WorldWideScience

Sample records for reliable high strength

  1. Strength of pelvic floor in men: reliability intra examiners

    Directory of Open Access Journals (Sweden)

    Patricia Zaidan

    2018-05-01

    Full Text Available Abstract Introduction: The obtaining of urinary continence is due to the strength of the pelvic floor muscles (MAPs at the moment of muscle contraction, when there are sudden increases in intra-abdominal pressure, which increases urethral closure pressure and decreases the possibility of urinary loss. Objective: To verify the reliability, type: stability, intra-examiner, of the measure of the strength of MAPs held with Peritron. Methods: Test and retest study to assess the intra-rater reliability of Peritron to measure the strength of MAPs. The sample consisted of 36 male patients, mean age 65.3 ± 7.2 years, all with urinary incontinence (UI after radical prostatectomy. The physical therapist conducted a training for familiarization with the procedures of MAPs strength assessment with Peritron for two weeks. The strength of MAPs was measured by a perineometer of the Peritron brand (PFX 9300®, Cardio-Design Pty. Ltd, Baulkham Hills, Australia, 2153. Results: The intraclass correlation coefficient (ICC was equal to 0.99; P = 0.0001. The typical measurement error (ETM was equal to 3.1 cmH2O and ETM% of 4. Conclusion: Peritron showed high reliability for measuring the strength of MAPs in men, both for clinical practice and for the production of scientific knowledge. It should be noted that such measures were carried out in stability, so it is suggested that in internal consistency reliability is equivalent.

  2. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  3. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  4. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  5. Reliability of the Bulb Dynamometer for Assessing Grip Strength

    Directory of Open Access Journals (Sweden)

    Colleen Maher

    2018-04-01

    Full Text Available Background: Hand function is an overall indicator of health and is often measured using grip strength. Handheld dynamometry is the most common method of measuring grip strength. The purpose of this study was to determine the inter-rater and test-retest reliability, the reliability of one trial versus three trials, and the preliminary norms for a young adult population using the Baseline® Pneumatic Squeeze Bulb Dynamometer (30 psi. Methods: This study used a one-group methodological design. One hundred and three healthy adults (30 males and 73 females were recruited. Six measurements were collected for each hand per participant. The data was analyzed using Intraclass Correlation Coefficients (ICC two-way effects model (2,2 and paired-samples t-tests. Results: The ICC for inter-rater reliability ranged from 0.955 to 0.977. Conclusion: The results of this study suggest that the bulb dynamometer is a reliable tool to measure grip strength and should be further explored for reliable and valid use in diverse populations and as an alternative to the Jamar dynamometer.

  6. Reliability of isometric subtalar pronator and supinator strength testing.

    Science.gov (United States)

    Hagen, Marco; Lahner, Matthias; Winhuysen, Martin; Maiwald, Christian

    2015-01-01

    Due to the specific anatomy of the subtalar joint with its oblique axis, isometric pronator and supinator strength is not well documented. The purpose of this study was to determine intra- and between-session reliability of pronator and supinator strength and lower leg muscle activity measurements during maximum voluntary isometric contractions (MVIC). Pronator and supinator peak torques (PT), with and without supplementary visual muscle strength biofeedback (FB), and muscular activities of peroneus longus (PL) and tibialis anterior (TA) were assessed twice 3 days apart by the same examiner in 21 healthy young male adults (mean age: 27.6 years; SD = 3.9). Limits of agreement (LoA) and minimum detectable change (MDC) were evaluated. By applying FB, reliability of both pronator and supinator PT was improved: LoA were reduced from 32% to 26% and from 20% to 18% and MDC from 20% to 15% and from 16% to 12% in supinator and pronator PT, respectively. Learning effects in pronator and supinator PT (p isometric subtalar pronator and supinator strength testing is reliable in healthy subjects. LoA of 18% and 26% have to be exceeded for pronator and supinator PT, respectively, to detect relevant effects in repeated measures.

  7. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men.

    Science.gov (United States)

    Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2014-10-01

    To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Stress-strength reliability for general bivariate distributions

    Directory of Open Access Journals (Sweden)

    Alaa H. Abdel-Hamid

    2016-10-01

    Full Text Available An expression for the stress-strength reliability R=P(X1reliability function R are obtained. In the non-parametric case, point and interval estimates of R are developed using Govindarajulu's asymptotic distribution-free method when X1 and X2 are dependent. An example is given when the population distribution is bivariate compound Weibull. Simulation is performed, based on different sample sizes to study the performance of estimates.

  9. Intrarater Reliability of Muscle Strength and Hamstring to Quadriceps Strength Imbalance Ratios During Concentric, Isometric, and Eccentric Maximal Voluntary Contractions Using the Isoforce Dynamometer.

    Science.gov (United States)

    Mau-Moeller, Anett; Gube, Martin; Felser, Sabine; Feldhege, Frank; Weippert, Matthias; Husmann, Florian; Tischer, Thomas; Bader, Rainer; Bruhn, Sven; Behrens, Martin

    2017-08-17

    To determine intrasession and intersession reliability of strength measurements and hamstrings to quadriceps strength imbalance ratios (H/Q ratios) using the new isoforce dynamometer. Repeated measures. Exercise science laboratory. Thirty healthy subjects (15 females, 15 males, 27.8 years). Coefficient of variation (CV) and intraclass correlation coefficients (ICC) were calculated for (1) strength parameters, that is peak torque, mean work, and mean power for concentric and eccentric maximal voluntary contractions; isometric maximal voluntary torque (IMVT); rate of torque development (RTD), and (2) H/Q ratios, that is conventional concentric, eccentric, and isometric H/Q ratios (Hcon/Qcon at 60 deg/s, 120 deg/s, and 180 deg/s, Hecc/Qecc at -60 deg/s and Hiso/Qiso) and functional eccentric antagonist to concentric agonist H/Q ratios (Hecc/Qcon and Hcon/Qecc). High reliability: CV 0.90; moderate reliability: CV between 10% and 20%, ICC between 0.80 and 0.90; low reliability: CV >20%, ICC Strength parameters: (a) high intrasession reliability for concentric, eccentric, and isometric measurements, (b) moderate-to-high intersession reliability for concentric and eccentric measurements and IMVT, and (c) moderate-to-high intrasession reliability but low intersession reliability for RTD. (2) H/Q ratios: (a) moderate-to-high intrasession reliability for conventional ratios, (b) high intrasession reliability for functional ratios, (c) higher intersession reliability for Hcon/Qcon and Hiso/Qiso (moderate to high) than Hecc/Qecc (low to moderate), and (d) higher intersession reliability for conventional H/Q ratios (low to high) than functional H/Q ratios (low to moderate). The results have confirmed the reliability of strength parameters and the most frequently used H/Q ratios.

  10. Reliability of Maximal Strength Testing in Novice Weightlifters

    Science.gov (United States)

    Loehr, James A.; Lee, Stuart M. C.; Feiveson, Alan H.; Ploutz-Snyder, Lori L.

    2009-01-01

    The one repetition maximum (1RM) is a criterion measure of muscle strength. However, the reliability of 1RM testing in novice subjects has received little attention. Understanding this information is crucial to accurately interpret changes in muscle strength. To evaluate the test-retest reliability of a squat (SQ), heel raise (HR), and deadlift (DL) 1RM in novice subjects. Twenty healthy males (31 plus or minus 5 y, 179.1 plus or minus 6.1 cm, 81.4 plus or minus 10.6 kg) with no weight training experience in the previous six months participated in four 1RM testing sessions, with each session separated by 5-7 days. SQ and HR 1RM were conducted using a smith machine; DL 1RM was assessed using free weights. Session 1 was considered a familiarization and was not included in the statistical analyses. Repeated measures analysis of variance with Tukey fs post-hoc tests were used to detect between-session differences in 1RM (p.0.05). Test-retest reliability was evaluated by intraclass correlation coefficients (ICC). During Session 2, the SQ and DL 1RM (SQ: 90.2 }4.3, DL: 75.9 }3.3 kg) were less than Session 3 (SQ: 95.3 }4.1, DL: 81.5 plus or minus 3.5 kg) and Session 4 (SQ: 96.6 }4.0, DL: 82.4 }3.9 kg), but there were no differences between Session 3 and Session 4. HR 1RM measured during Session 2 (150.1 }3.7 kg) and Session 3 (152.5 }3.9 kg) were not different from one another, but both were less than Session 4 (157.5 }3.8 kg). The reliability (ICC) of 1RM measures for Sessions 2-4 were 0.88, 0.83, and 0.87, for SQ, HR, and DL, respectively. When considering only Sessions 3 and 4, the reliability was 0.93, 0.91, and 0.86 for SQ, HR, and DL, respectively. One familiarization session and 2 test sessions (for SQ and DL) were required to obtain excellent reliability (ICC greater than or equal to 0.90) in 1RM values with novice subjects. We were unable to attain this level of reliability following 3 HR testing sessions therefore additional sessions may be required to obtain an

  11. Isokinetic Strength and Endurance Tests used Pre- and Post-Spaceflight: Test-Retest Reliability

    Science.gov (United States)

    Laughlin, Mitzi S.; Lee, Stuart M. C.; Loehr, James A.; Amonette, William E.

    2009-01-01

    To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.

  12. Test-Retest Reliability of Isokinetic Knee Strength Measurements in Children Aged 8 to 10 Years.

    Science.gov (United States)

    Fagher, Kristina; Fritzson, Annelie; Drake, Anna Maria

    Isokinetic dynamometry is a useful tool to objectively assess muscle strength of children and adults in athletic and rehabilitative settings. This study examined test-retest reliability of isokinetic knee strength measurements in children aged 8 to 10 years and defined limits for the minimum difference (MD) in strength that indicates a clinically important change. Isokinetic knee strength measurements (using the Biodex System 4) in children will provide reliable results. Descriptive laboratory study. In 22 healthy children, 5 maximal concentric (CON) knee extensor (KE) and knee flexor (KF) contractions at 2 angular velocities (60 deg/s and 180 deg/s) and 5 maximal eccentric (ECC) KE/KF contractions at 60 deg/s were assessed 7 days apart. The intraclass correlation coefficient (ICC 2.1 ) was used to examine relative reliability, and the MD was calculated on the basis of standard error of measurement. ICCs for CON KE/KF peak torque measurements were fair to excellent (range, 0.49-0.81). The MD% values for CON KE and KF ranged from 31% to 37% at 60 deg/s and from 34% to 39% at 180 deg/s. ICCs in the ECC mode were good (range, 0.60-0.70), but associated MD% values were high (>50%). There was no systematic error for CON KE/KF and ECC KE strength measurements at 60 deg/s, but systematic error was found for all other measurements. The dynamometer provides a reliable analysis of isokinetic CON knee strength measurements at 60 deg/s in children aged 8 to 10 years. Measurements at 180 deg/s and in the ECC mode were not reliable, indicating a need for more familiarization prior to testing. The MD values may help clinicians to determine whether a change in knee strength is due to error or intervention.

  13. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks

    Directory of Open Access Journals (Sweden)

    Ali Abd Elhakam Aliabdo

    2012-09-01

    Full Text Available This study aims to investigate the relationships between Schmidt hardness rebound number (RN and ultrasonic pulse velocity (UPV versus compressive strength (fc of stones and bricks. Four types of rocks (marble, pink lime stone, white lime stone and basalt and two types of burned bricks and lime-sand bricks were studied. Linear and non-linear models were proposed. High correlations were found between RN and UPV versus compressive strength. Validation of proposed models was assessed using other specimens for each material. Linear models for each material showed good correlations than non-linear models. General model between RN and compressive strength of tested stones and bricks showed a high correlation with regression coefficient R2 value of 0.94. Estimation of compressive strength for the studied stones and bricks using their rebound number and ultrasonic pulse velocity in a combined method was generally more reliable than using rebound number or ultrasonic pulse velocity only.

  14. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  15. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  16. Mechanical reliability of bulk high Tc superconductors

    International Nuclear Information System (INIS)

    Freiman, S.W.

    1990-01-01

    Most prospective applications for high T c superconductors in bulk form, e.g. magnets, motors, will require appreciable mechanical strength. Work at NIST [National Institute of Standards and Technology] has begun to address issues related to mechanical reliability. For example, recent studies on Ba-Y-Cu-O have shown that the intrinsic crack growth resistance, K IC , of crystals of this material is even smaller than was first reported, less than that of window glass, and is sensitive to moisture. Processing conditions, particularly sintering and annealing atmosphere, have been shown to have a major influence on microstructure and internal stresses in the material. Large internal stresses result from the tetragonal to orthorhombic phase transformation as well as the thermal expansion anisotropy in the grains of the ceramic. Because stress relief is absent, microcracks form which have a profound influence on strength

  17. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players.

    Science.gov (United States)

    Wollin, Martin; Purdam, Craig; Drew, Michael K

    2016-01-01

    To investigate inter and intra-tester reliability of an externally fixed dynamometry unilateral hamstring strength test, in the elite sports setting. Reliability study. Sixteen, injury-free, elite male youth football players (age=16.81±0.54 years, height=180.22±5.29cm, weight 73.88±6.54kg, BMI=22.57±1.42) gave written informed consent. Unilateral maximum isometric peak hamstring force was evaluated by externally fixed dynamometry for inter-tester, intra-day and intra-tester, inter-week reliability. The test position was standardised to correlate with the terminal swing phase of the gait running cycle. Inter and intra-tester values demonstrated good to high levels of reliability. The intra-class coefficient (ICC) for inter-tester, intra-day reliability was 0.87 (95% CI=0.75-0.93) with standard error of measure percentage (SEM%) 4.7 and minimal detectable change percentage (MDC%) 12.9. Intra-tester, inter-week reliability results were ICC 0.86 (95% CI, 0.74-0.93), SEM% 5.0 and MDC% 14.0. This study demonstrates good to high inter and intra-tester reliability of isometric externally fixed dynamometry unilateral hamstring strength testing in the regular elite sport setting involving elite male youth football players. The intra-class coefficient in association with the low standard error of measure and minimal detectable change percentages suggest that this procedure is appropriate for clinical and academic use as well as monitoring hamstring strength in the elite sport setting. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  19. Reliability of muscle strength assessment in chronic post-stroke hemiparesis: a systematic review and meta-analysis.

    Science.gov (United States)

    Rabelo, Michelle; Nunes, Guilherme S; da Costa Amante, Natália Menezes; de Noronha, Marcos; Fachin-Martins, Emerson

    2016-02-01

    Muscle weakness is the main cause of motor impairment among stroke survivors and is associated with reduced peak muscle torque. To systematically investigate and organize the evidence of the reliability of muscle strength evaluation measures in post-stroke survivors with chronic hemiparesis. Two assessors independently searched four electronic databases in January 2014 (Medline, Scielo, CINAHL, Embase). Inclusion criteria comprised studies on reliability on muscle strength assessment in adult post-stroke patients with chronic hemiparesis. We extracted outcomes from included studies about reliability data, measured by intraclass correlation coefficient (ICC) and/or similar. The meta-analyses were conducted only with isokinetic data. Of 450 articles, eight articles were included for this review. After quality analysis, two studies were considered of high quality. Five different joints were analyzed within the included studies (knee, hip, ankle, shoulder, and elbow). Their reliability results varying from low to very high reliability (ICCs from 0.48 to 0.99). Results of meta-analysis for knee extension varying from high to very high reliability (pooled ICCs from 0.89 to 0.97), for knee flexion varying from high to very high reliability (pooled ICCs from 0.84 to 0.91) and for ankle plantar flexion showed high reliability (pooled ICC = 0.85). Objective muscle strength assessment can be reliably used in lower and upper extremities in post-stroke patients with chronic hemiparesis.

  20. Highly reliable TOFD UT Technique

    International Nuclear Information System (INIS)

    Acharya, G.D.; Trivedi, S.A.R.; Pai, K.B.

    2003-01-01

    The high performance of the time of flight diffraction technique (TOFD) with regard to the detection capabilities of weld defects such as crack, slag, lack of fusion has led to a rapidly increasing acceptance of the technique as a pre?service inspection tool. Since the early 1990s TOFD has been applied to several projects, where it replaced the commonly used radiographic testing. The use of TOM lead to major time savings during new build and replacement projects. At the same time the TOFD technique was used as base line inspection, which enables monitoring in the future for critical welds, but also provides documented evidence for life?time. The TOFD technique as the ability to detect and simultaneously size flows of nearly any orientation within the weld and heat affected zone. TOM is recognized as a reliable, proven technique for detection and sizing of defects and proven to be a time saver, resulting in shorter shutdown periods and construction project times. Thus even in cases where inspection price of TOFD per welds is higher, in the end it will result in significantly lower overall costs and improve quality. This paper deals with reliability, economy, acceptance criteria and field experience. It also covers comparative study between radiography technique Vs. TOFD. (Author)

  1. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing

    Science.gov (United States)

    Michailov, Michail Lubomirov; Baláš, Jirí; Tanev, Stoyan Kolev; Andonov, Hristo Stoyanov; Kodejška, Jan; Brown, Lee

    2018-01-01

    Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the…

  2. The Reliability of Isometer 2 Device in Measuring of Cervical Flexor and Extensor Muscles Strength

    Directory of Open Access Journals (Sweden)

    Asghar Reza Soltan-Zadeh

    2006-07-01

    Full Text Available Objective: The strength of a group of muscles can be measured by muscle strength test, employing a force measuring instrument. In order to monitor the effectiveness of a therapeutic or training programs we need a reliable technique which is also accurate in repeated measurements. The purpose of this study was to examine the reliability of an isometric neck muscle force measurement device.  Materials & Methods: Thirty seven healthy non athlete subjects (18 males and 19 females, aged 18-25 participated in this analytical study. The maximal isometric contractions of the neck extensor and flexor muscles were measured in different times and different days and by two different testers. A new sensitive “load cell” was applied to our previously designed neck muscle force measurement apparatus. Results: The results of the inter-trail, test retest, and inter rater reliability (0.86 < ICC < 0.98 , 2.2< Sw <5.1 N indicated that the neck muscle force measurements were highly repeatable and less variable between measurements. There were no statistically significant differences in neck muscle force measurements, between times, between days and between retsters. Maximum isometric contractions were significantly higher in males than in the females (p < 0.001. Women’s neck muscle strengths were 30.8% and 46.1% of men in cervical extension and cervical flexion. Conclusion: In this study we used a new model (Isometer 2 of our previous apparatus (Isometer. The isometric strength of neck flexor and extensor muscles which was measured by Isometer 2 appeared to be a reliable and useful method for measuring the force of the neck extensor and flexor muscles.

  3. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  4. Determination of Strength for Reliability Analysis of Multilayer Ceramic Capacitors

    International Nuclear Information System (INIS)

    Breder, K.; Bridge, R.J.; Kirkland, T.P.; Riester, L.; Wereszczak, A.A.

    1999-01-01

    A Nanoindenter TM equipped with a Vickers indenter was used to measure fracture toughness of Multilayer Capacitors (MLCs) and BaTiO 3 blanks. Strength of blanks of 6.3 x 4.7 x 1.1 mm 3 was measured by performing three-point flexure using a 4 mm support span. The size of the strength limiting pores in the flexure tests was compared to pore sizes measured on polished MLC cross sections, and it was found that much larger pores were present in the 3-point flexure specimens. Strength distributions for the MLCs were generated using the measured fracture toughness values, assuming the measured pores or second phase inclusions were strength limiting

  5. The Strengths Assessment Inventory: Reliability of a New Measure of Psychosocial Strengths for Youth

    Science.gov (United States)

    Brazeau, James N.; Teatero, Missy L.; Rawana, Edward P.; Brownlee, Keith; Blanchette, Loretta R.

    2012-01-01

    A new measure, the Strengths Assessment Inventory-Youth self-report (SAI-Y), was recently developed to assess the strengths of children and adolescents between the ages of 10 and 18 years. The SAI-Y differs from similar measures in that it provides a comprehensive assessment of strengths that are intrinsic to the individual as well as strengths…

  6. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  7. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    Science.gov (United States)

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  8. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  9. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  10. Strength and Pain Threshold Handheld Dynamometry Test Reliability in Patellofemoral Pain.

    Science.gov (United States)

    van der Heijden, R A; Vollebregt, T; Bierma-Zeinstra, S M A; van Middelkoop, M

    2015-12-01

    Patellofemoral pain syndrome (PFPS), characterized by peri- and retropatellar pain, is a common disorder in young, active people. The etiology is unclear; however, quadriceps strength seems to be a contributing factor, and sensitization might play a role. The study purpose is determining the inter-rater reliability of handheld dynamometry to test both quadriceps strength and pressure pain threshold (PPT), a measure for sensitization, in patients with PFPS. This cross-sectional case-control study comprises 3 quadriceps strength and one PPT measurements performed by 2 independent investigators in 22 PFPS patients and 16 matched controls. Inter-rater reliability was analyzed using intraclass correlation coefficients (ICC) and Bland-Altman plots. Inter-rater reliability of quadriceps strength testing was fair to good in PFPS patients (ICC=0.72) and controls (ICC=0.63). Bland-Altman plots showed an increased difference between assessors when average quadriceps strength values exceeded 250 N. Inter-rater reliability of PPT was excellent in patients (ICC=0.79) and fair to good in controls (ICC=0.52). Handheld dynamometry seems to be a reliable method to test both quadriceps strength and PPT in PFPS patients. Inter-rater reliability was higher in PFPS patients compared to control subjects. With regard to quadriceps testing, a higher variance between assessors occurs when quadriceps strength increases. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Application of nonparametric statistics to material strength/reliability assessment

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1992-01-01

    An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)

  12. Validation and Reliability of a Novel Test of Upper Body Isometric Strength

    Directory of Open Access Journals (Sweden)

    Bellar David

    2015-09-01

    Full Text Available The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4% volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a “push-up” style position while tethered (stainless steel chain to a load cell (high frequency anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98 suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001 with all predictor variables attaining significance in the model (p<0.05. Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001. Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment.

  13. Validation and Reliability of a Novel Test of Upper Body Isometric Strength.

    Science.gov (United States)

    Bellar, David; Marcus, Lena; Judge, Lawrence W

    2015-09-29

    The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a "push-up" style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (pIsometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment.

  14. Validation and Reliability of a Novel Test of Upper Body Isometric Strength

    Science.gov (United States)

    Bellar, David; Marcus, Lena; Judge, Lawrence W.

    2015-01-01

    The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a “push-up” style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (p<0.05). Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment. PMID:26557203

  15. Reliability of nondestructive testing of metal strength properties for power equipment

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Lebedev, A.A.; Sharko, A.V.

    1985-01-01

    Ultrasonic control which is a constituent part of a complex control system which includes specimen-free (by hardness) tests, random breaking tests and acoustic measurements is stUdied for its reliability with respect to strength properties of power-equipment metal. Quantitative and alternative criteria are developed to estimate quality of elements for power-equipment according to results of metal strength properties. Acoustic control results are presented for ultimate strength in 12Kh1MF-steel

  16. Strength Measurements in Acute Hamstring Injuries: Intertester Reliability and Prognostic Value of Handheld Dynamometry.

    Science.gov (United States)

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H; Tol, Johannes L; Verhaar, Jan A N; Weir, Adam

    2016-08-01

    Study Design Cohort study, repeated measures. Background Although hamstring strength measurements are used for assessing prognosis and monitoring recovery after hamstring injury, their actual clinical relevance has not been established. Handheld dynamometry (HHD) is a commonly used method of measuring muscle strength. The reliability of HHD has not been determined in athletes with acute hamstring injuries. Objectives To determine the intertester reliability and the prognostic value of hamstring HHD strength measurement in acute hamstring injuries. Methods We measured knee flexion strength with HHD in 75 athletes at 2 visits, at baseline (within 5 days of hamstring injury) and follow-up (5 to 7 days after the baseline measurement). We assessed isometric hamstring strength in 15° and 90° of knee flexion. Reliability analysis testing was performed by 2 testers independently at the follow-up visit. We recorded the time needed to return to play (RTP) up to 6 months following baseline. Results The intraclass correlation coefficients of the strength measurements in injured hamstrings were between 0.75 and 0.83. There was a statistically significant but weak correlation between the time to RTP and the strength deficit at 15° of knee flexion measured at baseline (Spearman r = 0.25, P = .045) and at the follow-up visit (Spearman r = 0.26, P = .034). Up to 7% of the variance in time to RTP is explained by this strength deficit. None of the other strength variables were significantly correlated with time to RTP. Conclusion Hamstring strength can be reliably measured with HHD in athletes with acute hamstring injuries. The prognostic value of strength measurements is limited, as there is only a weak association between the time to RTP and hamstring strength deficit after acute injury. Level of Evidence Prognosis, level 4. J Orthop Sports Phys Ther 2016;46(8):689-696. Epub 12 May 2016. doi:10.2519/jospt.2016.6363.

  17. Exact reliability quantification of highly reliable systems with maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2010-12-15

    When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.

  18. Validity and test-retest reliability of a novel simple back extensor muscle strength test.

    Science.gov (United States)

    Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth

    2017-01-01

    To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations ( r ). Test-retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry ( r  = 0.824, p  strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971-0.990), p  strength measures with the novel back extensor strength protocol were -6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density ( p  strength ( p  strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site.

  19. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  20. Validity and reliability of a low-cost digital dynamometer for measuring isometric strength of lower limb.

