Cancer and Indoor Radon Exposure in France

    International Nuclear Information System (INIS)

    Baysson, H.; Tirmarche, M.; Tymen, G.; Ducloy, F.; Laurier, D.

    2004-01-01

    It is well established that radon exposure increases risks of lung cancer among underground miners. to estimate the lung cancer risk linked to indoor radon exposure, a hospital based case-control study was carried out in France, With a focus on precise reconstruction of past indoor radon exposure over the 30 years preceding the lung cancer diagnosis. The investigation rook place from 1992 to 1998 in four regions of France: Auvergne, Brittany, Languedoc and Limousin. During face-to-face interviews a standardized questionnaire was used to ascertain demographic characteristics, information on active and passive smoking, occupational exposure, medical history as well as extensive details on residential history. Radon concentrations were measured in the dwellings where subjects had lived at least one year during the 5-30 year period before interview. Measurements of radon concentrations were performed during a 6-month period, using two Kodalpha LR 115 detectors, one in the living room and one in the bedroom. The time-weighted average (TWA) radon concentration for a subject during the 5-30 year period before interview was based on radon concentrations over all addresses occupied by the subject weighted by the number of years spent at each address. For the time intervals without available measurements, we imputed the region-specific arithmetic average of radon concentrations for measured addresses of control subjects. Lung cancer risk was examined in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking and occupational exposure. The estimated relative a risk per 100 Bq/m''3 was 1.04, at the borderline of statistical significance (95 percent Confidence Interval: 0.99, 1..1). These results are in agreement with results from other indoor radon case-control studies and with extrapolations from underground miners studies. (Author) 31 refs

  13. Reduced pulmonary blood flow in regions of injury 2 hours after acid aspiration in rats.

    Science.gov (United States)

    Richter, Torsten; Bergmann, Ralf; Musch, Guido; Pietzsch, Jens; Koch, Thea

    2015-01-01

    Aspiration-induced lung injury can decrease gas exchange and increase mortality. Acute lung injury following acid aspiration is characterized by elevated pulmonary blood flow (PBF) in damaged lung areas in the early inflammation stage. Knowledge of PBF patterns after acid aspiration is important for targeting intravenous treatments. We examined PBF in an experimental model at a later stage (2 hours after injury). Anesthetized Wistar-Unilever rats (n = 5) underwent unilateral endobronchial instillation of hydrochloric acid. The PBF distribution was compared between injured and uninjured sides and with that of untreated control animals (n = 6). Changes in lung density after injury were measured using computed tomography (CT). Regional PBF distribution was determined quantitatively in vivo 2 hours after acid instillation by measuring the concentration of [(68)Ga]-radiolabeled microspheres using positron emission tomography. CT scans revealed increased lung density in areas of acid aspiration. Lung injury was accompanied by impaired gas exchange. Acid aspiration decreased the arterial pressure of oxygen from 157 mmHg [139;165] to 74 mmHg [67;86] at 20 minutes and tended toward restoration to 109 mmHg [69;114] at 110 minutes (P < 0.001). The PBF ratio of the middle region of the injured versus uninjured lungs of the aspiration group (0.86 [0.7;0.9], median [25%;75%]) was significantly lower than the PBF ratio in the left versus right lung of the control group (1.02 [1.0;1.05]; P = 0.016). The PBF pattern 2 hours after aspiration-induced lung injury showed a redistribution of PBF away from injured regions that was likely responsible for the partial recovery from hypoxemia over time. Treatments given intravenously 2 hours after acid-induced lung injury may not preferentially reach the injured lung regions, contrary to what occurs during the first hour of inflammation. Please see related article: http://dx.doi.org/10.1186/s12871-015-0014-z.

  14. Lung metastases detection in CT images using 3D template matching

    International Nuclear Information System (INIS)

    Wang, Peng; DeNunzio, Andrea; Okunieff, Paul; O'Dell, Walter G.