    Science.gov (United States)

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro; Montaño-Munuera, Juan A

    2017-11-01

    Lower limb isometric strength is a key parameter to monitor the training process or recognise muscle weakness and injury risk. However, valid and reliable methods to evaluate it often require high-cost tools. The aim of this study was to analyse the concurrent validity and reliability of a low-cost digital dynamometer for measuring isometric strength in lower limb. Eleven physically active and healthy participants performed maximal isometric strength for: flexion and extension of ankle, flexion and extension of knee, flexion, extension, adduction, abduction, internal and external rotation of hip. Data obtained by the digital dynamometer were compared with the isokinetic dynamometer to examine its concurrent validity. Data obtained by the digital dynamometer from 2 different evaluators and 2 different sessions were compared to examine its inter-rater and intra-rater reliability. Intra-class correlation (ICC) for validity was excellent in every movement (ICC > 0.9). Intra and inter-tester reliability was excellent for all the movements assessed (ICC > 0.75). The low-cost digital dynamometer demonstrated strong concurrent validity and excellent intra and inter-tester reliability for assessing isometric strength in the main lower limb movements.

  1. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study

    DEFF Research Database (Denmark)

    Jensen, K. K.; Kjær, Michael; Jorgensen, L. N.

    2016-01-01

    Purpose To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Methods Ten patients with VIH and ten...... and extension showed excellent test–retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH...... and IPAQ was found. Conclusions The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH....

  2. Intra-tester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.

    Science.gov (United States)

    Brindle, Richard A; Ebaugh, D David; Milner, Clare E

    2017-11-15

    Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a 'break' test the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intra-rater reliability and construct validity of a hip abductor eccentric strength test. Intra-rater reliability and construct validity study. Twenty healthy adults (26 ±6 years; 1.66 ±0.06 m; 62.2 ±8.0 kg) made two visits to the laboratory at least one week apart. During the hip abductor eccentric strength test, a hand-held dynamometer recorded peak force and time to peak force and limb position was recorded via a motion capture system. Intra-rater reliability was determined using intra-class correlation (ICC), standard error of measurement (SEM), and minimal detectable difference (MDD). Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a one-sample t-test. The hip abductor eccentric strength test had substantial intra-rater reliability (ICC( 3,3 ) = 0.88; 95% confidence interval: 0.65-0.95), SEM of 0.9%BWh, and a MDD of 2.5%BWh. Construct validity was established as peak force occurred 2.1s (±0.6s; range 0.7s to 3.7s) after the start of the lowering phase of the test (p ≤ 0.001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.

  3. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer.

    Science.gov (United States)

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-01-01

    To investigate the test-retest reliability of measuring hip abductor strength in patients with total knee arthroplasty (TKA) using a hand-held dynamometer (HHD) with two different types of resistance: belt and manual resistance. Test-retest reliability of 30 subjects (17 female, 13 male, 71.9 ± 7.4 years old), 9.2 ± 2.7 days post TKA was measured using belt and therapist resistance. Retest reliability was calculated with intra-class coefficients (ICC3,1) and 95% confidence intervals (CI) for both the group average and the individual scores. A paired t-test assessed whether a difference existed between the belt and therapist methods of resistance. ICCs were 0.82 and 0.80 for the belt and therapist resisted methods, respectively. Hip abductor strength increases of 8 N (14%) for belt resisted and 14 N (17%) for therapist resisted measurements of the group average exceeded the 95% CI and may represent real change. For individuals, hip abductor strength increases of 33 N (72%) (belt resisted) and 57 N (79%) (therapist resisted) could be interpreted as real change. Hip abductor strength can be reliably measured using HHD in the clinical setting with the described protocol. Belt resistance demonstrated slightly higher test-retest reliability. Reliable measurement of hip abductor muscle strength in patients with TKA is important to ensure deficiencies are addressed in rehabilitation programs and function is maximized. Hip abductor strength can be reliably measured with a hand-held dynamometer in the clinical setting using manual or belt resistance.

  4. Isometric abdominal wall muscle strength assessment in individuals with incisional hernia: a prospective reliability study.

    Science.gov (United States)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2016-12-01

    To determine the reliability of measurements obtained by the Good Strength dynamometer, determining isometric abdominal wall and back muscle strength in patients with ventral incisional hernia (VIH) and healthy volunteers with an intact abdominal wall. Ten patients with VIH and ten healthy volunteers with an intact abdominal wall were each examined twice with a 1 week interval. Examination included the assessment of truncal flexion and extension as measured with the Good Strength dynamometer, the completion of the International Physical Activity Questionnaire (IPAQ) and the self-assessment of truncal strength on a visual analogue scale (SATS). The test-retest reliability of truncal flexion and extension was assessed by interclass correlation coefficient (ICC), and Bland and Altman graphs. Finally, correlations between truncal strength, and IPAQ and SATS were examined. Truncal flexion and extension showed excellent test-retest reliability for both patients with VIH (ICC 0.91 and 0.99) and healthy controls (ICC 0.97 and 0.96). Bland and Altman plots showed that no systematic bias was present for neither truncal flexion nor extension when assessing reliability. For patients with VIH, no significant correlations between objective measures of truncal strength and IPAQ or SATS were found. For healthy controls, both truncal flexion (τ 0.58, p = 0.025) and extension (τ 0.58, p = 0.025) correlated significantly with SATS, while no other significant correlation between truncal strength measures and IPAQ was found. The Good Strength dynamometer provided a reliable, low-cost measure of truncal flexion and extension in patients with VIH.

  5. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  6. Development of a highly reliable CRT processor

    International Nuclear Information System (INIS)

    Shimizu, Tomoya; Saiki, Akira; Hirai, Kenji; Jota, Masayoshi; Fujii, Mikiya

    1996-01-01

    Although CRT processors have been employed by the main control board to reduce the operator's workload during monitoring, the control systems are still operated by hardware switches. For further advancement, direct controller operation through a display device is expected. A CRT processor providing direct controller operation must be as reliable as the hardware switches are. The authors are developing a new type of highly reliable CRT processor that enables direct controller operations. In this paper, we discuss the design principles behind a highly reliable CRT processor. The principles are defined by studies of software reliability and of the functional reliability of the monitoring and operation systems. The functional configuration of an advanced CRT processor is also addressed. (author)

  7. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  8. Isometric hand grip strength measured by the Nintendo Wii Balance Board - a reliable new method.

    Science.gov (United States)

    Blomkvist, A W; Andersen, S; de Bruin, E D; Jorgensen, M G

    2016-02-03

    Low hand grip strength is a strong predictor for both long-term and short-term disability and mortality. The Nintendo Wii Balance Board (WBB) is an inexpensive, portable, wide-spread instrument with the potential for multiple purposes in assessing clinically relevant measures including muscle strength. The purpose of the study was to explore intrarater reliability and concurrent validity of the WBB by comparing it to the Jamar hand dynamometer. Intra-rater test-retest cohort design with randomized validity testing on the first session. Using custom WBB software, thirty old adults (69.0 ± 4.2 years of age) were studied for reproducibility and concurrent validity compared to the Jamar hand dynamometer. Reproducibility was tested for dominant and non-dominant hands during the same time-of-day, one week apart. Intraclass correlation coefficient (ICC) and standard error of measurement (SEM) and limits of agreement (LOA) were calculated to describe relative and absolute reproducibility respectively. To describe concurrent validity, Pearson's product-moment correlation and ICC was calculated. Reproducibility was high with ICC values of >0.948 across all measures. Both SEM and LOA were low (0.2-0.5 kg and 2.7-4.2 kg, respectively) in both the dominant and non-dominant hand. For validity, Pearson correlations were high (0.80-0.88) and ICC values were fair to good (0.763-0.803). Reproducibility for WBB was high for relative measures and acceptable for absolute measures. In addition, concurrent validity between the Jamar hand dynamometer and the WBB was acceptable. Thus, the WBB may be a valid instrument to assess hand grip strength in older adults.

  9. Reliability and validity of the Performance Recorder 1 for measuring isometric knee flexor and extensor strength.

    Science.gov (United States)

    Neil, Sarah E; Myring, Alec; Peeters, Mon Jef; Pirie, Ian; Jacobs, Rachel; Hunt, Michael A; Garland, S Jayne; Campbell, Kristin L

    2013-11-01

    Muscular strength is a key parameter of rehabilitation programs and a strong predictor of functional capacity. Traditional methods to measure strength, such as manual muscle testing (MMT) and hand-held dynamometry (HHD), are limited by the strength and experience of the tester. The Performance Recorder 1 (PR1) is a strength assessment tool attached to resistance training equipment and may be a time- and cost-effective tool to measure strength in clinical practice that overcomes some limitations of MMT and HHD. However, reliability and validity of the PR1 have not been reported. Test-retest and inter-rater reliability was assessed using the PR1 in healthy adults (n  =  15) during isometric knee flexion and extension. Criterion-related validity was assessed through comparison of values obtained from the PR1 and Biodex® isokinetic dynamometer. Test-retest reliability was excellent for peak knee flexion (intra-class correlation coefficient [ICC] of 0.96, 95% CI: 0.85, 0.99) and knee extension (ICC  =  0.96, 95% CI: 0.87, 0.99). Inter-rater reliability was also excellent for peak knee flexion (ICC  =  0.95, 95% CI: 0.85, 0.99) and peak knee extension (ICC  =  0.97, 95% CI: 0.91, 0.99). Validity was moderate for peak knee flexion (ICC  =  0.75, 95% CI: 0.38, 0.92) but poor for peak knee extension (ICC  =  0.37, 95% CI: 0, 0.73). The PR1 provides a reliable measure of isometric knee flexor and extensor strength in healthy adults that could be used in the clinical setting, but absolute values may not be comparable to strength assessment by gold-standard measures.

  10. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  11. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  12. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  13. Reliability of the Handgrip Strength Test in Elderly Subjects With Parkinson Disease.

    Science.gov (United States)

    Villafañe, Jorge H; Valdes, Kristin; Buraschi, Riccardo; Martinelli, Marco; Bissolotti, Luciano; Negrini, Stefano

    2016-03-01

    The handgrip strength test is widely used by clinicians; however, little has been investigated about its reliability when used in subjects with Parkinson disease (PD). The purpose of this study was to investigate the test-retest reliability of the handgrip strength test for subjects with PD. The PD group consisted of 15 patients, and the control group consisted of 15 healthy subjects. Each patient performed 3 pain-free maximal isometric contractions on each hand on 2 occasions, 1 week apart. Intraclass correlation coefficient (ICC), standard error of measurement (SEM), and 95% limits of agreement (LOA) were calculated. The 2-way analysis of variance (ANOVA) was conducted to determine the differences between sides and groups. Test-retest reliability of measurements of grip strength was excellent for dominant (ICC = 0.97; P = .001) and non-dominant (ICC = 0.98; P = .001) hand of participant with PD and (ICC = 0.99; P = .001) and (ICC = 0.99; P = .001) respectively, of healthy group. The Jamar hand dynamometer had fair to excellent test-retest reliability to test grip strength in participants with PD.

  14. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  15. Low-Budget Instrumentation of a Conventional Leg Press to Measure Reliable Isometric-Strength Capacity.

    Science.gov (United States)

    Baur, Heiner; Groppa, Alessia Severina; Limacher, Regula; Radlinger, Lorenz

    2016-02-02

    Maximum strength and rate of force development (RFD) are 2 important strength characteristics for everyday tasks and athletic performance. Measurements of both parameters must be reliable. Expensive isokinetic devices with isometric modes are often used. The possibility of cost-effective measurements in a practical setting would facilitate quality control. The purpose of this study was to assess the reliability of measurements of maximum isometric strength (Fmax) and RFD on a conventional leg press. Sixteen subjects (23 ± 2 y, 1.68 ± 0.05 m, 59 ± 5 kg) were tested twice within 1 session. After warm-up, subjects performed 2 times 5 trials eliciting maximum voluntary isometric contractions on an instrumented leg press (1- and 2-legged randomized). Fmax (N) and RFD (N/s) were extracted from force-time curves. Reliability was determined for Fmax and RFD by calculating the intraclass correlation coefficient (ICC), the test-retest variability (TRV), and the bias and limits of agreement. Reliability measures revealed good to excellent ICCs of .80-.93. TRV showed mean differences between measurement sessions of 0.4-6.9%. The systematic error was low compared with the absolute mean values (Fmax 5-6%, RFD 1-4%). The implementation of a force transducer into a conventional leg press provides a viable procedure to assess Fmax and RFD. Both performance parameters can be assessed with good to excellent reliability allowing quality control of interventions.

  16. RELIABILITY OF ANKLE-FOOT MORPHOLOGY, MOBILITY, STRENGTH, AND MOTOR PERFORMANCE MEASURES.

    Science.gov (United States)

    Fraser, John J; Koldenhoven, Rachel M; Saliba, Susan A; Hertel, Jay

    2017-12-01

    Assessment of foot posture, morphology, intersegmental mobility, strength and motor control of the ankle-foot complex are commonly used clinically, but measurement properties of many assessments are unclear. To determine test-retest and inter-rater reliability, standard error of measurement, and minimal detectable change of morphology, joint excursion and play, strength, and motor control of the ankle-foot complex. Reliability study. 24 healthy, recreationally-active young adults without history of ankle-foot injury were assessed by two clinicians on two occasions, three to ten days apart. Measurement properties were assessed for foot morphology (foot posture index, total and truncated length, width, arch height), joint excursion (weight-bearing dorsiflexion, rearfoot and hallux goniometry, forefoot inclinometry, 1 st metatarsal displacement) and joint play, strength (handheld dynamometry), and motor control rating during intrinsic foot muscle (IFM) exercises. Clinician order was randomized using a Latin Square. The clinicians performed independent examinations and did not confer on the findings for the duration of the study. Test-retest and inter-tester reliability and agreement was assessed using intraclass correlation coefficients (ICC 2,k ) and weighted kappa ( K w ). Test-retest reliability ICC were as follows: morphology: .80-1.00, joint excursion: .58-.97, joint play: -.67-.84, strength: .67-.92, IFM motor rating: K W -.01-.71. Inter-rater reliability ICC were as follows: morphology: .81-1.00, joint excursion: .32-.97, joint play: -1.06-1.00, strength: .53-.90, and IFM motor rating: K w .02-.56. Measures of ankle-foot posture, morphology, joint excursion, and strength demonstrated fair to excellent test-retest and inter-rater reliability. Test-retest reliability for rating of perceived difficulty and motor performance was good to excellent for short-foot, toe-spread-out, and hallux exercises and poor to fair for lesser toe extension. Joint play measures had

  17. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  18. The validity and reliability of the Functional Strength Measurement (FSM) in children with intellectual disabilities.

    Science.gov (United States)

    Aertssen, W F M; Steenbergen, B; Smits-Engelsman, B C M

    2018-06-07

    There is lack of valid and reliable field-based tests for assessing functional strength in young children with mild intellectual disabilities (IDs). The aim of this study was to investigate the test-retest reliability and construct validity of the Functional Strength Measurement in children with ID (FSM-ID). Fifty-two children with mild ID (40 boys and 12 girls, mean age 8.48 years, SD = 1.48) were tested with the FSM. Test-retest reliability (n = 32) was examined by a two-way interclass correlation coefficient for agreement (ICC 2.1A). Standard error of measurement and smallest detectable change were calculated. Construct validity was determined by calculating correlations between the FSM-ID and handheld dynamometry (HHD) (convergent validity), FSM-ID, FSM-ID and subtest strength of the Bruininks-Oseretsky test of motor proficiency - second edition (BOT-2) (convergent validity) and the FSM-ID and balance subtest of the BOT-2 (discriminant validity). Test-retest reliability ICC ranged 0.89-0.98. Correlation between the items of the FSM-ID and HHD ranged 0.39-0.79 and between FSM-ID and BOT-2 (strength items) 0.41-0.80. Correlation between items of the FSM-ID and BOT-2 (balance items) ranged 0.41-0.70. The FSM-ID showed good test-retest reliability and good convergent validity with the HHD and BOT-2 subtest strength. The correlations assessing discriminant validity were higher than expected. Poor levels of postural control and core stability in children with mild IDs may be the underlying factor of those higher correlations. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  19. Strength cues and blocking at test promote reliable within-list criterion shifts in recognition memory.

    Science.gov (United States)

    Hicks, Jason L; Starns, Jeffrey J

    2014-07-01

    In seven experiments, we explored the potential for strength-based, within-list criterion shifts in recognition memory. People studied a mix of target words, some presented four times (strong) and others studied once (weak). In Experiments 1, 2, 4A, and 4B, the test was organized into alternating blocks of 10, 20, or 40 trials. Each block contained lures intermixed with strong targets only or weak targets only. In strength-cued conditions, test probes appeared in a unique font color for strong and weak blocks. In the uncued conditions of Experiments 1 and 2, similar strength blocks were tested, but strength was not cued with font color. False alarms to lures were lower in blocks containing strong target words, as compared with lures in blocks containing weak targets, but only when strength was cued with font color. Providing test feedback in Experiment 2 did not alter these results. In Experiments 3A-3C, test items were presented in a random order (i.e., not blocked by strength). Of these three experiments, only one demonstrated a significant shift even though strength cues were provided. Overall, the criterion shift was larger and more reliable as block size increased, and the shift occurred only when strength was cued with font color. These results clarify the factors that affect participants' willingness to change their response criterion within a test list.

  20. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  1. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  2. The minimum sit-to-stand height test: reliability, responsiveness and relationship to leg muscle strength.

    Science.gov (United States)

    Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette

    2012-07-01

    To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.

  3. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  4. Reliability analysis of production ships with emphasis on load combination and ultimate strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhi

    1995-05-01

    This thesis deals with ultimate strength and reliability analysis of offshore production ships, accounting for stochastic load combinations, using a typical North Sea production ship for reference. A review of methods for structural reliability analysis is presented. Probabilistic methods are established for the still water and vertical wave bending moments. Linear stress analysis of a midships transverse frame is carried out, four different finite element models are assessed. Upon verification of the general finite element code ABAQUS with a typical ship transverse girder example, for which test results are available, ultimate strength analysis of the reference transverse frame is made to obtain the ultimate load factors associated with the specified pressure loads in Det norske Veritas Classification rules for ships and rules for production vessels. Reliability analysis is performed to develop appropriate design criteria for the transverse structure. It is found that the transverse frame failure mode does not seem to contribute to the system collapse. Ultimate strength analysis of the longitudinally stiffened panels is performed, accounting for the combined biaxial and lateral loading. Reliability based design of the longitudinally stiffened bottom and deck panels is accomplished regarding the collapse mode under combined biaxial and lateral loads. 107 refs., 76 refs., 37 tabs.

  5. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  6. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  7. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  8. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  9. Reliability, Validity, and Sensitivity of a Novel Smartphone-Based Eccentric Hamstring Strength Test in Professional Football Players.

    Science.gov (United States)

    Lee, Justin W Y; Cai, Ming-Jing; Yung, Patrick S H; Chan, Kai-Ming

    2018-05-01

    To evaluate the test-retest reliability, sensitivity, and concurrent validity of a smartphone-based method for assessing eccentric hamstring strength among male professional football players. A total of 25 healthy male professional football players performed the Chinese University of Hong Kong (CUHK) Nordic break-point test, hamstring fatigue protocol, and isokinetic hamstring strength test. The CUHK Nordic break-point test is based on a Nordic hamstring exercise. The Nordic break-point angle was defined as the maximum point where the participant could no longer support the weight of his body against gravity. The criterion for the sensitivity test was the presprinting and postsprinting difference of the Nordic break-point angle with a hamstring fatigue protocol. The hamstring fatigue protocol consists of 12 repetitions of the 30-m sprint with 30-s recoveries between sprints. Hamstring peak torque of the isokinetic hamstring strength test was used as the criterion for validity. A high test-retest reliability (intraclass correlation coefficient = .94; 95% confidence interval, .82-.98) was found in the Nordic break-point angle measurements. The Nordic break-point angle significantly correlated with isokinetic hamstring peak torques at eccentric action of 30°/s (r = .88, r 2  = .77, P hamstring strength measures among male professional football players.

  10. Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.

    Science.gov (United States)

    Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A

    2015-01-01

    The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.

  11. Reliability estimate of unconfined compressive strength of black cotton soil stabilized with cement and quarry dust

    Directory of Open Access Journals (Sweden)

    Dayo Oluwatoyin AKANBI

    2017-06-01

    Full Text Available Reliability estimates of unconfined compressive strength values from laboratory results for specimens compacted at British Standard Light (BSLfor compacted quarry dust treated black cotton soil using cement for road sub – base material was developed by incorporating data obtained from Unconfined compressive strength (UCS test gotten from the laboratory test to produce a predictive model. Data obtained were incorporated into a FORTRAN-based first-order reliability program to obtain reliability index values. Variable factors such as water content relative to optimum (WRO, hydraulic modulus (HM, quarry dust (QD, cement (C, Tri-Calcium silicate (C3S, Di-calcium silicate (C2S, Tri-Calcium Aluminate (C3A, and maximum dry density (MDD produced acceptable safety index value of1.0and they were achieved at coefficient of variation (COV ranges of 10-100%. Observed trends indicate that WRO, C3S, C2S and MDD are greatly influenced by the COV and therefore must be strictly controlled in QD/C treated black cotton soil for use as sub-base material in road pavements. Stochastically, British Standard light (BSL can be used to model the 7 days unconfined compressive strength of compacted quarry dust/cement treated black cotton soil as a sub-base material for road pavement at all coefficient of variation (COV range 10 – 100% because the safety index obtained are higher than the acceptable 1.0 value.

  12. Column Grid Array Rework for High Reliability

    Science.gov (United States)

    Mehta, Atul C.; Bodie, Charles C.

    2008-01-01

    Due to requirements for reduced size and weight, use of grid array packages in space applications has become common place. To meet the requirement of high reliability and high number of I/Os, ceramic column grid array packages (CCGA) were selected for major electronic components used in next MARS Rover mission (specifically high density Field Programmable Gate Arrays). ABSTRACT The probability of removal and replacement of these devices on the actual flight printed wiring board assemblies is deemed to be very high because of last minute discoveries in final test which will dictate changes in the firmware. The questions and challenges presented to the manufacturing organizations engaged in the production of high reliability electronic assemblies are, Is the reliability of the PWBA adversely affected by rework (removal and replacement) of the CGA package? and How many times can we rework the same board without destroying a pad or degrading the lifetime of the assembly? To answer these questions, the most complex printed wiring board assembly used by the project was chosen to be used as the test vehicle, the PWB was modified to provide a daisy chain pattern, and a number of bare PWB s were acquired to this modified design. Non-functional 624 pin CGA packages with internal daisy chained matching the pattern on the PWB were procured. The combination of the modified PWB and the daisy chained packages enables continuity measurements of every soldered contact during subsequent testing and thermal cycling. Several test vehicles boards were assembled, reworked and then thermal cycled to assess the reliability of the solder joints and board material including pads and traces near the CGA. The details of rework process and results of thermal cycling are presented in this paper.

  13. Reliability of a functional test battery evaluating functionality, proprioception, and strength in recreational athletes with functional ankle instability.

    Science.gov (United States)

    Sekir, U; Yildiz, Y; Hazneci, B; Ors, F; Saka, T; Aydin, T

    2008-12-01

    In contrast to the single evaluation methods used in the past, the combination of multiple tests allows one to obtain a global assessment of the ankle joint. The aim of this study was to determine the reliability of the different tests in a functional test battery. Twenty-four male recreational athletes with unilateral functional ankle instability (FAI) were recruited for this study. One component of the test battery included five different functional ability tests. These tests included a single limb hopping course, single-legged and triple-legged hop for distance, and six and cross six meter hop for time. The ankle joint position sense and one leg standing test were used for evaluation of proprioception and sensorimotor control. The isokinetic strengths of the ankle invertor and evertor muscles were evaluated at a velocity of 120 degrees /s. The reliability of the test battery was assessed by calculating the intraclass correlation coefficient (ICC). Each subject was tested two times, with an interval of 3-5 days between the test sessions. The ICCs for ankle functional and proprioceptive ability showed high reliability (ICCs ranging from 0.94 to 0.98). Additionally, isokinetic ankle joint inversion and eversion strength measurements represented good to high reliability (ICCs between 0.82 and 0.98). The functional test battery investigated in this study proved to be a reliable tool for the assessment of athletes with functional ankle instability. Therefore, clinicians may obtain reliable information from the functional test battery during the assessment of ankle joint performance in patients with functional ankle instability.

  14. Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer.

    Science.gov (United States)

    Roth, Ralf; Donath, Lars; Kurz, Eduard; Zahner, Lukas; Faude, Oliver

    2017-03-01

    The present study aimed to assess the between day reliability of isokinetic and isometric peak torque (PT) during trunk measurement on an isokinetic device (IsoMed 2000). Test-retest-protocol on five separate days. Fifteen healthy sport students (8 female and 7 male) aged 21 to 26. PT was assessed in isometric back extension and flexion as well as right and left rotation. Isokinetic strength was captured at a speed of 60°/s and 150°/s for all tasks. For none of the assessed parameters a meaningful variation in PT during test days was observed. Relative reliability (ICC = 0.85-0.96) was excellent for all tasks. Estimates of absolute reliability as Coefficient of Variation (CoV) and Standard Error of Measurement (SEM in Nm/kg lean body mass) remained stable for isometric (6.9% strength measurement in flexion and extension or trunk rotation in either isometric or isokinetic condition is highly reliable. Therefore, it seems possible to elucidate changes which are smaller than 10% due to intervention programs when a preceding familiarization condition was applied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  16. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  17. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  18. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  19. Modeling high-Power Accelerators Reliability-SNS LINAC (SNS-ORNL); MAX LINAC (MYRRHA)

    International Nuclear Information System (INIS)

    Pitigoi, A. E.; Fernandez Ramos, P.

    2013-01-01

    Improving reliability has recently become a very important objective in the field of particle accelerators. The particle accelerators in operation are constantly undergoing modifications, and improvements are implemented using new technologies, more reliable components or redundant schemes (to obtain more reliability, strength, more power, etc.) A reliability model of SNS (Spallation Neutron Source) LINAC has been developed within MAX project and analysis of the accelerator systems reliability has been performed within the MAX project, using the Risk Spectrum reliability analysis software. The analysis results have been evaluated by comparison with the SNS operational data. Results and conclusions are presented in this paper, oriented to identify design weaknesses and provide recommendations for improving reliability of MYRRHA linear accelerator. The SNS reliability model developed for the MAX preliminary design phase indicates possible avenues for further investigation that could be needed to improve the reliability of the high-power accelerators, in view of the future reliability targets of ADS accelerators.

  20. High Reliability Prototype Quadrupole for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths

  1. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  2. Test-retest reliability of a handheld dynamometer for measurement of isometric cervical muscle strength.

    Science.gov (United States)

    Vannebo, Katrine Tranaas; Iversen, Vegard Moe; Fimland, Marius Steiro; Mork, Paul Jarle

    2018-03-02

    There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.

  3. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  4. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    Science.gov (United States)

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights

    Science.gov (United States)

    English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald

    2008-01-01

    The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.

  6. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  7. Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study

    Directory of Open Access Journals (Sweden)

    Koblbauer Ian FH

    2011-10-01

    Full Text Available Abstract Background Patients undergoing total knee arthroplasty (TKA often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements should be used. This study aimed to determine the inter- and intrarater reliability of hand-held dynamometry (HHD in measuring isometric knee strength in patients awaiting TKA. Methods To determine interrater reliability, 32 patients (81.3% female were assessed by two examiners. Patients were assessed consecutively by both examiners on the same individual test dates. To determine intrarater reliability, a subgroup (n = 13 was again assessed by the examiners within four weeks of the initial testing procedure. Maximal isometric knee flexor and extensor strength were tested using a modified Citec hand-held dynamometer. Both the affected and unaffected knee were tested. Reliability was assessed using the Intraclass Correlation Coefficient (ICC. In addition, the Standard Error of Measurement (SEM and the Smallest Detectable Difference (SDD were used to determine reliability. Results In both the affected and unaffected knee, the inter- and intrarater reliability were good for knee flexors (ICC range 0.76-0.94 and excellent for knee extensors (ICC range 0.92-0.97. However, measurement error was high, displaying SDD ranges between 21.7% and 36.2% for interrater reliability and between 19.0% and 57.5% for intrarater reliability. Overall, measurement error was higher for the knee flexors than for the knee extensors. Conclusions Modified HHD appears to be a reliable strength measure, producing good to excellent ICC values for both inter- and intrarater reliability in a group of TKA patients. High SEM and SDD values, however, indicate high measurement error for individual measures. This study demonstrates that a modified HHD is appropriate to

  8. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  9. Statistical strength properties, loading and reliability of structures made of reaction bonded silicon nitride

    International Nuclear Information System (INIS)

    Maier, H.R.; Nink, H.; Krauth, A.

    1977-01-01

    A prediction of the reliability of structural components requires the definition of transfer data from the combination of materials data, design criteria and application conditions. The determination and transfer of strength data are one unit and therefore similar approximations are necessary. The influence of loading conditions, proof testing and analysing methods is explained with bending tests of rectangular specimens and burst tests of big tubes at room temperature. The drop in strength from 180 N/mm 2 to 50 N/mm 2 via a size factor of 10 5 is predicted and experimentally verified with the most simple statistical extension. The results have been applied to special problems of stress concentrations and give conclusions for test techniques and design fundamentals. (orig.) [de

  10. Bayesian and Classical Estimation of Stress-Strength Reliability for Inverse Weibull Lifetime Models

    Directory of Open Access Journals (Sweden)

    Qixuan Bi

    2017-06-01

    Full Text Available In this paper, we consider the problem of estimating stress-strength reliability for inverse Weibull lifetime models having the same shape parameters but different scale parameters. We obtain the maximum likelihood estimator and its asymptotic distribution. Since the classical estimator doesn’t hold explicit forms, we propose an approximate maximum likelihood estimator. The asymptotic confidence interval and two bootstrap intervals are obtained. Using the Gibbs sampling technique, Bayesian estimator and the corresponding credible interval are obtained. The Metropolis-Hastings algorithm is used to generate random variates. Monte Carlo simulations are conducted to compare the proposed methods. Analysis of a real dataset is performed.

  11. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  12. A novel high reliability CMOS SRAM cell

    Energy Technology Data Exchange (ETDEWEB)

    Xie Chengmin; Wang Zhongfang; Wu Longsheng; Liu Youbao, E-mail: hglnew@sina.com [Computer Research and Design Department, Xi' an Microelectronic Technique Institutes, Xi' an 710054 (China)

    2011-07-15

    A novel 8T single-event-upset (SEU) hardened and high static noise margin (SNM) SRAM cell is proposed. By adding one transistor paralleled with each access transistor, the drive capability of pull-up PMOS is greater than that of the conventional cell and the read access transistors are weaker than that of the conventional cell. So the hold, read SNM and critical charge increase greatly. The simulation results show that the critical charge is almost three times larger than that of the conventional 6T cell by appropriately sizing the pull-up transistors. The hold and read SNM of the new cell increase by 72% and 141.7%, respectively, compared to the 6T design, but it has a 54% area overhead and read performance penalty. According to these features, this novel cell suits high reliability applications, such as aerospace and military. (semiconductor integrated circuits)

  13. A novel high reliability CMOS SRAM cell

    International Nuclear Information System (INIS)

    Xie Chengmin; Wang Zhongfang; Wu Longsheng; Liu Youbao

    2011-01-01

    A novel 8T single-event-upset (SEU) hardened and high static noise margin (SNM) SRAM cell is proposed. By adding one transistor paralleled with each access transistor, the drive capability of pull-up PMOS is greater than that of the conventional cell and the read access transistors are weaker than that of the conventional cell. So the hold, read SNM and critical charge increase greatly. The simulation results show that the critical charge is almost three times larger than that of the conventional 6T cell by appropriately sizing the pull-up transistors. The hold and read SNM of the new cell increase by 72% and 141.7%, respectively, compared to the 6T design, but it has a 54% area overhead and read performance penalty. According to these features, this novel cell suits high reliability applications, such as aerospace and military. (semiconductor integrated circuits)

  14. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  15. High reliability megawatt transformer/rectifier

    Science.gov (United States)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.

  16. Learning Organizations in High Reliability Industries

    International Nuclear Information System (INIS)

    Schwalbe, D.; Wächter, C.

    2016-01-01

    Full text: Humans make mistakes. Sometimes we learn from them. In a high reliability organization we have to learn before an error leads to an incident (or even accident). Therefore the “human factor” is most important as most of the time the human is the last line of defense. The “human factor” is more than communication or leadership skills. At the end, it is the personal attitude. This attitude has to be safety minded. And this attitude has to be self-reflected continuously. Moreover, feedback from others is urgently needed to improve one’s personal skills daily and learn from our own experience as well as from others. (author

  17. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order...... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...

  18. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  19. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  20. High reliability fuel in the US

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Leggett, R.D.; Walters, L.C.; Matthews, R.B.

    1986-05-01

    The fuels development program of the United States is described for liquid metal reactors (LMR's). The experience base, status and future potential are discussed for the three systems - oxide, metal and carbide - that have proved to have high reliability. Information is presented showing burnup capability of the oxide fuel system in a large core, e.g., FFTF, to be 150 MWd/kgM with today's technology with the potential for a capability as high as 300 MWd/kgM. Data provided for the metal fuel system show 8 at. % being routinely achieved as the EBR-II driver fuel with good potential for extending this to 15 at. % since special test pins have already exceeded this burnup level. The data included for the carbide fuel system are from pin and assembly irradiations in EBR-II and FFTF, respectively. Burnup to 12 at. % appears readily achievable with burnups to 20 at. % being demonstrated in a few pins. Efforts continue on all three systems with the bulk of the activity on metal and oxide

  1. Systems reliability in high risk situations

    International Nuclear Information System (INIS)

    Hunns, D.M.

    1974-12-01

    A summary is given of five papers and the discussion of a seminar promoted by the newly-formed National Centre of Systems Reliability. The topics covered include hazard analysis, reliability assessment, and risk assessment in both nuclear and non-nuclear industries. (U.K.)

  2. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-01-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  3. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-05-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  4. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  5. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  6. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  7. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  8. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  9. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  10. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    Science.gov (United States)

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  11. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  12. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  13. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Grimaldi, Alison; Pua, Yong-Hao; Clark, Ross A

    2017-02-01

    Firstly to describe the reliability of assessing maximal isometric strength of the hip abductor and adductor musculature using a hand held dynamometry (HHD) protocol with simultaneous wireless surface electromyographic (sEMG) evaluation of the gluteus medius (GM) and adductor longus (AL). Secondly, to describe the correlation between isometric strength recorded with the HHD protocol and a laboratory standard isokinetic device. Reliability and correlational study. A sample of 24 elite, male, junior, rugby league athletes, age 16-20 years participated in repeated HHD and isometric Kin-Com (KC) strength testing with simultaneous sEMG assessment, on average (range) 6 (5-7) days apart by a single assessor. Strength tests included; unilateral hip abduction (ABD) and adduction (ADD) and bilateral ADD assessed with squeeze (SQ) tests in 0 and 45° of hip flexion. HHD demonstrated good to excellent inter-session reliability for all outcome measures (ICC (2,1) =0.76-0.91) and good to excellent association with the laboratory reference KC (ICC (2,1) =0.80-0.88). Whilst intra-session, inter-trial reliability of EMG activation and co-activation outcome measures ranged from moderate to excellent (ICC (2,1) =0.70-0.94), inter-session reliability was poor (all ICC (2,1) Isometric strength testing of the hip ABD and ADD musculature using HHD may be measured reliably in elite, junior rugby league athletes. Due to the poor inter-session reliability of sEMG measures, it is not recommended for athlete screening purposes if using the techniques implemented in this study. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Feasibility and test-retest reliability of measuring lower‑limb strength in young children with cerebral palsy.

    Science.gov (United States)

    Van Vulpen, L F; De Groot, S; Becher, J G; De Wolf, G S; Dallmeijer, A J

    2013-12-01

    Quantifying leg muscle strength in young children with cerebral palsy (CP) is essential for identifying muscle groups for treatment and for monitoring progress. To study the feasibility, intratester reliability and the optimal test design (number of test occasions and repetitions) of measuring lower-limb strength with handheld dynamometry (HHD) and dynamic ankle plantar flexor strength with the standing heel-rise (SH) test in 3-10 year aged children with CP. Test-retest design. Rehabilitation centre, special needs school for children with disabilities, and university medical centre. Knee extensor, hip abductor and calf muscle strength was assessed in 20 ambulatory children with spastic CP (3-5 years [N.=10] and 6-10 years [N.=10]) on two test occasions. Intraclass correlation coefficients (ICC) and Smallest Detectable Differences (SDD) were calculated to determine the optimal test design for detecting changes in strength. All isometric strength tests had acceptable SDDs (9-30%), when taking the mean values of 2-3 test occasions (separate days) and 2-3 repetitions. The one-leg SH test had large SDDs (40-128% for younger group, 23-48% for older group). Isometric strength (improvements) can only be measured reliably with HHD in young children with CP when the average values over at least 2 test occasions are taken. Reliability of the SH test is not sufficient for measuring individual changes in dynamic muscle strength in the younger children. Results of this study can be used to determine the optimal number of test occasions and repetitions for reliable HHD measurements depending on expected changes, muscle group and age in 3-10 year old children with CP.

  15. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  16. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  17. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  18. Unilateral lower limb strength assessed using the Nintendo Wii Balance Board: a simple and reliable method.

    Science.gov (United States)

    Blomkvist, A W; Andersen, S; de Bruin, E; Jorgensen, M G

    2017-10-01

    Lower limb weakness is an important risk factor for fall accidents and a predictor for all-cause mortality among older adults. Unilateral whole-lower limb strength may be a better measure of fall risk than the bilateral measure. In addition, a number of clinical conditions affect only one leg, and thus this type of assessment is relevant in clinical settings. To explore the intra-rater reproducibility of the Nintendo Wii Balance Board (WBB) to measure unilateral whole-lower limb strength and to compare the method with stationary isometric muscle apparatus (SID). Intra-rater test-retest design with 1 week between sessions. Thirty community-dwelling older adults (69 ± 4.2 years) were enrolled and examined for maximum lower limb strength in their dominant and non-dominant leg. Intraclass correlation coefficient (ICC) was calculated to describe relative reproducibility, while standard error of measurement (SEM), limits of agreement (LOA) and smallest real difference (SRD) were calculated to describe absolute reproducibility between test sessions. Concurrent validity with the SID was explored using the Pearson product-moment correlation coefficient (PCC). No systematic difference was observed between test sessions. ICC was 0.919-0.950 and SEM, LOA and SRD was 2.9-4.1 kg, 24.1-28.3 kg and 7.6-11.3 kg, respectively. Further, the PCC was 0.755 and 0.730 for the dominant limb and the non-dominant limb, respectively. A high relative and an acceptable absolute reproducibility was seen when using the Nintendo Wii Balance Board for testing unilateral lower limb strength in community-dwelling older adults. The WBB correlated strongly with the SID.

  19. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  20. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  1. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  2. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  3. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    Science.gov (United States)

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  4. Assessing Character Strengths in Youth with Intellectual Disability: Reliability and Factorial Validity of the VIA-Youth

    Science.gov (United States)

    Shogren, Karrie A.; Shaw, Leslie A.; Raley, Sheida K.; Wehmeyer, Michael L.; Niemiec, Ryan M.; Adkins, Megan

    2018-01-01

    This article reports the results of an examination of the endorsement, reliability, and factorial validity of the VIA--Youth and assessment of character strengths and virtues developed for the general population in youth with and without intellectual disability. Findings suggest that, generally, youth with intellectual disability endorsed…

  5. Feasibility and test-retest reliability of measuring lower-limb strength in young children with cerebral palsy

    NARCIS (Netherlands)

    Van Vulpen, L. F.; de Groot, Sonja; Becher, J. G.; De Wolf, G. S.; Dallmeijer, A. J.

    2013-01-01

    BACKGROUND: Quantifying leg muscle strength in young children with cerebral palsy (CP) is essential for identifying muscle groups for treatment and for monitoring progress. AIM: To study the feasibility, intratester reliability and the optimal test design (number of test occasions and repetitions)

  6. Feasibility and test-retest reliability of measuring lower‑limb strength in young children with cerebral palsy

    NARCIS (Netherlands)

    van Vulpen, L. F.; de Groot, S.; Becher, J. G.; de Wolf, G. S.; Dallmeijer, A. J.

    2013-01-01

    Quantifying leg muscle strength in young children with cerebral palsy (CP) is essential for identifying muscle groups for treatment and for monitoring progress. To study the feasibility, intratester reliability and the optimal test design (number of test occasions and repetitions) of measuring

  7. Reliability and Validity of a New Method for Isometric Back Extensor Strength Evaluation Using A Hand-Held Dynamometer.

    Science.gov (United States)

    Park, Hee-Won; Baek, Sora; Kim, Hong Young; Park, Jung-Gyoo; Kang, Eun Kyoung

    2017-10-01

    To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65-0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was -63.1 N and the upper 95% LoA was 61.1 N. This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity.

  8. Feasibility and reliability of measuring strength, sprint power, and aerobic capacity in athletes and non-athletes with cerebral palsy

    NARCIS (Netherlands)

    De Groot, Sonja; Janssen, Thomas W. J.; Evers, Marijn; Van der Luijt, Pieter; Nienhuys, Kirsten N. G.; Dallmeijer, Annet J.

    Aim The aim of this study was to analyse the feasibility and reliability of the tests used to determine muscle strength, sprint power, and aerobic capacity in athletes and non-athletes with cerebral palsy (CP). Methods Twenty individuals with spastic CP (four females, 16 males; age range 1849y;

  9. Reliability of isometric lower-extremity muscle strength measurements in children with cerebral palsy: implications for measurement design

    NARCIS (Netherlands)

    Willemse, Lydia; Brehm, Merel A.; Scholtes, Vanessa A.; Jansen, Laura; Woudenberg-Vos, Hester; Dallmeijer, Annet J.

    2013-01-01

    Children with cerebral palsy (CP) typically show muscle weakness of the lower extremities, which can be measured with the use of handheld dynamometry (HHD). The purposes of this study were: (1) to determine test-retest reliability and measurement error of isometric lower-extremity strength

  10. Feasibility and reliability of measuring strength, sprint power, and aerobic capacity in athletes and non-athletes with cerebral palsy

    NARCIS (Netherlands)

    de Groot, S.; Janssen, T.W.J.; Evers, M.; Van der Luijt, P.; Nienhuys, K.N.G.; Dallmeijer, A.J.

    2012-01-01

    Aim The aim of this study was to analyse the feasibility and reliability of the tests used to determine muscle strength, sprint power, and aerobic capacity in athletes and non-athletes with cerebral palsy (CP). Methods Twenty individuals with spastic CP (four females, 16 males; age range 18-49y;

  11. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    Science.gov (United States)

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability

  12. Intra-rater reliability and agreement of muscle strength, power and functional performance measures in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Magnusson, S Peter; Kjær, Michael

    2014-01-01

    OBJECTIVE: To investigate the reliability and agreement of measures of lower extremity muscle strength, power and functional performance in patients with hip osteoarthritis at different time intervals, and to compare these with the same measures in healthy peers. DESIGN: Intra-rater test...... extensor power, and functional performance (8-foot Up & Go, stair climbing, chair stand and 6-min walk) were measured in patients, and quadriceps strength, leg extensor power and functional performance were measured in healthy peers. Systematic error, reliability and agreement were calculated. RESULTS......-retest separated by 1, 2, or 2.5 weeks in patients, and 1 week in healthy peers. SUBJECTS: Patients with hip osteoarthritis (age range 61-83 years) with 1 (n = 37), 2 (n = 35), or 2.5 weeks (n = 15) between tests, and 35 healthy peers (age range 63-82 years). METHODS: Maximal isometric hip and thigh strength, leg...

  13. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  14. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  15. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  16. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    NARCIS (Netherlands)

    Douma, Rob; Regterschot, G.R.H.; Krijnen, Wim; Slager, Geranda; van der Schans, Cees; Zijlstra, W.

    2016-01-01

    Background: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to

  17. Reliability formulation for the strength and fire endurance of glued-laminated beams

    Science.gov (United States)

    D. A. Bender

    A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...

  18. Reliability of CRBR primary piping: critique of stress-strength overlap method for cold-leg inlet downcomer

    International Nuclear Information System (INIS)

    Bari, R.A.; Buslik, A.J.; Papazoglou, I.A.

    1976-04-01

    A critique is presented of the strength-stress overlap method for the reliability of the CRBR primary heat transport system piping. The report addresses, in particular, the reliability assessment of WARD-D-0127 (Piping Integrity Status Report), which is part of the CRBR PSAR docket. It was found that the reliability assessment is extremely sensitive to the assumed shape for the probability density function for the strength (regarded as a random variable) of the cold-leg inlet downcomer section of the primary piping. Based on the rigorous Chebyschev inequality, it is shown that the piping failure probability is less than 10 -2 . On the other hand, it is shown that the failure probability can be much larger than approximately 10 -13 , the typical value put forth in WARD-D-0127

  19. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  20. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  1. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  2. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  3. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  4. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players.

    Science.gov (United States)

    Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J

    2017-01-01

    Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.

  5. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.

  6. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    mal stress and crack width for the tensional behaviour of concrete and has been proposed by ... stresses. To calculate concrete stress in a cross section of high strength concrete beams, failure strain is ..... American Concrete. Institute, Detroit.

  7. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  8. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  9. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  10. Reliability of a device for the knee and ankle isometric and isokinetic strength testing in older adults.

    Science.gov (United States)

    Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea

    2017-01-01

    Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (pisometric strength provided reliable test-retest measures in healthy older adults. Ib.

  11. A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrastable, narrow linewidth, high reliability MOPA sources are needed for high performance LIDARs in NASA for, wind speed measurement, surface topography and earth...

  12. High Reliability Oscillators for Terahertz Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To develop reliable THz sources with high power and high DC-RF efficiency, Virginia Diodes, Inc. will develop a thorough understanding of the complex interactions...

  13. Test-retest reliability of handgrip strength measurement using a hydraulic hand dynamometer in patients with cervical radiculopathy.

    Science.gov (United States)

    Savva, Christos; Giakas, Giannis; Efstathiou, Michalis; Karagiannis, Christos

    2014-01-01

    The purpose of this study was to evaluate the test-retest reliability of handgrip strength measurement using a hydraulic hand dynamometer in patients with cervical radiculopathy (CR). A convenience sample of 19 participants (14 men and 5 women; mean ± SD age, 50.5 ± 12 years) with CR was measured using a Jamar hydraulic hand dynamometer by the same rater on 2 different testing sessions with an interval of 7 days between sessions. Data collection procedures followed standardized grip strength testing guidelines established by the American Society of Hand Therapists. During the repeated measures, patients were advised to rest their upper limb in the standardized arm position and encouraged to exert 3 maximum gripping efforts. The mean value of the 3 efforts (measured in kilogram force [Kgf]) was used for data analysis. The intraclass correlation coefficient, SEM, and the Bland-Altman plot were used to estimate test-retest reliability and measurement precision. Grip strength measurement in CR demonstrated an intraclass correlation coefficient of 0.976, suggesting excellent test-retest reliability. The small SEM in both testing sessions (SEM1, 2.41 Kgf; SEM2, 2.51 Kgf) as well as the narrow width of the 95% limits of agreements (95% limits of agreement, -4.9 to 4.4 Kgf) in the Bland-Altman plot reflected precise measurements of grip strength in both occasions. Excellent test-retest reliability for grip strength measurement was measured in patients with CR, demonstrating that a hydraulic hand dynamometer could be used as an outcome measure for these patients. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  14. Seeking high reliability in primary care: Leadership, tools, and organization.

    Science.gov (United States)

    Weaver, Robert R

    2015-01-01

    Leaders in health care increasingly recognize that improving health care quality and safety requires developing an organizational culture that fosters high reliability and continuous process improvement. For various reasons, a reliability-seeking culture is lacking in most health care settings. Developing a reliability-seeking culture requires leaders' sustained commitment to reliability principles using key mechanisms to embed those principles widely in the organization. The aim of this study was to examine how key mechanisms used by a primary care practice (PCP) might foster a reliability-seeking, system-oriented organizational culture. A case study approach was used to investigate the PCP's reliability culture. The study examined four cultural artifacts used to embed reliability-seeking principles across the organization: leadership statements, decision support tools, and two organizational processes. To decipher their effects on reliability, the study relied on observations of work patterns and the tools' use, interactions during morning huddles and process improvement meetings, interviews with clinical and office staff, and a "collective mindfulness" questionnaire. The five reliability principles framed the data analysis. Leadership statements articulated principles that oriented the PCP toward a reliability-seeking culture of care. Reliability principles became embedded in the everyday discourse and actions through the use of "problem knowledge coupler" decision support tools and daily "huddles." Practitioners and staff were encouraged to report unexpected events or close calls that arose and which often initiated a formal "process change" used to adjust routines and prevent adverse events from recurring. Activities that foster reliable patient care became part of the taken-for-granted routine at the PCP. The analysis illustrates the role leadership, tools, and organizational processes play in developing and embedding a reliable-seeking culture across an

  15. Clinical assessment of hip strength using a hand-held dynamometer is reliable

    DEFF Research Database (Denmark)

    Thorborg, K; Petersen, J; Magnusson, S P

    2010-01-01

    Hip strength assessment plays an important role in the clinical examination of the hip and groin region. The primary aim of this study was to examine the absolute test-retest measurement variation concerning standardized strength assessments of hip abduction (ABD), adduction (ADD), external...... tests. No systematic differences were present. Standardized strength assessment procedures of hip ABD, ER, IR, FLEX, with test-retest measurement variation below 5%, hip ADD below 6% and hip EXT below 8%, make it possible to determine even small changes in hip strength at the individual level....

  16. Reliability and validity of a low load endurance strength test for upper and lower extremities in patients with fibromyalgia.

    Science.gov (United States)

    Munguía-Izquierdo, Diego; Legaz-Arrese, Alejandro

    2012-11-01

    To evaluate the reliability, standard error of the mean (SEM), clinical significant change, and known group validity of 2 assessments of endurance strength to low loads in patients with fibromyalgia syndrome (FS). Cross-sectional reliability and comparative study. University Pablo de Olavide, Seville, Spain. Middle-aged women with FS (n=95) and healthy women (n=64) matched for age, weight, and body mass index (BMI) were recruited for the study. Not applicable. The endurance strength to low loads tests of the upper and lower extremities and anthropometric measures (BMI) were used for the evaluations. The differences between the readings (tests 1 and 2) and the SDs of the differences, intraclass correlation coefficient (ICC) model (2,1), 95% confidence interval for the ICC, coefficient of repeatability, intrapatient SD, SEM, Wilcoxon signed-rank test, and Bland-Altman plots were used to examine reliability. A Mann-Whitney U test was used to analyze the differences in test values between the patient group and the control group. We hypothesized that patients with FS would have an endurance strength to low loads performance in lower and upper extremities at least twice as low as that of the healthy controls. Satisfactory test-retest reliability and SEMs were found for the lower extremity, dominant arm, and nondominant arm tests (ICC=.973-.979; P.05 for all). The Bland-Altman plots showed 95% limits of agreement for the lower extremity (4.7 to -4.5), dominant arm (3.8 to -4.4), and nondominant arm (3.9 to -4.1) tests. The endurance strength to low loads test scores for the patients with FS were 4-fold lower than for the controls in all performed tests (P<.001 for all). The endurance strength to low loads tests showed good reliability and known group validity and can be recommended for evaluating endurance strength to low loads in patients with FS. For individual evaluation, however, an improved score of at least 4 and 5 repetitions for the upper and lower extremities

  17. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  18. High-reliability health care: getting there from here.