    2007-01-01

    The aim of this study is to demonstrate a novel, fully automatic computer detection method applicable to metastatic tumors to the lung with a diameter of 4-20 mm in high-risk patients using typical computed tomography (CT) scans of the chest. Three-dimensional (3D) spherical tumor appearance models (templates) of various sizes were created to match representative CT imaging parameters and to incorporate partial volume effects. Taking into account the variability in the location of CT sampling planes cut through the spherical models, three offsetting template models were created for each appearance model size. Lung volumes were automatically extracted from computed tomography images and the correlation coefficients between the subregions around each voxel in the lung volume and the set of appearance models were calculated using a fast frequency domain algorithm. To determine optimal parameters for the templates, simulated tumors of varying sizes and eccentricities were generated and superposed onto a representative human chest image dataset. The method was applied to real image sets from 12 patients with known metastatic disease to the lung. A total of 752 slices and 47 identifiable tumors were studied. Spherical templates of three sizes (6, 8, and 10 mm in diameter) were used on the patient image sets; all 47 true tumors were detected with the inclusion of only 21 false positives. This study demonstrates that an automatic and straightforward 3D template-matching method, without any complex training or postprocessing, can be used to detect small lung metastases quickly and reliably in the clinical setting

  15. [Mesothelioma in construction workers: risk estimate, lung content of asbestos fibres, claims for compensation for occupational disease in the Veneto Region mesothelioma register].

    Science.gov (United States)

    Merler, E; Bressan, Vittoria; Somigliana, Anna

    2009-01-01

    Work in the construction industry is causing the highest number of mesotheliomas among the residents of the Veneto Region (north-east Italy, 4,5 million inhabitants). To sum up the results on occurrence, asbestos exposure, lung fibre content analyses, and compensation for occupational disease. Case identification and asbestos exposure classification: active search of mesotheliomas that were diagnosed via histological or cytological examinations occurring between 1987 and 2006; a probability of asbestos exposure was attributed to each case, following interviews with the subjects or their relatives and collection of data on the jobs held over their lifetime. Risk estimate among construction workers: the ratio between cases and person-years, the latter derived from the number of construction workers reported by censuses. Lung content of asbestos fibres: examination of lung specimens by Scanning Electron Microscope to determine number and type of fibres. Claims for compensation and compensation awarded: data obtained from the National Institute for Insurance against Occupational Diseases available for the period 1999-2006. of 952 mesothelioma cases classified as due to asbestos exposure, 251 were assigned to work in the construction industry (21 of which due to domestic of environmental exposures), which gives a rate of 4.1 (95% CI 3.6-4.8) x 10(5) x year among construction workers. The asbestos fibre content detected in the lungs of 11 construction workers showed a mean of 1.7 x 10(6) fibres/g dry tissue (range 350,000-3 million) for fibres > 1 micro, almost exclusively due to amphibole fibres. 62% of the claims for compensation were granted but the percentage fell to less than 40% when claims were submitted by a relative, after the death of the subject. The prevalence of mesothelioma occurring among construction workers is high and is associated with asbestos exposure; the risk is underestimated by the subjects and their relatives. All mesotheliomas occurring among

  16. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.

    Science.gov (United States)

    Becker, K W; Scheffer, C; Blanckenberg, M M; Diacon, A H

    2013-01-01

    Tuberculosis is a common and potentially deadly infectious disease, usually affecting the respiratory system and causing the sound properties of symptomatic infected lungs to differ from non-infected lungs. Auscultation is often ruled out as a reliable diagnostic technique for TB due to the random distribution of the infection and the varying severity of damage to the lungs. However, advancements in signal processing techniques for respiratory sounds can improve the potential of auscultation far beyond the capabilities of the conventional mechanical stethoscope. Though computer-based signal analysis of respiratory sounds has produced a significant body of research, there have not been any recent investigations into the computer-aided analysis of lung sounds associated with pulmonary Tuberculosis (TB), despite the severity of the disease in many countries. In this paper, respiratory sounds were recorded from 14 locations around the posterior and anterior chest walls of healthy volunteers and patients infected with pulmonary TB. The most significant signal features in both the time and frequency domains associated with the presence of TB, were identified by using the statistical overlap factor (SOF). These features were then employed to train a neural network to automatically classify the auscultation recordings into their respective healthy or TB-origin categories. The neural network yielded a diagnostic accuracy of 73%, but it is believed that automated filtering of the noise in the clinics, more training samples and perhaps other signal processing methods can improve the results of future studies. This work demonstrates the potential of computer-aided auscultation as an aid for the diagnosis and treatment of TB.