    Science.gov (United States)

    Chassin, Mark R; Loeb, Jerod M

    2013-09-01

    Despite serious and widespread efforts to improve the quality of health care, many patients still suffer preventable harm every day. Hospitals find improvement difficult to sustain, and they suffer "project fatigue" because so many problems need attention. No hospitals or health systems have achieved consistent excellence throughout their institutions. High-reliability science is the study of organizations in industries like commercial aviation and nuclear power that operate under hazardous conditions while maintaining safety levels that are far better than those of health care. Adapting and applying the lessons of this science to health care offer the promise of enabling hospitals to reach levels of quality and safety that are comparable to those of the best high-reliability organizations. We combined the Joint Commission's knowledge of health care organizations with knowledge from the published literature and from experts in high-reliability industries and leading safety scholars outside health care. We developed a conceptual and practical framework for assessing hospitals' readiness for and progress toward high reliability. By iterative testing with hospital leaders, we refined the framework and, for each of its fourteen components, defined stages of maturity through which we believe hospitals must pass to reach high reliability. We discovered that the ways that high-reliability organizations generate and maintain high levels of safety cannot be directly applied to today's hospitals. We defined a series of incremental changes that hospitals should undertake to progress toward high reliability. These changes involve the leadership's commitment to achieving zero patient harm, a fully functional culture of safety throughout the organization, and the widespread deployment of highly effective process improvement tools. Hospitals can make substantial progress toward high reliability by undertaking several specific organizational change initiatives. Further research

  19. High-Reliability Health Care: Getting There from Here

    Science.gov (United States)

    Chassin, Mark R; Loeb, Jerod M

    2013-01-01

    Context Despite serious and widespread efforts to improve the quality of health care, many patients still suffer preventable harm every day. Hospitals find improvement difficult to sustain, and they suffer “project fatigue” because so many problems need attention. No hospitals or health systems have achieved consistent excellence throughout their institutions. High-reliability science is the study of organizations in industries like commercial aviation and nuclear power that operate under hazardous conditions while maintaining safety levels that are far better than those of health care. Adapting and applying the lessons of this science to health care offer the promise of enabling hospitals to reach levels of quality and safety that are comparable to those of the best high-reliability organizations. Methods We combined the Joint Commission's knowledge of health care organizations with knowledge from the published literature and from experts in high-reliability industries and leading safety scholars outside health care. We developed a conceptual and practical framework for assessing hospitals’ readiness for and progress toward high reliability. By iterative testing with hospital leaders, we refined the framework and, for each of its fourteen components, defined stages of maturity through which we believe hospitals must pass to reach high reliability. Findings We discovered that the ways that high-reliability organizations generate and maintain high levels of safety cannot be directly applied to today's hospitals. We defined a series of incremental changes that hospitals should undertake to progress toward high reliability. These changes involve the leadership's commitment to achieving zero patient harm, a fully functional culture of safety throughout the organization, and the widespread deployment of highly effective process improvement tools. Conclusions Hospitals can make substantial progress toward high reliability by undertaking several specific

  20. Fracture toughness and reliability in high-temperature structural ...

    Indian Academy of Sciences (India)

    Unknown

    advanced propulsion systems, such as gas turbine engines .... cing current commercial high strength SiC fibres such as. Nicalon ... of the polymer pyrolysis technique to produce CFCC. ... tural applications in aerospace, military, and industrial.

  1. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  2. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  3. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  4. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  5. Test-Retest Reliability of Handgrip Strength as an Outcome Measure in Patients With Symptoms of Shoulder Impingement Syndrome.

    Science.gov (United States)

    Savva, Christos; Mougiaris, Paraskevas; Xadjimichael, Christoforos; Karagiannis, Christos; Efstathiou, Michalis

    The purpose of this study was to investigate the degree of test-retest reliability of grip strength measurement using a hand dynamometer in patients with shoulder impingement syndrome. A total of 19 patients (10 women and 9 men; mean ± standard deviation age, 33.2 ± 12.9 years; range 18-59 years) with shoulder impingement syndrome were measured using a hand dynamometer by the same data collector in 2 different testing sessions with a 7-day interval. During each session, patients were encouraged to exert 3 maximal isometric contractions on the affected hand and the mean value of the 3 efforts (measured in kilogram-force [Kgf]) was used for data analysis. The intraclass correlation coefficient (ICC 2,1 ) as well as the standard error of measurement (SEM) and Bland-Altman plot were used to estimate the degree of test-retest reliability and the measurement error, respectively. Grip strength data analysis revealed an ICC 2,1 score of 0.94, which, based on the Shrout classification, is considered as excellent test-retest reliability of grip strength measurement. The small values of SEMs reported in both sessions (SEM 1 , 2.55 Kgf; SEM 2 , 2.39 Kgf) and the small width of the 95% limits of agreement in the Bland-Altman plot (ranging from -7.39 Kgf to 7.03 Kgf) reflected the measurement precision and the narrow variation of the differences during the 2 testing sessions. Results from this study identified excellent test-retest reliability of grip strength measurement in shoulder impingement syndrome, indicating its potential use as an outcome measure in clinical practice. Copyright © 2018. Published by Elsevier Inc.

  6. Intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer for geriatric and stroke patients

    OpenAIRE

    Hirano, Masahiro; Katoh, Munenori; Kawaguchi, Saori; Uemura, Tomomi

    2016-01-01

    [Purpose] This study aimed to verify the appropriate number of measurements and the intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD) for geriatric and stroke patients. [Subjects and Methods] The subjects were 40 inpatients, who were divided into two groups: 20 stroke patients in the stroke group (SG), and 20 geriatric patients in the no-stroke group (N-SG). Measurements were performed three times using an HHD with a...

  7. Validation and reliability of a modified sphygmomanometer for the assessment of handgrip strength in Parkinson´s disease

    Directory of Open Access Journals (Sweden)

    Soraia M. Silva

    2015-04-01

    Full Text Available BACKGROUND: Handgrip strength is currently considered a predictor of overall muscle strength and functional capacity. Therefore, it is important to find reliable and affordable instruments for this analysis, such as the modified sphygmomanometer test (MST. OBJECTIVES: To assess the concurrent criterion validity of the MST, to compare the MST with the Jamar dynamometer, and to analyze the reproducibility (i.e. reliability and agreement of the MST in individuals with Parkinson's disease (PD. METHOD: The authors recruited 50 subjects, 24 with PD (65.5±6.2 years of age and 26 healthy elderly subjects (63.4±7.2 years of age. The handgrip strength was measured using the Jamar dynamometer and modified sphygmomanometer. The concurrent criterion validity was analyzed using Pearson's correlation coefficient and a simple linear regression test. The reproducibility of the MST was evaluated with the coefficient of intra-class correlation (ICC2,1, the standard error of measurement (SEM, the minimal detectable change (MDC, and the Bland-Altman plot. For all of the analyses, α≤0.05 was considered a risk. RESULTS: There was a significant correlation of moderate magnitude (r≥0.45 between the MST and the Jamar dynamometer. The MST had excellent reliability (ICC2,1≥0.7. The SEM and the MDC were adequate; however, the Bland-Altman plot indicated an unsatisfactory interrater agreement. CONCLUSIONS: The MST exhibited adequate validity and excellent reliability and is, therefore, suitable for monitoring the handgrip strength in PD. However, if the goal is to compare the measurements between examiners, the authors recommend that the data be interpreted with caution.

  8. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    Science.gov (United States)

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  9. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  10. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  11. Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles.

    Science.gov (United States)

    Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert

    2018-01-10

    To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.

  12. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  13. Strength Measurements in Acute Hamstring Injuries: Intertester Reliability and Prognostic Value of Handheld Dynamometry

    NARCIS (Netherlands)

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H.; Tol, Johannes L.; Verhaar, Jan A. N.; Weir, Adam

    2016-01-01

    Study Design Cohort study, repeated measures. Background Although hamstring strength measurements are used for assessing prognosis and monitoring recovery after hamstring injury, their actual clinical relevance has not been established. Handheld dynamometry (HHD) is a commonly used method of

  14. Clinical assessment of hip strength using a hand-held dynamometer is reliable

    DEFF Research Database (Denmark)

    Thorborg, K; Petersen, J; Magnusson, S P

    2010-01-01

    rotation (ER), internal rotation (IR), flexion (FLEX) and extension (EXT) using a hand-held dynamometer. Nine subjects (five males, four females), physically active for at least 2.5 h a week, were included. Twelve standardized isometric strength tests were performed twice with a 1-week interval in between......Hip strength assessment plays an important role in the clinical examination of the hip and groin region. The primary aim of this study was to examine the absolute test-retest measurement variation concerning standardized strength assessments of hip abduction (ABD), adduction (ADD), external...... by the same examiner. The test order was randomized to avoid systematic bias. Measurement variation between sessions was 3-12%. When the maximum value of four measurements was used, test-retest measurement variation was below 10% in 11 of the 12 individual hip strength tests and below 5% in five of the 12...

  15. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  16. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  17. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    Science.gov (United States)

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  19. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  20. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  1. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  2. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  3. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  4. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  5. Reliability and Sensitivity of the Power Push-up Test for Upper-Body Strength and Power in 6-15-Year-Old Male Athletes.

    Science.gov (United States)

    Gillen, Zachary M; Miramonti, Amelia A; McKay, Brianna D; Jenkins, Nathaniel D M; Leutzinger, Todd J; Cramer, Joel T

    2018-01-01

    Gillen, ZM, Miramonti, AA, McKay, BD, Jenkins, NDM, Leutzinger, TJ, and Cramer, JT. Reliability and sensitivity of the power push-up test for upper-body strength and power in 6-15-year-old male athletes. J Strength Cond Res 32(1): 83-96, 2018-The power push-up (PPU) test is an explosive upper-body test performed on a force plate and is currently being used in high school football combines throughout the United States. The purpose of this study was to quantify the reliability of the PPU test based on age and starting position (knees vs. toes) in young athletes. Sixty-eight boys (mean ± SD; age = 10.8 ± 2.0 years) were tested twice over 5 days. Boys were separated by age as 6-9 years (n = 16), 10-11 years (n = 26), and 12-15 years (n = 26). The PPU test was performed on a force plate while rotating from the knees vs. the toes. Measurements were peak force (PF, N), peak rate of force development (pRFD, N·s), average power (AP, W), and peak power (PP, W). Intraclass correlation coefficients (ICC2,1), SEMs, coefficients of variation (CVs), and minimum detectable changes (MDCs) were calculated to quantify reliability and sensitivity. Peak force from the knees in 10-15-year-olds, PF from the toes in 12-15-year-olds, and pRFD from the knees and toes in 12-15-year-olds were comparably reliable (ICC ≥ 0.84). Neither power measurements (AP or PP) for any age group, nor any measurements (PF, pRFD, AP, or PP) for the 6-9-year-olds were comparably reliable (ICC ≤ 0.74). When considering the reliable variables, PF was greater in the 12-15-year-olds than in 10-11-year-olds (p ≤ 0.05). In addition, in 12-15-year-olds, PF and pRFD were greater from the knees than from the toes (p ≤ 0.05). For reasons largely attributable to growth and development, the PPU test may be a reliable (ICC ≥ 0.80) and sensitive (CV ≤ 19%) measure of upper-body strength (PF), whereas pRFD was also reliable (ICC ≥ 0.80), but less sensitive (CV = 30-38%) in 10-15-year-old male athletes.

  6. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  7. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers

    Directory of Open Access Journals (Sweden)

    M.M. Kamal

    2014-04-01

    Full Text Available Ultra-high performance concrete (UHPC is a special type of concrete with extraordinary potentials in terms of strength and durability performance. Its production and application implement the most up-to-date knowledge and technology of concrete manufacturing. Sophisticated structural designs in bridges and high-rise buildings, repair works and special structures like nuclear facilities are currently the main fields of applications of UHPC. This paper aimed to evaluate the behavior of ultra-high strength concrete beams. This paper also aimed to determine the effect of adding fibers and explore their effect upon the behavior and strength of the reinforced concrete beams. A total of twelve simple concrete beams with and without shear reinforcements were tested in flexure. The main variables taken into consideration in this research were the type of fibers and the percentage of longitudinal reinforcement as well as the existence or absence of the web reinforcement. Two types of fibers were used including steel and polypropylene fibers. The behavior of the tested beams was investigated with special attention to the deflection under different stages of loading, initial cracking, cracking pattern, and ultimate load. Increased number of cracks was observed at the end of loading due to the use of fibers, which led to the reduced width of cracks. This led to increased stiffness and higher values of maximum loads.

  8. Reliability and agreement between 2 strength devices used in the newly modified and standardized Constant score

    DEFF Research Database (Denmark)

    Kristensen, Morten Tange; Aagesen, Maria; Hjerrild, Signe

    2014-01-01

    HYPOTHESIS: The new and standardized test protocol for the Constant score (CS) provides new methodology, but different devices are still used for shoulder strength testing. It was hypothesized that strength measurements using the IsoForceControl (IFC) dynamometer (MDS Medical Device Solutions......, Oberburg, Switzerland) would provide results comparable with the IDO isometer (Innovative Design Orthopaedics, Redditch, UK). MATERIALS AND METHODS: Sixty healthy subjects, aged 19 to 83 years, were studied, with 5 men and 5 women in each of 6 ten-year age groups. The IFC and IDO were used in randomized...... order with an 8-minute interval between testing. Subjects performed 3 successive trials with strong verbal encouragement, with 1 minute between trials. The best strength performance was used in the analysis. The rater and subjects were blinded to all results. RESULTS: The IFC produced 0.28-kg (0.62-lb...

  9. Reduction of the Early Autogenous Shrinkage of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Drago Saje

    2015-01-01

    Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.

  10. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  11. Maintained ship hull girder ultimate strength reliability considering corrosion and fatigue

    DEFF Research Database (Denmark)

    Hu, Yong; Cui, W.; Pedersen, Preben Terndrup

    2004-01-01

    The prupose of this paper is to propose a methodology to assess the time-variant ultimate strength of ship hull girder under the degradations of corrosion and fatigue. The effects of fatigue cracks on the tensile and compressive residual ultimate strength of stiffened panels and unstiffened plates......, webs and flanges, respectively. The effects of inspections and repair are taken into account. A minimum net thickness rule is used to determine repair policies. A procedure is proposed to determine the maximum allowable corrosion thickness of different parts of the hull cross section. The procedure...

  12. A new kind high-reliability digital reactivity meter

    International Nuclear Information System (INIS)

    Shen Feng; Jiang Zongbing

    2001-01-01

    The paper introduces a new kind of high-reliability Digital Reactivity Meter developed by the DRM developing group in designing department of Nuclear Power Institute of China. The meter has two independent measure channels, which can be set as either master-slave structure or working independently. This structure will ensure that the meter can continually fulfill its online measure task under the condition of single failure with it. It provides a solution for the conflict between nuclear station's extreme demand in DRM's reliability and instability of computer's business software platform. The instrument reaches both advance and reliability by covering a lot of kinds of complex functions in data process and display

  13. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  14. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates

    Czech Academy of Sciences Publication Activity Database

    Šestáková, L.; Bermejo, R.; Chlup, Zdeněk; Danzer, R.

    2011-01-01

    Roč. 102, č. 6 (2011), s. 613-626 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminates * Layered ceramics * Residual stress * Fracture toughness * Threshold strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.830, year: 2011

  15. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  16. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  17. Reliability, failure probability, and strength of resin-based materials for CAD/CAM restorations

    Directory of Open Access Journals (Sweden)

    Kiatlin Lim

    Full Text Available ABSTRACT Objective: This study investigated the Weibull parameters and 5% fracture probability of direct, indirect composites, and CAD/CAM composites. Material and Methods: Discshaped (12 mm diameter x 1 mm thick specimens were prepared for a direct composite [Z100 (ZO, 3M-ESPE], an indirect laboratory composite [Ceramage (CM, Shofu], and two CAD/CAM composites [Lava Ultimate (LU, 3M ESPE; Vita Enamic (VE, Vita Zahnfabrik] restorations (n=30 for each group. The specimens were polished, stored in distilled water for 24 hours at 37°C. Weibull parameters (m= modulus of Weibull, σ0= characteristic strength and flexural strength for 5% fracture probability (σ5% were determined using a piston-on-three-balls device at 1 MPa/s in distilled water. Statistical analysis for biaxial flexural strength analysis were performed either by both one-way ANOVA and Tukey's post hoc (α=0.05 or by Pearson's correlation test. Results: Ranking of m was: VE (19.5, LU (14.5, CM (11.7, and ZO (9.6. Ranking of σ0 (MPa was: LU (218.1, ZO (210.4, CM (209.0, and VE (126.5. σ5% (MPa was 177.9 for LU, 163.2 for CM, 154.7 for Z0, and 108.7 for VE. There was no significant difference in the m for ZO, CM, and LU. VE presented the highest m value and significantly higher than ZO. For σ0 and σ5%, ZO, CM, and LU were similar but higher than VE. Conclusion: The strength characteristics of CAD/ CAM composites vary according to their composition and microstructure. VE presented the lowest strength and highest Weibull modulus among the materials.

  18. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  19. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  20. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  1. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  2. Performance assessment on high strength steel endplate connections after fire

    NARCIS (Netherlands)

    Qiang, X.; Wu, N.; Jiang, X.; Bijlaard, F.S.K.; Kolstein, M.H.

    2017-01-01

    Purpose – This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire. Design/methodology/approach – An experimental and numerical study on seven endplate connections after

  3. Influence of curing regimes on compressive strength of ultra high

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  4. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  5. Oxidation Phenomena in Advanced High Strength Steels : Modelling and Experiment

    NARCIS (Netherlands)

    Mao, W.

    2018-01-01

    Galvanized advanced high strength steels (AHSS) will be the most competitive structural material for automotive applications in the next decade. Oxidation of AHSS during the recrystalization annealing process in a continuous galvanizing line to a large extent influences the quality of zinc coating

  6. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  7. [Absolute and relative strength-endurance of the knee flexor and extensor muscles: a reliability study using the IsoMed 2000-dynamometer].

    Science.gov (United States)

    Dirnberger, J; Wiesinger, H P; Stöggl, T; Kösters, A; Müller, E

    2012-09-01

    Isokinetic devices are highly rated in strength-related performance diagnosis. A few years ago, the broad variety of existing products was extended by the IsoMed 2000-dynamometer. In order for an isokinetic device to be clinically useful, the reliability of specific applications must be established. Although there have already been single studies on this topic for the IsoMed 2000 concerning maximum strength measurements, there has been no study regarding the assessment of strength-endurance so far. The aim of the present study was to establish the reliability for various methods of quantification of strength-endurance using the IsoMed 2000. A sample of 33 healthy young subjects (age: 23.8 ± 2.6 years) participated in one familiarisation and two testing sessions, 3-4 days apart. Testing consisted of a series 30 full effort concentric extension-flexion cycles of the right knee muscles at an angular velocity of 180 °/s. Based on the parameters Peak, Torque and Work for each repetition, indices of absolute (KADabs) and relative (KADrel) strength-endurance were derived. KADabs was calculated as the mean value of all testing repetitions, KADrel was determined in two ways: on the one hand, as the percentage decrease between the first and the last 5 repetitions (KADrelA) and on the other, as the negative slope derived from the linear regression equitation of all repetitions (KADrelB). Detection of systematic errors was performed using paired sample t-tests, relative and absolute reliability were examined using intraclass correlation coefficient (ICC 2.1) and standard error of measurement (SEM%), respectively. In general, for extension measurements concerning KADabs and - in an weakened form - KADrel high ICC -values of 0.76-0.89 combined with clinically acceptable values of SEM% of 1.2-5.9 % could be found. For flexion measurements this only applies to KADabs, whereas results for KADrel turned out to be clearly weaker with ICC- and SEM% values of 0.42-0.62 and 9

  8. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  9. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  10. Temporal Stability of Strength-Based Assessments: Test-Retest Reliability of Student and Teacher Reports

    Science.gov (United States)

    Romer, Natalie; Merrell, Kenneth W.

    2013-01-01

    This study focused on evaluating the temporal stability of self-reported and teacher-reported perceptions of students' social and emotional skills and assets. We used a test-retest reliability procedure over repeated administrations of the child, adolescent, and teacher versions of the "Social-Emotional Assets and Resilience Scales".…

  11. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    DEFF Research Database (Denmark)

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald

    2017-01-01

    As power electronic devices have tendencies to operate at higher temperatures and current densities, the demand for reliable and efficient packaging technologies are ever increasing. This paper reports the studies on application of transient liquid phase (TLP) bonding of CuSnCu systems...

  12. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  13. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  14. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  15. High-reliability computing for the smarter planet

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Graham, Paul; Manuzzato, Andrea; Dehon, Andre

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is necessary

  16. High-reliability computing for the smarter planet

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Graham, Paul [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV OF PADOVA; Dehon, Andre [UNIV OF PENN; Carter, Nicholas [INTEL CORPORATION

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is

  17. Statistical properties of material strength for reliability evaluation of components of fast reactors. Austenitic stainless steels

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato

    2015-03-01

    Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)

  18. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  19. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  20. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  1. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  2. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  3. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  4. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  5. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  6. Test-Retest Reliability of Measurements of Hand-Grip Strength Obtained by Dynamometry from Older Adults: A Systematic Review of Research in the PubMed Database.

    Science.gov (United States)

    Bohannon, R W

    2017-01-01

    A systematic review was performed to summarize literature describing the test-retest reliability of grip strength measures obtained from older adults. Relevant literature was identified via a PubMed search. Seventeen articles were deemed appropriate based on inclusion and exclusion criteria. The relative test-retest reliability of grip strength measures obtained by dynamometry was good to excellent (intra-class correlation coefficients > 0.80) in all but 3 studies, which involved older adults with severe dementia. Absolute reliability, as indicated by summary statistics such as the minimum detectable change (95%), was more variable. As a percentage, that change ranged from 14.5% to 98.5%. Consequently, clinicians can be confident in the relative reliability of grip strength measures obtained from at risk older adults. However, relatively large percentage changes in grip strength may be necessary to conclude with confidence that a real change has occurred over time in some populations.

  7. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  8. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  9. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  10. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  11. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  12. Achieving High Reliability with People, Processes, and Technology.

    Science.gov (United States)

    Saunders, Candice L; Brennan, John A

    2017-01-01

    High reliability as a corporate value in healthcare can be achieved by meeting the "Quadruple Aim" of improving population health, reducing per capita costs, enhancing the patient experience, and improving provider wellness. This drive starts with the board of trustees, CEO, and other senior leaders who ingrain high reliability throughout the organization. At WellStar Health System, the board developed an ambitious goal to become a top-decile health system in safety and quality metrics. To achieve this goal, WellStar has embarked on a journey toward high reliability and has committed to Lean management practices consistent with the Institute for Healthcare Improvement's definition of a high-reliability organization (HRO): one that is committed to the prevention of failure, early identification and mitigation of failure, and redesign of processes based on identifiable failures. In the end, a successful HRO can provide safe, effective, patient- and family-centered, timely, efficient, and equitable care through a convergence of people, processes, and technology.

  13. Efficiency criteria for high reliability measured system structures

    International Nuclear Information System (INIS)

    Sal'nikov, N.L.

    2012-01-01

    The procedures of structural redundancy are usually used to develop high reliability measured systems. To estimate efficiency of such structures the criteria to compare different systems has been developed. So it is possible to develop more exact system by inspection of redundant system data unit stochastic characteristics in accordance with the developed criteria [ru

  14. Leadership in organizations with high security and reliability requirements

    International Nuclear Information System (INIS)

    Gonzalez, F.

    2013-01-01

    Developing leadership skills in organizations is the key to ensure the sustainability of excellent results in industries with high requirements safety and reliability. In order to have a model of leadership development specific to this type of organizations, Tecnatom in 2011, we initiated a project internal, to find and adapt a competency model to these requirements.

  15. Direct unavailability computation of a maintained highly reliable system

    Czech Academy of Sciences Publication Activity Database

    Briš, R.; Byczanski, Petr

    2010-01-01

    Roč. 224, č. 3 (2010), s. 159-170 ISSN 1748-0078 Grant - others:GA Mšk(CZ) MSM6198910007 Institutional research plan: CEZ:AV0Z30860518 Keywords : high reliability * availability * directed acyclic graph Subject RIV: BA - General Mathematics http:// journals .pepublishing.com/content/rtp3178l17923m46/

  16. Research on Inhibition for Corrosion Fatigue of High Strength Alloys

    Science.gov (United States)

    1978-12-15

    4140 , $740 1225-1275 1600-1675 1525-1575 1100 1000.. 925 850 725 4340 1225-1275 1600-1650 1500-1550 1100 1045 921. 875 72531 0 0 85 7 0 (I43 7-.22...1 0 le -kI Io o CRACK GROWTH RATE PJamOC Figure 24. Factors that Affect the Crack Growth Rate of High- Strength AISI 4340 Steels in Aqueous

  17. Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study

    NARCIS (Netherlands)

    Koblbauer, Ian F. H.; Lambrecht, Yannick; van der Hulst, Micheline L. M.; Neeter, Camille; Engelbert, Raoul H. H.; Poolman, Rudolf W.; Scholtes, Vanessa A.

    2011-01-01

    Patients undergoing total knee arthroplasty (TKA) often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements

  18. Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study

    NARCIS (Netherlands)

    Koblbauer, I.F.H.; Lambrecht, Y.; van der Hulst, M.L.M.; Neeter, C.; Engelbert, R.H.H.; Poolman, R.W.; Scholtes, V.A.

    2011-01-01

    Background: Patients undergoing total knee arthroplasty (TKA) often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable

  19. High reliability low jitter 80 kV pulse generator

    International Nuclear Information System (INIS)

    Savage, Mark Edward; Stoltzfus, Brian Scott

    2009-01-01

    Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 (Omega), from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K.W. Struve, W.A. Stygar, L.K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6 (Omega), 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10 -4 . The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While

  20. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine.