  17. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model

    Directory of Open Access Journals (Sweden)

    Israel L. Medeiros

    2012-09-01

    Full Text Available OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98. The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035. The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816. The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87. The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0, and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71. CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

  18. Causes of death in long-term survivors of non-small cell lung cancer: A regional Surveillance, Epidemiology, and End Results study.

    Science.gov (United States)

    Kanitkar, Amaraja A; Schwartz, Ann G; George, Julie; Soubani, Ayman O

    2018-01-01

    Survival from lung cancer is improving. There are limited data on the causes of death in 5-year survivors of lung cancer. The aim of this study is to explore the causes of death in long-term survivors of non-small cell lung cancer (NSCLC) and describe the odds of dying from causes other than lung cancer in this patient population. An analysis of 5-year survivors of newly diagnosed NSCLC from 1996 to 2007, in Metropolitan Detroit included in Surveillance, Epidemiology, and End Results program, was done. Of 23,059 patients identified, 3789 (16.43%) patients were alive at 5-year period (long-term survivors) and 1897 (50.06%) patients died in the later follow-up period (median 88 months; range 1-219 months). The causes of death besides lung cancer were observed in 55.2% of these patients. The most common causes of death were cardiovascular diseases (CVDs) (16%), chronic obstructive pulmonary diseases (11%), and other malignancies (8%). Patients older than 65 years, males, and those who underwent surgery for treatment of lung cancer faced a greater likelihood of death by other causes as compared to lung cancer (OR: 1.45, 95% confidence interval [CI]: 1.18-1.77; OR: 1.24, 95% CI: 1.02-1.51; and OR: 1.39, 95% CI: 1.06-1.82, respectively). Five-year survivors of NSCLC more commonly die from causes such as CVDs, lung diseases, and other malignancies. Aggressive preventive and therapeutic measures of these diseases may further improve the outcome in this patient population.

  19. Reliability measures of functional magnetic resonance imaging in a longitudinal evaluation of mild cognitive impairment.

    Science.gov (United States)

    Zanto, Theodore P; Pa, Judy; Gazzaley, Adam

    2014-01-01

    As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI. © 2013.

  20. Adhesive interaction measured between AFM probe and lung epithelial type II cells

    International Nuclear Information System (INIS)

    Leonenko, Zoya; Finot, Eric; Amrein, Matthias

    2007-01-01

    The toxicity of inhaled nanoparticles entering the body through the lung is thought to be initially defined by the electrostatic and adhesive interaction of the particles with lung's wall. Here, we investigated the first step of the interaction of nanoparticles with lung epithelial cells using atomic force microscope (AFM) as a force apparatus. Nanoparticles were modeled by the apex of the AFM tip and the forces of interaction between the tip and the cell analyzed over time. The adhesive force and work of adhesion strongly increased for the first 100 s of contact and then leveled out. During this time, the tip was penetrating deeply into the cell. It first crossed a stiff region of the cell and then entered a much more compliant cell region. The work of adhesion and its progression over time were not dependent on the load with which the tip was brought into contact with the cell. We conclude that the initial thermodynamic aspects and the time course of the uptake of nanoparticles by lung epithelial cells can be studied using our experimental approach. It is discussed how the potential health threat posed by nanoparticles of different size and surface characteristics can be evaluated using the method presented