    Science.gov (United States)

    Pienaar, Andries W; Barnard, Justhinus G

    2017-04-01

    This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB ® ) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB ® was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μV) and to measure the reliability of PAB ® . A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB ® force (mb) and EMG activity (μV) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB ® test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB ® device is reliable and valid.

  1. Memorial Hermann: high reliability from board to bedside.

    Science.gov (United States)

    Shabot, M Michael; Monroe, Douglas; Inurria, Juan; Garbade, Debbi; France, Anne-Claire

    2013-06-01

    In 2006 the Memorial Hermann Health System (MHHS), which includes 12 hospitals, began applying principles embraced by high reliability organizations (HROs). Three factors support its HRO journey: (1) aligned organizational structure with transparent management systems and compressed reporting processes; (2) Robust Process Improvement (RPI) with high-reliability interventions; and (3) cultural establishment, sustainment, and evolution. The Quality and Safety strategic plan contains three domains, each with a specific set of measures that provide goals for performance: (1) "Clinical Excellence;" (2) "Do No Harm;" and (3) "Saving Lives," as measured by the Serious Safety Event rate. MHHS uses a uniform approach to performance improvement--RPI, which includes Six Sigma, Lean, and change management, to solve difficult safety and quality problems. The 9 acute care hospitals provide multiple opportunities to integrate high-reliability interventions and best practices across MHHS. For example, MHHS partnered with the Joint Commission Center for Transforming Healthcare in its inaugural project to establish reliable hand hygiene behaviors, which improved MHHS's average hand hygiene compliance rate from 44% to 92% currently. Soon after compliance exceeded 85% at all 12 hospitals, the average rate of central line-associated bloodstream and ventilator-associated pneumonias decreased to essentially zero. MHHS's size and diversity require a disciplined approach to performance improvement and systemwide achievement of measurable success. The most significant cultural change at MHHS has been the expectation for 100% compliance with evidence-based quality measures and 0% incidence of patient harm.

  2. The Physician Recommendation Coding System (PhyReCS): A Reliable and Valid Method to Quantify the Strength of Physician Recommendations During Clinical Encounters.

    Science.gov (United States)

    Scherr, Karen A; Fagerlin, Angela; Williamson, Lillie D; Davis, J Kelly; Fridman, Ilona; Atyeo, Natalie; Ubel, Peter A

    2017-01-01

    Physicians' recommendations affect patients' treatment choices. However, most research relies on physicians' or patients' retrospective reports of recommendations, which offer a limited perspective and have limitations such as recall bias. To develop a reliable and valid method to measure the strength of physician recommendations using direct observation of clinical encounters. Clinical encounters (n = 257) were recorded as part of a larger study of prostate cancer decision making. We used an iterative process to create the 5-point Physician Recommendation Coding System (PhyReCS). To determine reliability, research assistants double-coded 50 transcripts. To establish content validity, we used 1-way analyses of variance to determine whether relative treatment recommendation scores differed as a function of which treatment patients received. To establish concurrent validity, we examined whether patients' perceived treatment recommendations matched our coded recommendations. The PhyReCS was highly reliable (Krippendorf's alpha = 0.89, 95% CI [0.86, 0.91]). The average relative treatment recommendation score for each treatment was higher for individuals who received that particular treatment. For example, the average relative surgery recommendation score was higher for individuals who received surgery versus radiation (mean difference = 0.98, SE = 0.18, P recommendations matched coded recommendations 81% of the time. The PhyReCS is a reliable and valid way to capture the strength of physician recommendations. We believe that the PhyReCS would be helpful for other researchers who wish to study physician recommendations, an important part of patient decision making. © The Author(s) 2016.

  3. Grinding damage assessment on four high-strength ceramics.

    Science.gov (United States)

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  4. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  6. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  7. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  8. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  9. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  10. Microstructural characterization of high strength and high conductivity nanocomposite wires

    International Nuclear Information System (INIS)

    Dupouy, F.; Snoeck, E.; Casanove, M.J.; Roucau, C.; Peyrade, J.P.; Askenazy, S.; Complexe Scientifique de Rangueil, Toulouse

    1996-01-01

    The generation of high pulsed magnetic fields by non-destructive magnets is a subject of research in several laboratories in the world. Combining copper and niobium seems to be a promising way to develop composites for such application. CuNb nanofilamentary wires with interesting mechanical properties for non-destructive magnets were obtained. For heavily deformed nanofilamentary wires, the fiber size decreases and the TEM studies reveal a strong fiber-matrix orientation relationship. The Cu/Nb interfaces become semi-coherent and almost completely relaxed, with a distance between misfit dislocations in good agreement with the theoretical predictions. As lowering the filament section improves the mechanical properties, one may expect to elaborate wires with larger numbers of dilaments exhibiting enhanced mechanical properties. The subsequent reduction of the filament section may lead to the formation of mono-crystalline Nb fibers and to perfect coherency of the Cu/Nb interfaces over larger distances

  11. Ultimate strength analysis of thin plated structures using eigen-functions. 3rd Report. Application to reliability analysis; Koyu kansu wo mochiita usuita kozobutsu no dansosei kaisekiho. 3. Shinraisei kaiseki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y. [Osaka University, Osaka (Japan). Welding Research Institute; Masaoka, K.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1996-12-31

    A reliability analysis was performed on ultimate strength of a hull by introducing reliability engineerings into the idealized structural unit method. Elements developed under the present study were applied to a model of an actual structure to indicate that even an analysis requiring much time under the finite element method can be performed in a short time and at high accuracy when this method is used. Analysis acted with bending moment and shear force simultaneously was performed on a model used as a structure in experiments carried out by Nishihara, assuming pure bending moment and longitudinal strength during slamming. Then, a reliability analysis was conducted on the same model based on this analysis method to investigate the ultimate strength. In an analysis of an ultimate strength when bending and shearing that assume slamming act upon simultaneously, axial force in the hull side decreases as loading increases, wherein how the shearing force increases can be identified clearly. Although existence of initial bends reduces the strength, the effect of variance in the vicinity of the average value on the reliability is rather small, while the effect due to variance in yield stress is greater. 27 refs., 14 figs., 4 tabs.

  12. Ultimate strength analysis of thin plated structures using eigen-functions. 3rd Report. Application to reliability analysis; Koyu kansu wo mochiita usuita kozobutsu no dansosei kaisekiho. 3. Shinraisei kaiseki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y [Osaka University, Osaka (Japan). Welding Research Institute; Masaoka, K; Okada, H [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1997-12-31

    A reliability analysis was performed on ultimate strength of a hull by introducing reliability engineerings into the idealized structural unit method. Elements developed under the present study were applied to a model of an actual structure to indicate that even an analysis requiring much time under the finite element method can be performed in a short time and at high accuracy when this method is used. Analysis acted with bending moment and shear force simultaneously was performed on a model used as a structure in experiments carried out by Nishihara, assuming pure bending moment and longitudinal strength during slamming. Then, a reliability analysis was conducted on the same model based on this analysis method to investigate the ultimate strength. In an analysis of an ultimate strength when bending and shearing that assume slamming act upon simultaneously, axial force in the hull side decreases as loading increases, wherein how the shearing force increases can be identified clearly. Although existence of initial bends reduces the strength, the effect of variance in the vicinity of the average value on the reliability is rather small, while the effect due to variance in yield stress is greater. 27 refs., 14 figs., 4 tabs.

  13. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  14. Properties of High Strength Concrete Applied on Semarang - Bawen Highway

    Science.gov (United States)

    Setiyawan, Prabowo; Antonius; Wedyowibowo, R. Hawik Jenny

    2018-04-01

    To fulfill the needs of highway construction then a high quality concrete is expected to be produced by a short time and high workability, therefore the addition of additive chemicals needs to be conducted. The objective of the study was to find out the properties of high quality concrete including slump value, compressive strength, flexural strength, elasticity modulus and stress-strain diagrams with the addition of fly ash and superplasticizer. There were five types of mixtures were made in this study with a fas (cement water factor) was 0,41 and an additional 15% of fly ash and a varied superplasticizer of 0%, 0.5%, 1%, 2% towards the weight/volume and cement/water. Test samples of cylinders and prisms or beams were tested in the laboratory at 1, 3, 7, 14, and 28 days. The test results were then compared with the test results made without additional additives. Based on the result of this research, it can be concluded that the increase of slump value due to the addition of 15% fly ash is 0,53 cm of the base slump value. The use of superplasticizer causes the weight of the type to be greater. The optimum dose of superplasticizer is 1,2%, it is still in the usage level according to the F-type admixture brochure (water reducing, high-range admixture) such as 0,6 % -1,5 %. All mixture types which use addition materials for flexural strength (fr'=45kg/cm2) can be achieved at 3 days.

  15. Assessing high reliability via Bayesian approach and accelerated tests

    International Nuclear Information System (INIS)

    Erto, Pasquale; Giorgio, Massimiliano

    2002-01-01

    Sometimes the assessment of very high reliability levels is difficult for the following main reasons: - the high reliability level of each item makes it impossible to obtain, in a reasonably short time, a sufficient number of failures; - the high cost of the high reliability items to submit to life tests makes it unfeasible to collect enough data for 'classical' statistical analyses. In the above context, this paper presents a Bayesian solution to the problem of estimation of the parameters of the Weibull-inverse power law model, on the basis of a limited number (say six) of life tests, carried out at different stress levels, all higher than the normal one. The over-stressed (i.e. accelerated) tests allow the use of experimental data obtained in a reasonably short time. The Bayesian approach enables one to reduce the required number of failures adding to the failure information the available a priori engineers' knowledge. This engineers' involvement conforms to the most advanced management policy that aims at involving everyone's commitment in order to obtain total quality. A Monte Carlo study of the non-asymptotic properties of the proposed estimators and a comparison with the properties of maximum likelihood estimators closes the work

  16. Designing reliability into high-effectiveness industrial gas turbine regenerators

    International Nuclear Information System (INIS)

    Valentino, S.J.

    1979-01-01

    The paper addresses the measures necessary to achieve a reliable regenerator design that can withstand higher temperatures (1000-1200 F) and many start and stop cycles - conditions encountered in high-efficiency operation in pipeline applications. The discussion is limited to three major areas: (1) structural analysis of the heat exchanger core - the part of the regenerator that must withstand the higher temperatures and cyclic duty (2) materials data and material selection and (3) a comprehensive test program to demonstrate the reliability of the regenerator. This program includes life-cycle tests, pressure containment in fin panels, core-to-core joint structural test, bellows pressure containment test, sliding pad test, core gas-side passage flow distribution test, and production test. Today's regenerators must have high cyclic life capability, stainless steel construction, and long fault-free service life of 120,000 hr

  17. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  18. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  19. Survey of industry methods for producing highly reliable software

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Persons, W.L.

    1994-11-01

    The Nuclear Reactor Regulation Office of the US Nuclear Regulatory Commission is charged with assessing the safety of new instrument and control designs for nuclear power plants which may use computer-based reactor protection systems. Lawrence Livermore National Laboratory has evaluated the latest techniques in software reliability for measurement, estimation, error detection, and prediction that can be used during the software life cycle as a means of risk assessment for reactor protection systems. One aspect of this task has been a survey of the software industry to collect information to help identify the design factors used to improve the reliability and safety of software. The intent was to discover what practices really work in industry and what design factors are used by industry to achieve highly reliable software. The results of the survey are documented in this report. Three companies participated in the survey: Computer Sciences Corporation, International Business Machines (Federal Systems Company), and TRW. Discussions were also held with NASA Software Engineering Lab/University of Maryland/CSC, and the AIAA Software Reliability Project

  20. Oscillator strengths for highly ionized atomic systems. Final report, May 1, 1977-December 31, 1979

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1979-12-01

    Oscillator strengths (or f-values) for resonance transitions in highly ionized atoms have assumed importance in fusion plasma research. Beam-foil spectroscopy has been able to deduce some of these values but present experimental limitations restrict its applicability. A theoretical study of trends along an isoelectronic sequence has provided an alternative approach. The Multi-configuration Hartree-Fock method (MCHF) is a general theoretical method for determining wavefunctions for atomic states from which oscillator strengths can be computed. A first-order theory has been shown to yield reliable f-values provided the ionization energy is predicted with reasonable accuracy and the transition matrix element is not sensitive to cancellation effects. General computer programs have been developed for this method and extended to include the dominant relativistic effects

  1. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  2. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  3. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  4. Achieving High Reliability Operations Through Multi-Program Integration

    Energy Technology Data Exchange (ETDEWEB)

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  5. Diagnostic value of high strength MRCP in the obstructive jaundice

    International Nuclear Information System (INIS)

    Yang Yang; Dong Yuhai; Yin Jie; Lv Guoyi

    2007-01-01

    Objective: To evaluate the diagnostic value of high strength MRCP in patients with obstructive jaundice. Methods: Routine MRI and MRCP examination on 161 patients with obstructive jaundice were carded out with 1.5T Siemens super-conductive magnetic resonance machine. Of them, 103 cases were benign lesions and 58 were malignant after surgical and ERCP pathological confirmation. Results: The diagnostic accuracy of MRCP was 100%, with the qualitative diagnostic accuracy at 90.2%. Conclusion: MRCP was the best method in diagnosing patients with obstructive jaundice, the concerned performances of MRCP could provide the dependable basis for surgical operation project. (authors)

  6. PM alloy 625M for high strength corrosion resistant applications

    International Nuclear Information System (INIS)

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper

  7. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  8. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  9. Reliability studies of high operating temperature MCT photoconductor detectors

    Science.gov (United States)

    Wang, Wei; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2010-10-01

    This paper concerns HgCdTe (MCT) infrared photoconductor detectors with high operating temperature. The near room temperature operation of detectors have advantages of light weight, less cost and convenient usage. Their performances are modest and they suffer from reliable problems. These detectors face with stability of the package, chip bonding area and passivation layers. It's important to evaluate and improve the reliability of such detectors. Defective detectors were studied with SEM(Scanning electron microscope) and microscopy. Statistically significant differences were observed between the influence of operating temperature and the influence of humidity. It was also found that humility has statistically significant influence upon the stability of the chip bonding and passivation layers, and the amount of humility isn't strongly correlated to the damage on the surface. Considering about the commonly found failures modes in detectors, special test structures were designed to improve the reliability of detectors. An accelerated life test was also implemented to estimate the lifetime of the high operating temperature MCT photoconductor detectors.

  10. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  11. Engineering high reliability, low-jitter Marx generators

    International Nuclear Information System (INIS)

    Schneider, L.X.; Lockwood, G.J.

    1985-01-01

    Multimodule pulsed power accelerators typically require high module reliability and nanosecond regime simultaneity between modules. Energy storage using bipolar Marx generators can meet these requirements. Experience gained from computer simulations and the development of the DEMON II Marx generator has led to a fundamental understanding of the operation of these multistage devices. As a result of this research, significant improvements in erection time jitter and reliability have been realized in multistage, bipolar Marx generators. Erection time jitter has been measured as low as 2.5 nanoseconds for the 3.2MV, 16-stage PBFA I Marx and 3.5 nanoseconds for the 6.0MV, 30-stage PBFA II (DEMON II) Marx, while maintaining exceptionally low prefire rates. Performance data are presented from the DEMON II Marx research program, as well as discussions on the use of computer simulations in designing low-jitter Marx generators

  12. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  13. High strength fused silica flexures manufactured by femtosecond laser

    Science.gov (United States)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  14. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  15. Determination of high-strength materials diamond grinding rational modes

    Science.gov (United States)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  16. Reliability of new software in measuring cervical multifidus diameters and shoulder muscle strength in a synchronized way; an ultrasonographic study

    Directory of Open Access Journals (Sweden)

    Leila Rahnama

    2015-08-01

    Full Text Available OBJECTIVES: This study was conducted with the purpose of evaluating the inter-session reliability of new software to measure the diameters of the cervical multifidus muscle (CMM, both at rest and during isometric contractions of the shoulder abductors in subjects with neck pain and in healthy individuals.METHOD: In the present study, the reliability of measuring the diameters of the CMM with the Sonosynch software was evaluated by using 24 participants, including 12 subjects with chronic neck pain and 12 healthy individuals. The anterior-posterior diameter (APD and the lateral diameter (LD of the CMM were measured in a resting state and then repeated during isometric contraction of the shoulder abductors. Measurements were taken on separate occasions 3 to 7 days apart in order to determine inter-session reliability. Intraclass correlation coefficient (ICC, standard error of measurement (SEM, and smallest detectable difference (SDD were used to evaluate the relative and absolute reliability, respectively.RESULTS: The Sonosynch software has shown to be highly reliable in measuring the diameters of the CMM both in healthy subjects and in those with neck pain. The ICCs 95% CI for APD ranged from 0.84 to 0.94 in subjects with neck pain and from 0.86 to 0.94 in healthy subjects. For LD, the ICC 95% CI ranged from 0.64 to 0.95 in subjects with neck pain and from 0.82 to 0.92 in healthy subjects.CONCLUSIONS: Ultrasonographic measurement of the diameters of the CMM using Sonosynch has proved to be reliable especially for APD in healthy subjects as well as subjects with neck pain.

  17. Content Validity Index and Intra- and Inter-Rater Reliability of a New Muscle Strength/Endurance Test Battery for Swedish Soldiers.

    Directory of Open Access Journals (Sweden)

    Helena Larsson

    Full Text Available The objective of this study was to examine the content validity of commonly used muscle performance tests in military personnel and to investigate the reliability of a proposed test battery. For the content validity investigation, thirty selected tests were those described in the literature and/or commonly used in the Nordic and North Atlantic Treaty Organization (NATO countries. Nine selected experts rated, on a four-point Likert scale, the relevance of these tests in relation to five different work tasks: lifting, carrying equipment on the body or in the hands, climbing, and digging. Thereafter, a content validity index (CVI was calculated for each work task. The result showed excellent CVI (≥0.78 for sixteen tests, which comprised of one or more of the military work tasks. Three of the tests; the functional lower-limb loading test (the Ranger test, dead-lift with kettlebells, and back extension, showed excellent content validity for four of the work tasks. For the development of a new muscle strength/endurance test battery, these three tests were further supplemented with two other tests, namely, the chins and side-bridge test. The inter-rater reliability was high (intraclass correlation coefficient, ICC2,1 0.99 for all five tests. The intra-rater reliability was good to high (ICC3,1 0.82-0.96 with an acceptable standard error of mean (SEM, except for the side-bridge test (SEM%>15. Thus, the final suggested test battery for a valid and reliable evaluation of soldiers' muscle performance comprised the following four tests; the Ranger test, dead-lift with kettlebells, chins, and back extension test. The criterion-related validity of the test battery should be further evaluated for soldiers exposed to varying physical workload.

  18. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  19. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  20. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  1. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  2. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  3. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  4. Characteristics of shock propagation in high-strength cement mortar

    Science.gov (United States)

    Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi

    2001-06-01

    Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.

  5. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  6. Offshore compression system design for low cost high and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Carlos J. Rocha de O.; Carrijo Neto, Antonio Dias; Cordeiro, Alexandre Franca [Chemtech Engineering Services and Software Ltd., Rio de Janeiro, RJ (Brazil). Special Projects Div.], Emails: antonio.carrijo@chemtech.com.br, carlos.rocha@chemtech.com.br, alexandre.cordeiro@chemtech.com.br

    2010-07-01

    In the offshore oil fields, the oil streams coming from the wells usually have significant amounts of gas. This gas is separated at low pressure and has to be compressed to the export pipeline pressure, usually at high pressure to reduce the needed diameter of the pipelines. In the past, this gases where flared, but nowadays there are a increasing pressure for the energy efficiency improvement of the oil rigs and the use of this gaseous fraction. The most expensive equipment of this kind of plant are the compression and power generation systems, being the second a strong function of the first, because the most power consuming equipment are the compressors. For this reason, the optimization of the compression system in terms of efficiency and cost are determinant to the plant profit. The availability of the plants also have a strong influence in the plant profit, specially in gas fields where the products have a relatively low aggregated value, compared to oil. Due this, the third design variable of the compression system becomes the reliability. As high the reliability, larger will be the plant production. The main ways to improve the reliability of compression system are the use of multiple compression trains in parallel, in a 2x50% or 3x50% configuration, with one in stand-by. Such configurations are possible and have some advantages and disadvantages, but the main side effect is the increase of the cost. This is the offshore common practice, but that does not always significantly improve the plant availability, depending of the previous process system. A series arrangement and a critical evaluation of the overall system in some cases can provide a cheaper system with equal or better performance. This paper shows a case study of the procedure to evaluate a compression system design to improve the reliability but without extreme cost increase, balancing the number of equipment, the series or parallel arrangement, and the driver selection. Two cases studies will be

  7. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  8. The Influence of Resistance Training Experience on the Between-Day Reliability of Commonly Used Strength Measures in Male Youth Athletes.

    Science.gov (United States)

    Weakley, Jonathon J S; Till, Kevin; Darrall-Jones, Joshua; Roe, Gregory A B; Phibbs, Padraic J; Read, Dale B; Jones, Ben L

    2017-07-01

    Weakley, JJS, Till, K, Darrall-Jones, J, Roe, GAB, Phibbs, PJ, Read, DB, and Jones, BL. The influence of resistance training experience on the between-day reliability of commonly used strength measures in male youth athletes. J Strength Cond Res 31(7): 2005-2010, 2017-The purpose of this study was to determine the between-day reliability of commonly used strength measures in male youth athletes while considering resistance training experience. Data were collected on 25 male athletes over 2 testing sessions, with 72 hours rest between, for the 3 repetition maximum (3RM) front squat, chin-up, and bench press. Subjects were initially categorized by resistance training experience (inexperienced; 6-12 months, experienced; >2 years). The assessment of the between-day reliability (coefficient of variation [CV%]) showed that the front squat (experienced: 2.90%; inexperienced: 1.90%), chin-up (experienced: 1.70%; inexperienced: 1.90%), and bench press (experienced: 4.50%; inexperienced: 2.40%) were all reliable measures of strength in both groups. Comparison between groups for the error of measurement for each exercise showed trivial differences. When both groups were combined, the CV% for the front squat, bench press, and chin-up were 2.50, 1.80, and 3.70%, respectively. This study provides scientists and practitioners with the between-day reliability reference data to determine real and practical changes for strength in male youth athletes with different resistance training experience. Furthermore, this study demonstrates that 3RM front squat, chin-up, and bench press are reliable exercises to quantify strength in male youth athletes.

  9. High-temperature strength of TiC-coated SUS316 stainless steel

    International Nuclear Information System (INIS)

    Kaneko, K.; Furuya, Y.; Kikuchi, M.

    1992-01-01

    Some ceramics-coated metals are nominated as first-wall material. TiC-coated type 316 stainless steel is expected to be superior to other materials in high-temperature strength and in its endurance properties at heavy irradiation. Delamination between ceramics layer and base-metal is considered to be one of the most important problems when such ceramics-coated metals are used in a temperature field with a gradient such as that of the first wall. In this report, the high-temperature strength of TiC-coated type 316 stainless steel, which should be that of the first wall of the fusion reactor, is investigated experimentally and computationally. A simple and precise thermal-stress testing system is developed. The effects of surface roughness as well as of the thermal stress and the residual stress on the bonding strength are investigated. The experimental and numerical results on the residual-stress distribution are compared with each other to confirm the reliability of the inelastic analysis using the finite-element method (FEM). It is expected that a suitable surface roughness makes the residual stress in the coated film small. The optimum range for the TiC-coating temperature is found using inelastic FEM analysis at the heating conditions used in the experiments. (orig.)

  10. Reliability of hand-held dynamometry for measurement of lower limb muscle strength in children with Duchenne and Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-05-01

    Full Text Available Objective To determine the reliability of hand-held dynamometry (HHD for lower limb isometric muscle strength measurement in children with Duchenne and Becker muscular dystrophy (DMD/BMD.  Methods A total of 21 children [20 males and one female; mean age was (7.88 ± 2.87 years, ranging between 3.96-14.09 years; mean age at diagnosis was (5.88 ± 2.88 years, ranging between 1.35-12.89 years; mean height was (120.64 ± 16.30 cm, ranging between 97-153 cm; mean body weight was (24.62 ± 9.05 kg, ranging between 14-50 kg] with DMD (19/21 and BMD (2/21 were involved from Rehabilitation Center of Children's Hospital of Fudan University. The muscle strength of hip, knee and ankle was measured by HHD under standardized test methods. The test-retest results were compared to determine the inter-test reliability, and the results among testers were compared to determine the inter-tester reliability.  Results HHD showed fine inter-tester reliability (ICC = 0.762-0.978 and inter-test reliability (ICC = 0.690-0.938 in measuring lower limb muscle strength of children with DMD/BMD. Results also showed relatively poor reliability in distal muscle groups (foot plantar flexion and dorsiflexion.  Conclusions HHD, showing fine inter-tester and inter-test reliability in measuring the lower limb muscle strength of children with DMD/BMD, can be used in monitoring muscle strength changing and assessing effects of clinical interventions. DOI: 10.3969/j.issn.1672-6731.2015.05.009

  11. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  12. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  13. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  14. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  15. Corrosion fatigue behavior of high strength brass in aqueous solutions

    International Nuclear Information System (INIS)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A.

    2000-01-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 α-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  16. CO2 laser cutting of advanced high strength steels (AHSS)

    International Nuclear Information System (INIS)

    Lamikiz, A.; Lacalle, L.N. Lopez de; Sanchez, J.A.; Pozo, D. del; Etayo, J.M.; Lopez, J.M.

    2005-01-01

    This article demonstrates the optimum working areas and cutting conditions for the laser cutting of a series of advanced high strength steels (AHSS). The parameters that most influence the cutting of sheet metal have been studied and the results have been divided into two large groups with thickness of more and less than 1 mm. The influence of the material and, more important, the effect of coating have been taken into account. The results, have demonstrate very different behaviours between the thinnest and thickest sheets, whilst the variation of the cutting parameters due to the influence of the material is less relevant. The optimum cutting areas and the quality of the cut evaluated with different criteria are presented. Finally, the best position for the laser beam has been observed to be underneath the sheet

  17. TEST-RETEST RELIABILITY OF HAND GRIP STRENGTH MEASUREMENT USING A JAMAR HAND DYNAMOMETER IN PATIENTS WITH ACUTE AND CHRONIC CERVICAL RADICULOPATHY

    Directory of Open Access Journals (Sweden)

    Ejazi G

    2017-12-01

    Full Text Available Background: To evaluate the test-retest reliability of Jamar hand held dynamometer for measuring handgrip strength (HGS in patients with acute and chronic cervical radiculopathy and to find out the difference in measurement of the handgrip strength between acute and chronic cervical radiculopathy. Methods: A prospective, observational and non-experimental, the comparative study design was used. A sample of 72 subjects (37 women and 35 men suffering from cervical radiculopathy were divided into two groups i.e., Group A(acute and Group B(chronic, handgrip strength was measured using Jamar hand held dynamometer on two occasions by the same rater with an interval of 7-days. Data collection was based on standard guidelines of American Society of Hand Therapists. Three gripping trials (measured in Kg with patient’s arm in standardized arm position were recorded. The data was analyzed from the mean score obtained from the sample. Result: One-way Analysis of Variance(ANOVA was used to evaluate test-retest reliability and Tukey-Kramer Multiple Comparison Test used to find the difference between handgrip strength among acute and chronic Cervical radiculopathy cases. Greater P-value (>0.05 in both testing session, as well as 95% of the confidence interval, shows the reliability of the instrument and lesser p-value (0.05 in female subjects shows no significant difference in handgrip strength between the two groups. Conclusion: Excellent test-retest reliability for hand grip strength measurement was measured in patients with acute and chronic cervical radiculopathy shows that the equipment could be used as an assessment tool for this patient and significant difference exists among male handgrip strength between acute and chronic cervical radiculopathy cases whereas no difference exists among female handgrip strength between acute and chronic cervical radiculopathy cases.

  18. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  19. How reliable and valid is the teacher version of the Strengths and Difficulties Questionnaire in primary school children?

    Science.gov (United States)

    van den Heuvel, Meta; Jansen, Danielle E M C; Stewart, Roy E; Smits-Engelsman, Bouwien C M; Reijneveld, Sijmen A; Flapper, Boudien C T

    2017-01-01

    The Strengths and Difficulties Questionnaire (SDQ) is validated for parents, but not yet for teachers in a broad age range of children. We conducted a cross-sectional study with 4-10 years old school children to investigate if the SDQ-T can be used instead of the validated but lengthy Teacher's Report Form (TRF) to acquire information about emotional and behavioral problems in the school community. Teachers of 453 children from primary schools were approached. Teachers of 394 children (response rate 86.9%) with a mean age of 7.1 years filled in the SDQ-T (n = 387), the TRF (n = 349) or both (n = 342). We assessed reliability by calculating internal consistency and concurrent validity (using correlation coefficients, sensitivity, specificity) of the SDQ-T compared with the TRF. Internal consistency of the SDQ-T Total Difficulties Score (SDQ-T TDS; Cronbach α = 0.80), hyperactivity/ inattention- (α = 0.86) and prosocial behavior (α = 0.81) was very good. Concurrent validity demonstrated a strong correlation of all subscales of the SDQ-T with the corresponding scale on the TRF (range 0.54-0.73), except for peer problems (0.46). Using a SDQ-T TDS cut-off score > 14, the SDQ-T had a good sensitivity (90%) and specificity (94%). The good reliability, validity and brevity of the SDQ-T make it an easily applicable questionnaire for obtaining information about emotional and behavioral problems from teachers in primary school children.

  20. How reliable and valid is the teacher version of the Strengths and Difficulties Questionnaire in primary school children?

    Directory of Open Access Journals (Sweden)

    Meta van den Heuvel

    Full Text Available The Strengths and Difficulties Questionnaire (SDQ is validated for parents, but not yet for teachers in a broad age range of children. We conducted a cross-sectional study with 4-10 years old school children to investigate if the SDQ-T can be used instead of the validated but lengthy Teacher's Report Form (TRF to acquire information about emotional and behavioral problems in the school community.Teachers of 453 children from primary schools were approached. Teachers of 394 children (response rate 86.9% with a mean age of 7.1 years filled in the SDQ-T (n = 387, the TRF (n = 349 or both (n = 342. We assessed reliability by calculating internal consistency and concurrent validity (using correlation coefficients, sensitivity, specificity of the SDQ-T compared with the TRF.Internal consistency of the SDQ-T Total Difficulties Score (SDQ-T TDS; Cronbach α = 0.80, hyperactivity/ inattention- (α = 0.86 and prosocial behavior (α = 0.81 was very good. Concurrent validity demonstrated a strong correlation of all subscales of the SDQ-T with the corresponding scale on the TRF (range 0.54-0.73, except for peer problems (0.46. Using a SDQ-T TDS cut-off score > 14, the SDQ-T had a good sensitivity (90% and specificity (94%.The good reliability, validity and brevity of the SDQ-T make it an easily applicable questionnaire for obtaining information about emotional and behavioral problems from teachers in primary school children.

  1. The reliabilty of isokinetic strength measurement

    OpenAIRE

    Kadlec, Miroslav

    2011-01-01

    Title: Reliability of isometric and isokinetic strength testing in the knee flexion and extension Objectives: To compare the reliability of isometric and isokinetic testing of the knee strength in flexion and extension Methods: I used intraclass correlation coefficient and Pearson's correlation coefficient. Results: I have discovered that the reliability measured on isokinetic and isometric dynamometer is high. Furthermore the reliability of the maximum strength measurement was higher with-us...

  2. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  3. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    Science.gov (United States)

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High Early-Age Strength Concrete for Rapid Repair

    Science.gov (United States)

    Maler, Matthew O.

    The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator

  5. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  6. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  7. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  8. High carbon microalloyed martensitic steel with ultrahigh strength-ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Ying [School of Mechanical Engineering, Shanghai Dianji University, Shanghai 200245 (China); Chen, Nailu, E-mail: nlchen@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zuo, Xunwei; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-29

    Based on the idea of rising the mechanical stability of retained austenite by the addition of Si in Fe-Mn based steels, an Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb was designed, then its hot rolled plate was successively tread by normalization process as pretreatment of novel quenching-partitioning-tempering (Q-P-T) process. Product of tensile and elongation (PSE) of 53.94 GPa% were obtained for this high carbon Q-P-T martensitic steel, and the PSE (40.18 GPa%) obtained by the conversion of tensile sample size using Oliver formula still is more excellent PSE than those of other microalloyed advanced high strength steels reported. The microstructural characterization reveals origin of ultrahigh PSE resulting from both the increase of considerable and dispersed carbon enriched retained austenite with relative high mechanical stability in volume fraction and the decrease of brittle twin-type martensite with the sensitivity of notch.

  9. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    International Nuclear Information System (INIS)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-01-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding–cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are − 15 dB and − 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( − 55 °C–80 °C ) and strength durability (160–1600με, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life. (paper)

  10. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-07-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.

  11. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    Science.gov (United States)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  12. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  13. Characteristics in Paintability of Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Park, Ha Sun

    2007-01-01

    It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non welded area because Si and Mn cold be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel

  14. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  15. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  16. A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    CERN Document Server

    Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

    1998-01-01

    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

  17. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  18. Effective longitudinal strength of high temperature metal-matrix composites

    International Nuclear Information System (INIS)

    Craddock, J.N.; Savvides, I.

    1991-01-01

    Several models for predicting the longitudinal strength of fiber composites are presented, ranging from a simple netting analysis to a model incorporating curvilinear strain hardening for all the components. Results from these models are presented for tungsten fiber reinforced superalloys, FeCrAlY and MARM200. It is shown that a simple elastic limit micromechanical model does not always adequately describe the useful strength of the composites. The methods proposed here are shown to be more appropriate for predicting the effective composite strength. 2 refs

  19. A new generation of ultra high strength steel pipelines

    International Nuclear Information System (INIS)

    Brozda, J.; Zeman, M.; Weglowski, M.

    2008-01-01

    For many years an increased demand for natural gas can be observed. Ultra high-strength pipelines with higher operating pressures and/or reduced wall thickness are a means to reduce transmission costs. Motivated by reduced investment costs (overcharge a few billion of dollars), tend towards the development of a new grade of pipeline steel with microalloying element for example Nb, that potentially lowers the total cost of long-distance gas pipelines by 5 - 15%. New long distance pipelines have budgets in excess of several billion dollars. This paper describes mechanical properties of new generation of pipelines steel with higher content of niobium and the influence the welding thermal cycles on the microstructure and brittle fracture resistance. The resistance to cold cracking has also been determined. It was found that the new steel has close properties to API X70 grade steels, but is cheaper in manufacturing and installation. The steel has been covered by the amended EN 10028-5 standard and proper modifications will also be made in other European standards. (author)

  20. Fatigue crack retardation of high strength steel in saltwater

    International Nuclear Information System (INIS)

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-01-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept

  1. ON THE HIGH TEMPERATURE BENDING STRENGTH OF CASTABLES

    Directory of Open Access Journals (Sweden)

    JIŘÍ HAMÁČEK

    2012-09-01

    Full Text Available The hot moduli of rupture (HMOR measurements have been performed for the low-cement castable (LCC, the ultra-low cement castable (ULCC, and the no-cement castable (NCC. All castables contained SiO2-Al2O3 based aggregates (burned fireclay and kaolin. The experimental data points have been described using the model based on the Varshni approach within the temperature region 1000-1200°C and by the model based on the Adam-Gibbs theory above 1400°C. A smooth but distinct transition between both temperature regions has been observed. The limits and applicability of the models have been analyzed. At lower temperature the loss of strength of castables was attributed to weakening of bonds most probably in the frontal process zone of cracking. At higher temperature, the liquid phase causes slowing down of the crack propagation by formation of the viscous bridging in the following wake region. And finally, at very high temperatures, the castable behaves as very viscous suspension which can be described using models originally developed for molten glasses.

  2. Finite element modelling of chain-die forming for ultra-high strength steel

    Science.gov (United States)

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2017-10-01

    There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.

  3. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  4. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  5. Calf-raise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability.

    Science.gov (United States)

    André, Helô-Isa; Carnide, Filomena; Borja, Edgar; Ramalho, Fátima; Santos-Rocha, Rita; Veloso, António P

    2016-01-01

    This study aimed to develop a new field test protocol with a standardized measurement of strength and power in plantar flexor muscles targeted to functionally independent older adults, the calf-raise senior (CRS) test, and also evaluate its reliability and validity. Forty-one subjects aged 65 years and older of both sexes participated in five different cross-sectional studies: 1) pilot (n=12); 2) inter- and intrarater agreement (n=12); 3) construct (n=41); 4) criterion validity (n=33); and 5) test-retest reliability (n=41). Different motion parameters were compared in order to define a specifically designed protocol for seniors. Two raters evaluated each participant twice, and the results of the same individual were compared between raters and participants to assess the interrater and intrarater agreement. The validity and reliability studies involved three testing sessions that lasted 2 weeks, including a battery of functional fitness tests, CRS test in two occasions, accelerometry, and strength assessments in an isokinetic dynamometer. The CRS test presented an excellent test-retest reliability (intraclass correlation coefficient [ICC] =0.90, standard error of measurement =2.0) and interrater reliability (ICC =0.93-0.96), as well as a good intrarater agreement (ICC =0.79-0.84). Participants with better results in the CRS test were younger and presented higher levels of physical activity and functional fitness. A significant association between test results and all strength parameters (isometric, r =0.87, r 2 =0.75; isokinetic, r =0.86, r 2 =0.74; and rate of force development, r =0.77, r 2 =0.59) was shown. This study was successful in demonstrating that the CRS test can meet the scientific criteria of validity and reliability. The test can be a good indicator of ankle strength in older adults and proved to discriminate significantly between individuals with improved functionality and levels of physical activity.

  6. Educational Management Organizations as High Reliability Organizations: A Study of Victory's Philadelphia High School Reform Work

    Science.gov (United States)

    Thomas, David E.

    2013-01-01

    This executive position paper proposes recommendations for designing reform models between public and private sectors dedicated to improving school reform work in low performing urban high schools. It reviews scholarly research about for-profit educational management organizations, high reliability organizations, American high school reform, and…

  7. High-strength cellular ceramic composites with 3D microarchitecture.

    Science.gov (United States)

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  8. Strength and Mechanical Properties of High Strength Cement Mortar with Silica Fume

    OpenAIRE

    川上, 英男; 谷, 康博

    1993-01-01

    Two series of tests were carried out to clarify the effects of silica fume on the strength and mechanical properties of cement mortar. The test specimens of cement mortar were prepared within the flow values between 180 mm and 240 mm which qualifies better workability of the concrete. The fiow values were attained by using superplasticizer. The specimens were tested at the age of 4 weeks. Main results of the experiments are as follows. 1. At a given cement water ratio,the larger volume of sil...

  9. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    International Nuclear Information System (INIS)

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  10. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  11. Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Guo, Y.; McNiff, B.

    2013-10-01

    The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

  12. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  13. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  14. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  15. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  16. Ultrafine Structure and High Strength in Cold-Rolled Martensite

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Morito, S.; Hansen, Niels

    2012-01-01

    Structural refinement by cold rolling (10 to 80 pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150 mu m), and (c) fine ferrite (22 mu m). Unalloyed IF steel....... At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate...... is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers...

  17. Heavyweight cement concrete with high stability of strength parameters

    Science.gov (United States)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  18. High reliability flow system - an assessment of pump reliability and optimisation of the number of pumps

    International Nuclear Information System (INIS)

    Butterfield, J.M.

    1981-01-01

    A system is considered where a number of pumps operate in parallel. Normally, all pumps operate, driven by main motors fed from the grid. Each pump has a pony motor fed from an individual battery supply. Each pony motor is normally running, but not engaged to the pump shaft. On demand, e.g. failure of grid supplies, each pony motor is designed to clutch-in automatically when the pump speed falls to a specified value. The probability of all the pony motors failing to clutch-in on demand must be demonstrated with 95% confidence to be less than 10 -8 per demand. This assessment considers how the required reliability of pony motor drives might be demonstrated in practice and the implications on choice of the number of pumps at the design stage. The assessment recognises that not only must the system prove to be extremely reliable, but that demonstration that reliability is adequate must be done during plant commissioning, with practical limits on the amount of testing performed. It is concluded that a minimum of eight pony motors should be provided, eight pumps each with one pony motor (preferred) or five pumps each with two independent pony motors. A minimum of two diverse pony motor systems should be provided. (author)

  19. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  20. Modified sphygmomanometer test for the assessment of strength of the trunk, upper and lower limbs muscles in subjects with subacute stroke: reliability and validity.

    Science.gov (United States)

    Aguiar, Larissa T; Lara, Eliza M; Martins, Julia C; Teixeira-Salmela, Luci F; Quintino, Ludmylla F; Christo, Paulo P; DE Morais Fairaa, Christina

    2016-10-01

    Limitations in activities have been related to weakness of the upper limbs (UL), lower limbs (LL) and trunk muscles after stroke. Therefore, the measurement of strength after stroke becomes essential. The Modified Sphygmomanometer Test (MST) is an alternative method for the measurement of strength, since it is cheap and provides objective values. However, no studies have investigated the measurement properties of the MST in sub-acute stroke. To investigate the test-retest and inter-rater reliabilities and criterion-related validity of the MST for the measurement of strength of the UL, LL, and trunk muscles in subjects with sub-acute stroke, and verify whether the number of trials would affect the results. Diagnostic accuracy. Local community, out-patient clinics, and university laboratory. Sixty- five subjects with sub-acute stroke (62±14 years) participated of the present study. The strength of 36 muscular groups was measured with the MST and dynamometers (criterion standard). To investigate whether the number of trials would affect the results, analysis of variance was applied. For the test-retest and inter-rater reliabilities and criterion-related validity of the MST, intra-class correlation coefficients (ICC), Pearson correlation coefficients, and coefficients of determination were calculated. Similar results were found for all muscular groups and number of trials (0.01≤F≤0.14; 0.87≤p≤0.99) with significant and adequate values of test-retest (0.57≤ICC≥0.98) (exception: first trial of the non-paretic ankle dorsiflexors) and inter-rater (0.50≤ICC≥0.99) (exception: non-paretic ankle plantar flexors) reliabilities and validity (0.70≤r≥0.95; p≤0.001). The values obtained with the MST were good predictors of those obtained with the dynamometers (0.54≤r2≤0.90). In general, the MST showed adequate reliabilities and criterion-related validity for measuring strength of subjects with sub-acute stroke, and only one trial, after familiarization

  1. Compliance and High Reliability in a Complex Healthcare Organization.

    Science.gov (United States)

    Simon, Maxine dellaBadia

    2018-01-01

    When considering the impact of regulation on healthcare, visualize a spider's web. The spider weaves sections together to create the whole, with each fiber adding to the structure to support its success or lead to its failure. Each section is dependent on the others, and all must be aligned to maintain the structure. Outside forces can cause a shift in the web's fragile equilibrium.The interdependence of the sections of the spider's web is similar to the way hospital departments and services work together. An organization's structure must be shaped to support its mission and vision. At the same time, the business of healthcare requires the development and achievement of operational objectives and financial performance goals. Establishing a culture that is flexible enough to permit creativity, provide resiliency, and manage complexity as the organization grows is fundamental to success. An organization must address each of these factors while maintaining stability, carrying out its mission, and fostering improvement.Nature's order maintains the spider's web. Likewise, regulation can strengthen healthcare organizations by initiating disruptive changes that can support efforts to achieve and sustain high reliability in the delivery of care. To that end, leadership must be willing to provide the necessary vision and resources.

  2. Increase of reliability of contact networks of electric transport, due to increase of strength of the joint unit of pipes of different diameters

    Science.gov (United States)

    Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.

    2017-09-01

    The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.

  3. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  4. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  5. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal ... mechanical properties by using the existing materials on the local market and HSC ..... general shape of the curves whether at 28 days ... Figure.7. Residual compressive strength as a function of temperature.

  6. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  7. Reliability estimation of a N- M-cold-standby redundancy system in a multicomponent stress-strength model with generalized half-logistic distribution

    Science.gov (United States)

    Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei

    2018-01-01

    In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.

  8. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    Science.gov (United States)

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  9. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Science.gov (United States)

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  10. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  11. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  12. Reliability and Characterization of High Voltage Power Capacitors

    Science.gov (United States)

    2014-03-01

    in a Faraday cage to minimize external noise. In addition, electron microscopy could also be performed to identify the change in trap concentration...military bases in the United States. Energy product reliability affects the sustainability and cost- effectiveness of these systems, which must be tested...Energy product reliability affects the sustainability and cost- effectiveness of these systems, which must be tested by outside entities to ensure

  13. Highly corrosive and high strength Cr-Mn series austenite sintered steel, method of manufacturing the same and the usage

    International Nuclear Information System (INIS)

    Arai, Masahiko; Hirano, Tatsumi; Aono, Yasuhisa; Kato, Takahiko; Kondo, Yasuo; Inagaki, Masatoshi

    1998-01-01

    The steel of the present invention comprises a highly corrosive and high strength Cr-Mn series austenite sintered steel containing up to 0.1% of C, up to 1% of Si, up to 0.4% of N, from 9 to 25% of (Mn + Ni) within a range of more than 2% and up to 15% of Mn and from 14 to 20% of Cr, and it has an average crystal grain size of 1μm or less and comprises at least 90 vol% of an austenite phase. In addition, the alloy is incorporated with one or more elements of up to 3% of Mo, 1.0% of Ti, up to 2.0% of Zr and up to 1.0% of Nb in an amount of up to 2.0% in total of Ti, Zr and Nb. When these materials are used under the circumstance where materials are generally deteriorated in grain boundaries, since they are excellent in corrosion resistance and strength, remarkable effects can be attained in the improvement of the safety and the reliability of products. In addition, they are applied not only to a reactor core but also to a water-cooled circumstance and a circumstance where hydrogen exists, thereby capable of exhibiting remarkable effects. (T.M.)

  14. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial z......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  15. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  16. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  17. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    Energy Technology Data Exchange (ETDEWEB)

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

  18. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  19. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  20. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  1. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    International Nuclear Information System (INIS)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon

    2014-01-01

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar

  2. Beam Test for Evaluating Applicabillity of High - Strength Reinforcement in Structure of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sangjun; Lee, Byungsoo; Bang, Changjoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The high-strength rebar which has high yield strength can reduce the amount of rebar in concrete and widen its spacing so that it has better workability and higher economic benefits for the structure. However, the maximum yield strength of rebar is limited to 420MPa in the design criteria for structure of nuclear facility in Korea and USA. Korea Hydro and Nuclear Power is progressing research to revise the limitation in the yield strength of rebar, which is suggested in the criteria of KEPIC and ACI, in order to apply 550 MPa high-strength rebar for the construction of a nuclear facility. This study is to review the applicability of high strength rebar in structure of a nuclear facility through a model beam test. After reviewing the shear capacity and reinforcement yield to assess the applicability of high-strength reinforcement in the structure of a nuclear facility, we make the following conclusions. When using high shear reinforcement with wider spacing, it has a similar shear capacity to normal reinforcement with narrower spacing. This means better workability and economic benefits can be achieved by widening the rebar spacing without brittle fracture in the elements. For future plans, the results of this test and supplementary test will be submitted to ACI349 committee as backup data to revise the standard for yield strength of high-strength rebar.

  3. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  4. Increasing break-down strength of the support colomn of high-voltage accelerators

    International Nuclear Information System (INIS)

    Rezvykh, K.A.; Romanov, V.A.

    1981-01-01

    Calculation results of strength of electric field of the EG-2.5 electrostatic accelerator for the support colomn with electrodes of circular and elliptical transverse cross sections are presented. Conducted is the choice of constructing the column under the condition that the dimensions of the tank, high-voltage electrode, step between the sections and internal diameter of the colomn electrodes are not changed. The potential at the high-voltage electrode equals 2.5 MV while the average longitudinal gradient of the colomn field equals 1.25 MV/m. The support insulation colomn of the high-voltage accelerator screened by rings with transverse cross section in the form of orientation oval in some accelerators promotes obtaining higher operating voltage and at the same time increase of operation reliability at the rest unchanged dimensions of the plant because the probability of break-down between the support colomn and the tank wall decreases. The latter is especially significant for most high-energy accelerators as well as for accelerators used in national economy [ru

  5. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  6. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  7. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  8. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  9. Models of Information Security Highly Reliable Computing Systems

    Directory of Open Access Journals (Sweden)

    Vsevolod Ozirisovich Chukanov

    2016-03-01

    Full Text Available Methods of the combined reservation are considered. The models of reliability of systems considering parameters of restoration and prevention of blocks of system are described. Ratios for average quantity prevention and an availability quotient of blocks of system are given.

  10. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  11. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  12. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  13. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  14. reliability reliability

    African Journals Online (AJOL)

    eobe

    Corresponding author, Tel: +234-703. RELIABILITY .... V , , given by the code of practice. However, checks must .... an optimization procedure over the failure domain F corresponding .... of Concrete Members based on Utility Theory,. Technical ...

  15. Processing of Cu-Cr alloy for combined high strength and high conductivity

    Directory of Open Access Journals (Sweden)

    A.O Olofinjanaa

    2017-11-01

    Full Text Available High strength and high conductivity (HSHC are two intrinsic properties difficult to combine in metallic alloy design because; almost all strengthening mechanisms also lead to reduced conductivity. Precipitation hardening by nano-sized precipitates had proven to be the most adequate way to achieve the optimum combination of strength and conductivity in copper based alloys. However, established precipitation strengthened Cu- alloys are limited to very dilute concentration of solutes thereby limiting the volume proportion hardening precipitates. In this work, we report the investigation of the reprocessing of higher Cr concentration Cu- based alloys via rapid solidification. It is found that the rapid solidification in the as-cast ribbon imposed combined solution extension and ultra-refinement of Cr rich phases. X-ray diffraction evidences suggest that the solid solution extension was up to 6wt%Cr. Lattice parameters determined confirmed the many folds extension of solid solution of Cr in Cu.  Thermal aging studies of the cast ribbons indicated that peak aging treatments occurred in about twenty minutes. Peak aged hardness ranged from about 200 to well over 300Hv. The maximum peak aged hardness of 380Hv was obtained for alloy containing 6wt.%Cr but with conductivity of about 50%IACS. The best combined strength/conductivity was obtained for 4wt.%Cr  alloy with hardness of 350HV and conductivity of 80% IACS. The high strengths observed are attributed to the increased volume proportion of semi-coherent Cr rich nano-sized precipitates that evolved from the supersaturated solid solution of Cu-Cr that was achieved from the high cooling rates imposed by the ribbon casting process. The rapid overaging of the high Cr concentration Cu-Cr alloy is still a cause for concern in optimising the process for reaching peak HSHC properties. It is still important to investigate a microstructural design to slow or severely restrict the overaging process. The optimum

  16. AN EXPERIMENTAL STUDY ON STRENGTH AND PERMEABILITY PROPERTIES OF HIGH STRENGTH CONCRETE

    OpenAIRE

    Yedla Venkatesh * & G. Kalyan

    2017-01-01

    Concrete is the most important engineering material and the addition of some other materials may change the properties of concrete. Mineral additions which are also known as mineral admixtures have been used with cements for many years. There are two types of materials crystalline and non crystalline. High performance concrete (HPC) exceeds the properties and constructability of normal concrete. Micro silica or silica fume is very fine non crystalline material. Silica fume is produced in elec...

  17. Features of high-speed and strength qualities development in young biathlonists aged 14–15 in the preparatory period

    Directory of Open Access Journals (Sweden)

    Artem Burla

    2015-04-01

    Full Text Available Purpose: to substantiate a methodology of high-speed and strength qualities development of young biathlonists aged 14–15 during the preparatory period. Material and Methods: young biathlonists aged 14–15 from control and experimental groups took part in the research. There were 12 athletes in each group. Pedagogical methods and methods of mathematical statistics were used in the work. Pedagogical methods of researches were used for level definition of high-speed and strength qualities development of young biathlonists. Results: reliable increase of motive qualities and polydynamometry results testing of young biathlonists from the experimental group due to implementation of the experimental methodology in the preparatory period is established. Conclusions: application of the developed complexes in the preparatory period in the experimental group of young biathlonists aged 14–15 allows to raise indices of motive qualities and polydynamometry testing statistically significantly.

  18. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  19. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  20. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  1. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  2. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  3. Continuous, flexible, and high-strength superconducting Nb3Ge and Nb3Sn filaments

    International Nuclear Information System (INIS)

    Ahmad, I.; Heffernan, W.J.

    1976-01-01

    Fabrication of continuous, flexible, and high-strength (1600 MN/m 2 ) composite filaments of Nb 3 Ge (T/subc/ 18 0 K) and Nb 3 Sn is reported, involving chemical vapor deposition of these compounds on Nb-coated high-strength W--1% ThO 2 filaments

  4. Alternative ceramic circuit constructions for low cost, high reliability applications

    International Nuclear Information System (INIS)

    Modes, Ch.; O'Neil, M.

    1997-01-01

    The growth in the use of hybrid circuit technology has recently been challenged by recent advances in low cost laminate technology, as well as the continued integration of functions into IC's. Size reduction of hybrid 'packages' has turned out to be a means to extend the useful life of this technology. The suppliers of thick film materials technology have responded to this challenge by developing a number of technology options to reduce circuit size, increase density, and reduce overall cost, while maintaining or increasing reliability. This paper provides an overview of the processes that have been developed, and, in many cases are used widely to produce low cost, reliable microcircuits. Comparisons of each of these circuit fabrication processes are made with a discussion of advantages and disadvantages of each technology. (author)

  5. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  6. DUAL-PROCESS, a highly reliable process control system

    International Nuclear Information System (INIS)

    Buerger, L.; Gossanyi, A.; Parkanyi, T.; Szabo, G.; Vegh, E.

    1983-02-01

    A multiprocessor process control system is described. During its development the reliability was the most important aspect because it is used in the computerized control of a 5 MW research reactor. DUAL-PROCESS is fully compatible with the earlier single processor control system PROCESS-24K. The paper deals in detail with the communication, synchronization, error detection and error recovery problems of the operating system. (author)

  7. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  8. Trends of HVDC technology - highly reliable converting equipment

    International Nuclear Information System (INIS)

    Muraoka, Yasuo; Kato, Yasushi; Watanabe, Atsumi; Kano, Takashi; Kawai, Tadao

    1983-01-01

    At present, the DC power transmission in Japan is practically used for the system connection of relatively small capacity, and the reliability of AC-DC converting system has been proven to exceed the world level by the operational results. However, when the application of this system to trunk power transmission of large capacity in future is considered, it is desirable to raise the reliability of converting equipment further and to develop the stabilized control techniques in harmony with connected AC system. Hitachi Ltd. has developed diversified system-related technologies centering around DC power transmission and the techniques for raising the reliability of converting equipment tending to large capacity. In this report, the results and the future prospect are described. The recent trend of DC power transmission, the development of DC power transmission technology such as the simulation analysis, the stable operation of a DC system connected to a weak AC system and the DC independent transmission from nuclear power stations, the technical development of light direct ignition thyristor bulbs and control protection equipment are reported. (Kako, I.)

  9. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  10. How reliable and valid is the teacher version of the Strengths and Difficulties Questionnaire in primary school children?

    NARCIS (Netherlands)

    van den Heuvel, Meta; Jansen, Danielle E. M. C.; Stewart, Roy E.; Smits-Engelsman, Bouwien C. M.; Reijneveld, Sijmen A.; Flapper, Boudien C. T.

    2017-01-01

    Introduction The Strengths and Difficulties Questionnaire (SDQ) is validated for parents, but not yet for teachers in a broad age range of children. We conducted a cross-sectional study with 4-10 years old school children to investigate if the SDQ-T can be used instead of the validated but lengthy

  11. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    Science.gov (United States)

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  12. Inter-rater reliability of assessment of levator ani muscle strength and attachment to the pubic bone in nulliparous women.

    Science.gov (United States)

    van Delft, K; Schwertner-Tiepelmann, N; Thakar, R; Sultan, A H

    2013-09-01

    The modified Oxford scale (MOS) has been found previously to have poor inter-rater reliability, whereas digital assessment of levator ani muscle (LAM) attachment to the pubic bone has been shown to have acceptable reliability. Our aim was to evaluate inter-rater reliability of the validated MOS and to develop a reliable classification system for digital assessment of LAM attachment, correlating this to findings on transperineal ultrasound (TPUS) examination. Evaluation of the MOS by palpation was performed in nulliparous women by two investigators. LAM attachment was evaluated using digital palpation, for which a novel classification system was developed with four grades based on the position of the attachment and presence of discernible muscle. Findings were compared with those on TPUS examination. Inter-rater reliability was assessed using Cohen's kappa statistic. Twenty-five nulliparous women were examined. There was agreement in MOS scores between the investigators in 64% of women (n = 16), with a kappa of 0.66 (indicating substantial agreement). There was agreement in palpation of LAM attachment using the new grading system in 96% of women (n = 24), with a kappa of 0.90 (indicating almost perfect agreement). TPUS examination did not show LAM avulsion in any woman, with the exception of one with a partial avulsion. In this group of nulliparous patients, there was substantial agreement between the two investigators in evaluation of the MOS and there was good agreement between grades of LAM attachment using the new classification system, which correlated with findings on TPUS examination. It therefore appears that these results are reproducible in nulliparous women and the techniques can be readily learned and reliably incorporated into clinical practice and research after appropriate training. Further research is required to establish clinical utility of the grading system for LAM attachment in postpartum women and in women with symptomatic pelvic organ

  13. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  14. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  15. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  16. Reliability and Validity of the Hip Stability Isometric Test (HipSIT): A New Method to Assess Hip Posterolateral Muscle Strength.

    Science.gov (United States)

    Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo

    2017-12-01

    Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (Pstrength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.

  17. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  18. Novel boride base cermets with very high strength

    International Nuclear Information System (INIS)

    Ken-ichi Takagi; Mari Yonetsu; Yuji Yamasaki

    2001-01-01

    Mo 2 NiB 2 boride base cermets consist of a Mo 2 NiB 2 type complex boride as a hard phase and a Ni base binder. The addition of Cr and V to the cermets changed the boride structure from orthorhombic to tetragonal and resulted in the improvement of mechanical properties and microstructural refinement. The tetragonal Mo 2 NiB 2 was formed through the orthorhombic Mo 2 NiB 2 by the solid state reaction during sintering and not formed directly from the raw material powders. Ni-4.5B-46.9Mo-12.5V-xMn (wt.%) model cermets with five levels of Mn content from 0 to 10 wt.% were prepared to investigate the effects of Mn on the mechanical properties and microstructure Of Mo 2 NiB 2 base cermets. The transverse rupture strength (TRS) of the cermets depended strongly on the microstructure, which varied significantly with Mn content. The maximum TRS obtained at 2.5 wt.%Mn were 3.5 Gpa with hardness of 87 R A . (author)

  19. Reliability and availability of high power proton accelerators

    International Nuclear Information System (INIS)

    Cho, Y.

    1999-01-01

    It has become increasingly important to address the issues of operational reliability and availability of an accelerator complex early in its design and construction phases. In this context, reliability addresses the mean time between failures and the failure rate, and availability takes into account the failure rate as well as the length of time required to repair the failure. Methods to reduce failure rates include reduction of the number of components and over-design of certain key components. Reduction of the on-line repair time can be achieved by judiciously designed hardware, quick-service spare systems and redundancy. In addition, provisions for easy inspection and maintainability are important for both reduction of the failure rate as well as reduction of the time to repair. The radiation safety exposure principle of ALARA (as low as reasonably achievable) is easier to comply with when easy inspection capability and easy maintainability are incorporated into the design. Discussions of past experience in improving accelerator availability, some recent developments, and potential R and D items are presented. (author)

  20. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  1. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  2. Effects of cathodic protection on cracking of high-strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Elboujdaini, M.; Revie, R. W.; Attard, M. [CANMET Materials Technology Laboratory, Ottawa, ON(Canada)], email: melboujd@nrcan.gc.ca

    2010-07-01

    Four strength levels of pipeline steels, ranging from X-70 to X-120, were compared to determine whether higher strength materials are more susceptible to hydrogen embrittlement under cathodic protection. Ductility was measured in a solution at four protection levels, going from no cathodic protection to 500 mV of overprotection. All four steels showed loss of ductility under cathodic protection. Under cathodic polarization, the loss of ductility increased with the strength of the steel and the activity of the potential. After slow-strain-rate experiments conducted in air and examination of fracture surfaces, it is concluded that application of cathodic potentials, cathodic overprotection, higher strength of steel, and exposure to aqueous solution are factors that decrease the ductility of steel. Hydrogen reduction seems to be an important factor in ductility reduction and fractures. Observations suggest that high-strength pipelines need better control of cathodic protection than lower-strength pipelines.

  3. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  4. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  5. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  6. High-lying neutron hole strengths observed in pick-up reactions

    International Nuclear Information System (INIS)

    Gales, S.

    1980-01-01

    Neutron-hole states in orbits well below the Fermi surface have been observed in a number of medium-heavy nuclei from A=90 to 209 using one nucleon pick-up reactions. The excitation energies, angular distributions of such broad and enhanced structures will be discussed. The fragmentation of the neutron-hole strengths as well as the spreading of such simple mode of excitations into more complex states are compared to recent calculations within the quasiparticle-phonon or the single particle-vibration coupling nuclear models. We report on recent measurements of J for inner-hole states in 89 Zr and 115 Sn 119 Sn using the analyzing power of the (p,d) and (d,t) reactions. Large enhancement of cross-sections are observed at high excitation energy in the study of the (p,t) reactions on Zr, Cd, Sn, Te and Sm isotopes. The systematic features of such high-lying excitation are related to the ones observed in one neutron pick-up experiments. The origin of such concentration of two neutron-hole strengths in Cd and Sn isotopes will be discussed. Preliminary results obtained in the study of the (α, 6 He) reaction at 218 MeV incident energy on 90 Zr, 118 Sn and 208 Pb targets are presented and compared to the (p,t) results. Finally the properties of hole-analog states populated in neutron pick-up reactions (from 90 Zr to 208 Pb) will be presented

  7. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  8. Hip abduction-adduction strength and one-leg hop tests: test-retest reliability and relationship to function in elite ice hockey players.

    Science.gov (United States)

    Kea, J; Kramer, J; Forwell, L; Birmingham, T

    2001-08-01

    Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.

  9. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  10. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  11. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  12. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  13. Corrosion Assessment Guidance for High Strength Steels (Phase 1)

    Science.gov (United States)

    2009-08-01

    The continuing worldwide demand for natural gas presents major challenges to pipeline operators. There is increasing need to construct long distance, high capacity transmission pipelines, particularly in the more remote areas of Arctic North America,...

  14. New approach for high reliability, low loss splicing between silica and ZBLAN fibers

    Science.gov (United States)

    Carbonnier, Robin; Zheng, Wenxin

    2018-02-01

    In the past decade, ZBLAN (ZrF4-BaF2-LaF3-NaF) fibers have drawn increasing interest for laser operations at wavelengths where Fused Silica-based (SiO2) fibers do not perform well. One limitation to the expansion of ZBLAN fiber lasers today is the difficulty to efficiently inject and extract light in/from the guiding medium using SiO2 fibers. Although free space and butt coupling have provided acceptable results, consistent and long lasting physical joints between SiO2 and ZBLAN fibers will allow smaller, cheaper, and more robust component manufacturing. While low loss splices have been reported using a traditional splicing approach, the very low mechanical strength of the joint makes it difficult to scale. Difficulties in achieving a strong bond are mainly due to the large difference of transition temperature between ZBLAN and SiO2 fibers ( 260°C vs 1175°C). This paper presents results obtained by using the high thermal expansion coefficient of the ZBLAN fiber to encapsulate a smaller SiO2 fiber. A CO2 laser glass processing system was used to control the expansion and contraction of the ZBLAN material during the splicing process for optimum reliability. This method produced splices between 125μm ZBLAN to 80μm SiO2 fibers with average transmission loss of 0.225dB (measured at 1550nm) and average ultimate tension strength of 121.4gf. The Resulting splices can be durably packaged without excessive care. Other combinations using 125μm SiO2 fibers tapered to 80μm are also discussed.

  15. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  16. Validity and Reliability of the Academic Resilience Scale in Turkish High School

    Science.gov (United States)

    Kapikiran, Sahin

    2012-01-01

    The present study aims to determine the validity and reliability of the academic resilience scale in Turkish high school. The participances of the study includes 378 high school students in total (192 female and 186 male). A set of analyses were conducted in order to determine the validity and reliability of the study. Firstly, both exploratory…

  17. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  18. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  19. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  20. A study of high-strength bolts after dephosphoring

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2016-03-01

    Full Text Available A wide variety of fasteners are produced, including those for the automobile industry, household electrical appliances industry, architectural engineering, and even the aviation industry. The effects of the high-tensile bolt dephosphoring process on the entire fastener manufacturing process and its organizational characteristics and mechanical properties are analyzed and discussed in this study. Our experimental results reveal that the bolt dephosphoring process must be completed before heat treatment, which can be confirmed with a dephosphoring reagent or metallographic observation. Once bolt heat treatment is completed, bolts without dephosphoring appear to be coated with δ ferrite (delta ferrite composed of a phosphate coating and a phosphatizing coating, which are not easily removed. Heat treatment with phosphorus results in grain boundary segregation, causing embrittlement and a reduction in lattice bonding forces and resulting in a high risk of fracturing when bolts are used in high-temperature environments or undergo multiaxial stresses.

  1. Methods for qualification of highly reliable software - international procedure

    International Nuclear Information System (INIS)

    Kersken, M.

    1997-01-01

    Despite the advantages of computer-assisted safety technology, there still is some uneasyness to be observed with respect to the novel processes, resulting from absence of a body of generally accepted and uncontentious qualification guides (regulatory provisions, standards) for safety evaluation of the computer codes applied. Warranty of adequate protection of the population, operators or plant components is an essential aspect in this context, too - as it is in general with reliability and risk assessment of novel technology - so that, due to appropriate legislation still missing, there currently is a licensing risk involved in the introduction of digital safety systems. Nevertheless, there is some extent of agreement within the international community and utility operators about what standards and measures should be applied for qualification of software of relevance to plant safety. The standard IEC 880/IEC 86/ in particular, in its original version, or national documents based on this standard, are applied in all countries using or planning to install those systems. A novel supplement to this standard, document /IEC 96/, is in the process of finalization and defines the requirements to be met by modern methods of software engineering. (orig./DG) [de

  2. Multidisciplinary Design Optimization for High Reliability and Robustness

    National Research Council Canada - National Science Library

    Grandhi, Ramana

    2005-01-01

    .... Over the last 3 years Wright State University has been applying analysis tools to predict the behavior of critical disciplines to produce highly robust torpedo designs using robust multi-disciplinary...

  3. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  4. Optimization of a PCRAM Chip for high-speed read and highly reliable reset operations

    Science.gov (United States)

    Li, Xiaoyun; Chen, Houpeng; Li, Xi; Wang, Qian; Fan, Xi; Hu, Jiajun; Lei, Yu; Zhang, Qi; Tian, Zhen; Song, Zhitang

    2016-10-01

    The widely used traditional Flash memory suffers from its performance limits such as its serious crosstalk problems, and increasing complexity of floating gate scaling. Phase change random access memory (PCRAM) becomes one of the most potential nonvolatile memories among the new memory techniques. In this paper, a 1M-bit PCRAM chip is designed based on the SMIC 40nm CMOS technology. Focusing on the read and write performance, two new circuits with high-speed read operation and highly reliable reset operation are proposed. The high-speed read circuit effectively reduces the reading time from 74ns to 40ns. The double-mode reset circuit improves the chip yield. This 1M-bit PCRAM chip has been simulated on cadence. After layout design is completed, the chip will be taped out for post-test.

  5. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  6. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  7. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  8. The Reliability and Validity of the English and Spanish Strengths and Weaknesses of ADHD and Normal Behavior Rating Scales in a Preschool Sample: Continuum Measures of Hyperactivity and Inattention

    Science.gov (United States)

    Lakes, Kimberley D.; Swanson, James M.; Riggs, Matt

    2012-01-01

    Objective: To evaluate the reliability and validity of the English and Spanish versions of the Strengths and Weaknesses of ADHD-symptom and Normal-behavior (SWAN) rating scale. Method: Parents of preschoolers completed both a SWAN and the well-established Strengths and Difficulties Questionnaire (SDQ) on two separate occasions over a span of 3…

  9. Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis.

    Science.gov (United States)

    Segura-Ortí, Eva; Martínez-Olmos, Francisco José

    2011-08-01

    Determining the relative and absolute reliability of outcomes of physical performance tests for people undergoing hemodialysis is necessary to discriminate between the true effects of exercise interventions and the inherent variability of this cohort. The aims of this study were to assess the relative reliability of sit-to-stand-to-sit tests (the STS-10, which measures the time [in seconds] required to complete 10 full stands from a sitting position, and the STS-60, which measures the number of repetitions achieved in 60 seconds), the Six-Minute Walk Test (6MWT), the one-leg heel-rise test, and the handgrip strength test and to calculate minimal detectable change (MDC) scores in people undergoing hemodialysis. This study was a prospective, nonexperimental investigation. Thirty-nine people undergoing hemodialysis at 2 clinics in Spain were contacted. Study participants performed the STS-10 (n=37), the STS-60 (n=37), and the 6MWT (n=36). At one of the settings, the participants also performed the one-leg heel-rise test (n=21) and the handgrip strength test (n=12) on both the right and the left sides. Participants attended 2 testing sessions 1 to 2 weeks apart. High intraclass correlation coefficients (≥.88) were found for all tests, suggesting good relative reliability. The MDC scores at 90% confidence intervals were as follows: 8.4 seconds for the STS-10, 4 repetitions for the STS-60, 66.3 m for the 6MWT, 3.4 kg for handgrip strength (force-generating capacity), 3.7 repetitions for the one-leg heel-rise test with the right leg, and 5.2 repetitions for the one-leg heel-rise test with the left leg. Limitations A limited sample of patients was used in this study. The STS-16, STS-60, 6MWT, one-leg heel rise test, and handgrip strength test are reliable outcome measures. The MDC scores at 90% confidence intervals for these tests will help to determine whether a change is due to error or to an intervention.

  10. Mental health among children and adolescents: Construct validity, reliability, and parent-adolescent agreement on the 'Strengths and Difficulties Questionnaire' in Chile.

    Science.gov (United States)

    Gaete, Jorge; Montero-Marin, Jesus; Valenzuela, Daniela; Rojas-Barahona, Cristian A; Olivares, Esterbina; Araya, Ricardo

    2018-01-01

    The Strengths and Difficulties Questionnaire (SDQ) is a screening tool used to measure psychological functioning among children and adolescents. It has been extensively used worldwide, but its psychometric properties, such as internal structure and reliability, seem to vary across countries. This is the first study exploring the construct validity and reliability of the Spanish version of SDQ among early adolescents (self-reported) and their parents in Latin America. A total of 1,284 early adolescents (9-15 years) and their parents answered the SDQ. We also collected demographic variables. A confirmatory factor analysis was conducted to assess the latent structure of the SDQ. We also used the multitrait-multimethod analysis to separate the true variance on the constructs from variance resulting from measurement methods (self-report vs. parent report), and evaluated the agreement between adolescents and their parents. We found that the original five-factor model was a good solution and the resulting sub-scales had good internal consistency. We also found that the self-reported and parental versions of SDQ provide different information, which are complementary and provide a better picture of the emotional, social, and conduct problems of adolescents. We have added evidence for the construct validity and reliability of the Spanish self-reported and parental SDQ versions in a Chilean sample.

  11. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities

  12. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  13. The rupture strength of dissimilar joints in high temperature

    International Nuclear Information System (INIS)

    Groenwall, B.

    1992-05-01

    In dissimilar joints between austenitic stainless steels and ferritic steels the heat affected zone in the ferritic steel always is the weakest link. Two different joints where the ferritic steel has been 10CrMo910 (2.25Cr1Mo) and X20CrMoV121 respectively (162Cr1Mo0.3V) has been investigated through thermal cycling and isothermal creep testing. In this case the purpose has been to investigate the weakest link and therefore both 10CrMo910 and X20CrMoV121 have been welded to themselves using the TIG-method with Inconel 82 (70Cr20Cr3Mn2). 5Nb as filler wire. Crossweld specimens have been taken from the joints. To accelerate the testing the tip temperature at thermal cycling and the temperature at isothermal creep testing has been in the region 600-650 degrees C. Low ductile fracture, which is typical for failures in practice, has been obtained by using a moderate tensile stress, 63 N/mm 2 . In the high temperature range, 650 degrees C, the thermal cycling compared to the isothermal testing had no influence but in lower temperatures the cycling caused decreased time to rupture. The time to rupture in thermal cycling as well as in isothermal testing as a function of testing temperature can be fitted to exponential curve of type t = a x e bT (where t and T are time and temperature respectively). Through extrapolation of the measured data it has been found that 10CrMo910 in hard conditions that is thermal cycling has a life time at 500 degrees C of about 100 000 h. If the operational temperature is constant the life time will be about four times longer. The X20CrMoV121 on the other hand has a life time at thermal cycling at 500 degrees C and moderate tensile stress of about 3 000 000 h. This means that the tensile stress can be increased considerably. The cracks appear in 10CrMo910 closely to the fusion line but in the X20CrMoV121 steel cracking and fracture arise in the heat affected zone some millimeters from the fusion line. (au)

  14. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  15. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Christian; Teodorescu, Remus; Blaabjerg, Frede

    2011-01-01

    Reliability is becoming more and more important as the size and number of installed Wind Turbines (WTs) increases. Very high reliability is especially important for offshore WTs because the maintenance and repair of such WTs in case of failures can be very expensive. WT manufacturers need...

  16. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Science.gov (United States)

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda As announced in the Notice of Staff..., from 9 a.m. to 4:30 p.m. to explore the interaction between voltage control, reliability, and economic...

  17. Leading Change: Transitioning the AFMS into a High Reliability Organization

    Science.gov (United States)

    2016-02-16

    HROs, such as commercial aviation and nuclear power plants, make safety the focus of their organizational culture . Healthcare must become a high...nuclear industry and commercial aviation are examples of successful HROs. They achieve their goal of near zero errors by maintaining a culture of... Aviation Safety Network declared 2012 “the safest year for air travel since 1945.” There was only one fatal crash for every 2.5 million flights, an

  18. High reliability EPI-base radiation hardened power transistor

    International Nuclear Information System (INIS)

    Clark, L.E.; Saltich, J.L.

    1978-01-01

    A high-voltage power transistor is described which is able to withstand fluences as high as 3 x 10 14 neutrons per square centimeter and still be able to operate satisfactorily. The collector may be made essentially half as thick and twice as heavily doped as normally and its base is made in two regions which together are essentially four times as thick as the normal power transistor base region. The base region has a heavily doped upper region and a lower region intermediate the upper heavily doped region and the collector. The doping in the intermediate region is as close to intrinsic as possible, in any event less than about 3 x 10 15 impurities per cubic centimeter. The second base region has small width in comparison to the first base region, the ratio of the first to the second being at least about 5 to 1. The base region having the upper heavily doped region and the intermediate or lower low doped region contributes to the higher breakdown voltage which the transistor is able to withstand. The high doping of the collector region essentially lowers that portion of the breakdown voltage achieved by the collector region. Accordingly, it is necessary to transfer certain of this breakdown capability to the base region and this is achieved by using the upper region of heavily doped and an intermediate or lower region of low doping

  19. Garnet Yield Strength at High Pressures and Implications for Upper Mantle and Transition Zone Rheology

    International Nuclear Information System (INIS)

    Kavner, A.

    2008-01-01

    Garnet helps control the mechanical behavior of the Earth's crust, mantle, and transition zone. Here, measurements are presented suggesting that garnet, long considered to be a high-viscosity phase, is actually weaker than the other dominant components in the transition zone. The mechanical behavior of garnet at high pressures was examined using radial diffraction techniques in the diamond anvil cell. The yield strength of grossular garnet was inferred from synchrotron X-ray measurements of differential lattice strains. The differential stress was found to increase from 1.3 (±0.6) GPa at a hydrostatic pressure 5.8 (±1.1) GPa to 4.1 (±0.4) GPa at 15.7 (±1.0) GPa, where it was level to 19 GPa. The strength results are consistent with inferred strength values for majorite garnet from measurements in the diamond cell normal geometry, bolstering the idea that garnet-structured materials may all have similar strengths. In this low-temperature, high differential stress regime, garnet is shown to be significantly weaker than anhydrous ringwoodite and to have a strength similar to hydrous ringwoodite. This result suggests that the presence of water in the transition zone may not be required to explain a weak rheology, and therefore models of transition zone behavior built assuming that garnet is the high-strength phase may need to be revised.

  20. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  1. Performance and reliability of TPE-2 device with pulsed high power source

    International Nuclear Information System (INIS)

    Sato, Y.; Takeda, S.; Kiyama, S.

    1987-01-01

    The performance and the reliability of TPE-2 device with pulsed high power sources are described. To obtain the stable high beta plasma, the reproducibility and the reliability of the pulsed power sources must be maintained. A new power crowbar system with high efficiency and the switches with low jitter time are adopted to the bank system. A monitor system which always watches the operational states of the switches is developed too, and applied for the fast rising capacitor banks of TPE-2 device. The reliable operation for the bank has been realized, based on the data of switch monitor system

  2. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  3. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  4. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    Koppitz, Th; Pintsuk, G; Reisgen, U; Remmel, J; Hirai, T; Sievering, R; Rojas, Y; Casalegno, V

    2007-01-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  5. Architecture of high reliable control systems using complex software

    International Nuclear Information System (INIS)

    Tallec, M.

    1990-01-01

    The problems involved by the use of complex softwares in control systems that must insure a very high level of safety are examined. The first part makes a brief description of the prototype of PROSPER system. PROSPER means protection system for nuclear reactor with high performances. It has been installed on a French nuclear power plant at the beginnning of 1987 and has been continually working since that time. This prototype is realized on a multi-processors system. The processors communicate between themselves using interruptions and protected shared memories. On each processor, one or more protection algorithms are implemented. Those algorithms use data coming directly from the plant and, eventually, data computed by the other protection algorithms. Each processor makes its own acquisitions from the process and sends warning messages if some operating anomaly is detected. All algorithms are activated concurrently on an asynchronous way. The results are presented and the safety related problems are detailed. - The second part is about measurements' validation. First, we describe how the sensors' measurements will be used in a protection system. Then, a proposal for a method based on the techniques of artificial intelligence (expert systems and neural networks) is presented. - The last part is about the problems of architectures of systems including hardware and software: the different types of redundancies used till now and a proposition of a multi-processors architecture which uses an operating system that is able to manage several tasks implemented on different processors, which verifies the good operating of each of those tasks and of the related processors and which allows to carry on the operation of the system, even in a degraded manner when a failure has been detected are detailed [fr

  6. The Berg Balance Scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review.

    Science.gov (United States)

    Downs, Stephen; Marquez, Jodie; Chiarelli, Pauline

    2013-06-01

    What is the intra-rater and inter-rater relative reliability of the Berg Balance Scale? What is the absolute reliability of the Berg Balance Scale? Does the absolute reliability of the Berg Balance Scale vary across the scale? Systematic review with meta-analysis of reliability studies. Any clinical population that has undergone assessment with the Berg Balance Scale. Relative intra-rater reliability, relative inter-rater reliability, and absolute reliability. Eleven studies involving 668 participants were included in the review. The relative intrarater reliability of the Berg Balance Scale was high, with a pooled estimate of 0.98 (95% CI 0.97 to 0.99). Relative inter-rater reliability was also high, with a pooled estimate of 0.97 (95% CI 0.96 to 0.98). A ceiling effect of the Berg Balance Scale was evident for some participants. In the analysis of absolute reliability, all of the relevant studies had an average score of 20 or above on the 0 to 56 point Berg Balance Scale. The absolute reliability across this part of the scale, as measured by the minimal detectable change with 95% confidence, varied between 2.8 points and 6.6 points. The Berg Balance Scale has a higher absolute reliability when close to 56 points due to the ceiling effect. We identified no data that estimated the absolute reliability of the Berg Balance Scale among participants with a mean score below 20 out of 56. The Berg Balance Scale has acceptable reliability, although it might not detect modest, clinically important changes in balance in individual subjects. The review was only able to comment on the absolute reliability of the Berg Balance Scale among people with moderately poor to normal balance. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.

  7. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  9. Improved Yield, Performance and Reliability of High-Actuator-Count Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The project team will conduct processing and design research aimed at improving yield, performance, and reliability of high-actuator-count micro-electro-mechanical...

  10. On the design of high-rise buildings with a specified level of reliability

    Science.gov (United States)

    Dolganov, Andrey; Kagan, Pavel

    2018-03-01

    High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.

  11. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  12. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  13. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  14. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  15. High-capacity, high-strength trailer designs for the GA-4/GA-9 casks

    International Nuclear Information System (INIS)

    Rickard, N.D.; Kissinger, J.A.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. The authors are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight will to be very close to this target weight

  16. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    International Nuclear Information System (INIS)

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs

  17. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  18. Impact of High-Reliability Education on Adverse Event Reporting by Registered Nurses.

    Science.gov (United States)

    McFarland, Diane M; Doucette, Jeffrey N

    Adverse event reporting is one strategy to identify risks and improve patient safety, but, historically, adverse events are underreported by registered nurses (RNs) because of fear of retribution and blame. A program was provided on high reliability to examine whether education would impact RNs' willingness to report adverse events. Although the findings were not statistically significant, they demonstrated a positive impact on adverse event reporting and support the need to create a culture of high reliability.

  19. Effect of surface decarburization on the mechanical properties of high strength low alloy steel

    International Nuclear Information System (INIS)

    Saqib, S.

    1993-01-01

    An attempt has been made to study the relationship of mechanical properties with the microstructure of a high strength low alloy steel. A thorough investigation was conducted on the steel sheet and variation in mechanical properties was observed across its thickness with a change in the microstructure. Change in hardness and tensile strength at the surface compare to the core of the material is attributed to decarburization. The current research indicates that the correlation between hardness and tensile strength is not valid for steels if the hardness is determined on the surface only. Great care should be taken at the time of determination of tensile strength by using conversion charts/tables on the basis of hardness values obtained by practical means. (author)

  20. Fracture and fatigue of high strength filaments. Final report, September 25, 1974--August 30, 1975

    International Nuclear Information System (INIS)

    Holt, N.L.; Finnie, I.

    1975-01-01

    The history of high strength filamentary materials is traced and it is seen that their use has been widespread. It is shown that today's demands upon these materials require a better understanding of their behavior than is presently available. Current theories for both the static and fatigue strength of filamentary materials are reviewed. An analysis of static strength tests on short filaments is presented that explains seemingly anomalous test behavior which has been reported in the literature. The proposed approach is supported by experiments and computer analysis. A new machine for the fatigue testing of filaments or wires was designed and is described in detail. Results are presented for fatigue tests on tungsten wire, graphite filaments and glass filaments. Graphite filaments showed an unexpected deterioration in strength after very many cycles (10 8 ). An explanation of this effect is offered and supported by scanning electron microscope observations. The work concludes with some suggestions for further research

  1. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  2. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively

  3. Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Hanwen Deng

    2018-01-01

    Full Text Available The rapid repair and retrofitting of existing transportation infrastructure requires dimensional stability and ductile repair material that can obtain sufficiently high strength in a few hours to accommodate the large loading and deformation at an early age. Engineering cementitious composites (ECCs is a class representative of the new generation of high-performance fiber-reinforced cement-based composites (HPFRCC with medium fiber content. The unique properties of tremendous ductility and tight multiple crack behavior indicate that ECC can be used as an effective retrofit material. The wide application of this material in China will require the use of all local ingredients. In this study, based on Chinese domestic ingredients, including matrix materials and all fibers, high-early-strength ECC (HES-ECC was designed under the guidance of strain-hardening criterion of ECC. The matrix properties and fiber/matrix interfacial micromechanics properties were obtained from three-point-bending test and single-fiber pullout test. The mechanical properties of HES-ECC were achieved by direct tensile test. The experimental results show that HES-ECC was successfully developed by using all Chinese materials. When using the domestic PVA fiber at 2%, the strength requirement can be achieved but only a low ductility. When using the domestic PE fiber at 0.8%, the strength and deformation requirement both can be obtained. The HES-ECC developed in this study exhibited compressive strength of more than 25 MPa within 6 hours, and an ultimate tensile strength of 5-6 MPa and tensile strain capacity of 3-4% after 60 days. Moreover, the cost of using domestic fiber can be largely reduced compared with using imported fiber, up to 70%; it is beneficial to the promotion of these high-early-strength ECCs in the Chinese market.

  4. Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Hong, Sung-Deok; Kim, Yong-Wan; Park, Jae-Young; Kim, Seon-Jin

    2012-01-01

    This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

  5. The behavior of high-strength unidirectional composites under tension with superposed hydrostatic pressure

    NARCIS (Netherlands)

    Zinoviev, P.A.; Tsvetkov, S.V.; Kulish, G.G.; Berg, van den R.W.; Schepdael, van L.J.M.M.

    2001-01-01

    Three types of high-strength unidirectional composite materials were studied under longitudinal tension with superposed high hydrostatic pressure. Reinforcing fibers were T1000G carbon, S2 glass and Zylon PBO fibers; the Ciba 5052 epoxy resin was used as matrix. The composites were tested under

  6. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  7. Damage Analysis and Evaluation of High Strength Concrete Frame Based on Deformation-Energy Damage Model

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2015-01-01

    Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.

  8. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  9. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  10. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  11. The validity, reliability and normative scores of the parent, teacher and self report versions of the Strengths and Difficulties Questionnaire in China

    Directory of Open Access Journals (Sweden)

    Coghill David

    2008-04-01

    Full Text Available Abstract Background The Strengths and Difficulties Questionnaire (SDQ has become one of the most widely used measurement tools in child and adolescent mental health work across the globe. The SDQ was originally developed and validated within the UK and whilst its reliability and validity have been replicated in several countries important cross cultural issues have been raised. We describe normative data, reliability and validity of the Chinese translation of the SDQ (parent, teacher and self report versions in a large group of children from Shanghai. Methods The SDQ was administered to the parents and teachers of students from 12 of Shanghai's 19 districts, aged between 3 and 17 years old, and to those young people aged between 11 and 17 years. Retest data was collected from parents and teachers for 45 students six weeks later. Data was analysed to describe normative scores, bandings and cut-offs for normal, borderline and abnormal scores. Reliability was assessed from analyses of internal consistency, inter-rater agreement, and temporal stability. Structural validity, convergent and discriminant validity were assessed. Results Full parent and teacher data was available for 1965 subjects and self report data for 690 subjects. Normative data for this Chinese urban population with bandings and cut-offs for borderline and abnormal scores are described. Principle components analysis indicates partial agreement with the original five factored subscale structure however this appears to hold more strongly for the Prosocial Behaviour, Hyperactivity – Inattention and Emotional Symptoms subscales than for Conduct Problems and Peer Problems. Internal consistency as measured by Cronbach's α coefficient were generally low ranging between 0.30 and 0.83 with only parent and teacher Hyperactivity – Inattention and teacher Prosocial Behaviour subscales having α > 0.7. Inter-rater correlations were similar to those reported previously (range 0.23 – 0

  12. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    International Nuclear Information System (INIS)

    Gagnon, M; Tahan, S A; Bocher, P; Thibault, D

    2012-01-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  13. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  14. Assessment of ECISS draft standard for derivation of high temperature proof strength values

    Energy Technology Data Exchange (ETDEWEB)

    Linde, L.; Sandstroem, R.

    1996-03-01

    New European material standards are under development and modern data evaluation techniques must be able to supply these standards with accurate design values. A draft standard for the derivation of high temperature proof strength values has been proposed. This standard (EDS) has been used to calculate strength values for six steels; one unalloyed steel, one 12 % Cr steel and four austenitic stainless steels. Although large data sets were available, it was not possible to satisfy the requirement in the EDS of 80 % temperature coverage in the proof strength data for several steels. It suggests that temperature coverage specified in the EDS is unrealistically high. Due to the limited number of heats satisfying the temperature coverage requirements for each steel, the statistical error in the derived values exceeds 10-20 % which must be considered as unacceptably high. Instead it is recommended that the full data sets are used irrespective of temperature coverage. The variation of proof strength values represented by the analysed heats did not cover the corresponding variation in the larger data set available. This was the case even for the steel where 16 heats satisfied the temperature coverage requirement. Thus a limited number of heats can not be expected to be a good representation of more complete data sets. This has the consequence that absolute strength values can not be derived without access to a standardised proof strength at room temperature. Two derivation methods investigated in this report are both based on the ISO 2605/III procedure for proof strength assessments at elevated temperature. Method I and II use an essentially temperature independent and temperature dependent reduction term respectively. The methods have been assessed by the same data sets for the six steels. One or both methods gave satisfactory results for most of the investigated steels. Presented results are based on work carried out in ECISS TC22 WG1. 17 refs, 20 figs, 7 tabs.

  15. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  16. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  17. [The effect of 24 weeks of moderate-to-high intensity strength training on the elderly].

    Science.gov (United States)

    Solà Serrabou, Marta; López del Amo, José Luis; Valero, Oliver

    2014-01-01

    Strength programs have been seen to be useful in minimizing the effects of sarcopenia, although intervention protocols may vary in their content and characteristics. The aim of this study was to demonstrate the influence of a particular strength protocol for the elderly. A total of 35 individuals took part in the study, with 18 in the exercise group (4 men and 14 women), and 17 in the control group (4 men and 13 women). The average age was 73. The exercise group carried out a strength training program at moderate to high intensity over 24 weeks. Strength was evaluated using the chair stand test, 2-minute step and 2 vertical jumps-squat jump (SJ), and countermovement jump (CMJ). Falls in both groups were also compared before and after the intervention, as well as their relationship with the chair stand variable. A tendency towards improvement was observed in all tests, with the exception of CMJ; while the control group showed a tendency in the opposite direction. Contrast between the two groups at the end of the intervention was notable in all the tests. An inverse relationship between the chair stand strength variable and the number of falls was evident. According to the results achieved, the training was perceived to exercise a positive influence on both the strength of the elderly people and a reduction of the number of falls. The gap between the two groups widened towards the end of the intervention. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  18. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P.

    2014-01-01

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al 5 Fe 2 ) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  19. Effect of nepheline syenite particle size on diametrical compression strength and reliability of extruded ceramic Raschig rings used in packed towers

    Directory of Open Access Journals (Sweden)

    Salem, Amin

    2013-04-01

    Full Text Available In order to understand the effect of nepheline syenite particle size on physico-chemical properties of ceramic Raschig rings, the fluxing agent was grinded at different milling times. The compositions were prepared by blending the illitic-kaolinitic clay and pre-grinded particles. The rings were shaped by a laboratory extruder and then were sintered at 1200 ºC. The mechanical reliability of sintered specimens was mathematically described by Weibull theory and the effect of pre-grinding of fluxing agent on Weibull modulus was evaluated by measuring the diametrical compression strength. Weibull modulus and strength were the criteria for selecting the suitable particle size range of nepheline syenite. It was found that the pre-grinding of nepheline syenite acts as fairly strong parameter on microstructure of rings. The investigation concludes that reliable rings can be fabricated if the particle size of nepheline syenite is arranged between 53 and 75 μm. This enhancement in reliability is valuable in packed towers.Para conocer el efecto del tamaño de partícula de nefelina sienita sobre las propiedades fisicoquímicas de los anillos Raschig cerámicos, este fundente fue molido a diferentes tiempos. Las composiciones se prepararon mediante la mezcla de la arcilla caolinítica illitica y las partículas pre-molidas. Los anillos se obtuvieron en una extrusora de laboratorio y luego fueron sinterizados a 1200 ºC. La fiabilidad mecánica de las muestras sinterizadas se describe matemáticamente por la teoría de Weibull y el efecto de pre-molienda del fundente en el módulo de Weibull se evaluó midiendo la resistencia a la compresión diametral. El módulo de Weibull y la resistencia fueron los criterios para seleccionar el rango de tamaño de partícula adecuado de nefelina sienita para la fabricación de los anillos que se determinó estaba entre 53 y 75 μm comprobándose que influye considerablemente en la microestructura de los mismos. La

  20. Experimental Investigation of the Fracture Behaviour of Reinforced Ultra High Strength Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Aarup, B.

    the structural behaviour of a very high strength cement based material with and without steel fibres is investigated. A simple structural geometry has been tested, namely a beam subjected to three point bending. The results shows that the increase of ductility of the material also gives a more ductile behaviour......In the last fifteen years new types of cement based materials have been developed in Denmark at the Aalborg Portland Cement Factory. These types of new materials are characterized by very high strength even when mixed at room temperature and using conventional mixing techniques. In this paper...

  1. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  2. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    OpenAIRE

    Mejía, Ignacio; Bedolla Jacuinde, Arnoldo; Maldonado, Cuauhtémoc; Cabrera Marrero, José M.

    2011-01-01

    The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless,...

  3. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong [PPG Industries, Inc., Cheswick, PA (United States); Johnson, Kenneth I. [PPG Industries, Inc., Cheswick, PA (United States); Newhouse, Norman L. [PPG Industries, Inc., Cheswick, PA (United States)

    2017-06-05

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  4. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  5. High strength H2S resistant steels and alloys for oil field tubular products

    International Nuclear Information System (INIS)

    Straatmann, J.A.; Grobner, P.J.

    1976-01-01

    New sources of oil and natural gas are more frequently occurring at greater depths in hostile surface and underground environments. The materials utilized in drilling and completing the wells require higher strength along with improved resistance to corrosive/embrittling attack by contaminants present in the deep, high pressure-high temperature formations. Higher strength steels having yield strengths in excess of 690 MPa and possessing improved resistance to sulfide stress corrosion cracking (SSC) have been developed and are currently being evaluated by the oil industry. The research to develop these new steels combined modifications of chemical compositions, heat treatment and processing variables. For most severe SSC environments and deep wells, it was necessary to provide even better alloys for tubular materials. The successful solution to the problem was found with the utilization of nickel-base alloys. These materials are being evaluated in commercial applications

  6. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    International Nuclear Information System (INIS)

    Long-Chao, Zhuo; Shu-Jie, Pang; Hui, Wang; Tao, Zhang

    2009-01-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al 86 Si 0.5 Ni 4.06 Co 2.94 Y 6 Sc 0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability. (condensed matter: structure, mechanical and thermal properties)

  7. Improving patient safety: patient-focused, high-reliability team training.

    Science.gov (United States)

    McKeon, Leslie M; Cunningham, Patricia D; Oswaks, Jill S Detty

    2009-01-01

    Healthcare systems are recognizing "human factor" flaws that result in adverse outcomes. Nurses work around system failures, although increasing healthcare complexity makes this harder to do without risk of error. Aviation and military organizations achieve ultrasafe outcomes through high-reliability practice. We describe how reliability principles were used to teach nurses to improve patient safety at the front line of care. Outcomes include safety-oriented, teamwork communication competency; reflections on safety culture and clinical leadership are discussed.

  8. Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.

    Science.gov (United States)

    Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S

    2017-08-01

    Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.

  9. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  10. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  11. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  12. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Science.gov (United States)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  13. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  14. Development of high strength steel sheets for crashworthiness; Shototsu anzen`yo kokyodo usu koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K; Yamamoto, M; Mizui, N; Hirose, Y; Kojima, K [Sumitomo Metal Industries, Ltd. Osaka (Japan)

    1997-10-01

    For frontal or rear members of automotive body, the most suitable high strength steel was investigated. Dynamic tensile test at strain-rate of 2000/s and crash test of hat-shape column at 4m/s were conducted for steel sheets with tensile strength ranging from 290 to 980 MPa. Dynamic tensile strength increases with increasing static one but the ratio of dynamic tensile strength to static one decreases. Tensile strength remarkably affects crash energy absorption of column and TRIP steel is superior to other steels with same tensile strength. 7 refs., 16 figs., 1 tab.

  15. Reliability of a Computerized Neurocognitive Test in Baseline Concussion Testing of High School Athletes.

    Science.gov (United States)

    MacDonald, James; Duerson, Drew

    2015-07-01

    Baseline assessments using computerized neurocognitive tests are frequently used in the management of sport-related concussions. Such testing is often done on an annual basis in a community setting. Reliability is a fundamental test characteristic that should be established for such tests. Our study examined the test-retest reliability of a computerized neurocognitive test in high school athletes over 1 year. Repeated measures design. Two American high schools. High school athletes (N = 117) participating in American football or soccer during the 2011-2012 and 2012-2013 academic years. All study participants completed 2 baseline computerized neurocognitive tests taken 1 year apart at their respective schools. The test measures performance on 4 cognitive tasks: identification speed (Attention), detection speed (Processing Speed), one card learning accuracy (Learning), and one back speed (Working Memory). Reliability was assessed by measuring the intraclass correlation coefficient (ICC) between the repeated measures of the 4 cognitive tasks. Pearson and Spearman correlation coefficients were calculated as a secondary outcome measure. The measure for identification speed performed best (ICC = 0.672; 95% confidence interval, 0.559-0.760) and the measure for one card learning accuracy performed worst (ICC = 0.401; 95% confidence interval, 0.237-0.542). All tests had marginal or low reliability. In a population of high school athletes, computerized neurocognitive testing performed in a community setting demonstrated low to marginal test-retest reliability on baseline assessments 1 year apart. Further investigation should focus on (1) improving the reliability of individual tasks tested, (2) controlling for external factors that might affect test performance, and (3) identifying the ideal time interval to repeat baseline testing in high school athletes. Computerized neurocognitive tests are used frequently in high school athletes, often within a model of baseline testing

  16. The Reliability and Validity of Toe Grip Strength as an Index of Physical Development in 4- to 5-Year-Old Children

    Institute of Scientific and Technical Information of China (English)

    Takahiro Ikeda[1; Osamu Aoyagi[2

    2015-01-01

    Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical function in preschool aged children. The participants were 153 preschoolers. Each participant was measured in terms of his or her TGS and completed a MAT (motor ability test). The reliability of the measurements was investigated via Pearson's r and Cronbach's a through a test-retest method, as well as a Bland-Altman plot. The validity of the TGS value was investigated by measuring the correlation between TGS and each component of the MAT, the principal component analysis, and a two-way layout ANOVA with general linear model (gender and age). All reliability coefficients were more than 0.70. Though all components of the MAT relating to TGS were found to be significant (P 〈 0.05), these correlations were weak. However, TGS was found to be a physical function that relating to the lower limbs and develops with aging. Therefore, TGS was found to be a highly reliable measure of physical function performance in preschoolers.

  17. Reliability of an Automated High-Resolution Manometry Analysis Program across Expert Users, Novice Users, and Speech-Language Pathologists

    Science.gov (United States)

    Jones, Corinne A.; Hoffman, Matthew R.; Geng, Zhixian; Abdelhalim, Suzan M.; Jiang, Jack J.; McCulloch, Timothy M.

    2014-01-01

    Purpose: The purpose of this study was to investigate inter- and intrarater reliability among expert users, novice users, and speech-language pathologists with a semiautomated high-resolution manometry analysis program. We hypothesized that all users would have high intrarater reliability and high interrater reliability. Method: Three expert…

  18. Força de preensão palmar em idosos com demência: estudo da confiabilidade Handgrip strength in elderly with dementia: study of reliability

    Directory of Open Access Journals (Sweden)

    Mariana A. Alencar

    2012-01-01

    evaluated in different populations. The handgrip strength test is widely used, however little has been investigated about its reliability when used in elderly with dementia and the right stage wich its use should be avoided. OBJECTIVES: To evaluate the test-retest reliability of the handgrip strength test in elderly with different ratings of dementia. METHOD: The cognitive function of 76 elderly subjects with dementia was measured, and the caregivers were interviewed to allow classification by the Clinical dementia rating (CDR. For these assessments the Mini-Metal State Examination and the Pfeffer, Lawton, and Katz scales were used. Twenty subjects were classified as borderline (83.4± 5.8 years, 19 as mild (82.4±6.8 years, 19 as moderate (85.8±5.6 years and 18 as severe dementia (84.0±5.1 years. Handgrip strength was assessed with a JAMAR hydraulic dynamometer and after one week it was reevaluated. Reliability was analyzed by Intraclass Correlation Coefficient (ICC. The significance level was set at α=0.05. RESULTS: Test-retest reliability was excellent for groups with borderline (ICC=0.975; p=0.001, mild (ICC=0.968; p=0.002, and moderate (ICC=0.964; p=0.001 dementia. The analysis of the group with a severe CDR showed no statistical significance and a low ICC (ICC=0.415; p=0.376. CONCLUSION: The handgrip strength test has excellent reliability when used in elderly with borderline, mild, and moderate dementia, which enables its use in research. However, its use is not recommended in elderly classified with severe dementia due to the measure’s low reliability and subsequent irrelevance in clinical practice.

  19. Força de preensão palmar em idosos com demência: estudo da confiabilidade Handgrip strength in elderly with dementia: study of reliability

    Directory of Open Access Journals (Sweden)

    Mariana A. Alencar

    2012-12-01

    evaluated in different populations. The handgrip strength test is widely used, however little has been investigated about its reliability when used in elderly with dementia and the right stage wich its use should be avoided. OBJECTIVES: To evaluate the test-retest reliability of the handgrip strength test in elderly with different ratings of dementia. METHOD: The cognitive function of 76 elderly subjects with dementia was measured, and the caregivers were interviewed to allow classification by the Clinical dementia rating (CDR. For these assessments the Mini-Metal State Examination and the Pfeffer, Lawton, and Katz scales were used. Twenty subjects were classified as borderline (83.4± 5.8 years, 19 as mild (82.4±6.8 years, 19 as moderate (85.8±5.6 years and 18 as severe dementia (84.0±5.1 years. Handgrip strength was assessed with a JAMAR hydraulic dynamometer and after one week it was reevaluated. Reliability was analyzed by Intraclass Correlation Coefficient (ICC. The significance level was set at α=0.05. RESULTS: Test-retest reliability was excellent for groups with borderline (ICC=0.975; p=0.001, mild (ICC=0.968; p=0.002, and moderate (ICC=0.964; p=0.001 dementia. The analysis of the group with a severe CDR showed no statistical significance and a low ICC (ICC=0.415; p=0.376. CONCLUSION: The handgrip strength test has excellent reliability when used in elderly with borderline, mild, and moderate dementia, which enables its use in research. However, its use is not recommended in elderly classified with severe dementia due to the measure’s low reliability and subsequent irrelevance in clinical practice.

  20. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys

    Science.gov (United States)

    Kaputkina, L. M.; Prokoshkina, V. G.

    2003-10-01

    Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.